Compilers and Code Optimization

EDOARDO FUSELLA

Intermediate Representations

Contents

Generalities

► IR Trees and Canonical Trees

Basic Blocks and Control Flow Graph

Static Single Assignement

Motivation

- ▶ The Front/Back Split
 - Front-end: lexical and syntactic analysis, semantic checks
 - Back-end: code generation, register allocation, target-dependent optimization
- Advantages of Front/Back Split
 - ▶ Portability: one front-end for each source language, one back-end for each machine (N + M) instead of $N \times M$
 - Modularization and separation of concerns:
 - Design back-ends without taking into account each source language
 - Conversely, for front ends with respect to machine properties

Varieties of IRs

- Structure
 - ► Intermediate Language: functional representation of the source
 - Metadata: information from the source code useful for optimization
- ► Types of IRs
 - ► IR Trees: expression trees
 - Three-address instructions: pseudo-assembly languages (register based)
 - VM bytecode: Java Bytecode, DotNet CIL (usually stack based)

Desirable qualities

- Convenient to be produced during semantic analysis
- Convenient to translate into machine language for a broad range of architectures
- Each construct must have a clear and simple meaning, so that optimizing transformations can be easily specified and implemented
- ► For interpreted IRs, other requirements may arise

An example from A. Appel

- Design philosophy
 - ► IR constructs are nodes of a tree
 - Each IR construct must describe very simple operations such as a single fetch, store, add or jump
 - Child nodes contain the operands of the parent node
- ► IR Node classes
 - Expressions: perform computation of some value
 - Statements: perform side effects and control flow

IR Trees Expressions

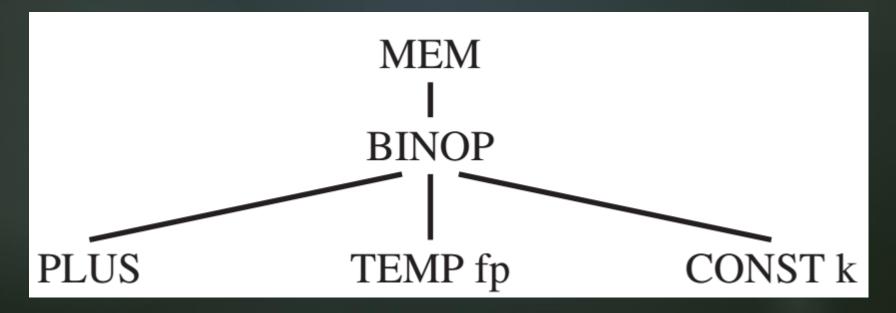
node type	meaning	note
CONST(i)	integer constant i	
NAME(<i>n</i>)	symbolic constant n	corresponds to assembly label
TEMP(t)	a temporary t	the temporary will be later mapped on a register
BINOP(o,e1,e2)	binary operator o applied to operands obtained by evaluating expr e1,e2 in order	ops: PLUS, MINUS, MUL, DIV; bitwise logical ops AND, OR, NOT; shift operators
MEM(e)	the contents of wordSize bytes, starting at addr e	as left operand of MOVE, denotes a store, otherwise a fetch
CALL(f,I)	function name f, argument list I	
ESEQ(s,e)	Enforce an order: <i>stmt</i> is evaluated, then <i>exp</i> is evaluated.	The value of the ESEQ node are that of exp.

IR Trees Statements

node type	meaning	note
MOVE(TEMP t,e)	evaluate expression e and move the result into temporary t	
MOVE(<i>MEM(e1)</i> , e2)	eval expr e1 yielding addr a; eval e2 and store result in k bytes of memory, starting at a	
JMP(/)	jump to label I	
CJUMP(o,e1,e2,t,f)	eval expr e1 then e2, yielding values a,b; compare a and b with relational operator o; If true jump to t else to f	the relational operators are: EQ, NE, LT, GT, LE, GE, ULT, ULE, UGT, UGE.
SEQ(s1, s2)	The statement s1 followed by s2	
LABEL(n)	defines symbolic constant <i>n</i> as the current code address	the value NAME(n) may be target of jumps/calls.

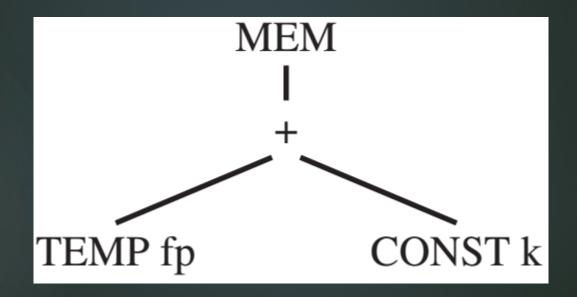
Translation of simple variables

- For a simple variable declared in the current procedure's stack frame, we translate it as MEM(BINOP(PLUS, TEMP fp, CONST k))
- ► The content of the memory cell at the address computed by the expression fp + k, where fp is the frame pointer (a register) and k is the constant offset of the variable within the frame



Translation of simple variables

► The representation can be shortened to: MEM(+(TEMP fp, CONST k))



Array access

Array in C: int a [12]; a[3] = ...

Array in Pascal:

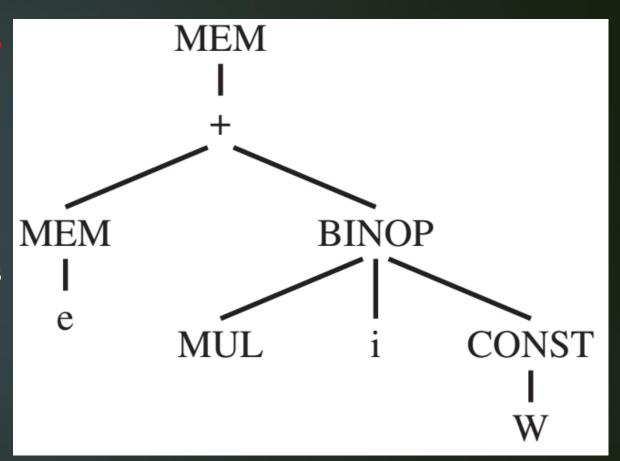
```
var a : array[1..12] of integer;
a[4] = ...
```

- Twelve 4-bytes cells are assigned to a in the frame. Base address a[0] (C) or a[1] (Pascal).
- ► To subscript an array in C or Pascal (to compute a[i]), just calculate the address of the i-th element of a: (i 1) x s +a
 - I is the lower bound of the index range
 - s is the size (in bytes) of each array element
 - a is the base address of the array elements

Translation of array variables

- ▶ In C, to calculate the array reference a[i]
 - \blacktriangleright the lower bound is zero: I=0
 - Assuming all elements are one word long: s = w
 - The base address of the array is the contents of a pointer variable, so MEM is required to fetch this base address
 - ► Thus:

MEM(+(MEM(e), BINOP(MUL, i, CONST W)))



Arithmetic

- Easy to translate
 - Each arithmetic operator corresponds to a binary operator
 - No unary arithmetic operators
 - Unary negation of integers can be implemented as subtraction from zero
 - unary complement can be implemented as XOR with all ones.
 - Unary floating-point operators are hard to translate
 - Unary floating-point negation requires a new operator

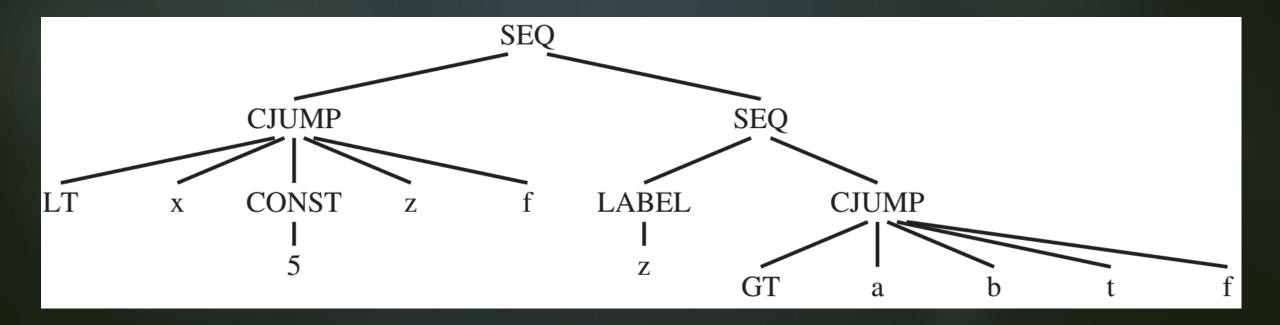
Conditional Instructions

Easy to translate with the CJUMP operator

```
will be translated as s1(t, f) = CJUMP(LT, x, CONST(5), t, f) for any labels t and f.
```

Conditional Instructions (more complex)

x < 5 and a > b will be translated as SEQ(s1(z, f), SEQ(LABEL z, s2(t, f)))



Loops

```
While loops

test:

if not (condition) goto done
body
goto test
```

done:

Lowered to conditionals and jumps

```
For loops
for (i=lo; i<=hi; i++;) {
   body
                 equal to
i=lo;
limit=hi;
while (i<=limit) {</pre>
   body
   i++;
```

Limitis

- IR trees need to be translated into assembly or machine language
 - Operators of the Tree language are chosen carefully to match the capabilities of most machines
 - However, certain aspects of the tree language do not correspond exactly with machine languages. Some examples:
 - CJUMP instruction can jump to either of two labels, but real machines' conditional jump instructions fall through to the next instruction if the condition is false
 - ESEQ nodes enforces an order when evaluating subexpressions
 - CALL puts returned value in specific register

From IR Trees to Canonical Trees

- Take IR trees and rewrite it into an equivalent tree without any of the cases listed above, such as ESEQ and two-way CJUMP
- Three stages:
 - a tree is rewritten into a list of canonical trees without SEQ or ESEQ nodes
 - this list is grouped into a set of basic blocks which contain no internal jumps or labels
 - the basic blocks are ordered into a set of traces in which every CJUMP is immediately followed by its false label

Basic block

Definition

- A sequence of statements that is always entered at the beginning and exited at the end
 - First statement: LABEL
 - Last statement: JUMP or CJUMP
 - No other LABEL, JUMP or CJUMP statement

Basic block

Construction of Basic Blocks from sequences of statements

- Linear scan of the statement sequence
 - When a LABEL is found, start new BB and close previous one
 - When a JUMP or CJUMP is found, end current BB and start new one
 - Any BB opened with no LABEL gets a new one
 - Any BB closed with no JUMP or CJUMP receives a new JUMP to next BB LABEL
 - A "final" BB with just a LABEL statement is inserted at the end

Trace Definition

- Basic blocks:
 - can be arranged in any order
 - end with a jump to the appropriate place
- A trace is a sequence of statements that could be consecutively executed during the execution of the program.
 - Can include conditional branches
 - Each block must be in exactly one trace
- A program has many different, overlapping traces

Trace

Construction of a set of traces

- GOAL: to make a set of traces that exactly covers the program:
 - Put as few traces as possible in our covering set
 - Order BBs satisfying the condition that each CJUMP is followed by its false label
 - Many of the unconditional JUMPs are immediately followed by their target label
- Possible algorithm:
 - Start with some block and follows a chain of jumps
 - Mark each block and appending it to the current trace
 - In case of a block whose successors are all marked, end the trace
 - Pick an unmarked block to start the next trace

Definition

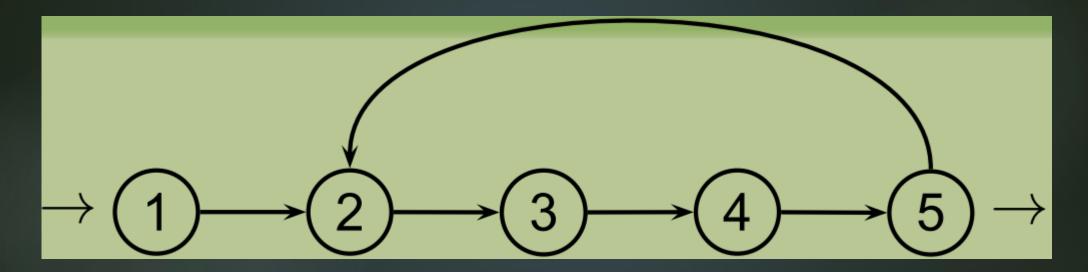
- Control Flow Graph (CFG) of a program is a directed graph G(B, E) such that
 - \blacktriangleright There is one node $i \in B$ for each IR statement ($stat_i$)
 - There are two additional nodes i_{in} , i_{out}
 - There is one edge $(i, i') \in E$ if the statement $stat_{i'}$ is executed immediately after the statement $stat_i$
 - Each node must have at most two immediate successors
 - For the first statement $(stat_0)$ there is an arc (i_{in}, i_0)
 - An arc (j, i_{out}) is added for each node j bound to a statement $(stat_i)$ preceding an exit point of the program

Basic Blocks in the CFG

- ABB is recognized as a sequence of nodes $i_0, ..., i_n$ such that:
 - There are arcs (i_0, i_1) ... (i_{n-1}, i_n)
 - No other arc in the CFG has any node of the sequence except i₀ as its target
 - No other arc in the CFG has any node of the sequence except i_n as its starting point
- It is often useful to simplify the CFG by collapsing each BB in a single node

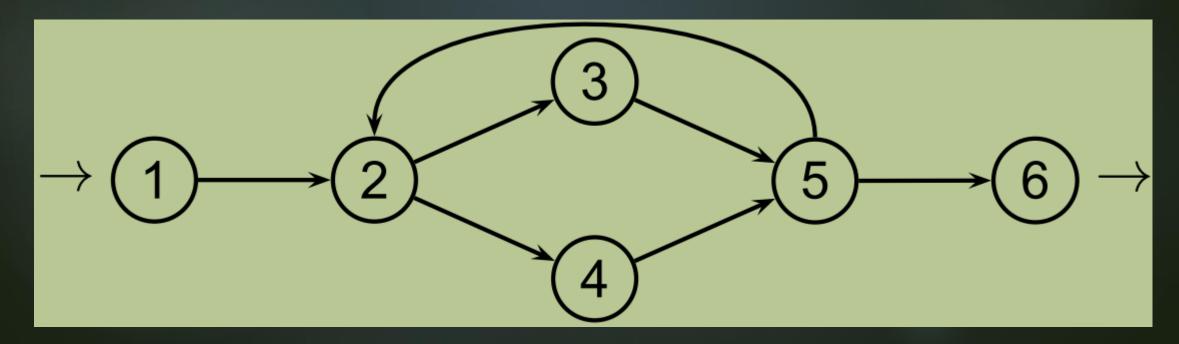
Loops: a simple graph-theoretical definition

A loop is a directed cycle (or circuit) in the CFG



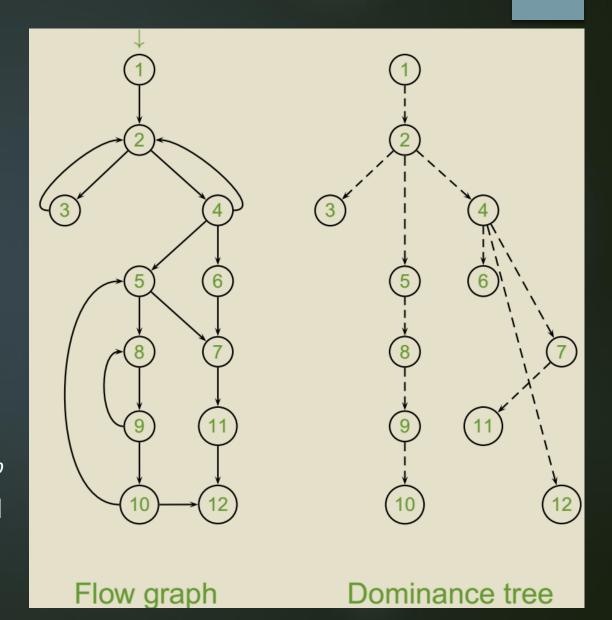
Loops: a second definition

- A loop is a strongly connected component (SCC) of the CFG: a set of nodes such that each one is reachable from every other node in the set
 - The picture contains three SCC's: {2,3,4,5}, {2,3,5} and {2,4,5}
 - The first is a maximal SCC, while the others are strongly connected but not maximal



Dominance relation

- A node d dominates a node n if d occurs before n on every directed path from the start node s_0 to n.
 - Every node dominates itself.
- In other words an execution trace reaching n cannot avoid executing d before.
- Properties
 - ightharpoonup Reflexivity: $\forall a : a \ dom \ a$
 - ► Transitivity: $a \ dom \ b \ and \ b \ dom \ c \Rightarrow a \ dom \ c$
 - Anti-symmetry: $a \ dom \ b \ and \ b \ dom \ a \Rightarrow a = b$
- Therefore the dominance relation is a partial order



Dominator Tree

- In a connected graph, suppose a node n has two dominators d, e
 - Then either d dominates e, or e dominates d
- Immediate Dominator
 - A node $m \neq n$ is the immediate dominator of n if
 - \blacktriangleright m dom n and $\forall d$ such that d dom n: d dom m
 - The entry node has no immediate dominator, for every other node the immediate dominator is unique
- Computing dominance is an essential step for program analysis (and also for many other applications of graphs)

Generalities

- Many optimizations require to represent definitions and uses of variables
- One possibility is to maintain an explicit structure representing this information
- An improvement is static single assignment form (SSA)
 - An IR where each variable has only one definition in the program text
 - The single definition can be in a loop

Motivation

- Advantages of SSA
 - 1. Simplify data-flow analysis and program optimizations
 - each variable has only one definition
 - The size of the SSA form is linear in the size of the original program
 - 3. It is easier to perform register allocation
 - 4. Unrelated uses of the same variable disappear, e.g.:

for
$$i \leftarrow 1$$
 to 100 do A[i] $\leftarrow 0$

for
$$i \leftarrow 1$$
 to 20 do $s \leftarrow s + B[i]$

No need to use the same register to hold the control variables of the two loops.

Construction: SSA of Basic Blocks

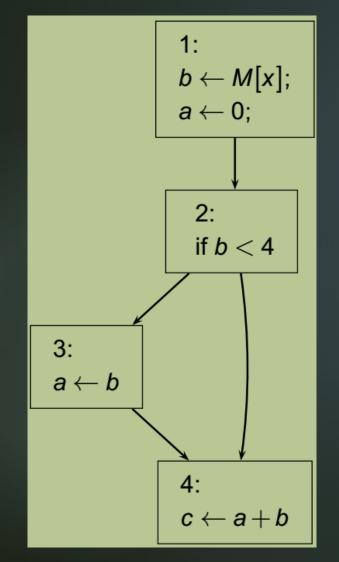
- Algorithm
 - Each new definition of a variable a is modified to define a fresh variable a1,a2,...
 - Each use of the variable is changed to use the most recently defined version

$a \leftarrow x + y$	$a_1 \leftarrow x + y$
<i>b</i> ← <i>a</i> − 1	$b_1 \leftarrow a_1 - 1$
$a \leftarrow y + b$	$a_2 \leftarrow y + b_1$
$b \leftarrow x \times 4$	$b_2 \leftarrow x \times 4$
$a \leftarrow a + b$	$a_3 \leftarrow a_2 + b_2$
Original	SSA form

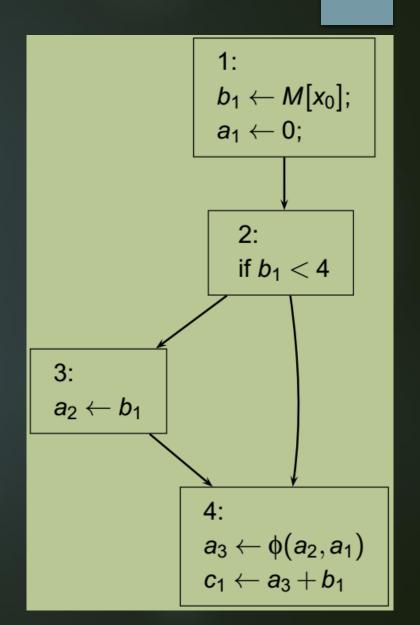
Construction: SSA outside Basic Blocks

- When a statement has more than one predecessor, the idea of "most recent definition" becomes nonsense
- The definition used to assign the new value depends on the control flow (determined at runtime)
- How to choose the variable version on a confluence point?
- Add a special notation to support this selection operation: the φ-function
- A φ-function has as many arguments as the number of predecessor nodes

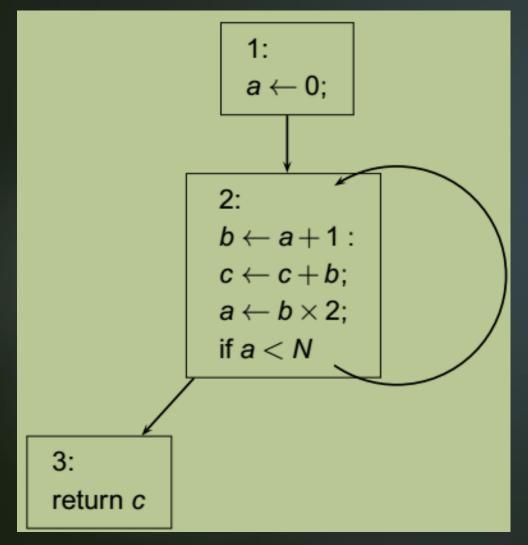
Construction: SSA outside Basic Blocks



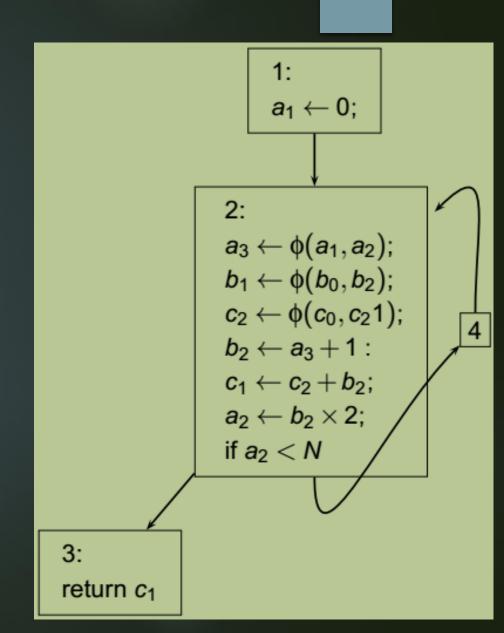
which version of a should be used in block 4?



Construction: SSA with loops



which version of a, b and c should be used in block 2?



Construction: Φ-functions

- How does the φ-function know which edge was taken?
 - 1. If the program has to be made executable, place a MOVE instruction on each incoming edge.
 - 2. In compilation, data-flow analysis will provide the connection between a use a_i and a definition a_i of a variable
- Dominance properties
 - 1. if x is the i-th argument of a φ -function in block n, then the definition of x is always executed before (pre-dominates) the i-th predecessor of n.
 - 2. if x is used in a non- ϕ -statement in block n, then the definition of x dominates node n.

Dominance properties

- **Path-convergence criterion (PCC)**. There should be a φ-function for variable a at node z of the flow graph exactly when all of the following are true:
 - 1. There is a block x containing a definition of a
 - 2. There is a block y (with $y \neq x$) containing a definition of a
 - 3. There is a nonempty path P_{xz} of edges from x to z
 - 4. There is a nonempty path P_{yz} of edges from y to z
 - 5. Paths P_{xz} and P_{yz} do not have any node in common other than z
 - 6. The node z does not appear within both P_{xz} and P_{yz} prior to the end

Construction: Converting to SSA

- Hypothesis the start node contains an implicit definition of every variable (a ← unitialized or incoming argument)
- Conversion algorithm
 - 1. Inserting the φ functions
 - 2. Assigning subscripts to variables.
 - ► No need of φ-function for every variable at each junction
 - ▶ In loop example c ← a + b in BB4 is reached b for all edges
 - Need to insert a φ-function in a node that is reached by different def's of the same variable

Construction: Inserting the φ functions

- Iterated path-convergence algorithm
 - to compute the nodes that need φ-functions
 - while \exists blocks x, y, z satisfying PCC and z does not contain a ϕ function for variable α
 - do insert $a \leftarrow \varphi(a, a, ..., a)$ at node z
 - Where the number of arguments of φ equals the number of predecessors of node z.
 - After inserting a φ function the loop is reentered.

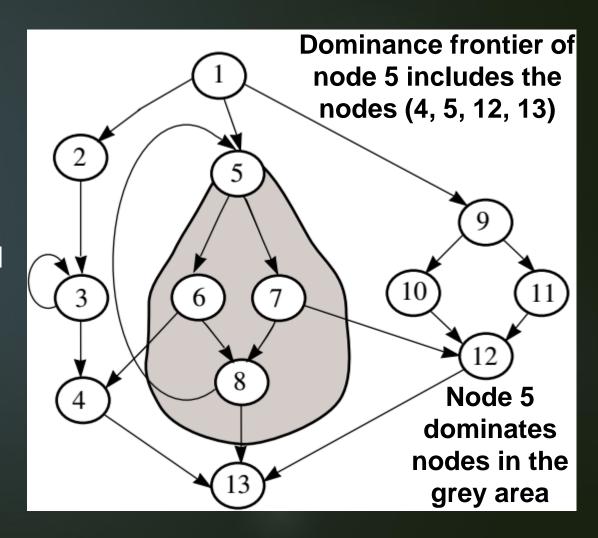
Construction: Placing φ-functions with Dominance Frontier

- Iterated path-convergence algorithm
 - Not practical
 - very costly to examine every triple of nodes x, y, z and every path leading from x and y
- Preliminaries:
 - Node x strictly dominates node w if x dominates w and $x \neq w$
 - Predecessor / Successor denote CFG relations.
 - Parent / child denote dominance tree relations.
 - In a tree, an ancestor of node n is the parent of n or the parent of an ancestor of n

Construction: Placing φ-functions with Dominance Frontier

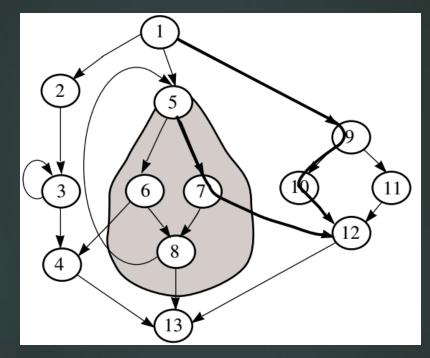
Dominance Frontier

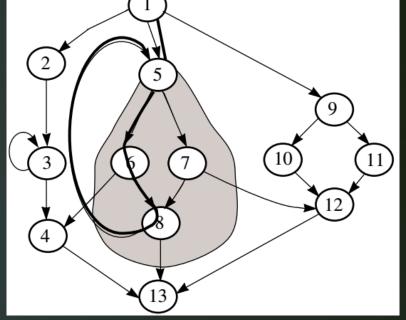
- The dominance frontier DF(x) of a node x is the set of all nodes w such that x dominates a predecessor of w, but does not strictly dominate w
- If x dominated all predecessors of w, it would dominate w too
- Intuitively, DF is the border between dominated and non-dominated nodes, therefore it is a point of convergence of disjoint paths



Construction: Placing φ-functions with Dominance Frontier

Any node in the dominance frontier of n is also a point of convergence of nonintersecting paths, one from n and one from the root node.





For node 12 $P_{5,12}$ and $P_{1,12}$

For node 5 $P_{1,5}$ and $P_{5,5}$

Construction: Placing φ-functions with Dominance Frontier

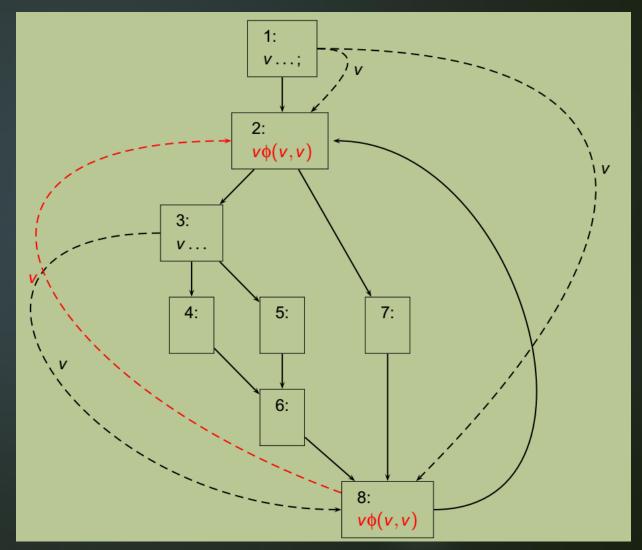
Dominance Frontier Criterion

- For each variable a defined in node x, we insert a φ -function in every node that is in DF(x).
- This criterion is equivalent to the Path Convergence criterion, since:
 - 1. If a_x is the *i*-th argument of a φ function in block z, then the definition $x: a \leftarrow$... dominates the *i*-th predecessor of z.
 - 2. If a is used in a non- ϕ statement in block n, then the definition of a dominates n.
 - Since a φ -function $a \leftarrow \varphi(...)$ is a kind of definition of a, we must apply the criterion to each newly introduced φ -functions
 - This requires an iterative procedure that terminates when no nodes need φ-functions.

Construction: Placing φ-functions PCC vs Dominance Frontier

Example using **PCC**

- blocks 1 and 3 define v
- block 2 needs vφ(v,v)
 since ∃ paths P12 = 12
 and P32 = 34682 which are disjoint



Construction: Placing φ-functions PCC vs Dominance Frontier

Example using **DF**

- Block 1 contains a definition of v and $DF(1) = \emptyset$: no φ function needed
- Block 3 contains a definition of v and $DF(3) = \{8\}$: node 8 needs φ function
- Now Block 8 contains a definition of v and $DF(8) = \{2\}$: node 2 needs φ :
- Since $DF(2) = \{2\}$ and 2 contains already the φ function for v, terminate.

