
Compilers and Code

Optimization
EDOARDO FUSELLA

Contents

 Data memory layout

 Instruction selection

 Register allocation

Data memory layout

Memory Hierarchy

 Capacity vs access speed

Main memory

 Classes of objects

 Stack resident: the variables and arguments of subprograms

 Heap resident: created by new or malloc, reachable from a stack or
heap-resident variable by pointers

 Memory Management

 Data to memory mapping for stack resident objects: static

 Data to memory mapping for heap resident objects: dynamic

Memory for subprogram data
Goals

 In almost any modern programming language, a function may

have local variables that are created upon entry to the function.

 Several invocations of the function may exist at the same time,

and each invocation has its own instantiations of local variables.

 Memory allocated to each activation of a

procedure/function/method

 We focus on procedural/imperative languages.

Memory for subprogram data
Example

int f(int x) {

int y = x+x;

if (y<10)

return f(y);

else

return y-1;

}

 A new instantiation of 𝑥 is created

(and initialized by 𝑓’s caller) each

time that 𝑓 is called

 Because there are recursive calls,

many of these 𝑥’s exist

simultaneously.

 Similarly, a new instantiation of 𝑦 is

created each time the body of 𝑓 is

entered.

Memory for subprogram data
Why a stack?

 In many languages (including C, Pascal, and Java), local

variables are destroyed when a function returns.

 Since a function returns only after all the functions it has

called have returned, function calls behave in last-in-first-

out (LIFO) fashion.

 If local variables are created on function entry and

destroyed on function exit, then we can use a LIFO data

structure – a stack – to hold them.

Memory for subprogram data
Generalities

 Different invocations of the same subprogram need separate
data areas

 The data memory layout is the same for all activations of the
same subprogram

 The traditional memory organization is a push-down stack of
frames

 Modern compilers use CPU registers instead of data areas for
storing parameters, data and return address

 Mirror memory locations are still required in many cases (e.g.,
number of available registers not enough, recursive procedure
calls, etc.).

Data Memory Layout
Activation records of subprograms

Frame or activation record

 The memory area used for the data of a subprogram (function,
procedure, method)

 Frames of invoked and not yet terminated subprograms are managed as
elements of a push-down stack

 The most recently invoked subprogram has its frame on top of the stack

 The frame of the main program is located at the bottom of the stack

 The stack used for frames allows not only push and pop, but also access
to intermediate cells (it is an array)

 When local variables are created they are not always initialized right away

 After many variables have been pushed, we want to continue accessing
variables within the stack

Data Memory Layout
Activation records of subprograms

Frame or activation record

 A memory segment delimited by two addresses:

 Stack pointer: 𝑠𝑝 points to the end of current stack frame

 Frame pointer: 𝑓𝑝 points to the end of previous stack frame, i.e. to

the base of the current one.

 At least 𝑠𝑝 is kept in register for faster access

Data Memory Layout
Activation records of subprograms

Fixed or variable frame size

 |𝑠𝑝 − 𝑓𝑝| is the frame size

 For C the frame size is known when the subprogram is compiled

 i.e., all invocations of a given subprogram have equal frame size

 The stack usually grows only at the entry to a function, by an increment

large enough to hold all the local variables for that function, and, just

before the exit from the function, shrinks by the same amount.

 Not true for all languages (e.g., variable size arrays in stack)

 All locations beyond the stack pointer are considered to be garbage

 All locations before the stack pointer are considered to be allocated

Data Memory Layout
Activation records of subprograms

Frame allocation and layout

 On procedure invocation a frame for the invoked subprogram

(termed callee) is allocated next to the frame of the caller

 The incoming arguments, i.e. the actual parameters of the

current subprogram, are included in the frame of the caller

 Frame layout can be different depending on the compiler

 However, to allow cross-language interoperability, a standardized

frame layout is needed

 Recommended frame layouts may be based on ISA properties

Data Memory Layout
Activation records of subprograms

Frame contents

 Local variables: i.e. variables whose lifetime coincides with the
life of the current subprogram

 Temporaries: intermediate results of expressions computed in
the subprogram

 Outgoing arguments: Actual parameters of a subprogram called
inside the current one.

 Saved registers: space for saving register values.

 Bookkeeping information: for frame and instruction linkage on
returns from subprogram.

Data Memory Layout
Frame layout

 For historical reasons, stacks usually start
at a high memory address and grow
toward smaller addresses.

 Stacks grow downward and shrink upward

 The frame has

 Incoming arguments passed by the caller

 Part of the previous frame but at a known offset
from the frame pointer

 return address created by the CALL instruction

 local variables kept in the frame

 Sometimes local variables kept in a register
needs to be saved into the frame to make room
for other uses of the register

 outgoing argument space to pass parameters

Data Memory Layout
Frame pointer

 With many procedures open at a time, where to store frame pointers?

 Fixed frame size: 𝑓𝑝 computed at return (𝑓𝑝 = 𝑠𝑝 + 𝑓𝑠𝑖𝑧𝑒)

 Parametric frame size: place dynamic link in each frame holding

𝑓𝑝 during subprocedure calls

 In languages allowing statically nested subprograms, more

bookkeeping is needed for enforcing scope rules

Data Memory Layout
Frame pointer

 A function 𝑔(. . .) calls the function 𝑓 𝑎1, . . . , 𝑎𝑛

 On entry to 𝑓

 the stack pointer points to the first argument that 𝑔 passes to 𝑓

 𝑓 allocates a frame by simply subtracting the frame size from the stack pointer 𝑠𝑝

 The old 𝑠𝑝 becomes the current frame pointer 𝑓𝑝

 The old value of 𝑓𝑝 is saved in memory (in the frame)

 When 𝑓 exits

 It copies 𝑓𝑝 back to 𝑠𝑝

 It fetches back the saved 𝑓𝑝

Data Memory Layout
Return address

 𝑟𝑎 address of the instruction to be executed when the activation ends

 In source/intermediate program, the instruction following the call

 Refers to the memory segment where code is stored (possibly read-

only memory)

 When the current procedure is done, 𝑝𝑐 ← 𝑟𝑎

 Jump-to-subroutine instructions typically save 𝑟𝑎 in a register

 Saving ra not necessary if a procedure is a leaf

Data Memory Layout
Addresses of frame resident variables

Compiler actions

 Assign frame positions to

arguments and local variables

 Add epilogue/prologue code to

create/destroy frame at runtime

Data Memory Layout
Addresses of frame resident variables

Data Memory Layout
Addresses of frame resident variables

 A variable in the frame has a relative address or offset with

respect to the 𝑓𝑝

 For instance, x is 𝑓𝑝 + 2, y is at offset 0 from 𝑓𝑝, and 𝑟𝑎 is at

offset −2

 Global variables reside at known offsets from the bottom of the

stack

Data Memory Layout
Need of frame pointer

In a fixed frame size language

 The address of every frame resident item can be expressed as

an offset from the stack pointer 𝑠𝑝

 Using only 𝑠𝑝: save instructions at return, save one register

 Number of temporary cells is not known when the front-end

finishes

 Solution: use explicit 𝑓𝑝 or move computation of frame size after

register allocation

Data Memory Layout
Use of registers for arguments

 Modern CPUs have a moderate number of registers

 Registers can be used for storing arguments, making calls faster

 Usually limited to 4-6 arguments (enough for most calls)

 Mirror memory locations are needed for recursive procedures or just
deep call stacks

Who saves the registers in a procedure call?

 A function f uses r1 for variable y, then it calls functions g, which also
needs r1

 The value of y in register r1 must be stored into a stack frame, before g
uses r1

 Then, when g returns to f , the saved value must be loaded into r1

Data Memory Layout
Use of registers for arguments

Who saves the registers in a procedure call?

 caller-save the caller saves the register value before the call and restores
it after the call

 callee-save the register is preserved across procedure calls by the callee

 Note that this decision is generally specified by the manufacturer/designer

 Optimization:

 If 𝑓 knows that the value of some variable 𝑥 will not be needed after the call, it
may put 𝑥 in a caller-save register and not save it when calling 𝑔

 if 𝑓 has a local variable 𝑖 that is needed before and after several function
calls, it may put 𝑖 in some callee-save register 𝑟𝑖, and save 𝑟𝑖 just once (upon
entry to 𝑓) and fetch it back just once (before returning from 𝑓)

Data Memory Layout
Use of registers for arguments

Need of an address:

 a variable whose address is taken (using &)

 a variable that is passed by reference

 A variable that is accessed from a nested function, not in C but in other
languages

 The variable is an array, for which address arithmetic is necessary to extract
components

 The value is too big to fit into a single register

 There are so many local variables and temporary values that they won’t all fit
in registers, in which case some of them are “spilled” into the frame

In all such cases the variable is said to escape and must be allocated in the
frame.

Data Memory Layout
Frame Management for Nested Procedures

 In languages that allow nested function declarations (such as Pascal, and

Java), the inner functions may use variables declared in outer functions.

 Nested procedures access the frame of their parent

 Static link: whenever a subprogram 𝑓 is called, it can be passed an extra

argument, i.e. a pointer to the frame of the most recently entered subprogram

statically enclosing 𝑓. This pointer is termed static link, and has a fixed offset in

the frame.

 Deep nesting leads to chains of references

 To reduce overhead, a global display array can be maintained

 Lambda lifting: When 𝑔 calls 𝑓, each variable of 𝑔 that is actually needed by 𝑓
(including by any subprogram nested inside 𝑓) is passed to 𝑓 as an extra

argument

Data Memory Layout
Frame Management for Nested Procedures

 Access a non-local variable x

 load the static link sl into a register r1

 addr(x) = r1 − offset(x)

 load the memory value into a register

 more memory accesses needed for

distant scopes

Instruction selection

Instruction Selection
Overview

 Translate IR to machine instructions

 Historically, code generators were hand written

 Need for retargetability

 Need for complex code generation in CISC machines

 Pattern matching algorithms

Instruction Selection
Example

This is typical of taking the value of a frame resident variable at

offset c from the base, with e the frame pointer.

Machine code translations:

Instruction Selection
Tree Patterns

 We can express a machine instruction as a fragment of an IR tree,

called a tree pattern.

 Instruction selection is the task of tiling the tree with a set of tree

patterns.

 The tiles are the set of tree patterns corresponding to legal machine

instructions, and the goal is to cover the tree with nonoverlapping tiles.

Instruction Selection
Example Target

Instruction Selection
Example Target

Optimal IR tree covering

Goal of the Code Generator

 To find a set of instruction tiles such that:

 all the nodes of the IR tree are covered;

 the set has near to minimum cost.

What is optimal? Cost criteria

 Execution time: sum of the execution times of all instructions (in

clock cycles) — very rough estimate unless pipelining and other

architectural issues are taken into account

 Energy: often proportional to instruction latency/execution time

Tree covering example
Preliminaries

IR tree of a[i] = x, where

 a is the base address of the pointer to an array

 4 bytes the array element size

 x is a frame resident variable

Assuming a cost of 1 for all instructions except MOVEM, which

costs 2, we get the following coverings

Tree covering example
Two possible coverings

 𝑟0 always

contains zero

 𝑎 and 𝑥 are

frame-resident

Maximal Munch
Top-down Tree Covering

Selection Algorithm (assuming equal costs)

1. Consider the root O of the tree

2. munch(O): choose a largest instruction tile matching O and perhaps several
other nodes near the root

3. Let O1; O2; : : : ; Ok be the roots of the subtrees which border with the
covered chunk

4. Recursively munch the trees O1; O2; : : : ; Ok (in this order)

5. Terminate when the entire tree has been munched

Code Generation

 While the algorithm visits the tree in depth-first order, it appends the tiles to a
list

 To produce the actual code, the list is reversed

 The algorithm is fast and operates in linear time, w.r.t. the tree size

Maximal Munch
Example

Dynamic Programming

Maximal Munch

 Optimum solution in case of all instructions with the same cost

Dynamic Programming

 It is possible to improve the quality of the solution by moving to a
Dynamic Programming algorithm

 The dynamic programming algorithm works bottom-up, building the
most efficient solution for increasingly larger subtrees

 A cost to every node in the tree equals to the sum of the instruction
costs of the best instruction sequence that can tile the subtree rooted at
that node.

 After building the solution for the root node, a pre-order visit of the tree
is sufficient to perform the Code Generation

Dynamic Programming
An example

 The only tile that matches CONST is

an ADDI instruction with cost 1.

 Several tiles match the + node

 Several tiles match the MEM node

 Cost of the root node is 2

Code Generation for CISC machines
RISC vs CISC

A typical modern RISC machine

 32 registers

 only one class of integer/pointer
registers

 arithmetic operations only between
registers

 “three-address” instructions of the
form 𝑟1 ← 𝑟2 ⊕ 𝑟3

 load and store instructions with only
the 𝑀[𝑟𝑒𝑔 + 𝑐𝑜𝑛𝑠𝑡] addressing
mode

 every instruction exactly 32 bits long

 one result or effect per instruction

A typical CISC machine

 few registers (16, or 8, or 6)

 registers divided into different
classes, with some operations
available only on certain registers

 arithmetic operations can access
registers or memory

 “two-address” instructions of the
form 𝑟1 ← 𝑟1 ⊕ 𝑟2

 several different addressing modes

 variable-length instructions, formed
from variable-length opcode plus
variable length addressing modes;

 instructions with side effects such as
“autoincrement” addressing modes.

Code Generation for CISC machines
CISC example: the Pentium architecture

The Pentium, in 32-bit mode

 six general-purpose registers, a stack pointer, and a frame pointer

 most instructions can operate on all six registers, but the multiply and

divide instructions operate only on the 𝑒𝑎𝑥 register

 “two-address” instructions, meaning that the destination register must

be the same as the first source register

 most instructions can have

 two register operands: 𝑟1 ← 𝑟1 ⊕ 𝑟2

 one register and one memory operand: 𝑀[𝑟1 + 𝑐] ← 𝑀[𝑟1 + 𝑐] ⊕ 𝑟2

Code Generation for CISC machines
instruction selection for the Pentium architecture

1. Few registers

 We continue to generate TEMP nodes freely, and assume that the register allocator will do

a good job.

2. Classes of registers

 The multiply instruction on the Pentium requires that its left operand (and therefore

destination) must be the 𝑒𝑎𝑥 register.

 The highorder bits of the result are put into register edx.

 How to implement 𝑡1 ← 𝑡2 × 𝑡3 ? The solution is to move the operands and result

explicitly.

Code Generation for CISC machines
instruction selection for the Pentium architecture

3. Two-address instructions

 How to implement 𝑡1 ← 𝑡2 + 𝑡3 ? By adding extra move instructions

4. Arithmetic operations can address memory (memory-mode operands)

 Fetch all the operands into registers before operating and store them back to memory

afterwards.

 These two sequences compute the same thing:

1 cycle

each
3 cycles ,

less registers

Register allocation

Register Allocation
Introduction

Motivation

 Access to registers much faster than access to memory

 The mapping from variables to registers is many-to-one

 Previous phases of the compiler assume that there are an infinite number of registers to hold temporary
values and that MOVE instructions cost nothing

 The number of live variables may exceed available registers

 Variables must be saved into memory to free needed registers

Goal

 To assign the many temporaries to a small number of machine registers, and, where possible, to
assign the source and destination of a MOVE to the same register

Scope

1. For expressions such as (𝑥 + 8 × 𝑦) − 𝑧 = (𝑦 + 1)

2. For basic blocks

3. For one procedure at a time

4. For the entire program

Register Allocation
Introduction

Advantages of small allocation units

 Easily integrated with the Instruction Selection phase

 Simpler and faster

 More suitable for application in dynamic compilation

 Global management of registers across procedures can increase the code

performance, but is more complex for the compiler

 We focus on intra-procedural Register Allocation

Register Allocation
Liveness Interference

Principles

 If two variables are both live in the same program point, they

cannot be stored in the same register

 Use two registers or store one or both in memory

 If the liveness intervals of two variables are disjoint, the same

register can be used

Liveness interference relation

 A binary, symmetric relation between two variables a and b denoting the fact

that the liveness intervals of a and b overlap. The interference relation can be

depicted as a non-directed graph.

Register Allocation
Graph Coloring

How to allocate registers?

 The Liveness Interference relation can be represented as a graph

 Registers can be viewed as colors

 The assignment needs to paint nodes of the graph with colors, so that adjacent
nodes differ in color

 Similar problems: coloring of political maps

Graph coloring problem

 Not always solvable for given number of colors

 Solution: spill variables to memory and recompute liveness

 Graph coloring is intractable!

 One of Karp’s 21 NP-complete problems

 Use practical (O(n)) heuristics

Register Allocation
Graph Coloring: Main Steps

Repeat until successful:

Build Construct Liveness Interference Graph 𝐺

Repeat until ∃ nodes of degree less than 𝐾 :

Simplify Reduce the graph removing colorable nodes

If 𝐺 ≠ ∅ :

Spill Select from remaining nodes a candidate for spilling

Go to Simplify

Select Assign registers or mark nodes as spilled

If not succeeded :

Start over Modify code to manage spills

 adding store/load instructions for the nodes we are not able to find a color

 Denote with 𝐾 the number of available registers/colors

 The algorithm employs a stack 𝑆

Register Allocation
Graph Coloring

Simplify

 If 𝐺 contains a node 𝑚 with fewer than 𝐾 neighbors

 Construct the graph 𝐺′ = 𝐺 − {𝑚}

 Push 𝑚 on 𝑆

 If 𝐺′ can be colored, so does 𝐺

 Worst case: 𝐾 − 1 colors are needed for m’s neighbors, thus leaving a color for

𝑚.

 If the graph is empty at the end, go to Select, else go to Spill

Register Allocation
Graph Coloring

Spill

 If 𝐺 ≠ ∅, all remaining nodes have ≥ 𝐾 neighbors

 Choose a node 𝑠 and mark it as a potential candidate for spilling

 Push 𝑠 on 𝑆 and compute 𝐺′ = 𝐺 − {𝑠}

 Retry Simplify

Register Allocation
Graph Coloring

Select

 For each node 𝑠 ∈ 𝑆, assign a color and pop it

 If 𝑠 does not interfere with the previous popped node, reuse the same color

 As long as 𝑠 is not marked for spilling, it is guaranteed to be colorable

 If 𝑠 is a spilling candidate, either the node can be colored, or the potential

spill is marked as an actual spill

 If there are actual spills, apply them in the code and Start over

How could a potential spill s not turn into an actual spill?

Register Allocation
Graph Coloring: an example

 four registers (𝐾 = 4)

 live on entry: 𝑘; 𝑗

 live on return: 𝑑; 𝑘; 𝑗

Register Allocation
Graph Coloring: an example

Register Allocation
Graph Coloring: an example

Register Allocation
Graph Coloring: an example

Register Allocation
Graph Coloring: an example

Register Allocation
Coalescing

How to eliminate redundant move instructions?

 If there is no edge in the interference graph between the source and

destination of a move instruction, then the move can be eliminated.

 The source and destination nodes are coalesced into a new node whose

edges are the union of those of the nodes being replaced.

 In principle, any pair of nodes not connected by an interference edge could be

coalesced.

 Unfortunately, the node being introduced is more constrained than those

being removed, as it contains a union of edges.

 A graph, colorable with K colors before coalescing, may no longer be K-colorable

after reckless coalescing.

 We wish to coalesce only where it is safe to do so, that is, where the

coalescing will not render the graph uncolorable

Register Allocation
Coalescing: Briggs strategy

 Nodes 𝑎 and 𝑏 can be coalesced if the resulting node 𝑎𝑏 will have fewer than

𝐾 neighbors of significant degree (i.e., having ≥ 𝐾 edges).

 The coalescing is guaranteed not to turn a K -colorable graph into a non-K –

colorable graph

 Simplify will remove all the insignificant degree nodes from the graph

 The coalesced node will be adjacent only to those neighbors that were of

significant degree

 Since there are fewer than K of these, simplify can then remove the coalesced

node from the graph.

 Thus if the original graph was colorable, the conservative coalescing strategy

does not alter the colorability of the graph.

