
PhoNoCMap: an Application Mapping Tool

for Photonic Networks-on-Chip

User Manual

Edoardo Fusella

Department of Electrical Engineering and Information Technologies,
University of Naples Federico II, Italy

Email: edoardo.fusella@unina.it

January 1, 2016

1 Introduction

This document is used to completely describe PhoNoCMap to a person wish-
ing to use or modify it.

1.1 Background

The recent grow in transistor integration has allowed a shift from the single-
core era to the multicore paradigm during the last decades. In a large-scale
multicore scenario, an energy-efficient on-chip communication fabric is the
key ingredient ensuring performance scalability. While traditional electronic
interconnects are constrained by physical limitations in terms of power dissi-
pation, latency, and bandwidth, silicon Photonics appears a promising path
to energy-efficient ultra-high bandwidth on-chip communication. In order
to exploit the potential advantages of photonics, we need to deal with spe-
cific electromagnetic effects, like insertion loss and the crosstalk noise, that
potentially impact the optical NoC architecture to a large extent.

Electromagnetic effects should be a major goal when designing a photonic
NoC architecture, since a high power loss or crosstalk noise may easily result
in a network leading to poor performance or even in an inoperable architec-
ture. The NoC architecture should be customized for a target application,
when its traffic characteristics are known at design time, which is the case

1

for most embedded applications running on multiprocessor Systems-on-Chip
(MPSoCs). The problem of mapping a set of given IP cores to the NoC tiles
is illustrated in Figure 1. An application, previously modeled as a graph of
concurrent tasks, is assigned to a set of available cores by mapping differ-
ent functions to different regions of the system, so that the traffic exhibits
patterns optimized for the electromagnetic effects.

1

2

3

4

5

67

04 0 1

5 2

6 37

Mesh-based NoC CG

Figure 1: A mesh-based on-chip architecture and an example of mapping
problem.

1.2 What is PhoNoCMap?

PhoNoCMap (photonic network-on-chip application mapping tool) was orig-
inally designed to allow us to investigate application-specific silicon photonic
NoCs taking into account the photonic distinctive electro-magnetic effects
that potentially impact on the NoC architecture constraining the network
scalability. We ended up with a tool that is suited to automatically map the
IP cores onto a photonic NoC architecture such that the metrics of interest
are optimized. It helps system architects to explore how mapping solutions
impact the performance/costs of a particular computing system and find the
best mapping solution for a certain application. The tool contains built-in
analytical models for estimating both power loss and crosstalk noise, thereby
allowing accurate estimates, and is fully customizable since new topologies,
routing algorithms, optical router architectures, and mapping optimization
strategies can be easily added.

2

1.3 How to get PhoNoCMap

The following are step-by-step instructions for setting up PhoenixSim on
your local machine to run mapping optimizations, or modify the code. Note
that PhoNoCMap requires Java 7.
Getting PhoNoCMap:

1. PhoNoCMap requires Java 7. Please ensure you have the right java
version installed on your PC.

2. Download the PhoNoCMap zip file from:
http://wpage.unina.it/edoardo.fusella/phonocmap/

3. Extract it somewhere on your computer.

4. Now you are ready to enjoy PhoNoCMap.

Running an application mapping optimization:

1. Open the app folder and create a new application communication file
describing the communication requirement of a target application (see
section 2.3).

2. Lunch a Windows Command Prompt or a Unix shell.

3. Browse to the PhoNoCMap directory.

4. Lunch PhoNoCMap (java -jar PhoNoCMap.jar).

5. Configure all the PhoNoCMap parameters moving among the different
windows.

6. In the Execution window, click the Start Mapping Optimization button.

7. View the results in the white text area and eventually in the result file
located in the output folder (see section 2.6).

1.4 Required reading

Before using this tool, you should be familiar with some things. For a com-
prehensive overview of circuit-switched photonic networks, you can read [1].
For power loss and crosstalk analysis of photonic NoCs, you can read [2, 3, 4].
Our paper [5] briefly presents PhoNoCMap, while the works presented in [6, 7]
rely on PhoNoCMap to perform the experimental evaluation.

3

1.5 Copyright And License

PhoNoCMap is made openly available under the following license. Please
cite the following paper if PhoNoCMap is used for your research:
E. Fusella and A. Cilardo, PhoNoCMap: an application mapping tool for
photonic networks-on-chip, in Design, Automation and Test in Europe Con-
ference and Exhibition (DATE), 2016. IEEE, 2016.

Copyright c⃝ 2015 by Edoardo Fusella, University of Naples Federico II
All rights reserved. Redistribution and use in source and binary forms, with
or without modification, are permitted provided that the following conditions
are met.

• Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the docu-
mentation and/or other materials provided with the distribution.

• Neither the name of the University of Naples Federico II nor the names
of its contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

This software is provided by the copyright holders and contributors ”as
is” and any express or implied warranties, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose are
disclaimed. In no event shall the copyright holder or contributors be liable for
any direct, indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services;
loss of use, data, or profits; or business interruption) however caused and on
any theory of liability, whether in contract, strict liability, or tort (including
negligence or otherwise) arising in any way out of the use of this software,
even if advised of the possibility of such damage.

1.6 The rest of this document

Chapter 2 explains how the simulator works and gives some details. Chap-
ter 3 briefly describes the models that are used for estimating both power
loss and crosstalk noise. Chapter 4 describes the ways in which the simulator
could be extended to support additional custom components and functional-
ity to suit the needs of a particular NoC architecture.

4

2 PhoNoCMap

This chapter explains the overall structure of PhoNoCMap, and how to use
PhoNoCMap.

2.1 Folder hierarchy

The components you will find in the PhoNoCMap folder are organized into
various subfolders depending on their functions. In the following, we will
enumerate and describe the contents of these subfolders:

• app - contains the application xml files used to describe the communi-
cation requirements of an application through a Communication Graph
(CG);

• bin - contains the tool compiled Java files;

• doc - contains the API documentation in HTML format from Java
source code generated using Javadoc;

• lib - contains all the jar files belonging to external libraries;

• output - contains the files where are stored the results of the mapping
optimizations;

• src - contains the tool source Java files.

In addition, the PhoNoCMap folder contains:

• PhoNoCMap.jar - the PhoNoCMap executable jar file;

• default parameters.xml - the xml file containing the default settings of
the GUI. It is required to edit this file only if you plan to customize
PhoNoCMap. See Chapter 4 if you are interested in that;

• userGuide.pdf - the PhoNoCMap user guide that you are reading.

2.2 Architecture description

The NoC architecture is described by the topology, the routing algorithm
and the optical router microarchitecture. Figure 2 shows a screenshot of
the NoC architecture window. While PhoNoCMap was initially planned and
developed targeting photonic NoC architectures based on direct topologies
(tori) with dimension order routing, both the underlying models and the tool
architecture can be easy extended to any other photonic architecture. See
Chapter 4 for more details.

5

Figure 2: A screenshot of the NoC Architecture window.

2.3 Application description

PhoNoCMap supports Communication Graphs (CGs) for describing the ap-
plication communication requirements:

Definition 1 A Communication Graph CG = G(C,E) is a directed graph
where each vertex ci ∈ C is an IP core and ei,j ∈ E is the edge between cores
ci and cj characterizing the communication between them. Each edge ei,j can
optionally have several attributes expressing application-specific information:

• b(ei,j) the communication bandwidth requirement from core ci to cj,
i.e. the minimum bandwidth (Mb/s) that should be provided by the
communication architecture.

The Communication Graph is stored in an application xml file as Figure 3
shows. For each application, it is required to specify the total number of IP
cores and every edge in the CG. The communication bandwidth requirement

6

can be optionally specified. This information is used for a more accurate
laser power consumption estimation (See Section 3 for more details).

application xml �le CG

<application numCores=”8”>

 <cg>

 <edge srcCoreID=”0” dstCoreID=”4” bandwidth="64"/>

 <edge srcCoreID=”1” dstCoreID=”0” bandwidth="128"/>

 <edge srcCoreID=”1” dstCoreID=”2” bandwidth="64"/>

 <edge srcCoreID=”2” dstCoreID=”3” bandwidth="64"/>

 <edge srcCoreID=”3” dstCoreID=”6” bandwidth="64"/>

 <edge srcCoreID=”4” dstCoreID=”5” bandwidth="64"/>

 <edge srcCoreID=”5” dstCoreID=”6” bandwidth="64"/>

 <edge srcCoreID=”6” dstCoreID=”7” bandwidth="64"/>

 </cg>

</application>

1

2

3

4

5

67

0
64 128

64

64
6464

64

64

Figure 3: An application xml file and the related Communication Graph.

Currently, PhoNoCMap is released with eight real typical streaming video
and image processing applications, namely:

• 263dec mp3dec, which is a H.263 video decoder and MP3 audio decoder
(mapped onto 14 cores);

• 263enc mp3enc, which is a H.263 video encoder and MP3 audio encoder
(mapped onto 12 cores);

• DVOPD, which is a dual video object plane decoder (mapped onto 32
cores);

• MPEG-4, which is a MPEG4 decoder (mapped onto 12 cores);

• MWD, which is a multi-window display (mapped onto 12 cores);

• PIP, which is a picture-in-picture application (mapped onto 8 cores);

• VOPD, which is a video object plane decoder (mapped onto 16 cores);

• Wavelet, which is a wavelet transform application (mapped onto 22
cores).

Note that the application file name must be specified, in the relative GUI
field, without the .xml extension.

7

2.4 Mapping strategy

The mapping strategy is described by the optimization algorithm, the opti-
mization objective, the number of iterations and the stop condition. In case
of genetic algorithm, it is possible to specify the population and offspring
sizes. PhoNoCMap is released with three different algorithms:

• a random search

• a genetic algorithm

• a list algorithm

The metrics driving the optimization phase are three:

• the worst-case crosstalk noise

• the worst-case insertion loss

• the average laser power consumption

As regards the stop condition, it is possible to choose between two possi-
bilities. The default stop criterion (condition 0) is based on the total number
of iterations. Differently, it is possible to choose a stop criterion based on
distance convergence (condition 1). Basically, the optimization is stopped
when there isn’t any appreciable improvement in the consecutive phenotypes
of the new populations that are being created for a certain number of itera-
tions. The main advantage is that it is not necessary to determine the exact
number of iterations required to reach a satisfactory solution.

Figure 4 shows a screenshot of the Mapping strategy window.

2.5 Optical Coefficients

Figure 5 illustrates how optical signals and crosstalk noise propagate for
both the parallel PSE (PPSE) and the crossing PSE (CPSE) in ON or OFF
resonance and in case of waveguide crossing. The crosstalk noise arises when
two optical signals reach simultaneously a waveguide crossing or a PSE. PSEs
(Figure 5 a-d) are made up of a microring resonator and two waveguides.
When an optical signal injected into the input port matches the wavelength
of the microring resonator resonance frequency, then it is coupled into the
ring and steered to the drop port (Figure 5(b) and (d)). Otherwise, the signal
propagates to the through port (Figure 5(a) and (c)). The output power at
each port of both the PPSE and CPSE in both the ON and OFF resonance
state is evaluated as a function of the input power and the loss/crosstalk

8

Figure 4: A screenshot of the Application and Mapping window.

coefficients presented in this section. Table 1 shows the default values derived
from the scientific literature, while the models covered by our methodology
are explained in the sections 3. All the optical parameters are configurable
in the Optical Coefficients window. In addition, it is possible to specify the
photodetector sensitivity, the laser efficiency and the modulation rate. These
values are used for the laser power consumption estimation as explained in
Section 3.

9

MR

MR

MR

MR

Add Add

AddAdd

Input Input

InputInput

Through

Through Through

Through

Drop

Drop

Drop

Drop

(a) (b)

(c) (d)

Waveguide

Optical

signal

Crosstalk

Input

Output 1

Output 3

Output 2

(e)

Figure 5: How optical signal and crosstalk noise propagate through: (a)
Parallel PSE in OFF state; (b) Parallel PSE in ON state; (c) Crossing PSE
in OFF state; (d) Crossing PSE in ON state; (e) Waveguide Crossing.

Table 1: Loss and crosstalk parameters
Parameter Notation Value Ref.
Crossing loss Lc 0.04 dB [8]
Propagation Loss in Silicon Lp 0.274 dB/cm [9]
Power loss per PPSE in OFF state Lp,off 0.005 dB [10]
Power loss per PPSE in ON state Lp,on 0.5 dB [10]
Power loss per CPSE in OFF state Lc,off 0.045 dB
Power loss per CPSE in ON state Lc,on 0.5 dB [11]
Crossing’s crosstalk coefficient Kc 40 dB [8]
Crosstalk coefficient per PSE in OFF state Kp,off 20 dB [10]
Crosstalk coefficient per PSE in ON state Kp,on 25 dB [10]
Photodetector sensitivity Sdetector −14.2 dBm [12]
Laser efficiency Elaser 30 % [13]
Modulation rate Mod 10 Gb/s [10]

2.6 Outputs in PhoNoCMap

PhoNoCMap supports two different output formats. First, at the end of a
mapping optimization run, a brief view of the results is shown in the white
text area located in the Execution window. Fig 6 shows an example. The
mapping solution is represented as a n × m matrix, where each entry, that
is in one-to-one correspondence with a tile of the NoC, contains an identifier
of the core mapped to that tile. Then, the worst case path leading to the
worst case signal-to-noise ratio (SNR) or power loss is showed. In case of a
crosstalk optimization, the different optical communications that contribute
to the worst case crosstalk noise are highlighted. Finally, in case of a crosstalk
optimization, the worst case signal and noise attenuations as well as the worst
case SNR are showed, while, in case if a power loss optimization, just the

10

signal attenuation is shown.
In addition, a radio button, located in the Execution window, enables the

writing of an output file in the output folder. The output file name depends
on the application, the NoC architecture and the mapping algorithm in the
following way: application name topology NoC size routing algorithm
optical router mapping algorithm mapping objective. This file contains

all the required information about the tool setup as well as the mapping
optimization results.

Figure 6: A screenshot of the Execution window at the end of an optimization
run.

11

3 Modeling

The nodes are organized in a two-dimensional topology1 where the connectiv-
ity is achieved using exclusive links between adjacent nodes. The architecture
is composed of n×m tiles, each containing an optical router connected with
an IP core and with the four neighboring tiles. Each connection is made up
of two unidirectional silicon waveguides connecting two routers or a router
and an IP core.

3.1 The Optical Models

We adapted the model presented in [3] introducing the following modifica-
tions:

• The crosstalk noise on the add port as well as the light that reflects
back on the input port are neglected.

• We consider only the first-order crosstalk noise and hence KiKj = 0,
with Ki, Kj ∈ {Kc, Kp,off , Kp,on}

• We neglected the power loss that affects the crosstalk noise inside
the switch where the crosstalk noise is generated. As a consequence,
KiLi = Ki, with Ki ∈ {Kc, Kp,off , Kp,on} and
Li ∈ {Lc, Lp, Lp,off , Lp,on, Lc,off , Lc,on}

Based on the above considerations, the equations presented in [3] are
semplified as follows.

PTppse,off = Lp,offPin (1a)

PDppse,off = Kp,offPin (1b)

PDppse,on = Lp,onPin (1c)

PTppse,on = Kp,onPin (1d)

PTcpse,off = Lc,offPin (1e)

PDcpse,off = (Kp,off +Kc)Pin (1f)

PDcpse,on = Lc,onPin (1g)

PTcpse,on = Kp,onPin (1h)

Pout2 = LcPin (1i)

Pout1 = Pout3 = KcPin (1j)

1Notice that, even if we rely on direct topologies, such as torus networks, the proposed
approach could be simply extended to any other topology (See Chapter 4 for more details).

12

Equations (1a) and (1b) and equations (1d) and (1c) give the output
powers at the through and drop ports for the PPSE respectively in the OFF
and ON state, while equations (1e) and (1f) and equations (1h) and (1g) are
the same equations for the CPSE. Finally, equations (1i) and (1j) give the
power detected at the output port of a waveguide crossing.

Based on the above model, it is possible to evaluate the power loss (Lsw
in,out)

that a signal is subject to when traveling from port in to port out of an optical
router and the crosstalk noise Ksw

in,out,i,j that a signal is subject to when
traveling from port in to port out due to another optical signal traveling
from port i to port j.

Lsw
in,out and Ksw

in,out,i,j are used to evaluate the power loss and the crosstalk
noise at the network level respectively taking into account all the losses and
all the crosstalk noises in each hop along a path between a source and a
destination.

Finally, note that the insertion loss impacts significantly on the laser
power consumption: it is possible to generate at the laser source just enough
power to ensure a proper detection of the optical signal at the photodetec-
tors. As a consequence, the power required to generate a new optical signal
depends the power loss the signal is subject to when traveling to the destina-
tion. By reducing the average insertion loss, it is possible to reduce the whole
laser power consumption. In that respect, the laser power consumption Plaser

is evaluated as

Plaser =
SdetectorLsrc,dst

Elaser

(2)

where Sdetector is the photodetector sensitivity, 0 ≤ Elaser ≤ 1 is the laser
efficiency and Lsrc,dst is the power loss along the path.

4 How to ...

PhoNoCMap requires Java 7. If you will make some changes to the source
code, you will need the JDK installed in order to re-compile PhoNoCMap.
PhoNoCMap is fully customizable since new topologies, routing algorithms,
optical router architectures, and mapping optimization strategies can be sim-
ply added. If you browse in the src folder hierarchy you will see different
packages:

• building blocks - contains all the basic building blocks of a photonic
NoCs, i.e. the microring resonators, the waveguides and the waveguide
crossings;

13

• genetic mapping - contains all the classes that handle the genetic map-
ping optimization;

• gui - contains the graphical user interface class;

• main - contains the core of the PhoNoCMap tool;

• mapping strategies - contains the mapping optimization algorithms;

• routers - contains the optical routers;

• routing - contains the routing algorithms;

• topologies - contains the topologies.

For each of the above customizable features, there is a package containing
all the classes implementing that particular feature. A new class can be sim-
ply created through the inheritance mechanism. Once the new class is added
to the right folder, it is required to modify the default parameters.xml file lo-
cated in the PhoNoCMap folder. This file is parsed in order to update the fea-
ture lists in the GUI at every run. Once the xml file is modified, you will see
the new feature in the GUI. Note that the name of the feature inside the xml
file must be the class name of the feature. As an example if you want to cre-
ate a new optical router called routerX, you should create a new class named
RouterX that extend the abstract class main.Router. The RouterX class file
must be placed in the routers package and in the default parameters.xml file
you must specify RouterX under the right class name attribute.

4.1 Create my own optical router

In a tiled photonic NoC, each tile is made up of an IP core coupled with an
optical router. Optical routers are characterized by a proper layout made
up of several waveguides and microring resonators. In addition, due to the
planar nature of physical layouts achievable on silicon, a certain number
of waveguide crossings are unavoidable. This makes the optical router a
critical component impacting on both the crosstalk noise and power loss of
the whole network. For this reason, researchers have proposed several switch
architectures. PhoNoCMap is released with six optical routers:

• OXY [14] (Fig. 7(a))

• ODOR [15] (Fig. 7(b))

• Cygnus [16] (Fig. 7(c))

14

North

South

W
e
s
t

E
a
s
t

MR

MR

MR

MR

MR

MR

MR

MR

MR

MR

MR

MR

Lo
ca
l

(a)

North

South

W
e
s
t

E
a
s
t

MR

MR

MR

MR

MR

MR

MR

MR

MR

MR

MR

MR

Lo
ca
l

(b)

(c)

North

South

W
e
s
t E

a
s
t

MR

MR

MR

MR

MR

MR

MR

MR

MR

MR

MR

MR

MR

MR

MR

MR

Ejection

In
je
c
ti
o
n

North

South

W
e
s
t E

a
s
t

MR

MR

MRMR MR

MR

MR

MR

MR

MR

MRMR

In
j

Eje

(d)

North

South

W
e
s
t

E
a
s
t

MR

MR

MR

MR

MR

MR

MR

MR

MR

MR

MR

MR

MR

MR MR

MR

MR

MR

MR

Lo
ca
l

MR

(e)

MR MR MR

MR
MR

MR

MR

MR

MR

MR

MR

MR

MR MR

MR

MR

South

E
a
s
t

W
e
s
t

NorthLocal

(f)

Figure 7: The switches considered in PhoNoCMap: (a) OXY [14]; (b)
ODOR [15]; (c) Cygnus [16]; (d) Crux [17]; (e) Crossbar [18]; (f) Optical
router [19].

• Crux [17] (Fig. 7(d))

• Crossbar [18] (Fig. 7(e))

15

• Optical router [19] (Fig. 7(f))

You can design your own router by extending the Router class located in
the package main and overriding the initialize() method. This method must
set the required information about the router design, i.e. the waveguides,
the waveguide crossings and the microring resonators. In that respect, the
Router class provides three HashMap objects:

• HashMap <Integer, MicroringResonator> rings: it stores all the Mi-
croringResonator objects required in the optical router.

• HashMap <Integer, Crossing> crossings: it stores all the Crossing ob-
jects required in the optical router.

• HashMap <Integer, Waveguide> waveguides: it stores all the Waveg-
uide objects required in the optical router.

In addition it is required to call the parent constructor of your router
class specifying the following arguments:

1. number of ports of your router

2. number of microring resonators

3. number of the waveguide crossings

4. number of the waveguides

In the following, we will give a brief overview of the main building blocks.

4.1.1 Waveguide

Waveguides, the photonic counterpart of electronic wires, are the main ele-
ments of photonic NoCs and are used at the router and network levels. A
Waveguide object can connect two tiles, two waveguide crossings or a tile
with a waveguide crossing. Fig. 8 shows three possible ways to implement
the connectivity.

When you create a new Waveguide, the constructor takes as input the
following parameters:

1. the Waveguide ID

2. the input waveguide crossing ID

3. the output waveguide crossing ID

16

input waveguide

crossing

output waveguide

crossing

input

tile

output

tile

input

tile

output waveguide

crossing

tile

waveguide

waveguide

crossing

Figure 8: Example of a Waveguide object.

4.1.2 Waveguide Crossing

Due to the planar nature of 2D topologies, waveguide crossings are easily
obtained. The Crossing objects are used to specify the occurrences of these
waveguide crossings. As shown in Fig. 9, there are two input waveguides
and two output waveguides. The Crossing constructor takes as input the
following parameters:

1. the ID of the Crossing object

2. the ID of the Waveguide connected to the input 0

3. the ID of the Waveguide connected to the input 1

4. the ID of the Waveguide connected to the output 0

5. the ID of the Waveguide connected to the output 1

In addition, the Crossing object is used to implement the crossing PSE.
In this case, one or two microring resonators could be added to provide the
switching facilities. Their IDs should be specified in the corresponding fields
using the setting methods, otherwise the value is set to −1.

4.1.3 MicroringResonator

The microring resonator is the basic building block required for providing
the switching facilities. A MicroringResonator object can be used in a cross-
ing PSE or a parallel PSE, and is placed between an input and an output
waveguide (Figure 5). In order to easily implement routing facilities, each
MicroringResonator object must specify which output port of the optical

17

Input 0

Output 1

Input 1

Output 0

Figure 9: Inputs and outputs of a Crossing object.

router a signal takes when the ring is placed in a ON resonance state. The
constructor takes:

1. the ID of the microring resonator

2. the type of the microring resonator: 0 → PPSE, 1 → CPSE

3. the ID of the input Waveguide

4. the ID of the output Waveguide reached in case of ON resonance state

5. the output port a signal takes when the ring is placed in a ON resonance
state

4.2 Create my own topology

PhoNoCMap is released with four topologies:

• Mesh (Fig. 10(a))

• Unfolded torus (Fig. 10(b))

• Folded torus (Fig. 10(c))

• Unfolded torus with an optimized floorplan [2] exhibiting a reduced
number of waveguide crossings (Fig. 10(d))

In order to create a new topology it is possible to extend the class Topology
in the package main and override the calcTile list method. This method is
responsible for creating the required connections between the tiles of the
topology. In this regards, it is possible to exploit the various building blocks,
located in the building blocks package, or extend the library with other novel
building blocks. The calcTile list method accepts three input parameters:

1. HashMap <Integer, Tile> tiles: it stores the Tile objects.

18

(a) (b)

(c) (d)

Figure 10: The topologies considered in PhoNoCMap: (a) Mesh; (b) Un-
folded torus; (c) Folded torus; (d) Unfolded torus with an optimized floor-
plan [2].

2. HashMap <Integer, Waveguide> waveguides: it stores the Waveguide
objects.

3. HashMap <Integer, Crossing> crossings: it stores theWaveguide Cross-
ing objects.

4.3 Create my own routing algorithm

When a message should be transmitted between two tiles, it is necessary to
decide which route to take. The routing algorithm defines the strategy used

19

to route packets from a source to a destination tile. PhoNoCMap is released
with XY dimension-order routing algorithms for each of the four topologies:

• XY routing for mesh

• XY routing for unfolded torus

• XY routing for folded torus

• XY routing for unfolded torus with the optimized floorplan

In order to implement a new routing algorithm you must extend the Rout-
ing class present in the package main and override the calcOutputPort and
calcInputPort methods.

The first method, calcOutputPort, is used to calculate the output port of
a source tile that an optical signal should take in order to reach a destination
tile. The second method, calcInputPort, is used to calculate the input port of
the destination tile that the optical signal takes when coming from a source
tile.

4.4 Create my own mapping optimization algorithm

PhoNoCMap is released with three algorithms:

• a random search

• a genetic algorithm

• a list algorithm

In order to create your own mapping algorithm you must implement the inter-
face MappingStrategyInterface in the package main. This interface requires
that the initialize and map methods are implemented.

The first method must set the mapping solution evaluator and the GUI
progress bar. In this respect, the method takes as input an instance of
the MappingEvaluator and JProgressBar objects. The first is required to
evaluate the mapping solutions, while the second is used to estimate and
update the algorithm execution progress.

The second method handles the mapping optimization phase and takes as
input the Application and the NoCarchitecture objects. This method should
contain your custom mapping strategy algorithm. The method must return a
MappingSolution object that contains the solution found. The MappingSolu-
tion object contains a M ×N matrix where each entry, that is in one-to-one
correspondence with a tile of the NoC, contains an identifier of the core
mapped to that tile.

20

References

[1] K. Bergman, L. P. Carloni, A. Biberman, J. Chan, and G. Hendry,
Photonic Network-on-Chip Design. Springer, 2013.

[2] K. Feng, Y. Ye, and J. Xu, “A formal study on topology and floor-
plan characteristics of mesh and torus-based optical networks-on-chip,”
Microprocessors and Microsystems, vol. 37, no. 8, pp. 941–952, 2013.

[3] Y. Xie, M. Nikdast, J. Xu, X. Wu, W. Zhang, Y. Ye, X. Wang, Z. Wang,
and W. Liu, “Formal worst-case analysis of crosstalk noise in mesh-based
optical networks-on-chip,” Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, vol. 21, no. 10, pp. 1823–1836, 2013.

[4] M. Nikdast, J. Xu, X. Wu, W. Zhang, Y. Ye, X. Wang, Z. Wang, and
Z. Wang, “Systematic analysis of crosstalk noise in folded-torus-based
optical networks-on-chip.” IEEE Trans. on CAD of Integrated Circuits
and Systems, vol. 33, no. 3, pp. 437–450, 2014.

[5] E. Fusella and A. Cilardo, “PhoNoCMap: an application mapping tool
for photonic networks-on-chip,” in Design, Automation and Test in Eu-
rope Conference and Exhibition (DATE), 2016. IEEE, 2016.

[6] E. Fusella and A. Cilardo, “Crosstalk-aware mapping for tile-based op-
tical network-on-chip,” in High Performance Computing and Commu-
nications, 2015 IEEE 7th Intl Symp on Cyberspace Safety and Security,
2015 IEEE 12th Intl Conf on Embedded Software and Syst (HPCC, CSS,
ICESS), 2015 IEEE Intl Conf on. IEEE, 2015.

[7] E. Fusella and A. Cilardo, “Minimizing power loss in optical networks-
on-chip through application-specific mapping,” Microprocessors and Mi-
crosystems, 2016.

[8] W. Ding, D. Tang, Y. Liu, L. Chen, and X. Sun, “Compact and low
crosstalk waveguide crossing using impedance matched metamaterial,”
Applied Physics Letters, vol. 96, no. 11, p. 111114, 2010.

[9] P. Dong, W. Qian, S. Liao, H. Liang, C.-C. Kung, N.-N. Feng, R. Shafi-
iha, J. Fong, D. Feng, A. V. Krishnamoorthy et al., “Low loss silicon
waveguides for application of optical interconnects,” in Proc. IEEE Pho-
ton. Soc. Summer Topical Meeting Ser, 2010, pp. 191–192.

[10] J. Chan, G. Hendry, K. Bergman, and L. P. Carloni, “Physical-layer
modeling and system-level design of chip-scale photonic interconnection

21

networks,” Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 30, no. 10, pp. 1507–1520, 2011.

[11] B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-
optical comb switch for multiwavelength message routing in silicon pho-
tonic networks,” Photonics Technology Letters, IEEE, vol. 20, no. 10,
pp. 767–769, 2008.

[12] G. Masini, G. Capellini, J. Witzens, and C. Gunn, “A four-channel,
10 gbps monolithic optical receiver in 130nm cmos with integrated ge
waveguide photodetectors,” in National Fiber Optic Engineers Confer-
ence. Optical Society of America, 2007, p. PDP31.

[13] J. Ahn, M. Fiorentino, R. G. Beausoleil, N. Binkert, A. Davis, D. Fattal,
N. P. Jouppi, M. McLaren, C. M. Santori, R. S. Schreiber et al., “Devices
and architectures for photonic chip-scale integration,” Applied Physics
A, vol. 95, no. 4, pp. 989–997, 2009.

[14] H. Gu, J. Xu, and Z. Wang, “A novel optical mesh network-on-chip for
gigascale systems-on-chip,” in Circuits and Systems, 2008. APCCAS
2008. IEEE Asia Pacific Conference on. IEEE, 2008, pp. 1728–1731.

[15] H. Gu, J. Xu, and Z. Wang, “Odor: a microresonator-based high-
performance low-cost router for optical networks-on-chip,” in Proceed-
ings of the 6th IEEE/ACM/IFIP international conference on Hard-
ware/Software codesign and system synthesis. ACM, 2008, pp. 203–208.

[16] H. Gu, K. H. Mo, J. Xu, and W. Zhang, “A low-power low-cost optical
router for optical networks-on-chip in multiprocessor systems-on-chip,”
in VLSI, 2009. ISVLSI’09. IEEE Computer Society Annual Symposium
on. IEEE, 2009, pp. 19–24.

[17] Y. Xie, M. Nikdast, J. Xu, W. Zhang, Q. Li, X. Wu, Y. Ye, X. Wang,
and W. Liu, “Crosstalk noise and bit error rate analysis for optical
network-on-chip,” in Proceedings of the 47th Design Automation Con-
ference. ACM, 2010, pp. 657–660.

[18] A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-
based matrix switch for silicon on-chip optical interconnection,” Pro-
ceedings of the IEEE, vol. 97, no. 7, pp. 1216–1238, 2009.

[19] R. Ji, L. Yang, L. Zhang, Y. Tian, J. Ding, H. Chen, Y. Lu, P. Zhou,
and W. Zhu, “Five-port optical router for photonic networks-on-chip,”
Optics express, vol. 19, no. 21, pp. 20 258–20 268, 2011.

22

