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Abstract—In this paper we introduce the hypercube topology
and show effects over the performance of communication net-
works in term of throughput and average lifetime. Hypercube
network structures have been proposed as effective topologies
to increase the network performance. We test this hypothesis
by considering appropriate nonlinear traffic generation models
and comparing the performance of hypercube networks with
that of other network topologies which were already studied in
the literature. We show that the hypercube network structure
presents better features combining some of the advantages of
regular lattices with those of other more complex network
structures.

I. INTRODUCTION

The rapid growth of on-line services such as Cloud Com-
puting is placing tremendous demands on the performance
of the underlying network infrastructure. To address these
challenges, network operators design routing protocols and
tune their parameters so as to control how traffic is routed
across the network optimize performance and use network
resources effectively. The use of specialized topologies to
improve network performance is an open problem [1], [2].
Indeed, any improvement of the performance can help reduce
energy used in Data Centers. Within this context, hypercube
topologies have been proposed as a possible solution and
have been heavily used to implement parallel algorithms that
require all-to-all communication [3]. In the Nonlinear Circuits
and Systems community, much research effort has been spent
to investigate the link between the network structure and its
performance. For example in [4], [5], [6], [7], the effects
of different network topologies on average throughput and
delivery time in packet data networks have been analyzed. By
using an innovative model of traffic generation based on the
use of chaotic maps, it was shown that under certain conditions
scale-free networks can perform better than other topologies
such as random or regular lattices. Also, it was shown that the
traffic behavior on the network is influenced by several factors
such as transmission rate and queue lengths at the vertices. The
aim of this paper is to extend the analysis presented therein
to encompass the more recent case of hypercube network
structures. The goal is to assess what advantages/disadvantages
this type of networks present when subject to varying traf-
fic loads under different circumstances. Also, we shall seek

(a) 4-D hypercube

(b) 4-D hypercube into a 2-D mesh

Figure 1. 4-hypercube mapped into a 2-D mesh using Gray Code

to analyze and compare the vulnerability properties of the
network to evaluate the variation in its throughput when one
or more nodes fail due to random or intentional attacks. We
show that hypercube networks do perform well under different
circumstances showing some of the advantages both regular
planar lattices and scale-free networks combined that were
discussed in [5].

II. HYPERCUBE NETWORK TOPOLOGY

Hypercube networks play an increasingly important role in
global communication operations, interconnecting networks of
microcomputers in parallel and distributed environments [1],
[2]. Generally speaking, an n-dimensional p-ary hypercube
consists of pn nodes. Each node has n nearest neighbors.
Nodes are labeled using base-p numbers, and it is assumed
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that any two nodes i and j are connected via a bidirectional
link if their labels differ in exactly one coordinate position, i.e.
Node (xn−1, xn−2, ..., xi, ..., x0)base−p is connected to Node
(xn−1, xn−2, ..., xi, ..., x0)base−p if (xi 6= xi), 0 ≤ i < n
[13]. Here we will focus on a binary hypercube topology
where p=2. Such a structure can be associated to a graph
G(V,E) in which [12]: a) V has 2n vertices; b) every vertex
has degree n; c) G is connected; d) any two adjacent nodes
A and B are such that the nodes adjacent to A and those
adjacent to B are linked one-to-one. Note that it is possible to
map the n-D hypercube topology onto a 2-D mesh topology
using Gray Code, modelling this kind of problem in graph-
theoretical terms as that of a graph embedding [12]. In the
nominal case a binary hypercube topology with n = 4, in
Figure 1(a), is mapped onto the L × L mesh with L = 4
shown in Figure 1(b).

III. NETWORK MODEL

Our network model consists of two types of nodes: routers
(that store and forward packets) and hosts (that are also sources
of traffic). Assuming the network has N nodes and a density
ρ ∈ [0, 1] of hosts then ρN is the number of total hosts and
(1 − ρ)N is the total number of routers. We suppose for the
sake of simplicity that host nodes are randomly distributed in
the network.

The network model considered in this paper consists of the
following key ingredients:

1) Traffic generation model: a packet is generated at a
host using either a uniform random distribution (Poisson
like) or a Long Range Dependence (LRD) distribution
defined by a chaotic map. Each source generates its
traffic independently of the other sources; the traffic load
is increased or decreased by varying the probability of
packet generation at each node [8], [9]. A random desti-
nation is assigned to each newly generated packet. The
destination node is selected with uniform probability
among all other hosts in the network.

2) Buffer size: each node keeps a queue of unlimited or
limited length where the newly generated packets or
those waiting to be routed are stored. Any packets that
is generated is put at the end of the host’ s queue. If
a packet arrives at a router is stacked at the end of
the router’s queue. Packets at the head of each queue,
exceeding its maximum capability, are dropped. The
packets are removed when they arrive at their destination
site.

3) Routing algorithm at every time-steps: each node picks
a packet at the head of its queue and forwards the packet
to the next node. The information that each packet
carries about its source and destination is used by the
following routing algorithm as follow. a) A neighbor
closest to the destination node is selected. b) If more
than one neighbor is at the minimum distance from
the destination, the link through which the smallest
number of packets has been forwarded is selected. c) If
more than one of these links shares the same minimum

number of packets forwarded, then a random selection
is made.

The process of packet generation, hop movement, queue
updating and updating of the routing table occurs at each time
step.

To generate packet data traffic, a chaotic map has been used
following the approach presented in [10]. We used the family
of maps defined over the unit interval as

xn+1 =

{
xn + (1− λ)(xn

λ )m1 , if xn ∈ [0, λ]

xn − λ( 1−xn

1−λ )m2 , if xn ∈ (λ, 1]
(1)

where λ ∈ (0, 1) and the parameters m1,m2 ∈ ( 32 , 2)
induce intermittency.

The map produces a sequence of real numbers xn ∈ [0, 1]
which is converted into a binary Off-On sequence given by

yn =

{
1, if xn ∈ [0, λ]

0, if xn ∈ (λ, 1]
(2)

where λ is used to tune the “load” on the network (a new
packet is generated only if yn = 1).

Furthermore, the Hurst parameter, H associated to this map
is given by:

H = 1− β

2
=

3m− 4

2(m− 1)
(3)

where β = 2−m
m−1 ∈ (0, 1) and m = max {m1,m2} with

m1,m2 ∈ ( 32 , 2). Thus m1,m2 = 1.5 corresponds to Poisson-
like behavior and as m1 and m2 increase towards 2, the
behavior is increasingly LRD as proved in [8] (e.g. in our
model m1 = 1.95 and m2 = 1.95).

IV. NETWORK PERFORMANCE

We consider networks with different topologies generated
using the most appropriate algorithms. For example, we use
Erdős-Rényi (ER) algorithm to generate a random network
and the static model introduced in [6] to generate scale-free
topologies. Furthermore, square lattices with periodic bound-
ary conditions are also considered. Using the network model
and traffic generator detailed above, simulations were carried
out to analyze various aspects of the end-to-end performance
for each different type of network. In all cases, the network
size was set to N = 256 nodes and the host density to
ρ = 1. In Figure 2(a) average lifetimes are plotted versus
the load for the four cases with LRD traffic sources at each
host. Here the average lifetime is simply the average time
spent by packets in the network. The load is computed as the
average number of packets produced by each traffic source
per time step of the simulation. Figure 2(a) confirms that,
as pointed out in [6], [8] the network topology is indeed a
very important factor. In fact, a regular lattice network has
longer lifetimes than a scale-free network. In Figure 2(b) the
same measurements are made with Poisson traffic sources
substituted for LRD sources. When the traffic sources act
following a Poisson distribution we notice a less pronounced
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(a) LRD source (b) Poisson source

(c) LRD source (d) Poisson source

Figure 2. Average lifetime and throughput versus the generation rate λ. A LRD traffic source is used to generate panels (a) and (c) while a Poisson traffic
source for panels (b) and (c). The number of nodes is N = 256 and host density ρ = 1. Network considered are: square lattice with periodic boundary L×L
with L = 16; Erdős-Rényi (ER) random networks with p = 0.1; scale-free network with γ = 3; hypercube network with N = 216 = 256 nodes.

influence of the network structure, confirming the importance
of selecting the traffic generation model. Note that the hyper-
cube network presents shorter lifetimes than regular lattices
and even scale-free networks. Figure 2(c) shows throughput
plotted as a function of the traffic load. The throughput is
defined as the number of packets reaching their destination
per unit time per host. Results are consistent with those for
the average lifetime. The scale-free network performs more
efficiently for both types of algorithm. We observe that the
hypercube topology presents a higher throughput than that of a
square regular lattice. Similar behavior is observed for Poisson
sources (Figure 2(d)). It is worth mentioning here that in both
cases, the hypercube network structure was found to present
a performance which is better than a regular square lattice but
also combines the beneficial effects of other topologies such
as scale-free and random networks when the average lifetime
is considered. This effects is even more pronounced when a
more realistic LRD traffic generation model is considered.

V. VULNERABILITY ANALYSIS

Network vulnerability has been studied in a number of
papers as an important feature of complex networks. For
example in [11] a methodology is presented based on a

convex optimization problem to measure maximum end-to-end
throughput as a performance indicator considering networks
with a fixed number of flows defined through a static routing
matrix. We use the dynamic model described above to assess
the vulnerability of hypercube networks and compare it with
that of different structures. In so doing, we consider the
throughput as a performance indicator measuring its change
in the presence of different types of attack strategies. In
particular, two types of attacks are considered:

• intentional attacks where nodes with the highest degrees
are removed from the network;

• random attacks where nodes selected at random are
removed.

Figure 3(a) and Figure 3(b) show the throughput measured
for different networks (such as square lattice, random, scale-
free and hypercube topologies) in presence of intentional and
random attacks as a function of the time k. We next look at the
effects of attacks on the same networks assuming that nodes
are removed intentionally or at random when k = 200. As
expected we note that intentional attacks have a much higher
effect on the overall network performance. Further, we observe
that hypercube networks show much higher resilience to
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(a) Intentional attacks

(b) Random attacks

Figure 3. Effects on throughput of intentional (a) and random attacks (b) for
different types of networks .

intentional attacks than scale free networks, again combining
some of the beneficial, features of different network structures.

VI. CONCLUSION

We investigated performance and vulnerability of some
network topologies. In particular, we extended the analysis
previously presented in [6] to hypercube networks. We found
that hypercube structures show better performance and re-
silience than square lattices while retaining some beneficial
properties of scale-free networks. We also noted the impor-
tance of considering realistic LRD traffic generation models.
Future activities will be aimed at generalizing the model by
introducing a new type of node, i.e. a computing node (that
is a node able to process packets). This is important in order
to address the growing interest on new network architectures
(e.g. those based on Software Defined Network and Network
Function Virtualization [14]) where processing, storage and
networking are going to be integrated. In particular, the new
node will also allow to assess the effects on performance of
but also on the average response time of processing and the
dynamic evolution of the memory usage of the network.
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