A Compositional Modelling Approach for Live
Migration in Software Defined Networks

Elisa Maini and Nicola Mazzocca
Department of Electrical Engineering and Information Technology
University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
Email:{elisa.maini, nicola.mazzocca} @unina.it

Abstract—Recent advances offered by Software Defined Net-
working and virtualization techniques are creating the favourable
conditions to design and develop Future Networks where network
functions and services can be virtualized, dynamically instan-
tiated and moved across networks. The ability to dynamically
allocate virtual nodes across distributed physical hosts and
even more the live migration of the Virtual Machines which
perform such virtual network functions are driving current
network infrastructures towards ‘“programmable” networks. To
be adopted as a deployable feature on a Carrier’s Network,
live migration performance need to be analysed and tested.
Therefore a compositional modelling approach could provide
early measures by evaluating the impact of these new technologies
on the performance of Future Network systems. The main
contribution of the paper is the definition of a general modelling
framework to integrate simple models representing the main
components and features of a Future Network architecture.
Starting from this model composed by atomic sub-models, we
conduct the performance analysis of the live migration of a single
Virtual Machine between two hosts located in different networks.
The Mobius tool has been used for developing the model as well
as for studying its behaviour and performance. Finally, some
simulative results are provided in order to show the feasibility
of this approach.

Index Terms—Software Defined Networking, Network Func-
tion Virtualization, OpenFlow, Virtual Machines Live Migration,
Stochastic Activity Network.

I. INTRODUCTION

The progress of the IT technology is impacting on the
evolution of networks, which are becoming less hierarchical
and with a limited number of simplified nodes inter-connecting
multiple local areas. In turn, this local areas are becoming
more and more populated by small aggregation-nodes and
also by a huge number of mobile devices, smart objects and
“things”.

The cost reductions of devices due to advanced technol-
ogy in terms of computing, storage and communication-
networking, is creating the ideal conditions to increase the
users capability to “drive the network intelligence” towards
the edges of the networks where this innovation will take
place [1]. However, the “ossification” of Internet makes some
difficulties for Service Providers and Network Operators to
develop and deploy new network functionality, services and
management policies which are essential to cope with the
increasing dynamic of the ICT markets. Actually, today most
of the Network Functions (typically from the layer 4 to the

layer 7) are provided by specific nodes called middle-boxes.
These nodes offer important services such as the improv-
ing security (e.g. firewalls and intrusion detection systems)
and performance (e.g. proxies) as well as the reduction of
bandwidth costs (e.g. WAN optimizers). However, they also
represent most of the CApital EXpenditures (CAPEX) and
Operating EXpenditures (OPEX) due to the effort management
that they require [2].

In this evolution towards the Future Network systems,
emerging paradigms such as Software Defined Networking
(SDN) [3] and Network Function Virtualisation (NFV) [4]
offer the possibility to develop such network functions (and
all middle-boxes) in software, by separating and abstracting
the logic from the underlying resources. Moreover, OpenFlow
[5] protocol operates directly on network flows, simplifying
the creation and installation of new “rules” into network re-
sources such as switches and routers. Therefore, the network is
more flexible, adapting to market dynamics. “Programmable”
networks [6] offer many advantages for the management of the
middle-boxes such as enabling dynamically adaptive polices
[7] and an elastic execution of virtual middle-boxes [8]. The
above analysis brings to the main assumption that network
functions and services should mainly be executed as virtual
network functions in an ensemble of Virtual Machines (VMs)
dynamically placed into distributed platforms at edges of the
network [9], [10]. This implies, also, the possibility to move
such VMs according to requirements and constraints of the
physical machines where they are hosted.

This paper argues one of the main challenge behind this
vision which is the capability of dynamically instantiating,
orchestrating and relocating VMs across networks. In particu-
lar, it provides a formal method based on Stochastic Activity
Network (SAN) which aims to analyse the live migration per-
formance of a single VM between two different physical hosts
in the network. In particular, we introduce a generic model
of a Future Network infrastructure based on SDN/OpenFlow
and NFV solutions. This generic model is implemented by
defining SAN sub-models and interfaces among them to share
information.

This work is mainly intended to proof of the advantages
that could gain Network Operators in adopting the proposed
modelling approach. In particular, our model intends to support
the design phase of the network infrastructure, providing a
valid tool to define its features and configuration parameters.

Finally, such model could help Network and Service Operators
for the evaluating the impact of the new technologies on
the live migration, widely used as conventional method for
changing the placement of the VMs in the network.

The paper is organized as follows: Section II provides some
related works and a brief background knowledge that will
help the reader to understand the paper easily; Section III
implements the modelling approach by mean of SAN models;
Section IV presents some results while Section V ends the
paper with some remarks and future developments.

II. RELATED WORKS AND BACKGROUND KNOWLEDGE

VM live migration within (and across) data centers has
traditionally been a complex task due to the requirements of
storage accessibility and moving the network-level policies
associated with each VM to its new location. Traditional
approaches studied the live migration behaviour by using
some virtualization platforms (e.g. Xen) to evaluate the mi-
gration performance in terms of migration time and energy
consumption given a resource available [11]. Others adopted
some prediction techniques [12] and probabilistic frameworks
[13], [14] to build a performance model representing the
performance features of the live migration.

Conventional VM live migration involves the transfer of the
CPU and memory state as well as the storage data. However,
storage data migration in WAN is still an important challenge
on which researchers are spending more efforts [15]. In the
other side, the live migration inter-data centers presents the
problem to allow IP change; solutions like tunnelling [16] and
later-2 expansion [17] work around the problem of connection
loss due to a change of the IP address. Using OpenFlow
VMs are allowed keep their original IP addresses, maintaining
all existing connections [18], [19]. Moreover, this protocol
(i) allows the mobility between the layer-2 and layer-3, (ii)
allows a programmable SDN, and (iii) network resources can
be remotely configured, controlled and monitored. Therefore,
SDN-based solutions could improve management operations
and performance as well as enable the VM migration in intra
and inter data centers [20], [21] Recent works [22], [23]
present a SDN architecture to enable the VM live migration
and evaluate its performance.

Generally speaking, the VM live migration involves several
key factors such as the VM memory size, page dirty rate,
the network transmission rate and the migration algorithm.
The page dirty rate is the rate which the VM memory page
change with. These factors and even more the migration
algorithm used, can introduce relevant variations of the mi-
gration performance. There are different techniques for the
live migration [24], [25], [26] that trade-off two important
performance parameters: the migration time and the downtime.
Migration time refers to the time required to move the VM
between physical hosts while downtime is the portion of the
time when the VM is not running. stop© [25] designs
halt the original VM and copy its entire memory to the
destination. This techniques minimise the migration time but
suffers from high downtime as the VM is suspended during the

entire transfer. On the other side, on-demand [26] migration
operates by stopping the VM copy only essential kernel data
to the destination. The remainder of the VM address space
is transferred when it is accessed at the destination. While
this technique has a very short downtime, it suffers from high
migration time.

Among the several techniques used, the iterative pre-copy
algorithm [27] minimizes the total migration time and down-
time than other algorithms used, such as on demand migration
and the stop©. Using an iterative approach, the hosted
VM in the source physical machine can be kept in an active
state during the migration towards the new destination. Since
the VM is running, some memory pages are changed during
the migration and must be re-sent. The term “iterative” means
that pre-coping occurs in several rounds and the data to be
transmitted during a round are the dirty pages generated in
the previous round. The pre-copy phase terminates if: 1) the
memory dirtying rate exceeds the memory transmitted rate;
2) the remaining dirty memory becomes smaller than a pre-
defined threshold value; 3) the number of iterations exceeds
a given value. After several rounds of synchronization, a
very short stop-and-copy phase is performed to transmit the
remaining dirty pages. Then, the VM is halted for the final
state transfer and re-starts it in the new location.

III. A SAN-BASED IMPLEMENTATION

This Section describes our modelling approach in order
to support the design of a Future Network by defining a
“generic” modelling framework for peformance analysis of
the live migration. Our approach exploits the usage of the
formal models, allowing to create the overall model of the
system under analysis in a well-structured way. We adopte
a component-based view of the network applying divide-et-
impera techniques: the overall system model is decomposed
recursively into sub-models until reaching an atomic sub-
model. The effectiveness of this approach has been showed in
[28] where a modelling framework has been defined and then
implemented exploiting the flexibility of the SAN formalism.

The analysis of the VM live migration over a
SDN/OpenFlow network requires to consider the entire
application field by modelling four different components:
the Controller, the OpenFlow Switch, the VM which are the
traditional components in SDN and the VM Live Migration
Orchestrator. This latter is a soft-component in charge of
the resources management and orchestration as well as for
the starting and stopping of the migration. This is argued by
many efforts that the ETSI [29] is spending in this direction;
however, in this work, the capability of the orchestrator is
limited to the triggering the migration for a given VM. Other
features will investigated in next developments.

The implementation of the system has been realized using
the SAN formalism [30]. The choice of this approach is due
to the great flexibility and power in the modelling given by
using such formal method. One of main advantages of the
SAN formalism is the possibility to map each component of
the designed architecture into “atomic” models. Component

Itergtion

Writer 1G1 Write_Page DirtyPages

VMSource Transfer Move_Data oeG1

VMDest

StopCopy 1G2

TimeMigration

UpV wnVM

1G3 StartVM

Fig. 1: Live migration algorithm model

interfaces have been realized by sharing extended places,
which contain complex data structures used by atomic models
to read and write shared information. In the follow subsections,
each atomic model is described in detail.

A. Virtual Machine model

This model consists of three main parts: the live migration
algorithm (Fig. 1), a trigger signal (Fig. 2(a)) and one
part that represents the typical production and delivery of
packets (Fig. 2(b)). The pre-copy algorithm executes in
several rounds and each iteration is modelled using the
place Tteration.

When a new iteration starts, a new token is added to
this place. The extended place VMSource is an input
parameter set as the memory size of the hosted VM into the
source physical machine. VMDest represents the fraction
of memory of such VM that is transferred to the destination
machine during the migration. The memory size of the
hosted VM into the source physical machine, the memory
dirtying rate during the migration and the elapsed time at
each round are modelled as VMSource, DirtyPages
and TimeMigration, respectively.

StartMigration : Transfer

(a) Trigger signal

HostsNumber >’|_’—.
0G1 IndiceHost Communication Ping

Host

1G2
1G1
Deliver InPkt
Produce OutPkt Message n
SwitchesForwardActived HostsActived Time 1G3

(b) VM model

Fig. 2: Trigger signal and Virtual Machine model

In the beginning, VMDest is zero and one token in
Transfer is used to start the live migration. All the
memory of the hosted VM in the source physical machine

C.

is transferred to the destination. The timed transition
Move_Data models the channel and the such transition
expires when all memory of the hosted VM in the source
physical machine is transferred to the destination. When
the migration starts, some memory pages (called dirty
pages) change during the process and they must be re-
sent to the destination. This is modelled using the place
Writer, the gate IG1, the timed transition Write_Page
and the extended place DirtyPages. In particular,
when the migration starts, one token is in Writer and
some memory pages change at a given rate. The timed
transition is modelled as an exponential distribution with
parameter equal to the page dirty rate (that is an input
parameter). Pages changed during this phase are modelled
by an extended place DirtyPages.

The place Iteration increases one token until when
one of the stop-conditions is verified. Such event is
modelled using the gate OG1. In aprticular, when a stop
condition occurs, one token is in StopCopy and the
hosted VM in the source physical machine is halted for
the final transfer round. During last iteration one token
is in the place DownVM. When last fraction of memory
has been transfered to the destination, the VM hosted on
the physical machine of destination is re-activated. In this
case, DownVM is zero and one token is in StartVM.
Morevoer, the VirtualHost model represents the ability
to handle a trigger signal (Fig. 2(a)) to start the migration.
Fig. 2(b) shows the host model representing the typical
production and delivery packet operations. The timed tran-
sition OutPkt and InPkt are modelled as a deterministic
distribution.

Live migration orchestrator model

This atomic model represents the entity in charge for
enabling the live migration (Fig. 3). To run it, a token is in
the place Trigger. The hosted VM in the source physical
machine is selected for the migration and, after one token
is in the place in MigrateHost. When the migration
is completed, one token is added at Completed. The
timed transition Trigger_signal is modelled as a
deterministic distribution with a transition firing every 10s.

Controller model
The sub-model for the controller is shown in
Fig. 4. Basically, it represents the interaction

SwitchesMigrated HostsMigrated MigrationTime
G1 1G2
Trigger Trigger signal MigrateHosts Hosts Migration_Gompleted Completed
HostsTM Next Host MigrateHost

Fig. 3: Live migration orchestrator model

occurring between the Controller and the OpenFlow
Switch. In particular, OpenFlow_Switch and
OpenFlow_Controller share a common place
SwitchToControllerRequest and the timed
transition Matching has two cases (i.e. Flow_mod and
Packet_Out).

SwitchesToControllerRequests

SwitchesToControllerRequestDescriptor SwitchesToControllerActived

1G1
Flow_Mod
Packet_In Serve_Switch_Request
Packet Out

Fig. 4: Controller model

D. Open Switch model

The sub-model that represents a OpenFlow Switch is
shown in Fig. 5. It is argued that the behaviour of
such switch is based on set of rules installed into it-
self. Basically, if a rule matches an incoming packet,
the forwarding decision is instantaneously executed on
the switch. Otherwise, if there is no matching rule, the
switch asks the controller for an action to execute. We
model these events by using two cases associated to the
timed transition Serve_switch_request. For such
transition a normal distribution with a mean of 4us and
standard deviation of 101.43 has been used according
to the reference [31]. Moreover, Write_Flow_Entry,
Output_Action and Matching are modelled as a
uniform distribution with lower bound 4us and upper
bound 16.5us. Finally, FlowExpires is modelled as a
normal distribution with mean 1 and standard deviation
0.2ms.

IV. EXPERIMENTAL RESULTS

In this Section we report some results obtained by using
Mobius tool [32], a software tool for modelling the behaviour
of complex systems. The modelling language is based ei-
ther graphical or textual representations supporting several

SwitchesNumber
0G1 IndiceSwitch

Switch

HostsActived ~SwitchesForwardActived SwitchesToControllerActived

SwilchesToComrolIerRequestDescriptoFomm”n'w“c’n EntryTimeout 1G1 FlowExpires

Message 0G2 SwitchesToControllerRequests

Packet_Out Deliver

>

I
Write Flow Entrv 0G4 FlowTable

Flow_Mod

Fig. 5: Open Switch model

modelling formalisms including SAN, Markov chains and
extensions as well as stochastic process algebras. Functionality
of the system can be defined as model input parameters, and
then the behaviour of the system can be automatically studied
across wide ranges of input parameter values. In particular,
we use Mobius for the analysing and evaluating the VM live
migration in a SDN/OpenFlow infrastructure.

To perform useful results, we evaluate the migration time
and downtime by changing the page dirty rate. Fig. 6 shows
the effect of varying the page dirty rate on migration time and
downtime for three different link speed values: 100 Mbps, 1
Gbps and 10 Gbps. The memory size VM migrated experi-
mentation is 1024 MB. This value is used for all experiments.
We observe an interesting relationship between page dirty rate
and migration performance: specifically, such relationship is
not linear this occur because of the stop conditions defined in
the migration algorithm. In line with some results presented
in [27], if the page dirty rate is below the link capacity, all
modified pages are transferred in a timely fashion resulting in
a low migration time and downtime. In the other side, if the
page dirty rate starts approaching towards the link capacity,
the migration performance degrades significantly.

Moreover, it is relevant to observe the impact of the
link speed on the live migration performance. Results have
been obtained considering a page dirty rate set as 300.000
pages/second. Fig. 7 shows clearly that the migration perfor-
mance are influenced by link speeds; moreover such figure
highlights that relationship between the link capacity and the
migration time is inversely proportional. Same consideration
about the relationship between the link capacity and the
downtime.

V. CONCLUSION AND FUTURE STEPS

In this paper we have defined a general modelling frame-
work to support the design of a network architecture based
on SDN/NFV principles. The framework is general enough to
model a design a SDN architecture by defining independent
sub-models. In particular, such framework has been used to

=

g

£ 150

B @=4==100 Mbps
£ 120

g) ! M eii=1 Gbps
g 90 - 10 Gbps

0 25 50 75 100 125 150 175 200 225 250 275 300
Page Dirty Rate [K pages/s]

(a) Migration Time

100000

90000

i
A

50000

80000

70000

60000

@===100 Mbps

40000 <@=1Gbps

Downtime [ms]

10 Gbps

30000

20000

10000 W
o L ety

6 25 50 75 100125150 175 200 225 250 275 300
Page Dirty Rate [K pages/s]

(b) Downtime

Fig. 6: Migration time and downtime versus page dirty rate

350
300
250
=
o
£ 200
=
=
2
=
g 150
20
s
100 -
50 -
0
S IPAN A SR\ S\ SN A N NI IR R N S\ SN SN N SN SN
RS SR O RN NN PN R RO RO N N NN
RO SRS SR N PO PPN
Link speed [Mbps]
(a) Migration Time
160000
140000 A\
120000
=
£ 100000
o
£ 80000
F
H
8 60000
40000
20000 | &
0
N I I I T T T W R N N NN NN
PO LE LSS ST TS S S
Link speed [Mbps]

(b) Downtime

Fig. 7: Migration time and downtime versus link speed

evaluate the performance of the virtual machine live migration
in terms of migration time and downtime. The main goal of
our analysis is to highlight how some parameters such as link
speed of the network and the page dirty rate of the migration
algorithm can influence significantly the migration time and
downtime. This is confirmed from some results obtained by
Mobius tool that show how the link speed and the page dirty
rate are the main factors impacting on the live migration

performance. In particular, link speed and the page dirty
rate cause not linear effects on such performance indicators
due to the use of some stop conditions in the migration
algorithm which force the migration to the final round. Future
research efforts will be oriented on the development of other
aspects related to architecture components. Moreoveor, we
will plan to investigate other migration algorithms in order
to migrate an ensemble of VMs across networks providing
other performance indicators including throughput, latency,
and jitter.

REFERENCES

[1] A. Manzalini, R. Minerva, E. Dekel, Y. Tock, E. Kaemfer, W. Tavernier,
K. Casier, S. Verbrugge, D. Colle, F. Collegati, A. Campi, W. Cerroni,
R. Vilalta, R. Munoz, R. Casellas, R. Martinez, N. Mazzocca, E. Maini,
Manifesto of Edge ICT Fabric, 17th International Conference on Intelli-
gence in Next Generation Networks (ICIN), Italy, 2013

[2] J. Sherry and S. Ratnasamy, A Survey of Enterprise Middlebox
Deployments, http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-
2012-24.html, 2012.

[3] Open Networking Foundation: https://www.opennetworking.org/

[4] Network Function Virtualization: http://www.etsi.org/technologies-
clusters/technologies/nfv

[5S] Open Networking Foundation: https://www.opennetworking.org/sdn-
resources/onf-specifications/openflow

[6] A. Galis, S. Clayman, L. Mamatas, J. Rubio-Loyola, A. Manzalini, S.
Kuklinski, J. Serrat, T. Zahariadis, Softwarization of Future Networks and
Services Programmable Enabled Networks as Next Generation Software
Defined Networks, IEEE Software Defined Networks for Future Networks
and Services (SDN4FNS), Trento, Italy, 2013.

[7]1 S. Rajagopalan, D. Williams and H. Jamjoom, Pico Replication: A
High Availability Framework for Middleboxes, 4th annual Symposium
on Cloud Computing (SoCC), CA, 2013.

[8] S. Rajagopalan, D. Williams, H. Jamjoom and A. Warfield, Split/Merge:
System Support for Elastic Execution in Virtual Middleboxes, 10th
USENIX Symposium on Networked System Design and Implementation
(NSDI), Chicago, USA, 2013.

[9] S.Clayman, E. Maini, A. Galis, A. Manzalini, N. Mazzocca, The Dynami-
cal Placement of Virtual Network Functions, 1st IEEE / IFIP International
Workshop on SDN Management and Orchestration (SDNMO), Krakow,
Poland, 2014.

[10] E. Maini and A. Manzalini Management and Orchestration of Virtu-
alized Network Functions, 8th International Conference on Autonomous
Infrastructure, Management and Security (AIMS), Brno, Czech Republic,
2014.

[11] H. Liu, C. Xu, H. Jin, J. Gong and V. Liao, Performance and Energy
Modeling for Live Migration of Virtual Machines, 20th International
Symposium on High Performance Distributed Computing (HPDC), CA,
2011.

[12] B. Hu, Z. Lei, Y. Lei, D. Xu and J. Li, A Time-series Based Pre-
copy Approach for Live Migration of Virtual Machines, 17th International
Conference on Parallel and Distributed Systems (ICPADS), Taiwan, 2011.

[13] S. Kikuchi and Y. Matsumoto, Performance Modeling of Concurrent
Live Migration Operations in Cloud Computing System using PRISM
Probabilistic Model Checker, 4th International Conference on Cloud
Computing, Washington DC, USA, 2011.

[14] F. Farahnakian, P. Liljeberg and J. Plosila, LiIRCUP: Linear Regression
based CPU Usage Prediction Algorithm for Live Migration of Virtual
Machines in Data Centers, 39th Euromicro Conference Series on Soft-
ware Engineering and Advanced Applications (SEAA), Santander, Spain,
2013.

[15] H. Lai, Y. Wu and Y. Cheng, Exploiting Neighbourhood Similarity
for Virtual Machine Migration over Wide-Area Network, Tth IEEE
International Conference on Software Security and Reliability (SERE),
Gaithersburg, MD, USA, 2013.

[16] R. Bradford, K. Kotsovinos, A. Feldmann and H. Schioberg, Live Wide-
Area Migration of Virtual Machines Including Local Persistent State, 3rd
International ACM SIGPLAN/SIGOPS Conference on Virtual Execution
Environments, SIGPLAN VEE, San Diego, CA, USA, 2007.

[17] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal et al., VXLAN: A
Framework for Overlaying Virtualized Layer 2 Networks over Layer 3
Networks, Internet Draft, 2013.

[18] R. Erickson, G. Gibb, B. Heller, D. Underhill et al., A Demonstration of
Virtual Machine Mobility in a OpenFlow Network, SIGCOMM (Demo),
Seattle, WA, USA, 2008.

[19] G. Stabler, A. Rosen, K. Wang and S. Goasguen, Elastic IP and Security
Groups Implementation Using OpenFlow, 6th International Workshop
on Virtualization Technologies in Distributed Computing Date (HPDC),
Delft, Netherlands, 2012.

[20] C. Baker, A. Anjum, R. Hill, N. Bessis and S. Kiani, Improving Cloud
Data centre Scalability, Agility and Performance using OpenFlow, 4th
International Conference on Intelligent Networking and Collaborative
Systems (INCoS), Bucharest, Romania, 2012.

[21] S. Jain, A. Kumar, S. Mandal, J. Ong et al., B4: Experience with
a Globally-Deployed Software Defined WAN, SIGCOMM, Hong Kong,
China, 2013.

[22] S. Ghorbani, E. Keller, M. Caesar, J. Rexford, C. Schlesinger and D.
Walker, Transparent, Live Migration of a Software Defined Network,
ACM Symposium on Cloud Computing (SoCC), Seattle, WA, USA, 2014.

[23] E. Keller, D. Arora, D. P. Botero and J. Rexford, Live Migration of an
Entire Network (and its Hosts), 11th ACM Workshop on Hot Topics in
Networks (HotNets-XI), Redmond, WA, USA, 2011.

[24] C. Clark, K. Fraser, S. J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and
A. Warfield, Live migration of virtual machines, USENIX Symposium
on Networked System Design and Implementation (NSDI), Boston, MA,
USA, 2005.

[25] M. Kozuch and S. Satyanarayanan, Internet suspend/resume, 1IEEE
Workshop on Mobile Computing Systems and Applications (WMCSA),
New York, USA 2002.

[26] E. Zayas, Attacking the process migration bottleneck, ACM Special
Interest Group on Operating Systems, SIGOPS, Vol. 21, Pages 13-24,
1987.

[27] S. Akoush, R. Sohan, A. Rice, A. W. Moore and A. Hopper, Pre-
dicting Performance of Virtual Machine Migration, 18th International
Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS), Miami Beach, Florida, USA,
2010.

[28] S. Marrone, N. Mazzocca, R. Nardone, R. Presta, S.P. Romano, and V.
Vittorini, A SAN based Modeling Approach to Performance Evaluation
of an IMS-Compliant conferencing framework, Transaction on Petri Nets
and Other Models of Concurrency VI, Springer, Pages 308-333, 2012.

[29] ETSI: http://www.etsi.org

[30] W. H. Sanders and J. F. Meyer, Stochastic Activity Networks: Formal
definition and Concepts, Lectures on formal methods and performance
analysis, Pages 315-343, 2002.

[311 M. Jarschel, S.Oechsner, D. Schlosser, R. Pries, S. Goll and P. Tran-Gia
Modeling and Performance Evaluation of an OpenFlow Architecture, 23rd
International Teletraffic Congress (ITC), San Francisco, USA, 2011.

[32] Mobius modelling tool: https://www.mobius.illinois.edu

