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Abstract—This paper addresses the problem of managing
highly dynamic network and service environments, where virtual
nodes and virtual links are created and destroyed depending
on traffic volumes, service requests, or high-level goals such as
reduction in energy consumption. This problem will be one of the
main technical challenges to be faced in the evolution towards
Future Networks (FN). Emerging paradigms such as Software
Defined Networks (SDN) and Network Function Virtualization
(NfV) are concrete steps towards infrastructures where network
functions and services will be executed as applications in en-
sembles of virtual machines (VMs) hosted in pervasive standard
hardware resources located across a network. The paper argues
that in order to manage these virtual infrastructures there is
a need to introduce high-level systems orchestration. The paper
describes an architecture based on an orchestrater that ensures
the automatic placement of the virtual nodes and the allocation
of network services on them, supported by a monitoring system
that collects and reports on the behaviour of the resources. The
orchestrater manages the creation and removal of the virtual
nodes, as well as configuring, monitoring, running and stopping
software on them. As a proof of these concepts, a distributed
orchestrater prototype has been designed, implemented and tested
with the results of different placement algorithms presented.

Keywords—Placement, Orchestration, Management, Software
Defined Network, Network Function Virtualization

I. INTRODUCTION

The progress of IT technology is impacting the evolution
of both telecommunications networks and services infrastruc-
tures. Transport networks are going to become less and less
hierarchical, with a limited number of simplified optical nodes,
inter-connecting multiple local areas. In turn, these local areas,
which are at the edge of current networks, are likely to
become populated by small aggregations of nodes, (which
include processing and storage capabilities), and also by a large
number of mobile devices, smart objects, and connected things.

In this evolution, software for management and orchestra-
tion will be the true challenge. Future Networks will rely more
and more on such software, which will, in turn, accelerate the
pace of innovation and will reduce costs (e.g., CAPEX and
OPEX savings). It is argued that many of the FNs services

and functions will be virtualized and executed as applications
in standard hardware nodes [1]. Emerging paradigms such as
Software Defined Networks (SDN) and Network Function Vir-
tualization (NfV) are going in this direction [2], by separating
and abstracting network services and functions from the under-
lying resources. These paradigms largely exploit virtualization
technologies for sharing and aggregation of resources, and
for decoupling and isolating virtual network elements from
the physical network. Moreover, the abstraction of virtualized
network elements enables and simplifies the programmability
of the network, increasing networking capabilities, allowing in-
novative service offerings, and providing higher cost efficiency
[3].

The virtual resources include virtual machines (VMs)
which execute either virtual routers or virtual service elements.
These will be combined to create the virtual networks. They
are aimed at better utilization of the underlying infrastructure
in terms of (i) reusing a single physical or logical resource for
multiple other network instances, and (ii) to aggregate multi-
ples of these resources, in order to obtain more functionality,
such as providing a pool of resources that can be utilized
on demand and across multiple domains. These resources can
be network components such as routers, switches, hosts, or
VMs. As stated, these VMs can execute virtual routers or
virtual service elements, but can also execute several network
services. In virtual networks, a resource can be re-used for
multiple networks or multiple resources can be aggregated for
virtual resource. However, to manage these virtual resources
effectively, there needs to be an effective orchestration and
network management system [4].

For the above reasons, many challenges are related to the
management and orchestration of virtual network resources.
One of these challenges is the automated provisioning of
networking and processing resources in the network according
to the usage of the resources involved. One of these issues
is to translate higher-level goals and policies resulting from
resource allocation and optimization mechanisms into lower-
level instructions and configurations. In order to manage these
virtual resources, there needs to be an orchestrator that ensures
the automatic placement and allocation of the virtual routers,
supported by a monitoring system which can collect and report978-1-4799-3360-0/14/$31.00 c©2014 IEEE



on the behaviour of the resources. As an example, there may
be a high-level goal which is “to reduce energy consumption”.
To satisfy such a goal, the placement engine would need to
have an algorithm which placed virtual routers ensuring that
the least number of physical resources were used. Conversely, a
goal such as “balance the load across all physical nodes” would
need a different placement engine with a different algorithm.
For fully effective operation, the placement engine should be
swappable at run-time in order to make placements that match
changing high-level goals and policies.

The placement of virtual elements to physical resources is a
complex issue given the highly dynamic nature of the resource
usage and the start-up and lifetime of virtual elements. Previ-
ous work which addressed the placement of virtual machines
in compute clouds includes [6] and [7]. The main aim of this
paper is to describe an architecture based on an orchestrator
which enables automated placement of virtual network and
processing resources across the resources of the local areas.
The orchestrator also manages the creation and removal of
the virtual routers as well as configuring, monitoring, running
and stopping applications in these virtual machines. Using
an orchestrator, the utilization of infrastructure resources are
monitored and the placement of the virtual routers is constantly
updated to achieve optimal resource utilization according to
goals policies set by the infrastructure provider.

This paper is structured as follows: Section II outlines
some use cases. Section III describes the proposed architecture.
Section IV describes the testbed used for experiments, and
Section V provides some results of the placement. Section VI
presents some future work and finally, Section VII concludes
the paper.

II. EVOLUTIONARY SCENARIO AND USE CASES

Some selected use cases show the key potential for using
Software Defined Networks and Network Function Virtuali-
sation to improve the quality of the applications for users,
to increase business opportunities for both Service Providers
and Telecommunication Service Providers, and also to enhance
the market for value-added service providers. These trends
will be coupled with the economic drive given by a myriad
of new players entering the Telco/ICT markets. These factors
are expected to impact the economic market in a way that
will drive investment outside of the network infrastructure
boundary and stimulate the advent of new communications
paradigms [5]. The edges of the networks will be transformed
into complex Micro Data Centers consisting of a number
of diverse and autonomous, but inter-related nodes, devices,
machines: this will create a “complexity” which has to be
managed and controlled [8].

The network functions and services will be exposed, as
opposed to being hidden as they are currently. They will be
executed in VMs running mostly in these Micro Data Centers
at the edge of the network, closer to the users and customers,
and partly in VMs that are in mainstream Data Centers. The
orchestration and management should be ensured by a system
which knowing both infrastructure and network “states”, will
be capable of optimizing configurations on the distributed
nodes. Figure 1 presents an overview of a Future Network
architecture that encapsulates these Micro Data Centers at the

edge of the network, connected by high throughput optical
links and Core Routers to large Data Centers.
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Figure 1: Evolutionary network scenario: edge networks

This Future Network architecture is being planned for the
following 3 telco use-case examples.

1) Provisioning end-to-end services across different Edge
Networks: A service provider may want to provide end-to-
end ICT services to users who are attached to edge networks
even if belonging to different network providers. This could be
achieved by operating an overlay platform capable of hooking,
managing and orchestrating all the virtualized resources and
functions made available by the different network providers.

2) Harnessing storage and computing idle resources at the
edge: Daily there are plenty of idle or less utilized resources
in networks and services platforms. Harnessing these idle
resources could allow optimizing CAPEX, whilst adopting new
business models. Obviously not all services could be provided
by using idle resources: examples of provisioned services will
be CDN-like services, content sharing, data collections, aggre-
gation, transformation, optimal re-distribution of VMs across
the set of networks and servers and providing stabilization
of the local networks following electricity demand-response
loops, etc. Also in this use-case a platform is necessary for
virtual resources and functions monitoring, allocation and
move.

3) Follow-me personal data and services: Data and ICT
services (seen as apps executed as sets of VMs) will follow
the users when they are moving from one network attachment
point to another one, even across different edge networks.
Management and orchestration capabilities should allow this
“follow-me” service whereby these VMs will be moved seam-
lessly. Moreover, data and services associated to users can be
even federated to build distributed virtual data centers at the
edge at costs which are a small and a fraction of traditional
clouds.

All of the above use-cases have as a foundation the
Future Network with Micro Data Centers at the edges of
the network and Data Centers in the network, combined
with virtualised Software Defined Networks. For these use-
cases to be deployed it is necessary that the execution of
the network functions and service elements are dynamically



allocated somewhere in the physical network and executed by
virtual resources.

As stated, the focus of this paper is the dynamic manage-
ment and orchestration of virtual networks (VNs), with partic-
ular attention paid to placement of these virtual resources. The
physical resources will be shared by multiple virtual networks
which are independent of each other and are allocated to
different customers of the network. Each virtual network (VN)
is viewed as a managed network service by the management
software. All managed network services are mapped to the
available resources which allows users of the network service
to access it, just like they would access a physical network
service. For full operation of the managed network services,
the management and orchestration needs to ensure that each
virtual network (VN) has separation, isolation, elasticity, and
federation. The advantages of these attributes for the virtual
networks are explained further:

a) separation – the service network and the infrastructure
network are kept separate. The FN will reduce mutual
dependency between the infrastructure and the services.
A VN of a service needs to be separated from the
infrastructure used by an infrastructure provider, similarly
to the manner in which a virtual compute environment is
separated from the physical host.

b) isolation – a VN of one service is isolated from all
other VNs services. The FN will isolate services, such
that possibly competing virtual elements may securely and
reliably share the infrastructure provider resources whilst
being unaware of the other services.. Isolated VN services
need to be offered side by side while sharing network
resources of the infrastructure provider.

c) elasticity – a VN can grow or shrink as necessary. The
FN will offer an elastic and extendable environment so
that network service customers will be able to adjust the
size of their network on demand. A VN service needs to
enable network elasticity.

d) federation – a VN can span over more than one domain.
the FN will form a federation of local areas so that
each area offers an inter-changeable pool of resources
allowing service and resource migration without barriers.
An interchangeable VN service needs to be offered across
local areas such that network service consumers would not
be concerned by the area of the infrastructure location, the
physical network used, or its configuration.

The Future Network implementation will provide the required
virtual overlay for each service, as well as the dynamic
and optimal allocation of VN to physical resources. As a
consequence of network service elasticity and local area site
management policies, virtual resources belonging to a same
network service may be placed across different sites.

Such management and orchestration are required for the
above use-cases to be deployed as it will allow fully software
defined and controllable networks. These soft VNs need to
setup, have a managed lifecycle, and need the topologies to
be shutdown - all under software control. Furthermore, it is
necessary that the VN elements are dynamically allocated
somewhere in the physical network using a placement algo-
rithm.

III. MANAGEMENT AND ORCHESTRATION
ARCHITECTURE

The driving forces for both Software Defined Networks and
Network Function Virtualisation have been presented together
with the evolutionary scenario and use cases which would
utilize SDN and NfV within a Future Network system. In
this section we present an overview of the Management and
Orchestration Architecture which is needed in order for such
networks to operate.

In general, from an architectural viewpoint, network func-
tions and services can be defined as a number of software com-
ponents with their accompanying context together with con-
figuration parameters. The provisioning of a service involves
the creation of a IT infrastructure, followed by the installation
of all necessary software components into the infrastructure,
and finally to configure and start those components. With SDN
and NfV these processes can be simplified as the infrastructure
provides a platform from which virtual machines can be run.
SDNs can be directly manifested as virtual network topologies
which need to be setup, have a managed lifecycle, and need
to be shutdown - all under software control.
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Figure 2: Overall system architecture and components

The architecture for the Management and Orchestration has
4 main layers. Figure 2 depicts an overview of the architecture.
The layers are:

1) the Application Layer which executes Management Appli-
cations that define the software components and network
functions of a network service together with their config-
uration parameters.

2) the Orchestration Layer is a software element which does
most of the management and orchestration and is in charge
of managing the full lifecycle of the virtual routers in
the network and the allocation of the applications running



on the virtual nodes. It provides a Global Controller
which contains a Service Orchestrator which does the
orchestration of the all elements of a service, a Monitoring
Manager which collects and managed all of the monitoring
data received from the Infrastructure Layer, including
virtual and physical resources, a Placement Engine which
is involved in the placement of the virtual routers. The
Global Controller is also responsible for the allocation of
their applications.

3) the Abstraction Layer contains a software element which
presents an abstraction for starting, stopping, and configu-
rating virtual elements. It provides a Local Controller that
acts as a Network Hypervisor, and works in a similar way
to a host level Hypervisor managing virtual machines.

4) the Infrastructure Layer contains both the Virtual Infras-
tructure which represents the virtual resources (i.e. the
virtual routers) that make up the virtual networks, and
the Data Center Infrastructure which are the physical
resources that are the hosts running the VMs.

In general, the Global Controller is a distributed manage-
ment infrastructure that has centralized functionality and it
is responsible for the setup, configuration, optimization, and
shutdown of the network entities. As depicted in Figure 2, it
takes input from various Management Applications regarding
various requirements (e.g. network resources or response time)
and then configures the network nodes through a set of Local
Controllers.

In order to manage the challenging and dynamic infras-
tructures of virtual networks there needs to be a monitoring
system which can collect and report on the behavior of both
the physical resources (e.g. cpu usage, memory usage) and
the virtual resources (e.g. utilization level of the virtual links).
These monitoring data items are sent to the Global Controller
so that it can use the monitoring information in order to
make decisions regarding network strategies. In particular, it
may decide to add new nodes in order to fulfil the high-level
policies and goals which are network operator requirements.
In this way, the virtual network topology changes dynamically
according to the network virtual resources usage.

The following subsections describe in more detail each of
the layers.

A. Application Layer

As stated this layer executes Management Applications that
define the software components and network functions of a
network service together with their configuration parameters.
There maybe many Management Applications which can inter-
act with the Orchestration Layer. It is expected that some of the
Management Applications will be simple, whilst others will be
more complex. All of them will interact with the Orchestration
Layer via a well-defined API.

B. Orchestration Layer

The Orchestration Layer is responsible for the placement
of the virtual routers, the allocation of service components and
functions running on the routers as applications. In particular,
it is responsible for instantiating the virtual routers as it is
the software element which does most of the management and
orchestration and is in charge of managing the full lifecycle

of the virtual routers. Mainly, the Orchestration Layer has the
following functions:

i) it starts and stops the Local Controllers on each physical
machine;

ii) it acts as a control point for the platform by sending out
the command and,

iii) it acts as a management elements for the platform by col-
lecting monitoring data and enabling reactive behaviour.

This layer is composed of different components: namely the
Service Orchestrator, the Monitoring Manager and the Place-
ment Engine.

The Service Orchestrator is the component in charge of
performing the automatic deployment of the function/service
as application running on the virtual routers.

The Placement Engine is the component in charge of
performing the actual placement of the virtual routers ac-
cording to the initial topology and the usage of the virtual
network elements. This is an important feature because, when
we configure a network, considering some initial information,
some of these parameters may change during the course of the
system’s operation and a reconfiguration may be required to
maintain optimized collection of information. For this reason,
our approach considers a mechanism to achieve adaptation in
a flexible manner. The decision on the Placement Engine is
encoded in an algorithm which can be rather simple, such as
counting the number of virtual routers on a host, or it can
be based on a set of constraints and policies that represent
the network properties. In this work we have considered i)
infrastructure based measures for the placement of the virtual
nodes and ii) as constraints, the usage of the virtual network
entities (in this case, the usage of the virtual links) for
placement. The results of using different Placement Engines
will be highlighted later in this paper.

The Monitoring Manager is an important component of
the architecture and its monitoring function is a vital part of a
full control loop that goes from the Global Controller, through
a control path, to monitoring probes which collect and send
data, back to the Global Controller which makes decisions
based on the data. By using various probes in many parts of
the whole system, much monitoring data is sent to the Global
Controller, which processes the data and can adapt the network
to observed changes.

Each virtual router has a probe to monitor the usage of
the network resources (e.g. the state congestion of the links).
The data provided by the probes is collected by the Monitoring
Manager and used by the Global Controller to create or remove
the virtual routers according to the current state of the network.
The monitoring software used in this paper is called Lattice and
was developed within the RESERVOIR project and has been
used for monitoring virtualised services in federated cloud
environments [9], for monitoring virtual networks [10], and as
the monitoring system for an Information Management uses
Information Aggregation Points and Information Collection
Points to aggregate, filter, and collect data in scalable manner
within virtual networks [11]. Lattice [12] has been proven as
ideal for the task of collecting monitoring data in this type of
dynamic network environment.



C. Abstraction Layer

This layer offers the capabilities for interacting between
the Orchestrator and the Infrastructure Layers providing an
abstraction. It contains the Local Controller software element
which presents a common abstraction for starting, stopping,
and configurating virtual elements.

A single Local Controller is started on each physical host
that needs to execute virtual routers, and works in a similar
way to a host level Hypervisor managing virtual machines. It
is a Network Hypervisor which has the following functions: i)
it starts and stops virtual routers; ii) it tells routers to create
and remove virtual network connections, and iii) to get or set
attributes on routers or links.

D. Infrastructure Layer

At the bottom, the Infrastructure Layer consists of a
number of virtual routers, which is the Virtual Infrastructure,
instantiated in a number of physical machines (or hosts),
which is the Data Center Infrastructure. The virtual routers
are logically independent software entities which, as a real
routers, communicate with each other via network interfaces.
The network traffic is made up of datagrams, which are sent to
and from each router. Each virtual router can be dynamically
created, dynamically destroyed in the virtual network. In fact,
each router is connected to a Local Controller which sends
the instructions to start up or shutdown routers on the local
machine and for routers to setup ot tear-down connections with
other virtual routers.

IV. TESTBED

This section describes the testbed and methods used to
test the Management and Orchestration Architecture. For the
purpose of this paper we will will only look at collecting
experimental data for various Placement Engines.

To validate our design and architectural work, a working
implementation of the architecture explained in the section III
has been created. The experiments used the Very Lightweight
Service Platform (VLSP) [14] which has been implemented
by University College London for the purpose of testing and
evaluating various aspects of Software Defined Networks and
highly dynamic virtual environments.

The VLSP testbed consists of a large number of software
routers, each running inside Java Virtual Machines (JVMs).
These virtual routers execute on a smaller number of phys-
ical machines. The virtual routers are logically independent
software entities which cannot communicate with each other
except via network interfaces. The testbed has been validated
in previous work we have undertaken on virtual networks and
highly dynamic networks [11] [13].

The testbed set up has three components: (i) the main
component is the Router itself, which runs inside a JVM; (ii)
a per-host controller, and (iii) a supervisor and experimental
controller. The routers are complemented by a lightweight per-
host controller called the Local Controller which has the role
of sending instructions to start up or shut down routers on
the local machine and to inform routers to initiate or tear
down connections with other routers; and the whole testbed
and experiment is supervised by a Global Controller.
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The testbed is configured with the Global Controller on
one host, and the Local Controllers running on any host that
is to execute virtual routers. Under control from the Global
Controller, individual Local Controllers are requested to start
up a new virtual router when these new routers are needed. The
choice of Local Controller is decided by the Placement Engine.
As described earlier, the Placement Engine uses an algorithm
to determine which is the best host to put a router onto. The
Global Controller also sends requests, via a Local Controller,
to connect virtual routers together via virtual network links.

To highlight how these components are distributed across
the physical resources, consider a micro data center with 4
hosts. We see depicted in Figure 3, how these components are
placed and how they interact. In the bottom left host the Global
Controller is executing. It has the Service Orchestrator, the
Monitoring Manager, and the Placement Engine as subcom-
ponents. The other 3 hosts each have a Local Controller. The
dashed line shows the control path from the Global Controller
to all of the Local Controllers. After requests have been sent
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Figure 4: Control path to virtual routers and virtual links



to create virtual routers and virtual links, we observe a virtual
topology that spans across these 3 hosts. The solid black line
represents the virtual links.

An alternate view of these components, showing a layered
view, separates the control path from the virtual network. In the
VLSP testbed, the virtual routers are autonomous entities and
therefore the virtual network executes independently from the
control elements. The control layers interact with the virtual
layer. We see this view depicted in Figure 4

A. Router Networking

The virtual router is implemented in Java and is a relatively
complex software entity. The routers have virtual network con-
nection to the other virtual routers they are connected to, and
exchange routing tables to determine the short path to all other
routers. Data packets are sent between routers and queued at
input and output. A system of ports (like the current transport
layer ports) is exposed with a DatagramSocket interface very
similar to standard “sockets”. Virtual applications can be run
on the virtual routers and can listen to and send data on
their associated virtual sockets. Datagrams have headers with
a source address, destination address, protocol, source port,
destination port, length, checksum and TTL. Many of the
features of real IP packets are replicated in the virtual domain.
As such, we can take Java software that runs on real hosts,
and run it on the virtual routers, with a small effort required
to make the Socket code conform the virtual DatagramSocket
interface.

B. Routing and packet transmission

Routing in these virtual routers is based on distance-vector
routing. We have incorporated the split horizon hack and
poison reverse. To prevent routing storms, minimum times
between table transmissions are set. In addition, because the
experiment here demands a certain “churn” of virtual routers,
addresses which disappear permanently must be dealt with.
In distance vector routing it is well-known that dead addresses
can leave routing loops. This is dealt with in the current system
by implementing time to live (TTL) in packets (so that packets
in a routing loop expire rather than fill the network) and also
implementing a maximum routing distance beyond which a
router is assumed unreachable and removed from routing tables
(so that the routing loops do not persist forever).

The virtual applications can listen on virtual ports and send
datagrams to any virtual address and port. Packets are queued
both inbound and outbound. The outbound queue is blocking
in order that transmitting applications can slow their sending
rate. The inbound queue is tail-drop so that when too much
traffic is sent drops will occur somewhere. TTL is decreased
at each hop and, on expiry, a “TTL expired” packet is returned
- this allows the virtual router system to implement traceroute
as a virtual application.

Virtual routers in the system send all traffic, including
routing tables and other control messages, via the virtual
network sockets. UDP-like, that is, delivery is not guaranteed
and a failure to deliver will not be reported to the application
(although if the router on which a virtual application runs has
no route to the host this can be reported to the application).

C. Start up and shutdown

The start up and shutdown of virtual routers is managed by
the Global Controller and is performed by the Local Controller
which resides on each host. A virtual router will be started
on the same physical machine as the Local Controller. The
Local Controller is also used to shutdown a virtual router or
to control the connection of virtual routers with virtual links.
The Local Controller behaves in the same way a hypervisor
does in other virtualised environments and can also pass on
Global Controller commands to Routers.

The start up and shutdown of virtual routers can be
managed by the Global Controller. It is configured to create
different probability distributions for router creation, router
lifetimes and for new virtual link inter-arrival times.

D. Monitoring

The underlying monitoring framework used by the testbed
on the routers, is known as Lattice, is described in [9] and [10].
The Lattice monitoring system has been used successfully to
provide data on all of the virtual elements and the running
services of a cloud computing service environment [9] as well
as for virtual networks [10]. The measurements supplied have
been used for service and network management.

In many systems, probes are used to collect data for
system management. In this regard, Lattice also relies on
probes. However, to increase the power and flexibility of the
monitoring we introduce the concept of a data source. A data
source represents an interaction and control point within the
system that encapsulates one or more probes. A probe sends
a well defined set of attributes and values to a data consumer
at a predefined interval.

In Lattice we have fully dynamic data sources, in which
each one can have multiple probes, with each probe returning
its own data. The data sources are able to turn on and turn off
probes, or change their sending rate dynamically at run time.
Furthermore, data sources can add new probes to a data source
at run-time. By using this approach we are able to instrument
virtual routers on-the-fly system without having to restart them
in order to get new information.

Each virtual router has at least one probe which can
generate data. Monitoring data is also collected from each
Local Controller. This data is send to the Monitoring Manager
of the Global Controller which processes it. This is the data
that is used by the Placement Engine for determining where a
new virtual router is placed.

Now the testbed has been described, the experimental
results derived from test runs undertaken on the testbed will
be presented.

V. EXPERIMENTAL RESULTS

This section describes work performed and presents some
experimental results using the VLSP testbed. For the purpose
of this paper we will will only look at collected experimental
data for various Placement Engines. The evaluation of other
Orchestration elements, such as the Service Orchestrator, are
to be covered in other papers. We show how the Placement
Engine can make a decision which will enable the starting of



different virtual routers on different physical hosts depending
on a set of factors.

A Placement Engine is a software component that encapsu-
lates an algorithm for choosing the “best” destination to place a
new virtual router. Placement Engine algorithms can be based
on infrastructure metrics or on virtual network metrics. It is
possible to write many different Placement Engines which rely
on different metrics and algorithms. The Placement Engine is a
configurable module that can be changed as needed according
to different placement strategies.

From the previous descriptions of the Architecture and the
Testbed, the Placement Engine is a component of the Global
Controller. The choice as to which Placement Engine to run is
dependent on the high-level goals and policies that are set for
the whole of the networked system. As an example, there may
be a high-level goal which is “to reduce energy consumption”.
To satisfy such a goal, the placement engine would need to
have an algorithm which placed virtual routers ensuring that
the least number of physical resources were used. Conversely, a
goal such as “balance the load across all physical nodes” would
need a different placement engine with a different algorithm.

To highlight how these placement algorithms perform we
have devised an experiment whereby new routers and new
links are created using a probability distribution. The virtual
routers are created using a Poisson process (with exponential
distribution of inter-arrival times) as this has been shown to
be a realistic distribution for a number of real traffic arrival
processes on the current Internet [15, table 3]. Also, each new
virtual router has a randomized “lifetime”, so a virtual router
can shutdown at run-time. Links are added between nodes as
a random process, with every virtual router having one link
plus a number of extra links, with a Poisson distribution. The
routers are linked at random, so we observe that older routers
tend to acquire more links. This experimental setup provides
a highly dynamic and adapting network scenario with which
to test the Placement Engines.

For the tests we created a testbed scenario that utilizes 4
hosts in a configuration presented in Figure 3 and Figure 4.
This will give us placement data for 3 hosts. Although the
number of hosts used for real virtual networks is likely to be
considerably higher than 4, having 3 allows us to present our
results more clearly.

We have considered three different Placement Engines for
the same experimental setup, using the randomly generated
virtual topology. The algorithms embedded in each of the
Placement Engines are based on monitoring data from the
infrastructure or monitoring data from the virtual network.
Both Least Used (Figure 5) and N at a time (Figure 6) are
based on infrastructure data, and Least Busy (Figure 7) relies
on virtual network monitoring data.

Figure 5, Figure 6 and Figure 7 show the number of virtual
routers allocated on each host (shown on the y-axis) versus
the time of the experimental run (shown on the x-axis). The
hosts: host 1, host 2 and host 3 represented by blue, green
and yellow lines respectively. Due to the random creation of
virtual routers, combined with a randomized router lifetime,
we see that the number of routers allocated to a host can do
down as well as going up.
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Figure 5: Placement Engine: Least Used
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Figure 6: Placement Engine: N at a time: N = 5
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Figure 7: Placement Engine: Least Busy

A. Least Used Host

Here we present the Least Used placement algorithm. This
collects the number of virtual routers allocated to each physical
host and chooses the host that has the least number of virtual
routers. If more than one host is at the minimum level, then
a random host is chosen. This algorithm is a kind of load
balancing algorithm as it tries to get a similar number of routers
on each host.

Observation of Figure 5 shows that the allocations are very
similar for each host.



B. N at a time in a Host

Here we present the N at a time placement algorithm. It
tries to allocate N routers at a time into a single host. In this
run, N = 5. If the number of routers is a factor of N, then
the algorithm chooses are different host. When all the hosts
are packed with a factor of N, then a random host is chosen.
It too collects the number of virtual routers allocated to each
physical host in order to make a decision. This algorithm is
amenable for energy saving, as hosts that are not being used
can be placed into a “power saving” state.

Observations of Figure 6 show that allocation pattern is
very different from the Least Used algorithm. Furthermore, as
routers reach the end of their lifetime we see them disappearing
from the allocation count, but the algorithm still tries to pack
in N routers to a host.

C. Least Busy Host

Here we present the Least Busy placement algorithm. It
tries to determine the host that is least busy in terms of virtual
network traffic. It collects monitoring data from all the the
virtual routers in the virtual network and calculates how much
virtual traffic has been sent on each of the hosts. The host
that has the lowest amount of traffic since the last placement
decision is chosen as the host for the current placement. This
algorithm is useful in contexts where the QoS of the virtual
network is important as it places virtual routers close to other
virtual routers that are not sending much traffic.

Observations of Figure 7 show that the allocation pattern
is again different from the previous two placement algorithms.
This placement is not impacted by any infrastructure monitor-
ing data, only virtual network traffic. As the traffic decreases
on a host then the number of routers allocated to that host
increases. These fluctuations, combined with router death,
show a marked variation from Least Used and N at a time.

The results presented here demonstrate that the different
embedded algorithms in each of the Placement Engines give
very different placement strategies for the virtual routers. It is
expected that over time the placement algorithms for virtual
routers will become more complex and factor-in metrics from
both infrastructure and virtual resources. These placement
engines may be able to utilize or share some algorithmic
elements from compute cloud placement algorithms such as
[6] and [7].

By having a detailed understanding of the behaviour of
these different placement algorithms, it will be possible to
choose the best Placement Engine to achieve fully effective
operation. The placement engine should be swappable at run-
time in order to make placements that match changing high-
level goals and policies. Such flexibility is a key aspect of a
management and orchestration system.

VI. FUTURE WORK

As we have seen, the different embedded algorithms in
each of the Placement Engines give very different placement
strategies for the virtual routers. Future work will be consider
other placement algorithms, which we expect to get more
complex and to encapsulate multiple metrics. Futhermore, we
wil investigate how placement strategies across multiple data

centers can be used, by considering existing cloud computing
strategies or by defining strategies that are specialized for
virtual networks.

It is also planned to investigate the definition of utility func-
tions whose minimization/maximization characteristics could
provide the criteria for the dynamic placement of virtual nodes
and the traffic engineering. Two main reasons are motivating
the use of utility functions: (i) is that they allow for a
separation of concerns between the analysis of the data and
the planning and execution mechanisms (by an appropriate
optimization algorithm); and (ii) is that they serve as a very
high-level specification of the behavior of a network and
service infrastructure. This allows business objectives to be
directly translated into service level objectives when used with
an appropriate optimization and modelling algorithm.

Examples of metrics for utility functions includes QoS/QoE
parameters, such as response time for processing capabilities,
throughput for networking, etc. On the other hand, it should be
noted that designing utility functions might be quite compli-
cated and there might be scalability issues to be investigated.
Another alternative could be formulating the criteria in terms of
simple linear integer programming problems and then solving
them with proper algorithms and/or heuristics [16].

As the placement of a virtual router has a direct impact on
the behaviour of the whole networked system, we also plan to
work on run-time migrating placement strategies. In particular,
we will investigate the possibility of moving virtual routers in
different locations in the network in order to optimize and
factor-in the usage of physical resources and link level usage.

VII. CONCLUSION

In this paper we have described a multi layer architecture
for supporting SDN and NfV. The main Management and Or-
chestration layer defines a Service Orchestrator, a Monitoring
Manager, and a Placement Engine. The latter, in particular, en-
ables automated placement of virtual network and processing
resources across the physical resources of the network. The
experimental work presented highlights how the placement of
the virtual routers is constantly updated to achieve adaptive
resource utilization.

As a proof of this concept, the architectural elements have
been designed and implemented and some experimental results
using the VLSP testbed presented. In particular, we have shown
how Placement Engines can start different virtual routers on
different physical hosts depending on different factors, such as
infrastructure metrics or virtual network metrics. These results
have been performed on a testbed of just 4 hosts. However, the
VLSP testbed is a fully distributed implementation designed
and built for the purpose of testing and evaluating various
aspects of Software Defined Networks and highly dynamic
virtual environments. It is highly scalable, and has been run
with experimental virtual networks with over 700 virtual
routers.

The results presented here demonstrate that the differ-
ent embedded algorithms in each of the Placement Engines
have different behaviours and give very different placement
strategies for the virtual routers. It is expected that over
time the placement algorithms for virtual routers will become



more complex and factor-in metrics from both infrastructure
and virtual resources, and also to consider placement across
multiple data centers.
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