Emanuele Haus web page |

email: emanuele.haus@unina.it |

Università degli Studi di Napoli Federico II Dipartimento di Matematica e Applicazioni "Renato Caccioppoli" Via Cintia, Monte S. Angelo, 80126 Napoli (NA), Italy Office n° 153, sixth floor, telephone: (+39) 081675847 |

Didattica (Teaching; in Italian)

My CV

Present position

RTD-A (3 years researcher position) at Università degli Studi di Napoli "Federico II" since December 2016

Previous positions

• Research collaborator ("co.co.co.") at Università degli Studi Roma Tre, November 2016-December 2016

within the ERC project HamPDEs (Hamiltonian PDEs and small divisor problems: a dynamical systems approach)

• "Assegnista di ricerca" (postdoc) at Università degli Studi di Napoli "Federico II", August 2014-July 2016

within the STAR project "Onde d'acqua, PDE e sistemi dinamici con piccoli divisori" ("Water waves, PDEs and dynamical systems with small divisors")

and the ERC project HamPDEs (Hamiltonian PDEs and small divisor problems: a dynamical systems approach)

• "Assegnista di ricerca" (postdoc) at Sapienza - Università di Roma, March 2013-July 2014

within the ERC project HamPDEs (Hamiltonian PDEs and small divisor problems: a dynamical systems approach)

• Postdoc at "Laboratoire de Mathématiques Jean Leray" (Nantes), January 2012-December 2012

within the ANR project HANDDY (Hamiltonian and Dispersive equations: Dynamics)

Education

• Graduated in Mathematics and Applications at the University of Milan, October 2008

• PhD in Mathematics at the University of Milan, March 2012

Thesis: "Asymptotic behavior of an elastic satellite with internal friction: asymptotic stability vs collision or expulsion"

(advisor: prof. Dario Bambusi)

Publications and preprints

• P. Baldi and E. Haus, On the existence time for the Kirchhoff equation with periodic boundary conditions,

preprint 2018 https://arxiv.org/abs/1805.01189

• P. Baldi, M. Berti, E. Haus and R. Montalto, Time quasi-periodic gravity water waves in finite depth,

Inventiones Mathematicae, published online (DOI:10.1007/s00222-018-0812-2) pdf

• P. Baldi, M. Berti, E. Haus and R. Montalto, KAM for gravity water waves in finite depth,

Rendiconti Lincei Matematica e Applicazioni, 29 (2), 215-236, 2018 pdf

• P. Baldi, E. Haus and R. Montalto, Controllability of quasi-linear Hamiltonian NLS equations,

Journal of Differential Equations, 264 (3), 1786-1840, 2018 pdf

• P. Baldi, E. Haus and C. Mantegazza, Non-existence of theta-shaped self-similarly shrinking networks moving by curvature,

Communications in Partial Differential Equations, 43 (3), 403-427, 2018 pdf

• E. Haus and M. Procesi, KAM for beating solutions of the quintic NLS,

Communications in Mathematical Physics, 354 (3), 1101-1132, 2017 pdf

• P. Baldi and E. Haus, A Nash-Moser-Hörmander implicit function theorem with applications to control and Cauchy problems for PDEs,

Journal of Functional Analysis, 273 (12), 3875-3900, 2017 pdf

• P. Baldi, E. Haus and C. Mantegazza, On the classification of networks self-similarly moving by curvature,

Geometric Flows, 2, 125-137, 2017 pdf

• P. Baldi, E. Haus and C. Mantegazza, Networks self-similarly moving by curvature with two triple junctions,

Rendiconti Lincei Matematica e Applicazioni, 28, 323-338, 2017 pdf

• P. Baldi, G. Floridia and E. Haus, Exact controllability for quasi-linear perturbations of KdV,

Analysis and Partial Differential Equations, 10 (2), 281-322, 2017 pdf

• M. Guardia, E. Haus and M. Procesi, Growth of Sobolev norms for the analytic NLS on T^2,

Advances in Mathematics, 301 (1), 615-692, 2016 pdf

• E. Haus and M. Procesi, Growth of Sobolev norms for the quintic NLS on T^2,

Analysis and Partial Differential Equations, 8 (4), 883-922, 2015 pdf

• L. Corsi, E. Haus and M. Procesi, A KAM result on compact Lie groups,

Acta Applicandae Mathematicae, 137, 41-59, 2015 pdf

• E. Haus and D. Bambusi, Asymptotic behavior of an elastic satellite with internal friction,

Mathematical Physics, Analysis and Geometry, 18 (1), Art. 14, 2015 pdf

• E. Haus and L. Thomann, Dynamics on resonant clusters for the quintic non linear Schrödinger equation,

Dynamics of Partial Differential Equations, 10 (2), 157-169, 2013 pdf

• D. Bambusi and E. Haus, Asymptotic stability of synchronous orbits for a gravitating viscoelastic sphere,

Celestial Mechanics and Dynamical Astronomy, 114 (3), 255-277, 2012 pdf

Main research interests

• Dynamics of nonlinear Hamiltonian and dispersive PDEs:

- Birkhoff Normal form and KAM theory

- quasi-periodic solutions

- energy transfer between Fourier modes, beatings and growth of Sobolev norms

- dynamics of water waves

- control theory

• Planar networks moving by curvature:

- properties of self-shrinking networks

• Dynamics of a viscoelastic satellite in a gravitational field:

- orbital and asymptotic stability of spin-orbit resonances