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Abstract—In this paper, a kinematic model for motion
coordination of a redundant multi-fingered robotic hand is
derived, which allows to compute the object pose from the
joint variables of each finger as well as from a suitable set of
contact variables. Then, a prioritized inverse kinematics scheme
with redundancy resolution, both with inverse and transpose
Jacobian matrix, is developed. This algorithm can be used
for kinematic control as well as a local planning method for
dexterous manipulation. A simulation case study is presented
to demonstrate the effectiveness of the proposed approach.

I. INTRODUCTION

Object manipulation with multi-fingered mechanical hands
is a challenging task, especially in service robotics applica-
tions. In order to achieve the desired motion of the manip-
ulated object, the fingers should operate in a coordinated
fashion. In the absence of physical interaction between the
fingers and the object, simple motion synchronization shall
be ensured. On the other hand, the execution of object grasp-
ing or manipulation requires controlling also the interaction
forces to ensure grasp stability [1], [2].

From a purely kinematics point of view, an object ma-
nipulation task can be assigned in terms of the motion of
the fingertips and/or in terms of the desired motion of the
manipulated object. The work of a planner (or a control
module) is to map the desired task into the corresponding
joint trajectories for the fingers, and always requires the
solution of an inverse kinematics problem.

In this paper, a kinematic model for object manipulation
using a multi-fingered robotic hand is derived, which allows
the object pose to be computed from the joint variables of
each finger (active joints), as well as from a set of contact
variables, modeled as passive joints [3]. Suitable conditions
are derived ensuring that a given motion can be imposed to
the object using only the active joints. A closed-loop inverse
kinematics algorithm (CLIK) has been rearranged in this
contest to compute fingers and contact variables, given the
desired object trajectories. Both the schemes based on the
transpose and on the inverse of the Jacobian matrix can be
adopted [4].
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Notice that the manipulation system can be redundant also
if the single fingers are not: this is due to the presence of
the additional degrees of freedom (DOFs) provided by the
contact variables. These redundant DOFs are suitably ex-
ploited to satisfy a certain number of secondary tasks, aimed
at ensuring grasp stability and manipulation dexterity, besides
the main task corresponding to the desired object motion.
Conflict between different tasks is avoided by adopting a
suitable task priority strategy [5]. The resulting prioritized
CLIK can be used for kinematic control as well as a local
planning method for object dexterous manipulation. To our
knowledge, the focus of previous papers on kinematics of
multi-fingered manipulation was on constrained kinematic
control [3], [6], or manipulability analysis [7], without con-
sidering redundancy resolution. A case study, representing a
simplified bimanual manipulation task is presented to show
the effectiveness of the proposed approach.

II. KINEMATIC MODEL

A. Kinematics of object and fingers
Let us consider a robotic hand composed by N rigid

fingers, numbered from 1 to N , holding a rigid object, and
let qi denote the joint vector of finger i, with ni components.
To derive the kinematic mapping between the joint variables
of the fingers and the pose (position and orientation) of the
object, it is useful introducing an object frame Σo attached to
the object, usually chosen with the origin in the object center
of mass. The pose of Σo with respect to a base frame Σb fixed
to the hand (also known as hand frame) can be represented
by the (4 × 4) homogeneous transformation matrix

T o =
[

Ro oo

0T 1

]
,

where Ro is the (3 × 3) rotation matrix, oo is the (3 × 1)
position vector of the origin of Σo with respect to the base
frame, while 0 denotes the (3× 1) null vector. The velocity
of Σo with respect to the base frame can be represented by
the (6× 1) twist vector υT

o =
[
ȯT

o ωT
o

]T
, where ωo is the

angular velocity such that Ṙo = S(ωo)Ro, with S(·) the
skew-symmetric operator representing the vector product.

Assuming that each finger has only one contact point with
the object, it is useful introducing a frame Σfi attached to
the i-th fingertip (i = 1 . . .N ) and with the origin ofi at the
point of contact. The pose of Σfi with respect to the base
frame can be computed on the basis of the finger kinematics
as T fi = T fi(qi), while the velocity can be expressed as

υfi =
[
ȯfi

ωfi

]
=

[
JPi

JOi

]
q̇i = J i(qi)q̇i, (1)
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Fig. 1. Local parametrization of the object surface with respect to the
object frame.

where J i is the (6 × ni) Jacobian of the finger, while JPi

and JOi are (3 × ni) matrices known as position Jacobian
and orientation Jacobian respectively.

B. Contact kinematics
Grasping situations may involve moving rather than fixed

contacts: often, both the object and the robotic fingers are
smooth surfaces, and manipulation involves rolling and/or
sliding of the fingertips on the object surface, depending
on the contact type. If the fingers and object shapes are
completely known, the contact kinematics can be described
introducing contact coordinates defined on the basis of a
suitable parametrization of the contact surfaces [8], [9].

To gain insight into the kinematics of contact, in this paper
it is assumed that the fingertips are sharp so that the contact
point ofi of each finger is fixed and coincides with (or can be
approximated by) the fingertip position, while the object is a
smooth surface (see, e.g., [10]). Let Σci be the contact frame
attached to the object and with the origin at the contact point
oci . Notice that, instantaneously, the object contact point oci

and the finger contact point ofi are coincident. One of the
axes of Σci , e.g., the Z axis, is assumed to be normal to the
tangent plane to the object surface at the contact point, and
pointing outward the object surface.

Assume that, at least locally, the position of the contact
point with respect to the object frame oo

o,ci
= oo

ci
− oo

o can
be parameterized in terms of a coordinate chart co

i : Ui ⊂
R

2 �→ R
3 which maps a point ξi = [ui vi]T ∈ Ui in the

point oo
o,ci

(ξi) of the surface of the object.
To simplify notation, for the reminder of this subsection,

index i will be dropped.
In the hypothesis that co is a diffeomorphism and that

the coordinate chart is orthogonal and right-handed, contact
frame Σc can be chosen as a Gauss frame [8], with the
rotation matrix Ro

c computed as

Ro
c(ξ) =

[
co

u

‖co
u‖

co
v

‖co
v‖

co
u × co

v

‖co
u × co

v‖
]

,

where tangent vectors co
u = ∂co/∂u and co

v = ∂co/∂v are
orthogonal.

Consider the contact kinematics from the object point of
view. Let co(ξ(t)) denote a curve on the surface of the object,
with ξ(t) ∈ U (see Fig. 1). The corresponding motion of the
contact frame with respect to the base frame can be deter-
mined as a function of: object motion, geometric parameters
of the object and “velocity” of the curve. Namely, computing
the time derivative of equation oc = oo + Roc

o(ξ), which
denotes the position of the object contact point in the base
frame, yields

ȯc = ȯo + S(co(ξ))ωo + Ro
∂co

∂ξ
ξ̇, (2)

where the first two terms on the right-hand side specify the
velocity contribution due to the object motion, while the
last term represents the velocity of the motion on the object
surface relative to the object frame. On the other hand, for
the angular velocity, the following equality holds

ωc = ωo + Roω
o
o,c, (3)

being ωo
o,c the angular velocity of the motion of the contact

frame relative to the object frame, which can be expressed
in the form

ωo
o,c = C(ξ)ξ̇, (4)

with C(ξ) a (3×2) matrix depending on geometric parame-
ters of the surface [9]. Matrix C is not necessarily full rank;
for example, in the case of planar surfaces, this matrix is
null.

In view of (2), (3), (4), the velocity of the contact frame
can be expressed as

υc =
[
ȯc

ωc

]
= GT(ξ)υo + Jξ(ξ)ξ̇, (5)

where

G(ξ) =
[

I 0
S(c(ξ)) I

]
, Jξ(ξ) =

⎡
⎣ Ro

∂co

∂ξ

RoC(ξ)

⎤
⎦

are respectively (6 × 6) and (6 × 2) full rank matrices.
Consider now the contact kinematics from the finger point

of view. The contact can be modeled as an unactuated 3-
DOF ball and socket kinematic pair centered at the contact
point, possibly moving on the surface if sliding is allowed.
Therefore, the orientation of contact frame Σc with respect
to finger frame Σf can be computed in terms of a suitable
parametrization of the ball and socked joint, e.g., Euler
angles, axis-angle or unit quaternion. For the purpose of
this work, a vector θ =

[
θ1 θ2 θ3

]T of XY Z Euler
angles is considered, thus Rf

c = Rf
c (θ). In detail, θ1 and

θ2 parameterize the so-called “swing” motion aligning axis
Z of a moving frame to axis Z of the contact frame, while
θ3 corresponds to the “twist” motion about axis Z of the
contact frame. Singularities occurs for θ2 = ±π/2, but they
do not correspond to physical singularities of the kinematics
pair. Therefore, the angular velocity of Σc relative to Σf can
be expressed as

ωf
f,c = T (θ)θ̇,



with T a suitable transformation matrix. In view of the
decomposition ωc = ωf + Rf (q)ωf

f,c, and from (1), the
angular velocity of Σc can be computed also as a function
of finger and contact variables in the form

ωc = JO(q)q̇ + Rf (q)T (θ)θ̇. (6)

Moreover, since the origins of Σc and Σf coincide, the
following equality holds

ȯc = ȯf = JP (q)q̇. (7)

Using (6) and (7), the velocity of the contact frame can be
expressed as

υc = J(q)q̇ + Jθ(θ, q)θ̇, (8)

where J is the finger Jacobian and

Jθ =
[

0
Rf (q)T (θ)

]

is a (6 × 3) full rank matrix (far from representation singu-
larities).

Hence, from (5) and (8), the contact kinematics of finger
i has the form

J i(qi)q̇i + Jηi(ηi, qi)η̇i = GT
i (ηi)υo, (9)

where ηi =
[
ξT

i θT
i

]T is the vector of contact variables and
Jηi =

[−Jξi Jθi

]
is a (6×5) full rank matrix. This equa-

tion can be interpreted as the differential kinematics equation
of an “extended” finger corresponding to the kinematic chain
including the finger joint variables (active joints) and the
contact variables (passive joints), from the base frame to the
contact frame [3].

It is worth pointing out that equation (9) involves all the
6 components of the velocity, differently from the grasping
constraint equation usually considered (see, e.g., [9]), which
contains only the components of the velocities that are
transmitted by the contact. The reason is that the above
formulation takes into account also the velocity components
not transmitted by contact i, parameterized by the contact
variables and lying in the range space of Jηi . As a conse-
quence, Gi is always a full rank matrix.

Planar motions can be analyzed as a particular case of the
general 6-DOF motion by rewriting equation (9) in terms of
3 components.

Depending on the type of contact considered, some of the
parameters of ξi and θi are constant. For the three models
usually considered for grasp analysis [2], it is:

• point contact without friction: all the parameters may
vary (i.e., the finger may slide on the object surface and
the orientation of Σfi with respect to Σci may vary);

• hard finger with friction: vector ξi is constant, while
vector θi may vary (i.e., the finger is not allowed to
slide on the object surface, but the orientation of Σfi

with respect to Σci may vary);
• soft finger with friction: vector ξi is constant, as well

as the last parameter of vector θi, corresponding to the
rotation about the Z axis of Σci (i.e., the finger is not

allowed to slide and to twist about the normal to the
object surface).

Hence, assuming that the type of contact remains unchanged
during task execution, the variable parameters at each contact
point are grouped in a (nci×1) vector ηi of contact variables,
with nci ≤ 5.

C. Kinematic classification of grasp
On the basis of (9), it is possible to make a kinematic

classification of the grasp [2].
A grasp is redundant if the null space of the matrix

J̃ i =
[
J i Jηi

]
is non-null, for at least one finger i. In this case, the mapping
between the joint variables of “extended” finger i and the
object velocity is many to one: motions of active and passive
joints of the extended finger are possible when the object is
locked. Notice that a single finger could be redundant if the
null space of J i is non null, i.e., in the case of a kinematically
redundant finger; in this case, motion of the active joints
are possible when both the passive joints and the object are
locked. On the other hand, for the type of contacts considered
here (point contact), the null space of Jηi is always null: this
implies that motions of the passive joints are not possible
when the active joints and the object are locked. In typical
situations, the fingers of the robotic hand are not redundant,
but the extended fingers may be redundant thanks to the
presence of the additional DOFs provided by the passive
joints.

A grasp is indeterminate if the intersection of the null
spaces of [−Jηi GT

i ], for all i = 1, . . . , N , is non-null. In
this case, motions of the object and of the passive joints
are possible when the active joints of all the fingers are
locked. The kinematic indetermination derives from the fact
that the motion of the object cannot be completely controlled
by finger motions, but depends on the dynamics of the
system [9]. An example of indeterminate grasp may be that
of a box grasped by two hard-finger opposite contacts: in
this case, the box may rotate about the axis connecting the
two contact points while the fingers are locked.

It is worth pointing out that, also in the case of redundant
and indeterminate grasps, for a given object pose and fingers
configuration, the value of the contact variables is uniquely
determined.

III. INVERSE KINEMATICS WITH REDUNDANCY
RESOLUTION

In the case of kinematically determinate and, possibly,
redundant grasp, a suitable inverse kinematics algorithm can
be adopted to compute the fingers and contact variables
corresponding to a desired object motion.

In detail, in view of (9), the CLIK algorithm with redun-
dancy resolution, based on the preudo-inverse of the Jacobian
matrix, is given by equation:[

q̇i

η̇i

]
= J̃

†
i (qi, ηi)G

T
i (ηi)(υd + Kieoi) + Noi(qi, ηi)σi,

(10)



Fig. 2. Block scheme of the CLIK algorithm with redundancy resolution
based on equation (10).

where J̃
†
i is a right (weighted) pseudo-inverse of J̃ i, eoi is

a pose error between the desired and the current object pose,
Ki is a (6×6) symmetric and positive definite matrix, σi is
a suitable velocity vector corresponding to a secondary task,
and

Noi = I − J̃
†
i J̃ i (11)

is a projector in the null space of the Jacobian matrix.
The asymptotic stability of the equilibrium eoi = 0 for
system (10) can be easily proven.

The computation of the Jacobian pseudo-inverse can be
avoided by adopting an alternative CLIK algorithm based on
the transpose of the Jacobian matrix, given by equation:[

q̇i

η̇i

]
= J̃

T

i (qi, ηi)G
T
i (ηi)Kieoi + Noi(qi, ηi)σi. (12)

The asymptotic stability of the equilibrium eoi = 0 for
system (12) can be easily proven in the case vd = 0.
Notice that, if Noi is computed according to (11), the
computation of the Jacobian pseudo-inverse is not avoided
with algorithm (12).

In principle, N independent CLIK algorithms can be used,
one for each finger, all with the same input, namely, the
desired object pose T d and velocity υd. However, some
secondary tasks may involve all the variables of the system
at the same time, e.g., those related to grasp quality.

Hence, the complete CLIK scheme with redundancy reso-
lution includes N decentralized feedback loops, one for each
finger, and a centralized feedforward action depending on
the whole system configuration. This is shown in the block
diagram of Fig. 2 for the scheme based on the Jacobian
pseudo-inverse, where q̃i =

[
qT

i ηT
i

]T.
Since the system may be highly redundant, multiple tasks

could be fulfilled, provided that they are suitably arranged in
a priority order [5]. For example, assume that two secondary
tasks, involving all the variables of the system, are assigned

Fig. 3. Manipulation system.

in the form: σa = fa(q, η), σb = f b(q, η), where q =
[qT

1 . . . qT
N ]T and η = [ηT

1 . . . ηT
N ]T are the stacked

vector of joint and contact variables. Adopting the augmented
projection method [5], equation (10) must replaced by[
q̇i

η̇i

]
= J̃

†
GT

i (υo+Keoi)+NoiJ
†
aKaea+N iab

J†
bKbeb,

(13)
where Ja and Jb are the Jacobian matrices of the secondary
tasks, ea = σad

− fa(q) and eb = σbd
− f b(q), being σad

and σbd
the desired values of the secondary tasks, Na is the

projector in the null space of Ja, and N iab
is the projector

in the null space of matrix

J iab
(q, η) =

[
J̃

T
(qi, ηi) JT

a (q, η) JT
b (q, η)

]T

.

A similar scheme can be adopted for the transpose-based
CLIK algorithm in the case of multiple secondary tasks.

IV. CASE STUDY

The CLIK scheme with Jacobian pseudo-inverse has been
tested on a manupulation system, represented in Fig. 3,
composed by two identical planar grippers, each with two
branches and 7 DOFs, grasping a rectilinear bar. For simplic-
ity, all the links have the same length l = 1 m. The idea is
that of performing a simplified bimanual manipulation task.

It is assumed that, in the initial configuration (reproduced
in Fig. 3), the system grasps the object with tips 3 and 4
aligned to y axis, and with tips 1 and 3, as well as tips 2
and 4, aligned to x axis. The distance between tips 1 and 3
is 0.7 m, while the distance between points 2 and 4 is 1.2 m.

The contact at point 1 and 3 is assumed of type “point
contact without friction”, while the contact at points 2 and 4
is of type “hard finger with friction”, i.e., the object surface
is smooth on the top side and rough on the bottom side.
This imply that two contact variables θi and ξi are required
to represent rotation and sliding of finger i (i = 1, 2) on the
object surface, while two contact variables θ2 and θ4 are to
be introduced to represent the rotation of finger i (i = 2, 4)
with respect to the object surface. It is easy to verify that this
grasp is force closure [9] and kinematically determinate [3].

The manipulation system has a total of 20 DOFs that
are not all independent, for the presence of 9 closed-chain
kinematic constraints; the resulting 11 DOFs can be exploited
to satisfy a certain number of tasks.
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Fig. 4. Path imposed to object position.

The main task consists in a desired trajectory for the object
position, and a desired constant orientation with the bar
aligned to x axis. The position path, represented in Figure 4,
can be decomposed in the sequence: line segment 1-2, arc
segment 2-3, line segment 3-2, arc segment 2-3. The time
law for each segment is a fifth-order polynomial with null
first and second derivative at initial and final time, of a 10 s
duration. A 1 s pause is present before the execution of each
segment.

Three simple secondary tasks, with decreasing priori-
ties, are considered, according to the augmented projection
method. Namely:

a. joint limits: a constraint q3 ≤ π/2 is imposed to joint
variable q3;

b. collision avoidance: the distance between fingers 1 and
3, which can slide on the surface, must be greater than
a threshold d = 0.3 m;

c. grasp quality: the contact points of fingers 1 and 3
are to be kept as close as possible to the middle point
between the contact points of fingers 2 and 4.

Notice that these tasks do not saturate all the available DOFs
of the system. Additional tasks could be imposed, but are not
considered here for brevity.

The secondary tasks are not all active at the same time, but
they start on the basis of a threshold mechanism. Namely,
subtask a is active only when q3 is in the neighbour of π/2,
while subtask b. is active when the distance between tips
1 and 3 is lower than 0.4 m. Moreover, the gains of the
subtasks are not constant; in detail, the gain of subtask a
depends on the value of q3, the gain of subtask b depends
on the norm of the distance between fingertip 1 and 3, and the
gain of subtask c depends on the distance of the fingertip 1
and 3 from the center of the tips 2 and 4. As an example, the
gain of subtask b, as a function of the norm of the distance
between fingertips 1 and 3, is reported in Fig. 5.

Two different simulations have been made, with and
without the presence of secondary tasks. The gain matrix
for the main task in (13) is chosen as K = 100I.

The results of Fig. 6 show the norm of the object pose error
with and without secondary tasks. It can be observed that the
error in the two cases is the same, because the secondary
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Fig. 5. Gain of subtask b as a function of the norm of the distance between
fingertips 1 and 3.
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Fig. 6. Time history of the object pose error in terms of the average of the
norm of the pose errors of the 4 parallel CLIK algortithms. Dashed line:
without secondary tasks. Continuous line: with secondary tasks.

tasks are in the null space of the main task.
The time histories of the significant variables for the

secondary tasks are reported in Figs. 7–9.
Fig. 7 shows the time history of the joint 3 variable, as-

suming that, at time t = 0, this variable is close to the upper
joint limit (π/2). It can be verified that, without secondary
tasks, the joint variable violates the limit, differently from the
case when the joint limit constraint is imposed as secondary
task.

Fig. 8 reports the time history of the distance between
tips 1 and 3. It can be seen that, without secondary tasks,
the distance between contact points 1 and 3 changes sign,
meaning that fingers 1 and 3 overlaps. On the other hand, us-
ing redundancy, the distance between finger 1 and 3 remains
always positive, as requested by the collision avoidance task
between tips 1 and 3.

Fig. 9 reports the time history of the x position of all
the contact points with respect to the center of the object.
The constant lines are the position of fixed contact points
2 and 4. It can be seen that, without secondary tasks, the
sliding contact points 1 and 3 have large displacements on
the object surface. On the other hand, using redundancy, they
remain close to each other as imposed by the secondary task
c, without violating task b.
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Fig. 7. Time history of joint 3 variable. Dashed line: without secondary
tasks. Continuous line: with secondary tasks.
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Fig. 8. Time history of the distance between tips 1 and 3. Dashed line:
without secondary tasks. Continuous line: with secondary tasks.

V. CONCLUSION

In this paper, the problem of inverse kinematics for a
multi-fingered hand was considered. In particular, a kine-
matic model has been introduced which allows the object
pose to be computed from the joint variables of each finger
as well as from a suitable set of contact variables. Then, a
prioritized close loop inverse kinematics scheme with redun-
dancy resolution has been proposed, both with transpose and
inverse Jacobian matrix, for the case of kinematically deter-
minate and possibly redundant grasp. This scheme allows
computing joint and contact variables for a multi-fingered
manipulation task assigned in terms of the sole object desired
position and orientation, while preserving grasp stability and
manipulation dexterity. Therefore, it can be used also as a
local planning method for dexterous manipulation.
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