CHAPTER 3: AERODYNAMIC AND THRUST FORCES
AND MOMENTS

The purpose of this chapter is to present approaches to the modelling of aerodynamic and
thrust forces and moments for the following two types of flight conditions:

1) Steady state: see Section 3.1 2) Perturbed state: see Section 3.2
Aerodynamic and thrust forces and moments can be determined in two ways:

* by experimental methods (flight test or tunnel test)
* by computational and/or empirical methods

Experimental methods have the great advantage of allowing rather accurate predictions of
full scale airplane aerodynamic behavior over a wide range of flight conditions, including nonlinear
effects. A disadvantage of experimental methods is that they tend to be very costly, both in calendar
time and money. For these reasons, experimental methods are used primarily in research and in de-
sign verification prior to committing to building flying hardware. In most preliminary design and
parametric design studies theoretical and/or empirical methods are used.

In this chapter, relatively simple mathematical models for aerodynamic and thrust forces and
moments are developed by means of a combination of theoretical and empirical methods. The main
emphasis is on the so—called component build—up method for modelling aerodynamic and thrust
forces and moments. In this method the airplane is assumed to be built up from a number of compo-
nents. The total forces and moments which act on the airplane are then assumed to follow from sum-
ming the forces and moments which act on these components. For example, in the case of the total
aerodynamic force the following type of expression will be used:

Fa

airplane

= FAwing + FAfuse]age + FAhur.tail + FAverT..lail + etC. (31)

Interference effects are accounted for by using empiricism. The number of components
which should be used depends on the airplane configuration and on the level of accuracy desired.
In the presentations which follow, emphasis is placed on gaining a physical understanding of the
fundamental mechanisms which cause forces and moments to act on airplanes.

The axis system used in modelling all forces and moments is a modification of the body-
fixed axis system: XYZ (See Figure 1.1), called the stability axis system XY sZ . Figure 3.1 shows

how the stability axis system is defined for an airplane in a steady state, wings level, straight line
flight condition with NO initial sideslip. Figure 3.2 shows how the stability axis system is defined
incase 1nitial sideslip is not zero. Note that the stability X--axis in that case is defined along the pro-
jection of the total airplane velocity vector onto the airplane XZ—plane.
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0, is the steady state angle — of — attack
X Y, is the steady state flight — path — angle

©®, is the steady state pitch — attitude — angle

horizon T~ TP e o

XYZ = arbitrary body—fixed axes

Note: @ =y, + o
XsYsZs = stability (body—fixed) axes

Figure 3.1 Definition of the Stability Axis System (Zero Sidesli

Y, Y, B, is the steady state sideslip — angle

Note 1: W, =0

W, _W¥
Vpcosfp U,

.V Vv .
Note 2: B, = arcsin o+ =~ —1 Note 3:a; = arcsin
Ve, U

Figure 3,2 Definition of the Stability Axis System for the Case of Nonzero Sidesli
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NOTE: the reader should not lose sight of the fact that the stability axis system still is a body-
fixed axis system. Therefore, the equations of motion developed in Chapter 1 can be applied directly
to the stability axis system. Note from Figures 3.1 and 3.2 that in the stability axis system:

In developing the mathematical models for aerodynamic and thrust forces and moments, in-
tensive use will be made of the idea of stability and control derivatives. Several of these were already
encountered in Chapter 2: C; and CL‘5 are typical examples. To illustrate typical magnitudes

and trends for airplane stability and control derivatives, example plots of derivatives (and their varia-
tion with Mach number) are presented. Figures 3.3 through 3.6 show three-views of four airplanes
for which data will be presented. These figures also present the reference geometries on which all
derivatives are based.

3.1 STEADY STATE FORCES AND MOMENTS

Since airplanes differ from one another in configuration, shape and size, it should be ex-
pected that it is not feasible to develop a mathematical model for airplane steady state forces and
moments which applies to alf airplanes. The approach taken here is to first list the forces and mo-
ments to be modeled. Second, those variables of motion which experience.shows to have a signifi-
cant effect on the forces and moments, are also listed. For the aerodynamic forces and moments,
this is done in the form of a table such as Table 3.1.

Table 3.1 Dependence of Steady State Aerodynamic Forces and Moments on Variables
Variable all = 0 1] B &, 8, &,
F drag at zero induced drag negligible for | negligible for | negligible for | negligible for
Axy value for all small: small: small: small:
variables B 6a Bc 6r
F negligible for | side force side force
Mg zero small: due to: Zero Zero due to:
1+ O '
lift at zero lift due to: negligible for L. lift due to: L
FA,1 value for all small: negligible 8. negligible
) variables &
rolling moment | rolling moment | rolling moment rolling moment
La, Zero due to sideslip | due to: due to: zero due to:
) is affected by: B 8, d.
o
pitching pitching negligible for pitching
MA] moment at moment due small: moment due
zero value to: negligible to: negligible
for all a ] 8.
variables
yawing moment| yawing moment| yawing moment yawing moment
Ny, ZeT0 due to sideslip | due to: due to: Zero due to:
* is affected by:
a p 3, 8,
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S = 1,560 ft? b = 106 ft T=15 ft
S, = 376 ft? Sy = 356 ft?
Wro = 152,000 Ibs W, = 135,000 Ibs Wowg = 88,000 lbs

Figure 3.3 Three—view and Reference Geometry for the Boeing 727--100

S = 232 fi? b = 34.2 ft T =704 ft

S, = 54.0 ft? Sy = 374 ft?
Wro = 13,500 lbs W, = 11,880 Ibs Wowe = 7,252 Ibs

Figure 3.4 Three—view and Reference Geometry for the Learjet 24B

H
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S = 175.0 ft? b = 250 ft = 7.27 fi?
Sp = 39.9 fi* Sv = 36.0 ft? L

Wio = 10,000 Ibs

ol

Fi 3.5Th view and Referen eometry for the Douglas D-558-11

S = 17222 fi? b = 46.04 ft T =408 ft
S, = 41.23 ft? Sv = 5091 ft? Sc = 24.22 fi?
W = 10,810 lbs W, = 10,270 Ibs Wowg = 7,370 1lbs

Figure 3.6 Three—view and Reference Geometryv for the Piaggio P-180
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Note: in the model of Table 3.1 it is assumed that all steady state angular rates,
P,;, Qu and R, are zero: in other words, the steady state is a straight line flight condition. The

effect of non—zero P;, Q; and R, (i.e. curvilinear steady state flight} on aerodynamic forces

and moments is discussed in Chapter 4.

Table 3.1 lists only the aerodynamic forces and moments. Also, Table 3.1 lists only three
types of flight control surfaces: 8,, O, and 8r. Most airplanes have more than three types of

flight control surfaces. Examples of other types of flight control surface are: flaps, spoilers, speééd-@
brakes, drag-rudders (as on the Northrop B-2) etc. Table 3.1 should be adjusted/expanded to fit any
particular airplanc which is being analyzed or designed.

Each box in Table 3.1 represents a cause—and—effect statement. The cause—and—effect state-
ments in Table 3.1 will apply to conventional airplanes most of the time. Such conventional air-
planes are said not to have any significant coupling between lateral-directional variables and longi-
tudinal forces and moments. The opposite also tends to be true for such airplanes. As is often the
case in agronautics: there are certainly exceptions. Some examples:

1) In fighter aircraft with very slender fuselages there may be significant side—forces, rolling
moments and pitching moments due to sideslip as a result of asymmetric vortex shedding from the
nose of the airplane. In fact, some configurations even have a side—force, rolling moment and yaw-
ing moment at zero sideslip!

2) If an airplane has a highly swept vertical tail and a highly swept rudder hinge line, there
may be a significant pitching moment due to rudder deflection. Such a moment would also be non-
linear because it is independent of the sign of the rudder deflection!

3)If an airplane is not symmetrical about its XZ—plane, significant coupling effects may pre-
vail. Figure 1.3 shows two example airplanes for which aerodynamic coupling effects are present.

In this text it will be assumed that the airplane aerodynamic force and moment models be-
have more or less as indicated by Table 3.1. In other words, in this text it will be generally assumed
that no significant coupling exists between lateral—directional variables and longitudinal forces and
moments. The opposite will also be assumed in most cases.

The thrust forces and moments which act on an airplane depend on the magnitude of the
installed thrust, Ti , of each engine.. The installed thrust, T; , is itself a function of:

* Altitude * Mach number * Temperature and humidity
* Thrust setting * Mixture setting * Propeller setting
* Inlet conditions * Installation losses * Angle of attack and sideslip

A detailed treatment of how to predict the magnitude of T, as a function of all these variables

is beyond the scope of this text. References 3.1, 3.2 and 3.3 may be consulted for such details. Part
VI of Reference 3.1 contains step-by—step methods for estimating these effects in the preliminary
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design stage. In this text it will be assumed that the magnitude of the installed thrust of each engine,
T; is known.

Depending on the placement of propellers and/or jet exhausts, there may be significant inter-
ference effects between aerodynamic and thrust forces and moments. These interference effects are
also considered to be beyond the scope of this text. The reader may wish to consult References 3.4
and 3.5 for further study of such interference effects.

Because it is assumed that little coupling between the longitudinal variables and the lateral—
directional variables exists, the modelling of forces and moments will be discussed in two indepen-
dent sets in the following Sub—sections:

3.1.1 through 3.1.6  Longitudinal Forces and Moments

3.1.7 through 3.1.12  Lateral-Directional Forces and Moments

3.1.1 LONGITUDINAL AERODYNAMIC FORCES AND MOMENTS

Figure 3.7 illustrates the longitudinal aerodynamic forces and moments which act on an air-
plane in a steady state flight condition. In the stability axis system, these forces and moments are

written as follows: *
FA = —D
J(ls
FAZIS = — L. (3.3)
MAls = My

In the development of models for drag, lift and pitching moment, the subscripts 1 and s will
be dropped for the remainder of this section. This can be done without ambiguity because it is under-
stood that the material deals only with steady state effects in the stability axis system!

The modelling of drag,Jift and pitching moment is discussed in Sub-sections 3.1.2 through
3.1.4 respectively.

3.1.2 AIRPLANE DRAG

-

Airplane drag, D, is non-dimensionalized as follows:

- D =Cy3S (3.4)
where: Cp, is the total airplane drag coefficient.

The steady state airplane drag coefficient depends on the following factors:

* airplane wetted area * airplane average skin friction coefficient

* angle of attack, o * control surface deflection(s), 8., 1, etc.
g h

* dynamic pressure, * Mach number and Reynolds number
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Figure 3.7 Steady State Aerodynamic Forces and Pitching
Moment in Stability Axes

For an airplane"equipped with an elevator and a variable incidence horizontal tail, the drag
coefficient, Cp, , is expressed with the help of a first order Taylor series:

CD = CDU + CDuG. + CD1h1h + cDﬁcée (35)

The coefficient and derivatives in Eqn (3.5) are to be evaluated at constant Mach number and
Reynolds number. The terms in Eqn (3.5) have the following meanings:

Cp

Cp, = dCp/ o is the change in airplane drag due to a change in airplane angle

. is the value of Cpy for: o = iy, = 8, = 0

of attack, o
Cp. = 3Cp/di, s the change in airplane drag due to a change in stabilizer

' incidence angle, iy , for: a = 8. = 0
CD&c = §Cp/dd.  is the change in airplane drag due to a change in elevator angle,
Oc ,forr a =i, =0
Figure 3.8 shows a graphical interpretation of CD0 and Cp, . Note that the numerical val-

ues for CDD and Cp, depend on the steady state itself! For most stability and control applications
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Linearized drag polar " Actual drag polar

/4

Range of linearity

e —— : Slope is aCp/da

/ Note: iy, = 8 = 0

Cp, —»Cp

Figure 3.8 Graphical Interpretation of Terms in Egn (3.5)
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Figure 3.9 Example Drag Polars for a Jet Transport and for a Fighter
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it has been found acceptable to neglect drag changes due to control surface deflections (one of sever-
al exceptions to this is the so—called minimum control speed problem to be discussed in Chapter 4).
Therefore, usually:

Cp = CDac = (3.6)

h

In performance problems where trim drag is important, Eqn(3.6) should NOT be used!

There is a notational problem with CDu in Eqn (3.5): the symbol CDO as used here is the

value of airplane drag coefficient for zero angle of attack, zero elevator deflection and zero stabilizer
incidence angle. In performance applications, the symbol CDU stands for the value of airplane drag

coefficient at zero lift coefficient, zero elevator deflection and zero stabilizer incidence deflection.,
To avoid confusion between these two physically different drag coefficients in this text, the notation
CD0 will be used for the zero-lift drag coefficient. Therefore, in this text the standard parabolic

form of the airplane drag polar will be written as:
C2

=T I
Cp = Cp, + % (3.7)

where: CD@ is the value of airplane drag coefficient at zero lift coefficient
A is the wing aspect ratio
e is Oswald’s efficiency factor

Examples of typical drag polars for a jet transport and a fighter are given in Figure 3.9.

It is usually acceptable to write éDu as follows:

CDU = {/§ (3.8)
where: {is the equivalent parasite area of the airplane, which in turn depends on total wetted
area Sy, and on the ajrplane equivalent skin friction coefficient, C; . Methods

for estimating equivalent parasite area, f, and wetted area, S, ,for any type airplane

are presented in Part I of Reference 3.1. With the help of those methods the value
of CDD for any airplane can be obtained. An example of the typical relationship be-

tween f, Sy and C; for jet propelled airplanes is given in Figure 3.10.

The derivative CDu is most easily estimated by differentiation of Eqn (3.7):

Cp, = (2C G, )/ (zAc) (3.9)
A method for estimating Cy _ is discussed in Sub—section 3.1.3. Figures 3.11 and 3.12 present
graphical examples of the variation of Cp, and Cp, with Mach number for several example air-

planes. The steady state model for the aerodynamic force in the stability X—axis direction is:

F A= D=~ Cpgs = — (CDO +Cp o + CDihih + CDacﬁe)qS (3.10)
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This figure was generated with the Advanced Aircraft Analysis {AAA) Program
described in Appendix A

103
© JET FIGHTERS
& JET TRANSPORTS |
o JET BOMBERS
Ci=0.00%
E-141 BBE6 L 5] /; CF=G.004
YB-49 > Cf=Q.003
102 - B~20 ™ \\ >S("}6/
AC-B - v LTS
<R 200 oI Pl W
O COMET o 5‘5\?'1/ o Bm7 G743
T— e ::Nn = Br?27-i1
Fr28 T e B-47
Fi14 i G-11 LA e e e~
BTl """"1-.__‘_‘__‘ A T / ﬁ"é_-ql:-—'—""'—"—'-_—
4
Fhaci | P T R Ll B-737-4100
P ey ""*—519 o
a-b-a i ‘“““Ho\ 2 0 keAOnt - B-58A (NG STORES)
10l = &2 06
Fill £ o o)
LAV ARV -205
D e, AT QG0
= A .—f"’iﬁé‘—?‘i——- —
T-28 1 A7 O3t rae . GRIFFON (TURBO-RAMJET)
SL—25 " A X-3
Z2 / b 7.4
ME-163 47 1L T s-zi
0 /’!i/'/ ///‘ ,.-"j
10~ :
102 103 10% 10°

WETTED AREA, S, ft2

737
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Figure 3.11 Variation of Cp, with Mach Number for several Airplanes
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Figure 3.12 Variation of Cp,_ with Mach Number for several Airplanes
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3.1.3 AIRPLANE LIFT

Airplane lift is non—dimensionalized as follows:
L =CgS (3.11)

where: C; is the total airplane lift coefficient.

The steady state airplane lift coefficient depends on the following factors:

* angle of attack, a * control surface deflection(s), e, 1, etc.

* dynamic pressure, Q * Mach number and Reynolds number
For an airplane equipped with an elevator and variable incidence horizontal tail (stabilizer)
the lift coefficient, C; , is expressed with the help of a first order Taylor series:
CL= CLO +Cra+Cp i+ CL{5 Qe (3.12)
[ e

The coefficient and derivatives in Eqn (3.12) are to be evaluated at constant Mach number
and Reynolds number. The terms in Egn (3.12) have the following meanings:

Cy,

Cp, = 8C, /aa is the change in airplane lift due to a change in airplane angle

is the value of C; for: o =iy = 0, =0

of attack, o.
Cp = aC,/ai, is the change in airplane lift due to a change in stabilizer
'h
incidence angle, iy for: o =9, =0
G, = 9C[ /a8 is the change in airplane lift due to a change in elevator angle,

d; for: o =1, =0

In the following, it will be shown how the coefficients and derivatives in Eqn (3.12) can be
estimated using the airplane component build—up philosophy. To keep the development simple, a
conventional (tail-aft) airplane will be used as an example. Figure 3.13 shows the definition of geo-
metric parameters to be used.

It will be assumed that the drag forces acting on the wing—fuselage and the horizontal tail
are negligible. The total lift which acts on the airplane is then found from:

L =L, + L,cose = L.+ L (3.13)
This can be written in coefficient form:

C. g = Cp_JS + CLq,S,, (3.14)
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. wa
Chordline
Mgc,, Note : this quantity is usually negative!

X

Notes:

l. 0w =0 + 1y

2.0y =a+i,—¢€

Note that the dynamic pressure at the horizontal tail, (), 1s potentially different from that
at the wing—fuselage, Q. Reasons for this difference can be that the tail is affected by propeller

slipstream, by jet exhaust effects and by fuselage boundary layer effects. The difference in dynamic
pressure is accounted for by the introduction of the so—called dynamic pressure ratio, N

My =§y/g  Note: g, = 0.50V?2 (3.15)

Eqn (3.14) c;an,»be rewritten as:

C.= Cwa + CLhnh% - (3.16)
The wing—fuselage lift coefficient, CLwr can be expressed as follows:

Cr,=Cr, + 6, 0 (3.17)
The wing—fuselage lift—curve slope, CL“wr differs from the wing lift—curve slope,

CLu because of the wing-to~fuselage interference effect. Methods for accounting for this effect

are presented in Part V1 of Reference 3.1. For airplanes with a wing span to fuselage diameter ratio
of six or higher it is usually acceptable to assume: C; =~ C; .
b g

Observe from Figure 3.13 that airplane angle of attack, o is not the same as wing angle of

attack, oy

Ow = O + Iy (318)
The wing incidence angle, iy is determined by factors such as cruise drag, maintaining a
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level cabin floor in cruise and/or visibility on approach to landing. PartIII of Reference 3.1 contains
more detailed discussions on this subject.

The horizontal tail lift coefficient, CLh , 1s determined from:

Cp, = Ci, + Cr, @+ Cp, Tede (3.19)

where: CLﬂ equals O for tails with symmetrical airfoils. It should be noted that many
h
airplanes have negatively cambered tails. For such airplanes CL0 is negative!
h

ay, is the horizontal tail angle of attack:
a, =a+i, — ¢ (3.20)

where: iy, is the horizontal tail incidence angle. In many high performance

airplanes this angle is controllable from the cockpit. It is defined as
positive, trailing edge down (=leading edge up!). Insuchan operating mode
the surface is referred to as a stabilator or variable incidence stabilizer.

£ is the average downwash angle induced by the wing on the tail and often

expressed as: ) L
_ de
E =gyt a-&a (3.21)

where: € is the downwash angle at zero airplane angle of attack
1. is the elevator angle of attack effectiveness

& is the elevator deflection angle, positive trailing edge down.

Methods for estimating the various quantities introduced here are found in Part VI of Refer-
ence 3.1. By substituting Eqns (3.17) through (3.21) into Eqn (3. 16) and rearranging it follows:

.

S ,
Cp=Cp, +Cp, 0+ Cp mygla— (o + 90) + iy +ede] + Cp (3.22)

By comparing this equation with Eqn (3.12) the following equations for the airplane coeffi-
cient and derivatives are found by partial differentiation:

S : :
G, = CLﬂwf - CLﬂhnhgh gg + CLOh = CLOWr in many airplanes (3.23)
S
Cp, = Cp,_+Cpmygl~ 58 (3.24)
Sh
CLih = CLuhnh§ (3.25)
Sy
CLac = CLuhnh§TC (3.26)
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The derivative CL“ is called the total airplane lift—curve slope. It is of major importance
to stability, controt and response to turbulence of airplanes.

Figure 3.14 shows how airplane lift coefficient is related to angle of attack and stabilizer inci-
dence angle for a flaps up and flaps down case. Typical magnitudes of the coefficient and derivatives

of Eqns (3.23) through (3.26) are presented in Figures 3.15 through 3.18. Observe that the only dif-
ference between C; and CLé is the elevator angle of attack effectiveness parameter, T, . This pa-
Ih I

rameter is called @ in Figure 2.23. For airplanes with roughly 30% chord elevators it is seen from
Figure 2.23 that C;  will therefore be about twice the value of Cy, - Note from Equation (3.24)
lh e

that the magnitude of airplane lift-curve slope can be significantly higher than the magnitude for
wing—fuselage lift-curve slope for airplanes with a large horizontal tail.

The steady state model for the aerodynamic force in the stability Z—axis direction is:

le

3.1.4 AIRPLANE AERODYNAMIC PITCHING MOMENT

The airplane aerodynamic pitching moment, M A 18 non—dimensionalized as follows:

M, = Cn3Sc (3.28)

where: Cp, is the total airplane aerodynamic pitching moment coefficient.

-

The steady state airplane aerodynamic pitching moment coefficient depends on the follow-
ing factors:

* angle of attack, a * control surface deflection(s), de, 1, etc.
* dynamic pressure, { * Mach number and Reynolds number

* moment reference center (usually the center of gravity) location

For an airplane with an elevator and a variable incidence horizontal tail, the aerodynamic
pitching moment coefficient Cy, is expressed in the form of a first order Taylor series as:

Cm = Cm, + Cm,& + Cry, iy, + Cin, 8e (3.29)

The coefficient and derivatives in Eqn (3.29) are to be evaluated at constant Mach number
and Reynolds number. The terms in Eqn (3.29) have the following meanings;

Cm

Ch, = 9Cp/ 00 is the change in airplane aerodynamic pitching moment coefficient

. is the value of Cr, for: o =i, = 8, =0

due to a change in angle of attack
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Cm, = aCq/0ai, is the change in airplane aerodynamic pitching moment coefficient
due to a change in stabilizer incidence angle, 1, for: a = d, = 0
Cm, = ¢Cp/dde  is the change in airplane aerodynamic pitching moment coefficient

due to a change in elevator angle, 0 for: a =1, = 0

In the following, it will be shown how the coefficient and derivatives in Eqn (3.29) can be
estimated using the airplane component build-up idea. To keep the development simple, the tail-afe
airplane geometry of Figure 3.13 will again be used. Point P in Figure 3.13 acts as the moment refer-
ence center (usually the center of gravity).

It will be assumed that the effect of wing-fuselage drag and tail drag on airplane pitching
moment is negligible. Referring back to Figure 3.13, it is seen that the airplane aerodynamic pitch-
ing moment about point P can be expressed as:

MA = Macwf + wa(XCg - Xacwf) COS(G + Iw) - Lh(Xach - Xcg) COS(G + iW - E) (3.30)

In most instances it is acceptable to set the cosines in Eqn (3.30) equal to 1.0. Doing that
and non-dimensionalizing yields:

(Xcg - Xacwf) Sh (Xach - Xcg)

Cm=Cn, +C ——"~ CLhnh§—5 (3.31)

At this point Equations (3.17), (3.19), (3.20) and (3.21) are substituted in Eqn (3.31) while
at the same time introducing the ’bar’ notation for the moment arms:

Cn= Cma;cw; ¥ (CLO f + Cp o)(Reg — Fac,) +
W U.wf
S :
-G Tlh?h(iach — Xeglo — (gg + 3—;(1) + iy + Tede] (3.32)
(lh

In this equation, the wing-fuselage aerodynamic center location, Xac, , is normally ex-

pressed as follows:
Xac,, = Xac, T AXacm5 (3.33)
where: AX,, is the shift in wing+fuselage aerodynamic center from the wing acrodynamic

center as caused by the so-called Munk effect discussed in Sub-section 2.5.6. Figure 2.19 gives
examples of the magnitude of this shift for three airplanes. Methods for computing this shift for any
configuration are given in Part VI of Reference 3.1.

By comparing Eqn (3.32) with Eqgn (3.29) the following equations for the airplane aerody-
namic pitching moment coefficient and derivatives are found by partial differentiation:

— —_— S v e
Cmo = C:mac + CL (Xcg - xacwf) + CL T]h h(xach o XCg)eO =
Wf D\Vf (Ih S

~ Cp,. ot Cp, (Reg — Xac,,) if € is negligible (3.34)
W wi
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_ _ Sy - -
Cr, = Cp, (Reg ~ Fae,) — CLathhgh(Xach — Xep)(1 — de/do) (3.35)
Sh — — -
C"‘ih = = CLuhnhg(Xach —Xeg) = — CLuhnth (3.36)
where : V, = (8,/S)(Rac, — Xeg) (3.36a)

is the horizontal tail volume coefficient. This volume coefficient is useful in
preliminary tail-sizing which is used in the early aircraft design process. A
detailed explanation is found in Part IT of Reference 3.1.

Cm = - CLuhnthte (3.37)

de

The derivatives Cr, and Cp,, are referred to as longitudinal control power derivatives.
h e

They are of major imnportance in airplane controllability considerations as will become clear in
Chapters 4 and 3.

Figure 3.19 shows how airplane aerodynamic pitching moment coefficient is related to angle
of attack and stabilizer incidence angle. Figures 3.20 through 3.23 present typical magnitude of the
coefficient and derivatives represented by Eqns (3.34) through (3.37). Several observations are in
order:

1) Note that the only difference between Cmih and Cmﬁc (Figures 3.22 and 3.23) is the angle
of attack effectiveness of the elevator, T, . For airplanes with roughly 30% chord elevators it is seen

from Figure 3.22 that Cmih will therefore be about twice the value of Cr, .

2) Note from Figure 3.20 that the zero—angle—of—attack pitching moment coefficient, Cy o

can be negative as well a posifive. From a trim point of view, a positive value is to be preferred.

3) Note from Figure 3.20 that Cmu tends to change in the negative (i.e. nose—down) direc-
tion with increasing Mach number. This phenomenon is referred to as ’tuck’. It can lead to handling
quality problems during recoveries from a high speed dive.

. - 4) Note the ’stable’ and ’unstable’ breaks in the pitching moment coefficient at high angle
of attack. Whether a stable or an unstable break occurs, depends on the detail design of the configu-
ration. For a detailed discussion, see Part III of Reference 3.1.

The derivative Cy,, is called the static longitudinal stability derivative. 1t is of major impor-

tance to airplane stability and control as will become clear in Chapters 4 and 5. By introducing the
idea of total airplane acrodynamic center it 1s possible to simplify Eqn (3.35).
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Definition: The aerodynamic center of an airplane is defined as that point on the wing mean geomet-
ric chord about which the variation of pitching moment coefficient with angle of attack is zero.

The location of airplane aerodynamic center on the wing mean geometric chord is normally
expressed as a fraction of the mge, X, , and is also referred to as the airplane (stick—fixed) neutral

point. The significance of the stick—fixed’ addition will be made clear in Chapter 4.

The definition of airplane aerodynamic center, when applied to Eqn (3.35), leads to the
condition: Cp, = 0 and Xcg > Xpc, so that:

C
Xaow t T “h SRl — §&
Xac, = C S (3.38)
by Swpq _ de .
S o Gl
The reader is asked to show that Equations (3.35) and (3.38) can be combined to yield:

wl

Cm, = Cr (Reg — Rac,) (3.39)

At this point the reader is reminded of two facts:
- =
1) Equations (3.38) and (3.39) do not include the pitching moment contribution due to the
propulsive installation. Particularly in propeller driven airplanes there can exist a significant shift
in aerodynamic center due to the so—called propeller normal force as well as due to propeller tilt
angle. See Part VI of Reference 3.1 for more details.

2) Equation (3.38) applies to tail-aft airplanes only. For canard and for three—surface air-
planes (such as the Beech Starship I and the Piaggio P—180 Avanti) Eqn (3.38) must be modified.
For airplanes where the canard does NOT SIGNIFICANTLY interfere with the wing (or tail) flow—
field it is posstble to show that Eqn (3.38) when applied to a three—surface airplane becomes:

_ C, «S,_ dey , Gy S
Xac,; CLL “Ne Scxac (1 + .diac) + = C Tlh Shf’(ach(1 3)
Xac, = - (340)
C.. S.,. . de CLu,, voq _ de
1+ C. c‘§(1 + ﬁ) + C.. fﬂh—s‘(l — %)

wi

For a pure canard airplane the horizontal tail term in Eqn (3.40) must be stricken. Figure
3.24 shows how X,c, 1s defined in relationship to X, for a three—surface airplane. The quantity
’ Ne represents the dynamic pressure ratio, qc/‘q, at the canard location. The angle €. is the up—
wash angle caused by the wing at the canard location. Methods for determining the various quanti-
ties in Eqn (3.40) are contained in Part VI of Reference 3.1.

The steady state model for the aerodynamic pitching moment about the stability Y-axis
(same as body—fixed Y-axis!) is:

My, =M, = CaGSE = (Cm, + Cm,@ + Cnm, iy + Cim, 85 (3.41)
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Xac, Xac,

‘ C w [N
/76C / .

- - .. - - - -

Note: distances are positive as drawn.
Signs are accounted for in Eqn (3.40)

Figure 3.24 Definition of Canard and Horizontal Tail Aerodynamic Center Geometr

3.1.5 LONGITURINAL THRUST FORCES AND MOMENTS

Most airplanes are equipped with one or more engines. The number of engines and their
disposition over the airplane depends on many mission and airworthiness related factors. For a dis-
cussion of these factors, the reader may consult Parts IT and III of Reference 3.1. In this text it will
be assumed that the number and disposition of the engines over the airplane is given.

The effect of thrust on the airplane forces and moments will be assumed to be comprised of:
1) Direct thrust effects 2) Indirect thrust effects

1) Direct thrust effects can be modeled in the body—fixed XYZ axis system as illustrated in
Figure 3.25. The thrust output of each engine is referred to as the installed thrust. Installed thrust
1s computed from engine manufacturer’s thrust data by accounting for various installation losses as
described in Part VI of Reference 3.1. In this text it is assumed that the installed thrust for each en-
gine is a given.

2) Indirect thrust effects occur when propeller flow fields or jet exhausts interfere with lifting
surfaces, for example, by impinging on them. These effects will not be modelled in detail because
they tend to be strongly configuration dependent which makes a generalized modelling approach
of questionable value. Specific examples of indirect thrust effects are:
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T; = Ticosdr cosyr Y

1

Ti, = Tjcos ¢y sinPr.
T, = Tisinot)Ti

Figure 3.25 Location of Engine Thrust-line and Point of Thrust Application

-

Y

Note: The left nacelle has been
tilted up for clarity only!

Figure 3.26 Steady State Thrust Forces and Pitching Moment in Stability Axes
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a) propeller slipstream effect on a wing when the propeller is mounted in front of the wing

b) propeller slipstream effect on the downwash of a wing which in turn can affect the acrody—
namics of the horizontal and/or vertical tail

Indirect thrust effects are frequently modelled by the use of thrust coefficient derivatives.
The thrust coefficient of an airplane is defines as:

Cr = T/qS (3.42)

As was seen in Sub-section 3.1.1 the aerodynamic forces and moments are modelled using
the idea of stabitity and control derivatives. One such derivative was the static longitudinal stability
derivative, Cp, : see Eqn (3.35). The indirect thrust effect on this derivative can be accounted for

by using the following expression:

aCmu
Cn, = Cmch:O + E’C}"CT ‘ (3.43)

where: the derivative Cm“C , is in fact the same as Cp, of Eqn (3.35).
-
the derivative dCp, /3Cr can be most effectively evaluated using windtunnel

data on powered models. A detatled treatment of these effects is beyond the
scope of this text.

Part VI of Reference 3.1 (Sub~section 8.2.8) contains a more detailed discussion of several
corrections which may have to be made to acrodynamic derivatives as a result of thrust induced ef-
fects caused by praopeller installations.

L
b

Using the thrust line orientations of Figure 3.25 results in the following model for the longi-
tudinal thrust forces and moments:

i=n i=n
FTX1 = (Z T]-COSd)T]_ cosz]_) cosa, + (Z T.sin cpTi) sino (3.44a)
Ti=t i=1
i=n i=n
FTzl = (Z T; sin(bTi) cosay — (Z Ticos ¢ COSlpTi) sina, (3.44b)
S =1 i=1
i=n i=n
MTIS = Z TiCOS q)Ti CcOS wTiZTi + ZT] sinq)TixTi (344C)
i=1 i=1

Figure 3.26 shows the net thrust for the case where Y is negligibly small for ALL i en-

gines and where ¢ = ¢ forallengines. The thrust, T, then is the vector sum of the thrust vec-

tors of all 1 engines. This results in the following model for the longitudinal thrust forces and mo-
ment:
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Fr = Tcos(¢pr + ay) (3.45a)
x15

Fy, = — Tsin(or + a;) (3.45b)

MT]S = MTl = — TdT (3.450)

3.1.6 ASSEMBLING THE STEADY STATE LONGITUDINAL FORCES AND
MOMENTS

It is now possible to assemble all expressions for the longitudinal steady state forces and mo-
ments in matrix format. This is done in Table 3.2. Note that the acrodynamic forces and moments
are treated as linear. The thrust terms still contain transcendental terms. Later, in the discussion of
the equations of motion in Chapter 4, it will be shown that by the introduction of iteration schemes
or by using the small angle assumption this problem will fade away.

Table 3.2 Matrix Format for Steady State Longitudinal Forces and Moments

(— D) [— Cpas)

%FAZIJ-_-{_L*z%_CLqS} with:

My, M e
L [ A I CqucJ
CD(J CDu CD‘h CDﬁc o
C drag polar drag polar small  small !
D
a
C C CL Co
C L=t « L h o 3.46
16t (3.23) (3.24) (3.25)  (3.26) {ih o (346)
C
[~m Cm, Cm, Cmih Cm<Sc 8e
(334 © (335 (3.36) G3n| ° 7
h
" rFT*l.‘ [ Tcos(¢pr + )]
sFr, b =4 - Tsin(@r + @) | (3.46b)

My — Tdy

g " -
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317 LATERAI-DIRECTIONAL AERODYNAMIC FORCES AND MOMENTS

When an airplane is in a steady state flight condition suchthat V; # 0 |, theairplaneis said
to be side~slipping. The sideslip angle, ; is defined in Figure 3.27. As seen in Table 3.1 this

sideslip gives rise to an aerodynamic rolling moment, L A, »an aerodynamic side force, F A,

H 1s
and an acrodynamic yawing moment, N A, - In addition (as also suggested by Table 3.1), any lat-
eral-directional control surface deflections will contribute to this force and to these moments. Fig-
ure 3.27, where the subscript 1 has been deleted, shows how the side force, rolling and yawing mo-
ments are oriented relative to the airplane.

Y and Y, Z

Figure 3.27 Lateral-Directional Force and Moments in Stability Axes

In the stability axis system they are written as follows:

Ly, =La (3.47)
Fa, = Fa, (3.48)
Ny, = Na (3.49)

As indicated before, the stability axis system will be used and all force and moment expres-
sions are defined in the steady state and therefore, the subscripts 1 and s will be dropped without
ambiguity.
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3.1.8 AIRPLANE AERODYNAMIC ROLLING MOMENT

The steady state airplane aerodynamic rolling moment, L A+ 18 non—dimensionalized as:
L, = CgSh (3:50)

where: C; is the airplane aerodynamic rolling moment coefficient.

The steady state airplane aerodynamic rolling moment coefficient, C, . depends on the fol-

lowing factors:

* angle of sideslip, P * deflection of lateral control surface(s)
* angle of attack, a * deflection of directional control surface(s)
* dynamic pressure, q (see p.103) * Mach number and Reynolds number

* moment reference center (usually the center of gravity) location

For an airplane equipped with ailerons and rudder, the rolling moment cocfficient is ex-
pressed in first order Taylor series form: A

1Y

Ci=C,+CB+C, 8 +C8 (3.51)

The coefficient and derivatives in Eqn (3.51) are to be evaluated at constant Mach number
and Reynolds number. The terms in Eqn (3.51) have the following meanings:

CIﬂ isthevalueof C; forr f=08,=8,=0
Clﬂ = aC,/ap is the change in airplane rolling moment coefficient due to a change
in airplane sideslip angle, f
Claa = 9C,/0d, is the change in airplane rolling moment coefficient due to a change
in aileron deflection, 8,
Clar = 9C,/ 36, is'the change in airplane rolling moment coefficient due to a change
in rudder deflection, 0,
The coefficient Clﬂ tends to be equal to zero for symmetrical airplane configurations. Ex-

ceptions to this are found in airplanes (such as fighters) with very slender, long fore-bodies. In such
cases it is possible that the flow—field around the nose becomes dominated by asymmetrically shed
vortices which can cause Clo to have nonzero values. For asymmetrical airplanes such as those

shown in Figure 1.3, the coefficient C10 also tends to have a non— zero value.

The derivative C]‘3 is called the airplane dihedral effect. This derivative plays a major role
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in determining airplane stability. The control power derivative Cla 1s a dominant factor in the bank
angle maneuverability of airplanes. The control power derivative Cla is a so—called cross—control
derivative. The magnitude of this derivative should preferably be close to zero.

In the following, it will be shown how the derivatives in Eqn (3.51) can be determined by
using the component build—up philosophy.

Rolling Moment Coefficient Derivative Due to Sideslip, Cl{3 -

The rolling moment coefficient due to sideslip (dihedral effect) derivative, Clﬂ , may be esti-

mated by summing the individual dihedral effect of the airplane (;omponents. For a conventional
airplane this yields:

C, =G +C +C

(3.52)

b Ty, Iy,
For non—conventional airplanes the reader should adjust this equation accordingly. A physi-
cal explanation for the dihedral effect of the wing—fuselage, the horizontal tail and the vertical tail

will be given next.

Wing-fuselage Contribution, Cla
wf

The dihedral effect of the wing—fuselage combination is caused primarily by three factors:
1) Wing ge;ométric dihedral effect

2) Effect of wing position on the fuselage (high or low)

3) Effect of wing sweep angle

1) Wing geometric dihedral effect

Figure 3.28 illustrates how the geometric dihedral angle, I', of a wing, can cause a rolling

moment due to sideslip. Observe the right wing panel. As a result of the combination of angle of
attack and sideslip, a normal velocity, V;, is induced on that panel. This normal velocity is:

V,= WcosI' + Vsinl' = W + VI (3.53)

If I' > 0 (as shown in Figure 3.28) it is called positive. If I' < 0, it is called negative.

The latter is also referred to as "anhedral’. As a result of a positive dihedral angle, the right wing
sees a positive increase in angle of attack given by:

_—_— R — =

(3.54)

It is this increment in angle of attack which produces a corresponding increment in lift. This
in turn results in a negative rolling moment contribution. Note that the left wing panel experiences
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right wing

-
-

- /
- /
Vnormal’ /

left wing

Figure 3.28 Normal Velocities Induced by Angle of Attack and Sideslip due
to Geometric Dihedral on the Wing of an Airplane

Negative rolling moment

Ao < 0

\ JV/

v Positive rolling moment

Figure 3.29 Explanation for Rolling Moment due to Sideslip as Affected b
Wing Position on the Fuselage
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exactly the opposite effect which also results in a negative rolling moment. The rolling moment due
to sideslip due to geometric wing dihedral is therefore proportional to the geometric dihedral angle
itself! Part VI of Reference 3.1 contains detailed methods for estimating this contribution.

2) Effect of wing position on the fuselage (high or low)
In Figure 3.29 the flow-field in sideslip is split into two components: a symmetrical flow-
field along the X-axis (not shown) and a cross-flow field with velocity Up. This cross-flow is seen

to produce incremental angles of aftack near the wing-fuselage intersection. These incremental
angles of attack produce ultimately incremental rolling moments which are negative for a high wing
position and positive for a low wing position.

This is the reason why in high wing airplanes the wing has significantly less geometric dihe-
dral than in low wing airplanes. This effect can be clearly seen by studying three-views of airplanes
in Jane’s All the World’s Aircraft.

3) Effect of wing sweep angle

Figure 3.30 shows that aft (= positively) swept wings produce a negative rolling moment
because of a difference in velocity components normal to the leading edge between the left and right
wing panels. Consider two wing strips at distances +/- y; from the centerline. The local lift on each

strip may be approximated by:

AL; = €. g§; (3.55)
where: LT
3

q; = 0.5pVp, (3.56)

As shown in Figure 3.30, the velocity component normal to the leading edge 1s larger for the
right wing strip than for the left wing strip:

[Va, = Vpcos(Ag + B)] < [Va, = Vypoos(Arg — B)] (3.57)

41,5,

The two wing strips together cause a negative rolling moment which is:

2
ALa,.. = ~ YiCLi‘;lj pS;Vp lcos*(Arg = B) — cos*(Arg + B)] (3.58)

This result, when expanded for small values of sideslip angie yields:

i

The reader is asked to show that for forward swept wings the sign of Eqn (3.59) reverses!
It is of interest to note from Eqn (3.59) that:
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left strip i

right strip i Y

Figure 3.30 Differential Strip Velocities due to Sweep

a) rolling moment due to sideslip, due to sweep (aft) 1s negative

b) the rolling moment due to sideslip, due to sweep (aft) is proportional to lift
coefficient

c) the rolling moment due to sideslip, due to sweep (aft) is proportional to the sine

of twice the leading edge sweep angle

It will be shown later that the overall airplane dihedral effect, Clrj , s of major significance

to stability and controllability of airplanes. The fact that this important derivative itself, for swept
wing airplanes is proportional to the lift coefficient (and therefore dependent on wing-loading and
dynamic pressure) also has significant consequences to configuration design.

In Chapter 4, it will be shown that making the dihedral effect, Clﬁ , more negative will make
an airplane more spirally stable. At the same time, the dutch-roll damping ratio tends to decrease.

This presents a design conflict which must be resolved through some compromise.

Methods for predicting numerical values of Clrﬂ are found in Part VI of Reference 3.1.

w
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Horizontal Tail Contribution C]ﬁ
h

The explanations given for the various wing—fuselage contributions to Clﬂ can be directly

applied to the horizontal tail by merely considering the tail to be a lifting surface. Using the notation
CI'3 for the horizontal tail dihedral effect based on its own reference geometry it is possible to
h

write:

AL, =G, BGySyby, (3.60)

hsldcslip

From this it follows that:

_ = Gndby
c, =G, (ot (3.61)

The bracketed quantity in Eqn (3.61) tends to be small for most airplanes because the hori-
zontal tail area and span are normally significantly smaller than the wing area and span. However,
by endowing horizontal tail surfaces with large geometric dihedral angles it is possible to obtain rela-
tively large values for Elﬁ and thereby use the tail as a "tailoring device’ to achieve the desired

h

level of overall airplane dihedral effect. This type of design philosophy was employed on the
McDonnell F4 and the British Aerospace Harrier.

Yertical Tail Contribution C,ﬁ

Figure 3.31 stows that when an airplane is side—slipping, the vertical tail will *see’ a side—
force which causes a roﬁing moment. The sign and magnitude of this rolling moment depends on
the "vertical’ moment arm of the vertical tail.

First, consider the lift coefficient which acts on the vertical tail:

Cr = Cr B -0)=Cp, (1 - OB (3.62)

where: C; s the lift—curve slope of the vertical tail, based on its own reference geometry

O is the side-wash angle induced at the vertical tail by the fact that the wing—fuselage

combination will itself be generating a side—force which creates side—wash. This
effect is the aerodynamic equivalent of horizontal tail down—wash created by the wing.

The '1ift’ on the vertical tail causes a negative rolling moment which can be expressed by:

ALy, = —2,Cy, (B - 0)q,Sy (3.63)

By non-dimensionalizing and by using the notation of Eqn (3.62):
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FAy (— as shown!)
o ng(-}- as ShOWl’l!) Vertical tail a.c,

Zy
Z y X
Figure 3.31 Side~force on the Vertical Tail due to Sideslip
G, fasb = - z,C; (1 - B)Bq‘, (3.64)
From this it follows for the vertical tail contribution to airplane dihedral effect:
— VZVq
Cp, =~ G- [3) v Sh (3.65)

It is seen that the vertical tail contribution to the derivative CIB depends on five factors:

1) the geometry of the vertical tail: aspect ratio and sweep angle determine CLu

-

2) the side-wash derivative do/df which is normally rather small

3) the dynamic pressure ratio at the vertical tail, v, , which tends to have a value close to
1.0 except in the case of propeller driven airplanes with the vertical tail immersed in the
propeller slipstream

4) the vertical tail moment arm, zy, . Note in Figure 3.31 that this moment arm depends

on the steady state angle of attack! In extreme high angle of attack cases it is possible
for this moment arm to reverse sign!
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5) the size of the vertical tail in relation to the size of the wing: S,/S . An example of an
airplane with a large vertical tail relative to the wing is the Boeing 747-SP:
see Figure 3.31.

Examples of numerical trends for the airplane dihedral effect derivative, Clﬁ are given in

Figure 3.32.
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Figure 3.32 Fffect of Mach Number on Clﬁ for Several Airplanes

Roll Control Derivatives, C; _and C,

Lateral control (about the X—axis, body or stability) of airplanes can be accomplished with
a number of devices:

* ailerons, Cy * flaperons, C; * spoilers, C_

* differential stabilizer, C; * combination of previous devices * other devices
'h

Several generic properties of ailerons, spoilers and differential stabilizers will be discussed.
A mathematical model used when combinations of these devices are employed is also discussed.

Nearly all airplanes employ some form of directional (yaw) control, usually a rudder. Al-
though undesirable, rudders also tend to produce a rolling moment. This rolling moment must be
compensated for by either the pilot or some automatic mechanism. The generic properties of a rud-
der in generating an undesirable rolling moment are also discussed.
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Aileron Rolling Moment Coefficient Derivative, C;,

Figure 3.33 illustrates how ailerons produce a rolling moment. A positive aileron deflection
1s referred to as one which results in a positive rolling moment about the X—axis. Because ailerons
also produce an undesirable yawing moment (See Sub—section 3.1.8), most ailerons are deflected
differentially (i.e. one more than the other) to minimize this yawing moment. For that reason an
aileron deflection, 8, , is usually defined as:

aa = %(6al.h.s, + 6a’rh.s‘) (3‘66)
The derivative Cla depends on the following factors:

* aileron chord to wing chord ratio * aileron inboard and ouwtboard span location
* wing sweep angle * aileron deflection )

* Mach number

Increased lift
+ AL W

aileron chord

L~ Positive rolling
moment

aileron span

Decreased lift
— AL

Figure 3.33 Rolling Moment due to Aileron Deflection

When ailerons are deflected more than about 20-25 degrees flow separation tends to occur.
The ailerons then loose their effectiveness. Also, close to wing stall, even small downward aileron
deflections can produce separation and loss of control effectiveness. In addition, aileron control
power is very sensitive to dynamic pressure because of aecro—elastic effects. Most high performance
airplanes have a so—called aileron reversal speed beyond which the ailerons induce so much elastic
wing twist that the sign of the derivative reverses! This effect is discussed in detail in Chapter 7.
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At wing sweep angles beyond about 55 degrees, ailerons lose effectiveness because of out-
board flow which tends to become parallel to the aileron hinge lines.

In several airplanes, the flaps are moved differentially to act as ailerons. Such devices are
referred to as flaperons. They are analyzed as if they are ailerons.

Spoiler Rolling Moment Coefficient Derivative, C*a

-— 20

Figure 3.34 shows how a spoiler produces a rolling moment. Spoilers when used for roll
control are usually deflected on one side only.

-

The derivative CI‘5 depends on the following factors:

* spoiler chord to wing chord ratio * spoiler inboard and outboard span location
* spoiler hingeline Jocation * spoiler deflection
* wing sweep angle * Mach number

Maximum spoiler deflections range anywhere from 30-60 degrees.

At wing sweep angles beyond about 55 degrees spoilers loose effectiveness because of out-
board flow which tends to become parallel to the spoiler hinge lines.

Differential Stabilizer Rolling Moment Coefficient Derivative, C

h
Figure 3.35 i'Ilu.gtrates how a differentially deflected stabilizer generates a rolling moment,

The derivative C; depends on the following factors:
h

* stabilizer geometry: aspect ratio, sweep angle and taper ratio
* stabilizer size relative to the wing
* Mach number

Differential stabilizers, because of their relatively small moment arm to the X-axis tend to
be used mostly on fighter aircraft: the high wing sweep angle makes ailerons and/or spoilers less
effective. In addition, because most fighters have tail-span—to-wing-span ratios close to 1.0 the
relative rolling moment arm is still reasonably good. Add the fact that both stabilizer halves on fight-
ers are controlled separately for longitudinal control anyway and the ability for differential deflec-
tion (required for roll) comes at little additional weight penalty!

Many airplanes of today employ more than one of these lateral control devices, In airplanes
with a mixture of lateral control devices, it is necessary to *gear’ the various lateral control devices
together so that they are simultaneously activated when the cockpit controls ( lateral stick or left/
right wheel deflection are activated by the pilot.

Chapter 3 104



Aerodynamic and Thrust Forces and Moments

X

_~"\ Positive rolling
e moment

" Decreased lift — AL

Stabilizer Pivot

+ Alift

Left side stabilizer

Positive rolling moment

Figure 3.35 Rolling Moment due to Differential Stabilizer Deflection
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Anexample is the Boeing 747 which has three different types of roll control devices: inboard
ailerons, outboard ailerons and spoilers: see Figure 3.36.

These three roll control devices are "geared’ to the control wheel in the cockpit. The follow-
ing equation expresses this gearing:

Clawﬁw = KE“’Vomh'dClﬁEl bdaaﬁulb'd + Kawinb'dclsa hd6 inbtd + KSWC 6 (367)
outh’ inh’

where: C16 = 6C1/ 90w 1s the rolling moment coefficient derivative due to control wheel
deflection, Oy

Kaw,_,,, 18 the outboard—aileron—-to—control-wheel gearing ratio. In the 747 this gearing

ratio is driven to zero by flap position: when the flaps are retracted, the outboard
ailerons remain in place. The other gearing constants are similarly defined.

C, = aC, / aaam_ ; is the outboard aileron control power derivative due to out-
Aoutb'd

board aileron deflection, & The other control power

Buibid
derivatives are similarly defined.
is the outboard aileron deflection. The other control deflections are similarly

defined.

0a

outb'd

Cockpit wheel deflections are limited to about +/— 85 degrees by civil and military regula-
tions. By assuming 85 degrees for the maximum wheel deflection, Eqn (3.67) can be used to deter-
mine the numerical magmtude of the roll control power derivative Cl for airplanes with geared

roll control systeris. Eqn (3.67) has to be adjusted to the gearing used in any particular airplane.

Figure 3.37 shows examples of the Mach number trend for aileron control power derivatives
of several airplanes.

Rolling Moment Coefficient due to Rudder Derivative, C,,

r

Figure 3.38 shows how a rudder can generate a rolling moment. Note that the rudder deflec-
tion is defined as positive when a positive force along the Y—axis is generated. This positive force
can be expressed as:

Fo  =0CLqS (3.68)

yvruddcr
where:

Cp, = Cp, 00 (3.69)

where: Cp  is the lift—curve slope of the vertical tail

as s the angle of attack effectiveness of the rudder
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Note: For an explanation of the toe—in

angles, W see page 123. Outboard Aileron

Y Y Roll Control Spoilers

N )

Inboard Aileron

b 4

X
Y

Figure 3.36 Boeing Model 747 with Three Types of Lateral, Control
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Figure 3.37 Effect of Mach Number on C, for Several Airplanes
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Figure 3.38 Rolling Moment due to Rudder Deflection

The rolling moment due to rudder deflection can be written as:

»

‘r

= F,,__ 2, =C, 835h (3.70)

Aruddcr Yiudder

By combining equations (3.68) through (3.70) it is found that:

SyXv,

“Sb (3.71)

Clﬁr = CLuva:ar—q-v

Note that this derivative is normally positive. However, at angles of attack for which
Zy, becomes negative, so does Cl(3 . From a handling qualities viewpoint the derivative C, s

r &
a problem: particularly positive values of this derivative tend to interfere with a pilot’s ability to
carry out lateral-directional maneuvers. This is one reason why many airplanes have some type of
flight control interconnect between the roll and yaw axis to compensate for the rolling moment due

to rudder deflection.

Figure 3.39 shows how the rolling moment due to rudder derivative varies with Mach num-
ber for several airplanes.

The steady state model for the airplane aerodynamic rolling moment now is:

Chapter 3 108



Aerodynamic and Thrust Forces and Moments

LA] = LA = (Clﬁﬁ + Clbaaa + Clérér) (3.72)

For airplanes with a combination of roll control devices it is recommended to replace the
term G 8, with the term C; 8y as defined by Eqn (3.67).

Methods for predicting the magnitudes of the derivatives which appear in Eqn (3.72) can
be found in Part VI of Reference 3.1.
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Figure 3.39 Effect of Mach Number on C, for Several Airplanes

>

1.9 AER AMI DE-FOR:

The steady state airplane aerodynamic side—force, F A, > is non—dimensionalized as:

Fy, = GA5 (3.73)

where: Cy is the airplane aerodynamic side—force coefficient.

This steady state airplane acrodynamic side—force coefficient depends on the following fac-
tors:
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* angle of sideslip, 3 * deflection of directional control surface(s)

* deflection of lateral control surface * angle of attack
* Mach number and Reynolds number

For an airplane equipped with ailerons and rudder the side—force coefficient is expressed in
first order Taylor series form:

o

Cy =Gy, + Cyﬁ B+ cyéaaa + Cy%&r (3.74)

The coefficient and derivatives in Eqn (3.74) must be evaluated at constant Mach number
and Reynolds number. Mach number affects primarily the lift curve slope, side—wash and angle of
effectiveness terms which affect the coefficient and derivatives in Eqn (3.34). Reynolds number has
only a weak effect on the side—force derivatives. .

The terms in Eqn (3.74) have the following meanings:

Gy, is the value of Cy for: a = p =8, = 6, = 0
OF s = aC,/ap is the change in airplane side-force coefficient due to a change in

angle of sideslip (at constant angle of attack)
Cy, = 0C,/3d, is the change in airplane side—force coefficient due to a change in

aileron deflection
Cy, = 0C, /90, is the change in airplane side—force coefficient due to a change in
v Y

rudder deflection

The coefficient Cy, tends to be equal to zero for symmetrical airplanes. The discussion of

the coefficient Cln (page 95) also applies to Cy, .

The derivative Cyﬁ 1s an important derivative in dutch—roll dynamics (See Chapter 5). It

is also important in flight path control when making s—turns without banking at very low height
above the ground. The control derivative CYa,, is normally negligible. The side force control deriva-

tive Cy, is of major importance in determining the yaw control derivative, Cy, . as will be seen

in Sub-section 3.1.10.
Side-Force Coefficient Due to Sideslip Derivative, Cyﬂ

The side~force due to sideslip may be estimated by summing the effects of various airplane
components. For conventional airplanes this yields:
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Gy, = Gy, t Sy, * Cyﬁv (3.75)

Y,

Wing Contribution, Cyﬂ and Fuselage Contribution, Cy'3

f

The wing contribution fo Cyﬁ depends primarily on the geometric dihedral angle of the
wing. For small geometric dihedral angles the wing contribution is usually negligible.
The fuselage contribution depends strongly on the shape and size of the fuselage in relation

to the wing and on the placement of the wing on the fuselage. Methods for estimating the wing/fuse-
lage contributions to Cy“ may be found in Part VI of Reference 3.1. For most airplanes these con-

tributions tend to be small.

Vertical Tail Contribution, Cyﬂ

The vertical tail contribution to Cy,ﬂ was explained as part of the discussion of the rolling

moment due to sideslip contribution of the vertical tail in Sub-sub-section 3.1.8.1: see Figure 3.31.
With the help of Egn (3.62) it is seen that:

-
F., =C BaS=—C (1-%9s ‘
A, = G fas = —Cp ( Hﬁ)qv v (3.76)
From this it follows that:
. do, S,
Cva - CLuv(l B ag)nvg (377)

Note that the vertical tail contribution depends strongly on the vertical tail size in relation
to the wing as well as on the lift—curve slope of the vertical tail. The latter in turn depends mostly
on aspect ratio and sweep angle of the vertical tail.

Figure 3.40 shows how Cyﬁ varies with Mach number for several airplanes.

Fe

Side Force Control Derivatives, CYa and Cya
- - Aileron Side Force Coefficient Derivative, Cyﬁ

This derivative is normally negligible. However, in the case of airplanes where the rolling
moment controls are in close proximity to a vertical surface (fuselage or vertical tail) a side force
which is not negligible may well be generated. Figure 3.41 illustrates an example of how this can
occur in the case of a differential stabilizer which is located close to a vertical tail. Whenever this
is suspected to be the case windtunnel tests are the only reliable way of obtaining data.

Chapter 3 111



Aeradynamic and Thrust Forces and Moments

-5 L LT T T T 7 _1 |
Cy, RANGE ; -.10 70-2.0 ]

1.0 o |
v — T
(RAD™) 1 -~—- o

N
-.-_5 L .
0 . L L
0 5 1.0 L5 2.0 25

M
Figure 3.40 Effect on Mach Number on Cy 6 for Several Airplanes
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Figure 3.41 Side Force due to Differential Stabilizer Deflection
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Rudder Side-Force Coefficient Derivative, Cy,,

Figure 3.38 shows how a positive rudder deflection yields a positive side-force due to rudder
deflection. This side-force is written as:

Fo, =Cy,8: S (3.78)

Meudder

Now, by combining Eqns (3.78), (3.68) and (3.69) it is seen that:

S
Cy,, = Cr, a5, W3 (3.79)

Note that the side-force due to rudder derivative depends strongly on the vertical tail size
in relation to the wing as well as on the lift-curve slope of the vertical tail. The latter in turn depends
mostly on aspect ratio and sweep angle of the vertical tail. Figure 3.42 shows how Cy, varies with

Mach number for several airplanes.
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Figure 3.42 Effect of Mach Number on CYar for Several Airplanes

The steady state model for the airplane aerodynamic side force now is:

Fa, = Fa, = (Gyf + Gy, 84 + Cy, 8) (3.80)

Y]s

Methods for predicting the magnitudes of the derivatives which appear in Eqn (3.72) can
be found in Part VI of Reference 3.1.
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3.1.10 AJRPLANE AERODYNAMIC YAWING MOMENT

The steady state airplane aerodynamic yawing moment, N A » is non~-dimensionalized as:

N, = C,gSh (3.81)

where: C;, is the airplane aerodynamic yawing moment coefficient.

The steady state airplane aerodynamic yawing moment coefficient, Cp, , depends on the-fol-

lowing factors:

* angle of sideslip, f * deflection of directional control surface(s)

* angle of attack, o * deflection of lateral control surface(s)

* Mach number and Reynolds number * moment reference center (usually the c.g.)
location

For an airplane equipped with ailerons and rudders, the yawing moment coefficient is ex-
pressed in first order Taylor series form:

Co = Cp, + Cpy B+ Cp 80 + Co, Or (3.82)
The coefficient and derivatives in Eqn (3.82) are to be evaluated at constant Mach number
and Reynolds number. The terms in Eqn (3.82) have the following meanings:
Ch, B isthevalueof C, for: p=6,=8,=0
Ch s = aCy/ GE is the change in airplane yawing moment coefficient due to a change
in airplane sideslip angle, 3
Cn,, = 9Cn/88a s the change in airplane yawing moment coefficient due to a change

in aileron deflection, &,

O
5
&
i

= ¢Cp/ 06, is the change in airplane yawing moment coefficient due to a change

in rudder deflection, &;

The coefficient Cp, tends to be equal to zero for symmetrical airplanes. The discussion of
the coefficient CIO (page 95) also applies to Cy, . The derivative Crlﬁ 1S an important derivative
in dutch roll and spiral dynamics. The derivative C“ﬁ is referred to as the static directional stability
derivative. The control derivative Cnaa plays a nuisance role. Ideally its value would be zero or

perhaps slightly positive. As will be shown, for most ailerons its value is negative. For that reason
it is referred to as the adverse aileron-yaw effect. The control derivative Cn, isthe rudder control

derivative. Itis very important in coordinating turns and in helping to overcome asymmetric thrust
(or power) situations.
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Yawing Moment Coefficient Due to Sideslip Derivative, Cnﬁ

The yawing moment due to sideslip (directional stability) derivative, Cp , »Inay be estimated

by summing the effects of various airplane components. For conventional airplanes this yields:

Cpy = Gy, + Cnﬁf +C (3.83)

Mg,
Wing Contribution, C,,'3 and Fuselage Contribution, Cnﬁf

The wing contribution to Cnﬁ tends to be negligible, except at high angles of attack.

The fuselage contribution depends strongly on the shape of the fuselage and the amount of
projected side area forward and aft of the center of gravity. The so—called Munk effect discussed
in Sub—section 2.5.6 also applies to a fuselage in sideslip. For that reason the fuselage contribution
to directional stability tends to be strongly negative. Methods for computing the fuselage contribu-

tion to Cy, are presented in Part VI of Reference 3.1.
A

Yertical Tail Contribution Cnﬂ

A physical explanation for the directionally stabilizing effect of a vertical tail may be gleaned
from Figure 3.31. The yawing moment due to the vertical tail me be written as:

Ne= = FpXv = Gy, B350 (3.84)

where: F A, is the side—force due to sideslip as determined from Egn (3.76).

Xy, is the distance along the stability x—axis from the vertical tail aerodynamic

center to the airplane center of gravity.

By combining Eqn (3.76) and Eqn (3.84) it follows that:

Sy Xy,
Cry, = Co, (1 = g—g)“v S (3.85)

Note that the vertical tail contribution depends strongly on the vertical tail size in relation
to the wing as well as on the lift—curve slope of the vertical tail. The latter depends mostly on aspect
ratio and sweep angle of the vertical tail. Also, itis seen that the 'moment—arm’, Xy, , is important

to directional stability.

Figure 3.43 shows how Cnﬂ varies with Mach number for several airplanes.
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Figure 3.43 Effect of Mach Number on C“ﬁ for Several Airplanes
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Figure 3.44 Yawing Moment Due to Aileron Deflection
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Yawing Moment Control Derivatives, Cy,, , Cp, , Cp, , Cp, and C,
a s h r

6rdrag

Nearly all airplanes employ some form of lateral control as discussed in Sub—section 3.1.8.
A problem is, that most roll control devices also introduce a yawing moment. The generic properties
of roll control devices which lead to generating yawing moments are now briefly discussed.

Aileron Yawing Moment Coefficient Derivative, Cy,

Figure 3.44 shows how conventional ailerons create a negative (calied adverse) yawing mo-
ment. Note that this yawing moment is caused by the differential induced drag which in tarn is
caused by the changes in local lift created by the ailerons. The reason the aileron induced yawing
moment is called adverse is because it tends to yaw an airplane out of an intended turn.

To eliminate the negative yawing moment due to aileron deflection, either Frise ailerons or
differentially deflected (or a combination of both) are used. Figure 3.45 illustrates the effect of Frise
ailerons as well as of differentially deflected ailerons. Note, that in both cases a differential profile
drag component is produced which is used to off-set the adverse (negative) aileron yaw.

Spoiler Yawing Moment Coefficient Derivative, C,,,

B

-

T

Figure 3.34 shows how a spoiler generates a rolling moment. Figure 3.46 shows how a
spoiler causes a positive yawing moment. This is referred to as proverse yaw. This is preferred over
adverse yaw unless it becomes too proverse!

Methods for computing the yawing moment due to ailleron and spoiler control derivatives
are found 1n Part VI of Reference 3.1.

Figure 3.47 shows how C;_ varies with Mach number for several airplanes.

n,
Differential Stabiliz& Yawing Moment Coefficient Derivative, CIlih

Figure 3.41 illustrates how a differentially deflected stabilizer generates a side force. Since
the center of gravity of the airplane is usually forward of the vertical tail, a yawing moment due to
differential stabilizer deflection will also be generated. If this is suspected to be significant, it is ad-
visable to run windtunnel tests to establish the magnitude.

Directional control (about the Z—axis, body or stability) of airplanes can be accomplished
with a number of devices:

* rudders ( Cnar ) * drag rudders ( C ) * other devices

Ig
drag

Some of the generic properties of rudders and drag rudders will now be discussed.
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Figure 3.45 Positive Yawing Moment Effect of Frise and Differentially Deflected Ailerons
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Figure 3.46 Yawing Moment due to Spoiler Deflection
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Rudder Yawing Moment Coefficient Derivative, C“ar

Figure 3.38 shows how the side-force due to rudder deflection generates a négative yawing
moment:

NAVIuddcr - Fayvrudderxvs - Cnﬁrar qu (3'86)

By combining Eqns (3.85), (3.68) and (3.69) it can be shown that: -

Sy X
= = Cp, %, g (3.87)

Co

8;

Note that the directional control derivative, Cy, , depends strongly on the vertical tail size

inrelation to the wing as well as on the lift—curve slope of the vertical tail. The latter in turn depends
mostly on aspect ratio and sweep angle of the vertical tail. Also, it is seen that the *moment—arm’,
Xy, , 1S important to directional control power. Finally, the size of the rudder in relationship to the

vertical tail size (as determined by S, ) is reflected by the angle—of-attack—effectiveness term o 5, -

The latter term was discussed in Section 2.6.

Figure 3.48 shows how Cp, varies with Mach number for several airplanes.

Drag Rudder Yawing Moment Coefficient Derivative, Chn,

Tdrag

Figure 3.49 sh5ws how a drag rudder generates a yawing moment. The particular drag rud-
der shown in Figure 3.49 was originally invented by Jack Northrop and is used today in the B-2
stealth bomber. The yawing moment generated by such a drag—rudder can be expressed as:

NAdr = ADdl’ Ydr = Cnérd ag 6rdrag qu (388)

The drag force due to the drag rudder can be modelled as:

AD, = " Pu 5 gs (3.89)
dr ™ aadr rtlrag q .

where: Oy g = 0.5(8, A + O; dragmwm) 1s the equivalent drag rudder deflection, positive on

the right wing and negative on the left wing.

09, is the incremental drag rudder drag due to drag rudder deflection. In subsonic
drag

o, _ 025 e Car 1/deg

flight this derivative may be approximated by: 5 S
rdrag
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Figure 3.49 Example of a Drag Rudder

where: by is the span of the drag rudder and,

C4 Is the chord of the drag rudder.

The drag-rudder yawing moment coefficient derivative can now be written as:

— 0‘OQ’Sbdrco:ir);dr
Cn,, =gt (3.90)

In Eqn (3.90) the assumption is made that at 60 degree deflection the drag rudder drag coeffi-

cient increment 1s 0.8 based on its own area. It is also assumed that the drag rudder drag increment
varies linearly with drag rudder deflection.

- .-

The steady state model for the airplane aerodynamic yawing moment now is:

N A, = N, = (Cpf + Cpy 82 + Gy, &) (3.91)

Methods for predicting the magnitudes of the derivatives which appear in Eqn (3.72) can
be found in Part VI of Reference 3.1.
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3.1.11 T ATERATL-DIRECTIONAL THRUST FORCES AND MOMENTS

Depending on airplane configuration, failure state of the propulsion system and on the cock-
pit thrust or power setting(s), there may also be a thrust induced rolling moment, Ly ,athrustin-

duced side force, FTy , and a thrust induced yawing moment, NT] , acting on the airplane. For
1y B

these force and moments, the subscripts 1 and s will also be dropped. Furthermore, it will be as-
sumed that the installed values of thrust are known for each engine.

Flight condition and design parameters on which the steady state installed thrust vec-
tors, T; , depend are defined on page 70.

As mentioned on page 92, whenever airplane components are affected by propeller slip-
stream and/or by jet exhausts, the aerodynamic, lateral force and moments are all affected. For the
lateral directional aerodynamic force and moments corrections for these propulsive installation ef-
fects can be made with models as suggested by Eqn (3.43). A more detailed discussion of these ef-
fects is beyond the scope of this text.

Figure 3.25 shows how the installed thrust vector for one engine is oriented in the airplane
body-fixed axis system. Figure 3.27 shows the orientation and sense of the lateral-directional thrust
force and moments. Therefore, the lateral-directional thrust force and moments can be written as:

1=n

Ly, =Ly = [ T{(~ 2zp cosop sinr, = yp sindy)] cosay +

Ts

i=0
. 1=n
© Y Ti(xg,cos gy, sintr, — yr. cos b, cos )] siner, (3.92a)
i=0
i=n
FTy] = FTy = ZTi(COS q)Ti sin wa) (392b)
i=0
Nr = Np = [Z Ti(x1, cos P, simpTi =~ Yr,cos ¢ cosYr )} cosa; +
| i=0
1=n
- [z Ti(— z1,cos ¢y, sinpy — yr sindr)]sina, (3.92¢)
i=0

It is to be noted that whenever the engine installation is symmetrical with respect to the air-
plane XZ-plane AND whenever the thrust output of the engine installation is also symmetrical with
respect the airplane XZ-plane, all lateral-directional force and moments are zero!

Assuming that for the case of a symmetrical engine installation, one engine is inoperative
(OEI), the lateral force and moments due to the one (asymmetrically) operating engine can be ex-
pressed as:

Lt = [Ti(zr,cos ¢, sinyy — yp singr)jcosay +
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+ [Ti(xy cos (pTi sin Y1, — Yr,€08 chi cos )] sina (3.93a)

FTY = Ti(COS ¢Ti sin le) (3.93b)
Np = [Ti(xy cos r siny, — yp cos G cospr)lcosa; +

= [Ti(zy,cos ¢ sinPy. ~ yp sindp)]sinay + ANp (3.93¢)

Whenever an engine or propeller is inoperative, some type of incremental drag arises on that
engine. That increase in drag results in an additional drag-induced side force, rolling moment and
yawing moment. In many instances only the drag induced yawing moment turns out to be significant
from a stability and control viewpoint. That is the reason for the appearance of the ANp, term in

Eqn (3.93¢). This extra drag due to the inoperative engine must also be accounted for in any climb
performance calculations with one (or more) engines inoperative. A method to account for ANp, is

presented on page 216.

The lateral thrust-line off-set angle, Y. , and the thrust-line incﬁngti-on angle ¢Ta , are

small, but not equal to zero in most modern transport airplanes. In such cases these angles are re-
ferred to as the engine toe—in angle and toe—up angles respectively. The reason for these angles is
to minimize engine nacelle drag in their local flow—field. Figure 3.36 shows the toe—in angles on
the Boeing 747. Assuming that the steady state angle of attack and both the toe—in and the toe—up
angles are small, equations (3.93) simplify to:

Ly = Tzt ¥r, — yro1) — Ty, (3.94a)
Fr, = Ty, (3.94b)
Np = Ti(xripr, — y1) + ANp, (3.94c)

3.1.12 ASSEMBLING THE STEADY STATE LATERA] -DIRECTIONAL FORCES AND
MOMENT

It is now possible to assemble all expressions for the lateral-directional force and moments
in matrix format. This is done in Table 3.3: Eqns (3.95a) and (3.95b). Note that the aerodynamic
force and moments are treated as linear terms. The thrust terms contain transcendental terms in the
steady state angle of attack. Later, in the discussion of the equations of motion in Chapter 4, it will
be shown that by introduction of iteration schemes or by using the small angle assumption this prob-
lem will fade away.
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Table 3.3 Matrix Format for Steady State Lateral-Directional Forces and Moments

s (L] ([C@Sh)
LAIS A 9

{FAYH o= 1P = J CyaS b with:

LA N, |CaSh] -
I C, C 7
(C) B S

: (352) (See p.104) (See p.106)|(p)

161’

C C C
&= o % o 5 3.95
17 (3.75)  (See p.111)  (Sec p.113)J'~“ (3.952)
Cnﬁ Cnba Cnﬁr LB,—J

? (3.82)  (See p.117) (See p.120)

2
r- ~

1=n
iEOTi(ZTi'LIJTj - YT‘:q)Ti) - Tini(ll

JFr,l= { = Tyr ! (3.95b)
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3.2 PERTURBED STATE FORCES AND MOMENTS

Since airplanes differ from one another in configuration, shape and size, it should be ex-
pected that it is not feasible to develop a mathematical model for airplane perturbed state force and
moments which applies to all airplanes. The approach taken here is to first list the forces and mo-
ments to be modeled. Second, those variables of motion which experience shows to have a signifi-
cant effect on the forces and moments are also listed. For the aerodynamic forces and moments, this
is done in the form of a table such as Table 3.4.

The meaning of several perturbed state variables is illustrated in Figure 3.50. This figure
should be used in conjunction with Table 3.4. In this table it is assumed that all perturbations are
defined relative to a steady state for which: V, = P, = R, = 0. If the various thrust vectors

which act on the airplane are symmetrical about the XZ-plane, this. also means that:
F,, =L, = N, = Oissatisfied. Practical experience shows that these are not very restric-
is H 5

tive conditions in terms of the validity of the resulting small perturbation equations. In other words,
when these conditions are not exactly satisfied, the basic structure of Table 3.4 still applies.

Notes:
1. Vp=U, +T+V+w ,
where Vp is the total velocity

in the perturbed state,
U, is the steady state velocity,

—»

U, v and w, arethe

perturbed velocities
2., =0

i Notes (Cont’d):
3. Vp = U in stability axes

4. = B
a arctanUI - - U'l
o
Z = Y. =Y
s 5. P arctanU1 Tl i

V2

Figure 3.50 Interpretation of Several Perturbed State Variables
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The basic structure of Table 3.4 is based on the following assumptions:

1) blanks in Table 3.4 indicate that a particular perturbed variable has NO effect on a
particular perturbed force or moment.

2) partial derivatives in Table 3.4 indicate the slope by which a a particular perturbed
force or moment is affected by a particular perturbed variable.

Whether or not these assumptions are satisfied depends largely on the symmetry (or lack
thereof) of the airplane configuration being considered. With the exception of airplanes such as

shown in Figure 1.3 the assumptions 1) and 2) are generally considered to be reasonable.

Next, an outline of the effect of the perturbed motion variables on the perturbed acrodynamic
forces and moments is given. -

Effect of a forward speed perturbation, u:

1The consequence of a forward speed perturbation is two—fold: the dynamic pressure,
q= EQV2 , and the Mach number, M = Vp/c , both change. As a result, the following longitu-

dinal aerodynamic forces and moment will change: F, ,F, and M, . ¥ hese changes are ex—

o dF dF ,
pressed with the help of the derivatives: _aﬁ.& - A oand 61:[_!3 inTable 3.4. Because the steady
u u u
state lateral-directional force and moments: F A, = La,_= N, = 0, there will be no changes
g 5 s

in F A, L, and N, dueto aforward speed perturbation, u. Therefore, the corresponding rect-

angles in Table 3.4 have been left blank.

Effect of a lateral speed (or side velocity) perturbation, v:

The effect of a side velocity perturbation, v, can be thought of as a perturbed sideslip angle,

f = Ul , as shown in Figure 3.50. The effect of v on dynamic pressure is considered negligible.
1

It was already shown in Section 3.1 that the effect of a change in sideslip angle is to change the later-

al—directional force and moments: F A, L, and N, . These changes are expressed through the

dF : dF

Tay g and Ny or 2 ola and 9N,y in Table 3.4. As long as the
dv v ov ap 7 B d

sideslip angle is small, its effect on the longitudinal forces and moment: F, ,F, and M, isas-

derivatives:

sumed to be negligible. That explains the corresponding blank rectangles in Table 3.4,
Effect of a downward speed (or downward velocity) perturbation, w:

The effect of a downward velocity perturbation, w, can be thought of as a perturbed angle

of attack, a = -g— , as shown in Figure 3.50. The effect of w on dynamic pressure is considered
1

to be negligible. It was already shown in Section 3.1 that the effect of a change in angle of attack
is to change the longitudinal forces and moment: F, ,F, and M,. These changes are ex-
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X

dF,  9F, M, dF, 0F, .

X z Or z A
w aw M oy Mo e ad 5
Table 3.4. As long as the angle of attack is small, its effect on the lateral—directional force and mo-

ments: F A, L, and N, is negligible. That explains the corresponding blank rectangles in
Table 3.4.

pressed with the aid of the derivatives:

Effect of a roll rate perturbation, p:

The effect of a small perturbation in roll rate, p, is to cause non—symmetrical changes in tocal
angles of attack over the wing, canard and tail surfaces. It is assumed that these changes take place
in an anti-symmetrical manner so that there are negligible effects on the longitudinal aerodynamic
forces and moment: F, ,F, and M, . Strictly speaking, this argument is not valid for a vertical

tail. However, in most conventional airplanes the vertical tail effect due to roll rate perturbations
is small anyway. The changes in the lateral-directional force and moments: F A, ,L, and Ny,
IFa, oL,

are accounted for through the derivatives: —A
ap ° Ip

and a_?_A”’as indicated in Table 3.4.
P

Effect of a pitch rate perturbation. q:

A pitch rate perturbation causes a symmetrical change 1n angles of attack over the wing, ca-
nard, horizontal tail and fuselage. The effect of this is to change the longitudinal aerodynamic forces
and moment: F, ,F, and M,. These changes are expressed with the help of the derivatives:

oF oF
p Ax 5 A and M, , as shown in Table 3.4. The effect of perturbed pitch rate on the lateral—
q q
directional force and moments: F = ,L, and N, is assumed to be negligible.
e

Effect of a vyaw rate perturbation, r:

A yaw rate perturbation causes a non—symmetrical change in the local velocities of the wing,
canard and horizontal tail. In addition, it causes a non—symmetrical change in local angles of attack
over the vertical tail. These changes will generally affect the lateral-directional force and moments:

) oF,, 4L
¥ A

oN
FAy ,L, and N, . This is expressed by the derivatives: —r o and a—rA in Table 3.4.

Effect of rate of change of angle of attack, ¢

When the angle of attack of an airplane changes with time, the wing produces a vortex field
which changes with time. That changing vortex field can have a significant effect on the aerodynam-
ics of the horizontal tail. Such an effect is accounted for by means of so—called o derivatives which

affect the longitudinat forces and moment: F, ,F, and M,. The corresponding derivatives:

oF dF .
a_f‘"‘x '3 A ond 61:[__*\ are also shown in Table 3.4. The effect of & on the lateral-directional
a a o

force and moments: I, ,L, and N, is considered negligible.
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Effect of rate of change of angle of sideslip, 3

When the angle of sideslip of an airplane changes with time, the wing—fuselage combination
produces a vortex field which changes with time. That changing vortex field can have a significant
effect on the vertical tail. Such aneffect is accounted for by means of so—alled 3 derivatives which

affect the lateral-directional force and moments, F A, »La and N, . The corresponding deriva-

oF
Ny ,E_]Zé d % are also shown in Table 3.4.

. = an
p 9B o
Effect of control surface perturbations, 6, J, &, and d;

tives:

It will be assumed that perturbations in longitudinal control surface deflections, such
as 0. and O; only affect the longitudinal forces and moment: F A, -Fa, and M, throughthe

aF,  dF, M,  F, oF, M

ivatives: —— and —— —2 2 apd —2 g
derivatives: 25, FrN 35, and 66f af)f an 661: . For other control surfaces,

similar derivatives should be substituted.

AL .
It will also be assumed that perturbations in lateral-directional control Surface deflections,
suchas &, and O, only affect the lateral--directional force and moments: F A, L,y and Ny .

dF oF
Ay 9L and NA ana A g and A are also

The corresponding derivatives: , ,—2
00, 30, 00, a0, ad; ad;

shown in Table 3.4.

Whether or not these explanations are applicable depends largely on the symmetry (or lack
thercof) of the airplane configuration being considered. With the exception of airplanes such as
shown in Figure 1.3 the explanations given before are considered to be reasonable.

Another important assumption which is made at this point is that all perturbed forces and
moments are a function of the instantancous values of the perturbed motion variables only. This
assumption is also known as the quasi-steady assumption. It has been pointed out by Etkin in Refer-
ence 3.6 that this assumption is not always realistic, depending on the motion frequencies of an air-
plane. Very roughly, for frequencies above about 10 radians per second the effect of motion frequen-
cy on the perturbed forces and moments does become important. In such cases, Etkin and Rodden
(References 3.6 and 3.7) have developed alternate formulations for the perturbed forces and mo-
ments. Experience has shown that the great majority of rigid airplane stability and control problems
can be adequately analyzed with the quasi—steady assumption.

Finally, it will also be assumed that higher order derivatives than the first derivatives ac-
counted for in this text are negligible.

Table 3.5 shows the mathematical model used to represent the perturbed aerodynamic forces

and moments, based on these explanations. Where applicable, the derived instead of the direct vari-
ables have been used.
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and Moments

Longitudinal;

aF aF,  dF,  dF, 9F dF 4.
e TR R e aq 17+ aan’aa S
dF , F 5 dF dF , BFA, aF ,
L L i ol 666+a§f6f
M,  aM,  aM, M, = aM, oM ,
MA~ G0 " 5q * T g @7 aqq+665+aﬁfaf
Lateral-Directional
0Fs ~ dF, . 9F,  OF OF 5, F,
fo = + — + —= -

N, N, oN
fa = aBB [3'3+ ap or 38, a6, !

Table 3.5 Dimensional Quasi-Steady Model for Perturbed Aerodvnamic Forces

(3.96a)

(3.96b)

(3.96¢)

(3.97a)

(3.97b)

(3.97¢)

The mathematical model of Table 3.5 has a problem: the variables have physical units rang-

ing from radians to radians/second and ft/sec. For reasons of uniformity it is preferred to make all

variables dimensionless. This is achieved as follows;

1) by dividing the speed perturbation u by: U,

2) by multiplying longitudinal perturbed angular rates by: %
1

3) by multiplying lateral-directional angular rates by: 2—%——
1

The effect of this is to alter the model of Table 3.5 to that of Table 3.6. That model will be

used in this text.
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Table 3.6 Non-Dimensignal Quasi-Steady Model for Perturbed Aerodynamic
Forces and Moments
Longitudinal:
A (—) 2o+ —=( + —= (=) + 2 + ——=0 (3.98a)
L3 da ac, 20 qc | 2U 30, 66
(U ) U 6(2U1) 1 a(m,l_) [
AT T (U ) + o ¢ + — (2U (2 ) + Qe + ——=0; (3.98b)
a( ) a(_zglt%) 1 a( ) U, 30, 00
oM, u oM , M, gE oM A qc aM 4 aM My
A e (ﬁ_) -+ *""é'——(]. + . Ly (2 ) 6 6 (3980)
Lateral-Directional
oF aF B aF aF aF A, 5 dF
f, = + b .
(2U ) - .
L, dL,  Pb oL, pb L A iy, Lag , Ta
1, = B+ — + Y + 6 6 (3.99b)
U,
_ Ny Bb N A pb ONA tby , WNag 9Ny
A =78 p 5 20, + ( ) ) * o )(2U1) 5. 8, TS 8  (3.99c)

rgr

Expressions for the partial force and moment derivatives in Table 3.6 will be developed in
Sub—sections 3.2.1 through 3.2.13.

3.2.1 PERTURBED STATE, LONGITUDINAL AERODYNAMIC FORCES
AND MOMENTS

- -

The perturbed state, longitudinal aerodynamic forces and moments are stated in Table 3.6
Eqns (3.98) and (3.99) in their dimensioniess form. It is seen that the partial derivatives of the longi-
tudinal forces and moment with respect to the dimensionless motion and control variables play the
key role. The purpose of Sub—sections 3.2.2 through 3.2.13 1s to show how these force and moment
derivatives may be determined with the help of various stability and control derivatives. The depen-
dence of these stability and control derivatives on airplane configuration design parameters will also
be discussed.
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3.22 AERODYNAMIC FORCE AND MOMENT DERIVATIVES WITH RESPECT TO
FORWARD SPEED

According to Table 3.6, the following forces and moment are affected by changes in forward
speed,u: Fo , ¥, and M,. These forces and moment are non-dimensionalized as follows:

Fp. = C@S (3.100a)
Fy, = CS (3.100b)
M, = CngSc (3.100c)

The reader is reminded of the fact that F, , F, and M, are defined in the stability axis

system. Next, the partial differentiations implied by Table 3.6 will be systematically performed for
Equations (3.100a) through (3.100c).

Partial Differentiation of Equation (3.100a) with respect to /U4

Partial differentiation of Eqn (3.100a) with respect to (u/U,) , leads to:
OF 4, dCx _ aq
i e TN

U1 Ul Ul

(3.101)

At this point it should be recognized that the partial differentiations in Eqn (3.101) carry the
following significance:

Hp o OF
_. implies : —;
. a(ﬁl) a(ﬁ) 1

In other words, both partial differentiations and the coefficient Cy in Eqn (3.101) must be

cvaluated in the steady state flight condition for which all perturbed quantities are equal to zero!
For the partial differentiation of q this has the following consequence:

1
ag _ E _ 165@[([}1 + U)2 + v + Wz] _
B(ULI) toul) ou 1
= U,p(U, + u)I = QU% (3.102)
1

Before carrying out the partial differentiation of Cy it is necessary to refer to Figure 3.51

torelate Cx to Cp and Cp. By using the ’small angle’ assumption:

Cix= —Cp + Ca (3.103a)
Partial differentiation of Cy yields:

aC aC aC aC

a_Ui =_aLD) MevAT : I ""“a_q{_)) (3.103D)
(U]) 1 (U] 1 ( ) (UI

Chapter 3 132



Aerodynamic and Thrust Forces and Moments

Notes:
1) VPl = U,

2y C, as well as C, are

in stability axes

horizon

Figure 3.51 Determination of Cy and C, based on C; and C;

From Eqn (3.103a) it follows that in the steady state:

Cy, = — Cp, (3.104)
The following notation is now introduced:
aCp

Cp = 3.105
Pe 6([—}1-1)1 ( )

With this notation it is possible to rewrite Eqn (3.101) as:

oFy, _
Y
a

— (Cp, + 2Cp )q;S (3.106)

The derivative Cp, isreferredto asthe speed—damping derivative. The sign and magnitude
of Cp, depends on the steady state Mach number of the airplane. Figure 3.52 shows a typical plot

of the steady state drag coefficient versus Mach number (at constant angle of attack!}. Since:

_9Cp _UjaCy . Gy
Co, =3 =7 50 = Miom (3.107)
U, a

The quantity ’a’ represents the speed of sound for the steady state flight condition being con-
sidered. The numerical magnitude and sign of dCp/dM canbe determined from a figure like Figure

3.52. Note that 8Cp/8M is generally >0 for M<1 while it is <0 for M>1. Figure 3.53 gives exam-

ples of the variation of Cp,  with Mach number for several airplanes.
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Cp
M, 1 M/ 1 -
0 1.0 2.0 M
Figure 3.52 Example of Determination of:-3Cy,/dM

Partial Differentiation of Equation (3.100b) with respect to u/U

Partial differentiation of Eqn (3.100b) with respect to (u/U;) , leads to:

dF, _ aC g
ity CZS———a(_f}_) (3.108)
U, U, U,
Referring to Figure 3.51 it may be seen that (for small angle a):
CZ = - CL - CD(I (3109)
In the steady state this means:
Cy = — G, (3.110)
Differentiation of Eqn (3.109) yields:
aC aC aC
- T G111
Evaluated at the steady state, this condition produces:
Cp, = —Cp, (3.112)
Note that:
aC
Cp, = PYAE (3.113)
(Ul) 1
By using Equations (3.112) and (3.110) it follows for Eqn (3.108) that:
dF 4, B
o = — (G, +2C )q;S (3.114)
3(E)

The derivative Cy ~can be evaluated for high aspect ratio wings as follows. At subsonic

speeds, according to the Prandtl-Glauert transformation it is found that:
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Figure 3.53 Effect of Mach Number on Cp, for Several Airplanes
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Figure 3.54 Effect of Mach Number on C; _for Several Airplanes
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Cy +(C | o
C = — Crdy=o) (3.115)
(1-M?

This expression must now be differentiated with respect to M. For most airplanes, the fol-
lowing first order of approximation is reasonable:

aCy,
P (3.116)
@) o
In that case:
BCL o M .
M T 1 - ML (3.117)
Recalling Eqn (3.107) it follows that:
oCy U, aC aCy
L.~ 20y~ a ;o —- Ya3m (3.118)
ot oa
Therefore, it follows that:
M2
1 (3.119)

C,. =—-7>~L-C
Lu (1 — M%) L

Examples of the variation of C;  with Mach number for several airplanes are presented in

Figure 3.54.

kg

Partial Differentiation of Equation (3.100¢) with respect to u/U-

Partial differentiation of Eqn (3.100c) with respect to {u/U,) , leads to:

oM ICm — o _
) 5y 15T + CmSTQUT (3.120)
0,

By using the notation:

aC
sy = Cm (3.121)
U,
it follows that:
aM — o=
= (Cpy, + 2Cm})q150 (3.122)

a(U%)

For gliders, for power—off flight and for power—on flight in airplanes where there is no thrust
induced pitching moment about the center of gravity, the condition: Cm, = 0 is satisfied in steady

state flight. If thrust does contribute to pitching moment, the condition: Ch =~ CmTl applies
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and this term must be accounted for in Eqn (3.122).

For reasons similar to those leading to Eqn (3.118):

aC
Cm, = My 551
The change in pitching moment coefficient due to Mach number is caused by changes
in Cn, and by the aft shift in aerodynamic center (and center of pressure) which tend to occur in

(3.123)

the high subsonic speed range. If changes in Cy,, with Mach number are negligible, it is possible
to compute dCy,/dM from the following equation:

.
-—aCMm (AM) = — A%y, Cy. (3.124)

where: AXqc, is the aft shift in airplane aerodynamic center for a change in Mach number, AM .

In that case, using Eqn (3.123):

ax
Cm, = — M{Cp, 31" (3.125)

Note that in Eqns (3.124) and (3.125) an aft shift in a.c. is counted as positive! Shifts ina.c.
with Mach number can be determined theoretically (See Ref.1, Part VI) oz from windtunnel data.
It is seen from Eqn (3.125) that in the transonic speed range below M=1, Cp ~< 0 . This implies

that for an increase in Mach number, the airplane has a tendency to put the nose down. This phenom-
enon is referred to as transonic "tuck’. It can result in unacceptable handling quality behavior. Such
behavior can be corrected by careful attention to airfoil design, wing planform design and/or by the
introduction of Mach-trim systems.

Figure 3.55 presents examples of the variation of Cr,, with Mach number for several exam-
ple airplanes. Note that the D-558-1II "bucks’ the subsonic trend. The reason for this is not known
to the author.

3.2.3 AERODYNAMIC FORCE AND MOMENT DERIVATIVES WITH RESPECT TO
ANGLE OF ATTACK

According to Table 3.6 the following forces and moment are affected by changes in angle
of attack, a: Fy , F, and M, . These quantities were non~dimensionalized in Eqns (3.100).

"Partial Differentiation of Equation (3.100a) with respect to o

Partial differentiation of Eqn (3.100a) with respect to @, leads to:

2 N To
aa daa

gs (3.126)

By invoking Eqn (3.103a) it folows that:
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Cxu = ﬁ = - W + ﬁa + CL (3127)

After evaluating this result in the steady state flight condition:

Cx, = — Cp, + €, (3.128)
And thus, Eqn (3.126) yields:

0F 5, _

a0 = (_ CDu + CLI)qIS (3.129)

where the dertvative Cpy  is obtained from Eqn (3.9).

Partial Differentiation of Equation (3.100b) with respect to «.

Partial differentiation of Eqn (3.100b) with respect to o, leads to:

0Fs,  aC,_
a9 qs (3.130)
From Egn (3.109) it is found that: X
_aC, . 9G, 4G
z, — —ﬁ = ?&“ WCC - CD (3.131)

After evaluating this result in the steady state flight condition:

Czu = - CLu - CDI (3.132)
And thus, Eqn (3.130) yields:

dF 5 ~

5o =~ (G, +Cp)asS (3.133)

where the derivative C; _ is obtained from Eqn (3.24).

Partial Differentiation of Equation (3.100c¢) with respect to o

Partial differentiation of Eqn (3.100c¢) with respect to a and evaluating the result in the steady
state flight condition leads to:

Ma _ C

A = SIS = Cp 5T (3.134)

The derivative Cp,_ is obtained from Eqn (3.35).

Examples of the variation of C , C and Cp,, with Mach number are presented in Fig-

ures (3.12), (3.16) and (3.21) respectively.
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3.24 AERODYNAMIC FORCE AND MOMENT DERIVATIVES WITH RESPECT TO
ANGLE OF ATTACK RATE

According to Table 3.6 the following forces and moment are affected by changes in angle
ofattack rate: F, , F, and M,. These quantities were non—dimensionalized in Eqgns (3.98).

Introduction of angle of attack rate derivatives rests upon the assumption that, as a result of a change
in & the aerodynamic pressure distribution over the airplane adjusts itself instantaneously to q, .

This so-called quasi-steady assumption has been shown to be reasonable (Ref. 3.6) as long as the
following condition is satisfied:

reduced T )
[frequency] =k = ZGTC] < 0.04 (3.135)

An example of the ratio of unsteady lift to steady lift for a.thin airfoil which oscillates up
and down in subsonic flow is shown in Figure 3.56. The data in Figure 3.56 suggest that criterion
{3.135) is indeed reasonable.

Methods for computing the & effect for arbitrary airplane configurations are not yet avail-

able. In the mean time the so—called ’lag—of-downwash’ method can be used to obtain estimates
for the derivatives of F,  F, and M, with respect to ¢. In this method it is assumed that

downwash behind a wing (or other lifting surface) is dependent primarily on the strength of the trail-
ing vortices of the wing in the vicinity of the horizontal tail.

Because voi'tigity is transported with the flow, a change in downwash at the wing trailing
edge (due to a change in angle of attack) will not be felt as a change in downwash at the horizontal
tail until a time increment At = x, /U, has elapsed. The quantity X; is the distance from the

3/4 mgc point on the wing to the acrodynamic center of the horizontal tail.

Depending on overall airplane layout, the following approximation is often satisfied:

Xp = Xag, — Xeg (3.136)

It will be assumed that the downwash at the horizontal tail, € (t), equals that downwash
which corresponds to the wing angle of attack a(t — At) . Therefore, acorrection to the horizontal
tail angle of attack can be made as follows:

Ac = — ey = — de Koo — Xeg)

do do* U, (3.137)

Next, the partial derivatives of F A, Fa, and M, will be taken one-by one,
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Partial Differentiation of Equation (3.100a) with respect to (¢€/2U,)

Partial differentiation of Eqn (3.100a) with respect to (¢c/2U,) leads to:
oF 5
)

where it is assumed that the effect of downwash lag on drag can be neglected: Cp, = 0

= CygS = = CpTS =0 (3.138)

Partial Differentiation of Equation (3.100b) with respect to (cc/2U )

Partial differentiation of Eqn (3.100b) with respect to {6c/2U ), leads to:

oF aC
2 = —Lg;S = C, 0,8 (3.139)
a(ﬁj:) a( )
Since:
C,, = —Cp, (3.140)

A -
The derivative C;_ is found by observing the fact that Ae of Eqn (3.137) causes a change

in horizontal tail lift coefficient which can be expressed as follows:

AC,, = - C At = cLuhg—ga(xﬂﬁ_-lig) (3.141)
For the entire airplane this yields:

airplane, Ac(;llfsed byla = CLuhg_Za(x_a%fj_]—xcg‘)“Tlh"sgh (3.142)
Partial differentiation w.r.t (&¢/2U,) and using Eqn (3.140) produces:

C, = -C =~ 2C_Luhg§(i"‘°£%"g) h%ﬂ (3.143)

Introducing the concept of horizontal tail volume coefficient first used in Eqn (3.36):
- de
Cp, = 2C,, ﬂth da. (3.144)

Combining Eqn (3.139) with (3.140) and (3.144) resuits in:

9F

v de -
GE = - ZCLuhnth.ﬁqls (3.145)

Figure 3.57 shows how Cp _ varies with Mach number for several airplanes.
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Partial Differentiation of Equation (3.100c) with respect to (0c/2U))

Partial differentiation of Eqn (3.98c) with respect to (dE/ 2U,) and evaluation at the steady

state leads to:

oM e
— = Cn 7,5 (3.146)

oc
U5
The derivative Cp, is found from Eqn (3.144) by multiplying by the non-dimensional mo-

ment arm of the horizontal tail, (Xac, — X¢g) and accounting for the fact that up-lift on the horizon-
tal tail produces a nose-down pitching moment. This yields:

Cm, = = 2C; M VilFac, - szcg)gi ‘ (3.147)

[+

Figure 3.58 shows how C;, varies with Mach number for several airplanes.

3.2.5 AERODYNAMIC FORCE AND MOMENT DERIVATIVES WITH RESPECT TO
PITCH RATE A

According to Table 3.6 the following forces and moment are affected by changes in pitch
rate, : F, , F5 and M, . These quantities were non-dimensionalized in Eqns (3.100).

Figure 3.59 shows that the effect of a pitch rate perturbation about the airplane center of grav-
ity is to create ’slewing’ velocities at all lifting surfaces. These slewing velocities induce local
changes in angle of attack which in turn create lift changes on all lifting surfaces. These lift changes
in turn cause increments in induced drag and in pitching moment. It is generally assumed that the
‘pitch rate effect on induced drag is negligible. The effect of pitch rate on lift is not always negligible.
The effect of pitch rate on pitching moment is nearly always very important as will be seen in the
following derivation for a conventional airplane (wing + tail aft).

Methods for determining pitch rate derivatives for an arbitrary airplane configuration are
presented in Part VI of Ref.3.1.

Partial Differentiation of Equation (3.100a) with respect to (q¢/2U,)

« - Partial differentiation of Eqn (3.100a) with respect to (qc/2U,)} , leads to:
dF o
= = Cx S = —CpgS =0 (3.148)
a(ﬂ) K
2U,

where it is assumed that the effect of pitch rate on drag can be neglected: Cp = 0 .
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Figure 3.59 Physical Explanation for Effect of Pitch Rate on Lift and on Pitchin Moment

Partial Differentiation of Equation (3.100b) with respect to (q¢/2U,)

kot

Partial differentiation of Eqn (3.100b) with respect to (qt/2U,) , leads to:

oF 9

> = Cg 3,8 = C,q,S (3.149)

0 )

2U, 2U,
Since:
C, = = Cp, (3.150)

It is seen in Figure 3.59 that pitch rate, g, induces an angle of attack at the canard. Although
not shown in Figure 3.59, there is also an induced angle of attack at the horizontal tail:

qly
AC, = 3.151
h U, ( )

This induced angle of attack at the horizontal tail results in the following induced lift coeffi-
cient for the airplane:

ACp ql, S,
(airplane, caused by q) = CLuhU_lTIh‘S“‘ (3.152)

After partial differentiation with respect to (q€/2U,) , it follows:
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S
S

For conventional (i.e. no canard) airplanes, it is found that the center of gravity is located
close to the wing aerodynamic center. In that case, there is no canard contribution, the wing con-
tribution is negligible because of its small slew rate BUT, the horizontal tail contribution is important
because of its significant moment arm. For such cases it is acceptable to write:

I, = (Xa, = Xeg) (3.154)

The consequence of this for conventional airplanes is:

]
C, = 2(:,”“:‘“.1h (3.153)

oF

-_ Cqu]S = - ZCLuhnhvh(_le (3.155)

qc
G(ZUI)

Figure 3.60 shows trends of CLq with Mach number for several airplanes.

Partial Differentiation of Equation (3.100c) with respect to (q¢/2U,)

Partial differentiation of Eqn (3.100c) with respect to (qc/2U,) leads to:

oM aC i
A 0-q,S = Cnd;S . (3.156)

M) Iy

By using reasoning similar to what lead to Eqn (3.147), the reader is asked to show that:

Cm, = = 2C;, Ny Vn(Kag, — Xeg) (3.157)

Since in many conventional airplanes the wing contribution to Cp, is not entirely negligi-
ble, a 'fudge—factor’ is often used to produce for the entire airplane (conventional only!):

Cp, = — 2.2CLuhnth(iaCh — Xeg) (3.158)

It should be observed that the derivative, Cp, , is proportional to the square of the moment
arm of the horizontal tail. This is why this derivative is often rather large. The derivative, Cp, is

referred to as the pitch—damping derivative. Itis very important to the flying qualities of an airplane.
Figure 3.61 shows trends of Cp_ with Mach number for several airplanes.

3.2.6 AERODYNAMIC FORCE AND MOMENT DERIVATIVES WITH RESPECT TO
- LONGITUDINAL CONTROL SURFACE AND FLAP DEFLECTIONS

According to Table 3.6 the following forces and moments are affected by changes in control
surface and flap deflections, 6. and 8¢ : F4, , F, and M,. These forces and moment were

non—dimensionalized in Eqns (3.100).

Partial differentiationof F, F, and M, withrespectto 8. and &; leadsto the fol-

lowing expressions:
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dFA,  aC,_ _ -

£ = 2208 = CodiS = — CpgyS (3.159)
dF,,  aC,_ — —~

Y a_ﬁqus = C,q;S = — CLg,S (3.160)
oM ICm_ s I

—5+ = 5 @S¢ = Cm,S¢ (3.161)

The subscripts used to indicate the control surface type were dropped from Eqns (3.159)
through (3.161). Expressions for the elevator and stabilizer control surface derivatives were derived
in Sub-sections 3.1.2, 3.1.3 and 3.1.4. For more general control surface derivatives and for flap
derivatives the reader may wish to consult Part VI of Ref.3.1.

3.2.7 ASSEMBLING THE PERTURBED LONGITUDINAL AERODYNAMIC FORCES
AND MOMENTS

At this point the perturbed, longitudinal aerodynamic forces and moment are assembled in

matrix format in Table 3.7. N

Table 3.7 Matrix Format for Perturbed State Longitudinal Aerodynamic Forces
and Moment

r_E‘_ ™
(£, ) [ (3.106) (3.128) (3.138)  (3.148) 361 [V
q,S —(Cp, +2C) (~Cp, +C) —Cp, —Cp=0 =~ Cop. | |
¢ (3.114) (3.132) (3.144) (3.153) (3.26) ot
. oac
L 2U, > (3.162
4 qlS - (CL., + ZCLl) (— CLu - CDI) - cL{-I - CLq - CLae i ] ( )
3.122 3.134 3.147 3.158 3.37 a©
m, { ) ( ) ( ) ( ) (3.37) 50,
qISE (Cmu + 2Cm]) Cmu Cm[-,_ Cmq Cmﬁ
- - 65
L S

Notes: 1) Airplanes may have more than one longitudinal control surface. Only the
elevator have been included in Eqn (3.162). Additional control surfaces
simply expand the size of the matrices.

2) Bracketed numbers refer to equations in the text.
3) All stability derivatives may be computed with the methods of Part VI of
Ref.3.1 and/or with the AAA program {Appendix A)
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3.2.8 PERTURBED STATE, LATERAL-DIRECTIONAL, AERODYNAMIC F ORCES
AND MOMENTS

The perturbed state, lateral-directional, aerodynamic forces and moments are defined in
Table 3.6 , Eqns (3.99) in their dimensionless form. It is seen that the partial derivatives of the later-
al-directional force and moments with respect to dimensionless motion and control variables play
the key role. The purpose of Sub-sections 3.2.9 through 3.2.14 is to show how these force and mo-
ment derivatives may be determined with the help of various stability and control derivatives.

PR

3.2.9 AERODYNAMIC FORCE AND MOMENT DERIVATIVES WITH RESPECT
TO SIDESLIP

B

According to Table 3.6 the following force and moments are affected by changes in sideslip
angle, p: F A, » L and N,. These force and moments are non—dimensionalized as follows:

Fo = = Gy ) (3.163a)
L, = — CgsSb (3.163b)
N, = — C,gSh (3.163¢)

The reader is reminded of the fact that F A, » La and Ny are defined in the stability axis

system. Next, the partial differentiations implied by Table 3.6 will be systematically performed for
Equations (3.163a) through (3.163c). Partial differentiation of Eqns (3.163) with respect to sideslip
angle, p, leads to the following expressions:

B~ ap 15 T OniS (3169
oL aC

a_fJ'A = }TglqiSb = Clﬁqlsb (3.165)
dN dCh _

The stability derivatives C, , C, and C,, were already discussed in Sub—sections 3.1.9,
Y ¥p lﬁ B

3.1.8 and 3.1.10 respectively.

3.2.10 AERODYNAMIC FORCE AND MOMENT DERIVATIVES WITH RESPECT
TO SIDESLIP RATE

According to Table 3.6 the following force and moments are affected by changes in sideslip,
p: F A, » La and N,. These force and moments were non—dimensionalized in Eqns (3.163).

Partial differentiation of Eqns (3.163) with respect to sideslip angle, 3, leads to the following
eXpressions:
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BFAY 8Cy _ 3
— =—q,S = Cy 0,8 (3.167)
pb pb
G GG,
oL, ac,
. = —1q,Sb = C,q,Sb 3.168
Bb Bb d; 1,91 ( )
5(2—Ul) a(ﬁ‘j‘“)
oN aC
A = " §,8b = C,q,Sb (3.169)
f
2yl

The stability derivatives Cyg’ les and C“B are physically analogous to the & —deriva-
tives which were discussed in Sub—section 3.2.4. Methods for numerically predicting these f —

derivatives are given in Part VI of Reference 3.1. Except for airplanes in the high subsonic speed
range, the  — derivatives are frequently considered negligible.

3.2.11 AERODYNAMIC FORCE AND MOMENT DERIVATIVES WITH RESPECT
TO ROLL RATE

According to Table 3.6 the following force and moments are affected by changes in per-
turbed roll rate, p: F, , L, and Nj. These force and moments were non—dimensionalized in

Eqns (3.163).

Partial differentiation of Eqns (3.163) with respect to roll rate, p, leads to the following ex-
pressions:

aFA, aCy _
= —— @S = Cy,3,S (3.170)
( ) ( )
aLA ac, _ -
T T ob qISb C,,q,5b (3.171)
o ) S
TGN
A= "’C]; q,5b = C,,,Sb (3.172)
a(z—Ul (

A physical explanation for how the roll-rate derivatives Cy , C1p and Cp occurispres-

ented in the following.
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Side-force coefficient due to roll rate derivative, Cy,

This derivative is usually made up of two components:
Cy, =C + Cy, (3.173)

The contribution due to the wing—fuselage—horizontal tail, Cypwfh , 18 generally negligible for

ypwfh

conventional configurations, particularly when compared to the contribution due to the vertical tail,
Cy,, - A physical explanation for the aerodynamic mechanism responsible for Cy,, 1s presented

in Figure 3.62. It is seen that due to roll rate p, about the stability X—-axis, a force Fy,. is induced
on the vertical tail in the negative Y—direction. Note that this force acts at a point, a distance z,,

away from the X—stability axis. That point is assumed to be the vertical tail aerodynamic center due
to the additional pressure distribution caused by the roll rate, p. In principle, this distance Zy, is

not the same as the distance of the same name—tag in Figure 3.31. However, this difference is usually
ignored. Assuming z,,_ is known, the local angle of attack due to roll rate induced on the vertical

tail is: Aoy = pz,, /U, . Therefore, the side force on the vertical tail may be modelled as:

_ PZy, _
prv = CLaV(E—)qVSV (3.174)

The side—force due to roll rate on the entire airplane can be written as:

— P2y, _
Fy, = CygS = = Cp( U:’ )q,Sv (3.175)
- ob
From this, by partial differentiation w.r.t. C1il it follows that:
1
sz SV
Cy, = Cy = — 2CLuv(_b")n"(_§) (3.176)

Although Eqn (3.176) suggests that the sign of Cy, is generally negative, it is evident from
Figure 3.62 that the sign of the moment arm, zy, can reverse at high angles of attack. Figure 3.63

shows examples of the variation of Cy  with Mach number for several airplanes.

The derivative Cy_ is normally not a very important derivative in terms of its effect on air-

plane dynamic stability. However, in the synthesis of turn—coordination modes in auto—pilots, this
derivative should not be neglected.

Rolling moment coefficient due to roll rate derivative, Clp

This derivative is usually made up of three components:
C, = Clpwr + Clph +C. (3.177)
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A physical explanation for the principal aerodynamic mechanism which is responsible
for Clp and C, isprovided in Figure 3.64. It is seen that, as long as the flow remains attached,
wf Pn

the effect of perturbed roll rate, p, is to create an asymmetrical lift distribution which opposes the
roll rate. That is why the derivative C]P is referred to as the roll-damping derivative.

The roll damping derivative, CIp » plays a very important role in determining the handling

qualities of an airplane, as will be seen in Chapter 5.

Methods for computing the C,, and C,p contributions to C, - are given in Part VI of Ref-
wf h

erence 3.1. From these methods it is clear that aspect ratio and sweep angle of the wing and the hori-
zontal tail are the dominating factors which determine roll damping. From these methods it is also
clear that unless the ratio of fuselage-width-to-wing~span is larger than about 0.3 the following
approximation applies:

G, =G (3.178)

Pw wi

To estimate the effect of the horizontal tail, it is treated as if it is a wing. The resulting value
of the horizontal tail damping derivative, based on the geometry of the horizontal tail is referred to
as C, . The value of C,, based on airplane geometry is then obtained from:

h h

Syb2

Clph = Clphm (3179)

An expression for Clp can be found with the help of Egn (3.176). The reader is asked to
show that:

Zyv, 5 S
Cp,, = — 20, HIM) (3.180)
Figure 3.65 shows examples of how Clp varies with Mach number for several airplanes.

Yawing moment coefficient due to roll rate derivative, Cp,

This derivative is normally made up of two components: N
. 1
Cn, = Cnpwf + Ch,, (3.181)

The horizontal tail contribution tends to be insignificant for conventional airplanes with tails
which are small compared to the wing. The wing—fuselage contribution is normally dominated by
the wing and is caused by three mechanisms:

1) wing drag increase 2) wing lift vector tilting 3) wing tip suction

A physical explanation for these three effects follows.
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velocity distribution due to roll
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1) wing drag increase

Figure 3.66 shows that as a result of the rolling motion of the wing the local angles of attack
over the wing span are altered. For a positive roll rate (right wing down) the right win g experiences
an increase in local angle of attack while the left wing experiences a similar decrease in local an gle
of attack. Figure 3.66 illustrates this for spanwise stations +y and ~y. These angle of attack changes
are seen 1o produce changes in local lift and drag. It is seen that the effect of the increase in drag
at spanwise stations +/—y is (o generate a positive increment in the yawing moment due to roll rate.

2) wing lift vector tilting

It is seen from Figure 3.66 that the changes in lift produced by roll rate at spanwise stations
+/—y result in a ’tilting” of the total local lift vectors in such a way as to produce a ne gative yawing
moment due to roli rate.

3) wing tip suction

The wing tip suction effect is illustrated in Figure 3.67. It is seen that if a wing is carrying
no net lift, there is no net side force due to roll rate. However, as soon as a wing carries a certain
amount of lift, the addition of a positive roll rate causes a net positive side force due to the effect
of wing—tip suction. Clearly the magnitude of this tip suction effect is a function of the win g geome-
try. Low aspect ratio wings with relatively large tip thickness tend to develop fairly significant net
suction forces due to roll rate. It all depends on where the center of this tip suction force is located
relative to the airplane center of gravity as to how much yawing moment due to roll rate this effect
will produce. The insert in Figure 3.67 shows that if the airplane c.g. is forward of this tip suction
center, a negative yawing moment contribution due to roll rate is produced.

The vertical tail contribution to C,_ is referred to as Cy,, . Itseffect is most easily seen by

referring back to Figure 3.62. The side force on the vertical tail is seen to produce a yawing moment
which tends to be positive at low to moderate angles of attack. The vertical tail contribution can be
estimated through the use of Eqn (3.180) to produce:

Zy, Xy, Sv
Cu,, = 20, GHCMY (3.182)

Methods for estimating all contributions to Ch, are given in Part VI of Referense 3.1. It

turns out that the correct prediction of even the sign of this contribution is difficult. It will be shown
in Chapter 5 that the effect of the derivative Cy, onairplane dynamic stability is frequently rather

weak. If such is the case, it may not matter whether or not the sign of Cy, is properly predicted.
In cases where the airplane is shown to be sensitive to sign and magnitude of Ch, ,itisusually neces-

sary to run 'roll-rate-model-tests’ in the windtunnel.

Figure 3.68 shows examples of how C, varies with Mach number for several airplanes.
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Right, down—going wing at +v Left, up—going wing at —y
Note: AL creates — AC,,
Note: AD creates + AC, +y
+p
Fi

igure 3.66 Explanation of Lift and Drag Vector Tilting on C,,

Wingat C =0

P
Il m Lift distribution due to
p

positive roll rate, p
Suction ,Force p SFpps.

I+11 — No resultant lateral
SF|} o Suction’ Force suction force

m '

Wingat Cp = 0

Net lateral suction force:

SF — SF
Suct:on Force rhs. Lhs.
® CE
H+III .
SF]hs Suctlon Force —L»

this creates a negative
yawing moment

Figure 3.67 Explanation of Tip Suction Effect on C,
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Figure 3.68 Effect of Mach Number on Cpn, for Several Airplanes

A FAW = yaw rate induced
side force

Xy,

at the vertical tail

A U,

Figure 3.69 Explanation of Side Force due to Yaw Rate

Velocity vector diagram
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3.2.12 AERODYNAMIC FORCE AND MOMENT DERIVATIVES WITH RESPECT
TO YAW RATE

According to Table 3.6 the following force and moments are affected by changes in per-
turbed yaw rate, r: ¥, ,L, and N, . These force and moments were non-dimensionalized in

Eqns (3.163). Partial differentiation of Eqns (3.163) with respect to yaw rate, 1, leads to the follow-
ing expressions:

aFA ac _
3,8 = Cyq,S (3.183)

050 ) ICoR )
aL ac

A = %S gsh - g8 (3.184)
o ) CTiR )
N

A = 66" gq,Sb = C,q,Sb (3.185)
ST ) atr )

A physical explanation for how the yaw-rate derivatives Cy, , C, and Cp occur is pres-

ented in the following.

Side-force coefficient due to yaw rate derivative, Cy,

This derivative is usually made up of two components:
Cy, = Cym T Cyn (3.186)
The contribution due to the wing-fuselage-horizontal tail, Cy, . is generally negligible for

conventional configurations, particularly when compared to the contribution due to the vertical tail,
Cy., - A physical explanation for the acrodynamic mechanism responsible for Cy,, is presented

in Figure 3.69. It is seen that the effect of yaw rate is to induce an angle of attack at the vertical tail
which gives rise to the following side force:

I'X
Fp, = CL_()0.S5v (3.187)
ay 1

In this expression, the side-wash due to yaw rate has been neglected. In terms of total air-
plane side force it is also possible to write:

Fa, = G388 (3.188)
By differentiating the coefficient Cy, with respect to rb/2Uj it is possibie to show:

2xy,. S,
Cy, = Cy, = Cp (M) (3.189)

Examples of the trend of C,, with Mach number are given in Figure 3.70.
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Rolling moment coefficient due to vaw rate derivative, C,,

This derivative is generally made up of the following contributions:

+C +C (3.190)

The contribution of the horizontal tail is frequently neglected. Figure 3.71 contains the
physical explanation for the occurrence of the wing—fuselage contribution, C; , and e vertical
Tod "

tail contribution, C, . Methods for estimating the numerical magnitude of C, are presented in
My l'wf

Part VI of Reference 3.1. The reader is asked to show that the vertical tail contribution can be ex-
pressed as:

X
C, = CL, (=M (3.191)

Observe that, depending on the magnitude of the airplane steady state angle of attack, a, ,

thesignof C; canbe either positive or negative. The wing—fuselage contribution, C, ,isalways
Ty o
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increased lift

decreased lift

postitive rolling moment

A +yr

AU, NOTE: The rolling moment due to
yaw rate is proportional to the wing
lift coefficient!

Fi .71 Physical Explanation for the Wing—Fuselage and Vertical

Tail Contributions to Rolling moment due to Yaw Rate

Chapter 3 159



Aerodynamic and Thrust Forces and Moments

positive for attached flow situations and normally outweighs the magnitude of the vertical tail con-
tribution. This makes the derivative C; usually positive. Figure 3.72 presents examples of

how C, varies with Mach number for several airplanes.

Yawing moment coefficient due to yaw rate d'erivative, Ch.

This derivative is generally made up of the following contributions:

Cn, = Cn + Ca, (3.192)
For most airplanes, the contribution of the horizontal tail to the derivative C,_ is quite negli-
gible. The wing—fuselage contribution, Cnrwf ,is dominated by the change in induced drag as aresult
of the differential velocity distribution induced by yaw rate. This may be seen from Figure 3.71.
Methods for computing the wing—fuselage contribution may be found in Part VI of Reference 3.1.
Figure 3.71 also illustrates how the vertical tail contributes to C,_ . It turns out, that for most

airplanes this contribution is very important, mostly because of the fact that it is proportional to the
square of the moment arm of the vertical tail. The reader is asked to show that:

2Xvsz S
Cp, = - CLu,,(_bz‘)“V§v (3.193)

The yaw damping derivative, C,, has an important effect on airplane flying qualities. Fig-

ure 3.73 shows examples of how C,_varies with Mach number for several airplanes.

3.2.13 AERODYNAMIC FORCE AND MOMENT DERIVATIVES WITH RESPECT
TO LATERAIL-DIRECTIONAL CONTROL SURFACE DEFLECTION

According to Table 3.6 the following force and moments are affected by changes in aileron
and rudder deflections: F A, L, and N,. These force and moments were non—dimensional-

ized in Eqns (3.163). Partial differentiation of Eqns (3.163) with respect to any lateral—directional
control surface deflection, &, leads to the following expressions:

55 - a8 1S = G TS (3.194)
aL, aC,_ _
E = EqISb = ClanSb (3195)
oN 4aCy_ _

aéA _ a_anq'Sb = C,q,Sb (3.196)

The subscripts used to indicate which particular control surface type is used were dropped
from Equations (3.194) — ( 3.196). A discussion of the various lateral-directional control surface
derivatives is presented in Sub—sections 3.1.8 through 3.1.10.
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3.2.14 ASSEMBLING THE PERTURBED LATERAL-DIRECTIONAL AERODYNAMIC
FORCES AND MOMENTS

At this point the perturbed, lateral-directional aerodynamic force and moments are as-
sembled in matrix format in Table 3.8. This is the format used in the discussion of the perturbed
equations of motion in Chapter 5.

Table 3.8 Matrix Format for Perturbed State Lateral-Directional Aerodynamie
Force and Moments

A [(3.75)  (3.167)  (3.173) (3.186) (3.1.8) (3.1.8)] | pv
iy . 70,
q,s Cyﬁ Cyﬂ Cyp Cyr Cj,{..’u C”a,
(3.52)  (3.168) (3177 (3.190) (.18 (18| |22
fat - J2l (3.197)
q,5b Cip iy C, G, Ci, Ci,
b
I (3.84) (3.169) (3.181) (3.192) (3.1.8) (3.1.8) 2U,
A
=3 Chp € Cw Cu G G| |,
5,

Notes: 1) Airplanes may have more than one lateral-directional control surface.
Only the aileron and rudder have been included in Eqn (3.197).
For additional control surfaces simply expand the size of the matrices.
2) Bracketed numbers refer to equations and/or sections in the text.
3) All stability derivatives may be computed with the methods of Part VI of
Ref. 3.1 and/or with the AAA program (Appendix A)

3.2.15 PERTURBED STATE LONGITUDINAL AND LATERAI-DIRECTIONAL
THRUST FORCES AND MOMENTS x

Itis possible to make a case for the existence of perturbed thrust forces and moments as func-
tions of all perturbed motion variables: u, v, w, p, q and r. As it turns out, for most airplanes only
the variables u, v and w have significant effects on the perturbed thrust forces and moments. The
reader is cautioned however, not to take this for granted for all future configurations!

The consequence of assuming that only the perturbed motion variables u, v and w have sig-

nificant effects on the perturbed thrust forces and moments is the mathematical model given in Equa-
tions (3.198) through (3.203):
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9F ) o
fr = —2 (L) + —2g
e TR (3.198)
GFTZ u oFr,
sz = a(UL (ﬁl—) + W‘C& (3199)
Mr y . . My
— —) + —q .
oF
fr, = 55 (3.201)
Ly
dN
np = a—BT (3.203)

Detailed expressions for the perturbed thrust force and moment derivatives are developed
in Sub-sections 3.2.16 through 3.2.18.

3.2.16 THRUST FORCE AND MOMENT DERIVATIVES WITH RESPECT
TO FORWARD SPEED

Based on Sub—section 3.2.2 the perturbed longitudinal, thrust forces and moment are non—
dimensionalized as follows:

Fr. = CpaS (3.2042)
My = CpnGSC (3.204¢)

The reader is reminded of the fact that Fy ,Fy  and M are defined in the stability axis

system. Next, the partial differentiations implied by Equations (3.198) — (3.200) will be systemati-
cally performed for Equations (3.204a) — (3.204c).

Partial Differentiation of Equation (3.204a) with Respect to u/U,

Partial differentiation of Equation (3.204a) with respect to u/U,, leads to:

oF aC Ja
1= —5TS + CpS—p- (3.205)
a(ﬁl) a(ﬁl) (U_l)

Evaluation at the steady state, recalling Eqn (3.102) and using the following nota-
aC

wl.l_x
o)

tion: Cp = , it can be shown that:
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8F
'

= Cr, ;S + 2Cr, 3,8 (3.206)

The steady state thrust coefficient, Cy  is normally equal to the steady state drag coeffi-
*
cient because T=D in level steady state flight. The derivative Ct_ depends on the characteristics

of the propulsion system. Five cases will be considered:
Case 1: Gliders or power—off flight
Case 2: Airplanes equipped with rockets
Case 3: Airplanes equipped with pure jets and fan jets
Case 4: Airplanes equipped with variable pitch propellers
Case 5: Airplanes equipped with fixed pitch propellers

Case 1: Gliders or power—off flight

Since there is no thrust in this case: C; = Cy = 0, so that:
Xu X

aFTx B
o, -
A

(3.207)

Case 2: Airplanes equipped with rockets

The installed thrust output of a rocket engine does not (to a first order approximation) depend
on the flight speed: C_ = 0. Therefore:

GFTx
U
o)

= 2Cr, 4,8 (3.208)

Case 3: Airplanes equipped with pure jets and fan jets

In this case it is necessary to establish the variation of installed thrust with Mach number,
with altitude and with fuel flow (or throttle position). Methods for determining installed thrust from
engine manufacturer’s thrust data are found in Part VI of Reference 3.1,

Figure 3.74 shows an example of estimated installed thrust data for a small, single engine
fan-jet trainer. The slope dFr /dM may be measured directly from graphs such as presented in

Figure 3.74. Having done so, the following is obtained:
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_ M, aFT,‘

T. =g s 2om, (3.209)

With Eqn (3.206) it is now found that:

oF )

— = M| =5 3.210
6({_}1_1) 1 oM ( )

Case 4: Airplanes equipped with variablevpitch propellers

It will be assumed that the thrust inclination angle, ¢ , is negligible, so that the thrust axis

is aligned with the X-axis. It will also be assumed that for a variable pitch (= constant speed) propel-
ler, the thrust—horsepower output is essentially constant with small changes in forward speed. Thus:

T(U; + v} = Fy (U; + u) = constant (3.211)
Partial differentiation with respectto u/U; and evaluating the result at the steady state flight

condition (u=0} yields:

oF 1
- = —Fr, = —Crq;S (3.212)
a(ﬁ) ‘ !
Comparison with Eqn (3.206) shows that in this case:
Cr = — 3CTx] (3.213)

Xy

Case 5: Airplanes equipped with fixed pitch propellers

In general, only low cost, low performance airplanes are equipped with fixed pitch propel-
lers. The following assumptions will be made:
1) In the steady state flight condition, the propeller is operating at a known rpm, Nppm

This is expressed as Npeps = Nepm/60 rps (rotations per second).

2) A propeller performance diagram is available from which the variation of proﬁ‘éller effi-
ciency, "p , for a given propeller advance ratio, J = U, /(nppeDyp) | is known at constant propeller

blade angle. Examples of such propeller performance diagrams are found in Reference 3.9 (pages
298-329).

3) The engine is operating at a constant brake—horsepower level, BHP, as set by the throttle.

Assuming that the airplane has np propellers, the following relation holds for the total

installed thrust output for this case:
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Fo = np550n,BHP
T — U—1
Partial differentiation with respect to u/U, now yields after evaluating the result at the

(3.214)

steady state flight condition:

aFTX - — 550r|p(BHP)
u, P U
a(U,) 1

:
+ SS0(BHP) 2 (3.215)

The derivative anp/ du can be expressed as follows,:
au ( )( ) (3.216)
where: the prope[ler advanceratio, J = U;/(npmsDp), sothat 4J/ou = 1 /NprpsDp. There-

fore 1t is found that:

oF — 550m, (BHP)  550(BHP) 9
L o g - 22UBHE) T, (3.217)
U,
This can be rewritten as follows:
oF 1 T .U, &y
C = — Cp qS +— 2P :
B(UL) T, Np,NprpsPp 93 (3.218)

The derivative dnp/dJ can be obtained from the propeller performance diagram mentioned

before under 2). Comparison with Eqn (3.206) shows that:

Cp = = 3Cy + o 3.219
Tlu - T"I T]plnprpst 6] ( ’ )

Partial Differentiation of Equation (3.204b) with Respect to u/U,

Partial differentiation of Equation (3.204a) with respect to u/U, leads to:

aF 1

—- = Cr,T;S + 2C1 g,S (3.220)

a(ﬁ:) " !

The derivative C  and the coefficient C;  are negligible for most conventional air-
iy 24

plane configurations. It should be kept in mind that for airplanes with vectorable thrust this is defi-
nitely not the case! For conventional airplanes it will be assumed that:

8F 7
=0 | (3.221)
(ﬁ])
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Partial Differentiation of Equation (3.204c) with Respect to u/ U,

Partial differentiation of Eqn (3.204c) with respect to u/U, yields:

oM o — o=

a_("ﬁ—_) = Cm, 0;5¢ + 2CmT]qlsc (3.222)
U,

For conventional propulsive arrangements the derivative Cr,, Isobtained from the deriva-

tive Cp by multiplying with the non-dimensional moment arm of the thrust-line relative to the

center of gravity, d/C :

dT
Cry, = = Cp, = (3.223)

where: dr is defined in Figure 3.26. Note that d is counted as positive if the thrust-line

is above the center of gravity.

The value of the steady state thrust-pitching moment coefficient, Cp,. , depends on the air-
y Y g ™ Y

plane trim state. For pitching moment equilibrium in the steady state flight condition, the following
condition should be met:

Cmy + Cm, = 0 | (3.224)

Since the acrodynamic and the thrust pitching moment coefficients apparently cancel each
other in steady state flight, the total variation of airplane pitching moment with perturbed speed, u,
1s given by:

oM, + M
HMp + Myp) (Cm, + Cm, )q;5¢ (3.225)

L
GUI

The numerical magnitude of Cm,, is negligible for those airplane configurations where the

thrust-line passes close by the center of gravity.

3.2.17 THRUST FORCE AND MOMENT DERIVATIVES WITH RESPECT TO"
ANGLE OF ATTACK

The perturbed longitudinal, thrust forces and moment are non-dimensionalized as shown in
Equations (3.204). In the following, these expressions will be partially differentiated with respect
to the perturbed airplane angle of attack, o.

Partial Differentiation of Equation (3.204a) with Respect to o

Partial differentiation of Equation (3.204a) with respect to o leads to:
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Loy gy (3.226)

For the normal range of angles of attack and for most conventional airplanes the deriva-
tive Cy_ is negligible:

Cr_ =0 (3.227)

Xy

Partial Differentiation of Eguation (3.204b) with Respect to ¢

Partial differentiation of Equation (3.204b) with respect to o leads to:
— = Cyp qls (3228)

The physical cause of the derivative Cp_ is the so—alled propeller and/or inlet normal

force which occur as aresult of perturbations in angle of attack. The physical reason for such normal
forces is the change in flow momentum in a direction perpendicular to the spin axis of the propeller
or turbine. The corresponding flow geometry of these effects is illustrated in Figure 3.75. The mag-
nitudes of these normal forces are normally sufficiently small that they can be be neglected when
compared to changes in aerodynamic lift due to angle of attack perturbations. Therefore:

Cy =20 (3.229)

Zar

Partial Differentiation of Equation (3.204¢) with Respect to ¢

Despite the assumption which leads to Eqn (3.229), the pitching moment contribution due
to this derivative may not be negligible at all! Partial differentiation of Equation (3.204¢) with re-
spect to o leads to:

M o
—o = C, G, 5C (3.230)

In the following, expressions will be derived from which Cm, may be estimated. This will

be done for two cases:

. Case 1) Propeller driven airplanes
Case 2) Jet driven airplanes

Case 1) Propeller Driven Airplanes

Figure 3.75 shows the propeller normal force, Np , as well as the moment arm of this force

about the center of gravity. The propeller normal force, N, , may be expressed as:

Np = Cn3Sp (3.231)
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Figure 3.75 Propulsive System Normal Forces due to Angle of Attack and Sidesli
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The pitching moment coefficient due to the propeller normal force can be written as:

XpSp

Com TS

n, = DpCn (3.232)
Np P

where: n; is the number of propellers
Xp is the moment arm of the propeller disk

Sp = %Dpz is the propeller disk area

Dy, is the propeller diameter

For tractor propeliers, the propeller plane is usually in the wing up—wash field. Therefore,
the propeller normal force coefficient, CNp , is proportional to the propeller angle of attack, o,

(this is the angle between the propeller spin axis and the free stream velocity vector in the steady
state). Differentiating Eqn (3.232) with respect to a,, yields:
xpSp ICN, datp

Cmr, = M5 Sa, da (3.233)

Since:
some constant

ap = &+ €p + jpcidence X (3.234)

where: €, is the wing induced up—wash at the propeller

it follows that:

aap _ aep
e ¥ (3.235)
Therefore:
_ xpspaCNp 0€p
Cre, = 75 B0, ¢+ Fa (3.236)

Methods for determining 9Cy_ /o0 and the up—wash gradient, 9€,/da , may be found in

References 3.4, 3.5 and 3.10. The reader should keep in mind that the propeller flow downstream
of the propeller plane may in turn affect the downwash at the horizontal tail. Reference 3.4 contains
an apprgach for computing these effects.

Case 2) Jet Driven Airplanes

Figure 3.75 also shows the jet engine normal force, N; , and the moment arm of the jet en-

j ]
gine nacelle inlet about the center of gravity. The jet engine normal force, N; , may be expressed

as.

o : someconstant
Nj = m"V;sin(a + £ + incidence X ) (3.237)
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where: m’ is the mass flow rate through the engine
V; is the inlet flow velocity
€; is the wing induced up—wash at the inlet

The inlet flow velocity, V; , may be determined from:

vV, = X.r% (3.238)

where: A, is the inlet cross sectional area
Q; is the inlet air density
The pitching moment contribution due the normal forces from n; jet engines is:

(") 2x;

] some constant

my, = M A g qISE(a tet incidence X ) (3.239)
where: n; is the number jet engines
X; 1s the moment arm of the engine inlet
Upeon differentiation with respect to a, it follows that:
(m')2xj | dg;
Cm,, nJAi o qlSE( o (3.240)

Methods for determining the up~wash gradient de i /00 may be found in Part VI of Ref. 3.1.

The reader should observe that the derivative, CmTu {ofEqn (3.236) or (3.240)} when added
to the derivative, Cy, {of Eqn (3.35)} yields the so—called power—on value of the static longitudinal
stability derivative. It is suggested that the reader use the procedure of page 89 to redefine the aero-

dynamic center of an airplane with power on.

Note that Eqn (3.240) yields a positive (unstable) contribution to longitudinal stability. The
reader should observe that a tractor installation tends to reduce overall airplane longitudinal stability
whereas a pusher installation tends to enhance longitudinal stability.

3.2.18 THRUST FORCE AND MOMENT DERIVATIVES WITH RESPECT TO
ANGLE OF SIDESLIP

Based on Sub-section 3.2.9 the perturbed longitudinal, thrust forces and moment are non—
dimensionalized as follows:

Fr, = Crgs (3.241a)
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Ly = C,gSh (3.241b)

Np = C,gSb (3.241c)

The physical cause of the derivatives in Eqns (3.241) is the so-called propeller and/or inlet
normal force which occur as a result of perturbations in angle of sideslip. The physical reason for
such normal forces is the change in flow momentum in a direction perpendicular to the spin axis of
the propeller or turbine. The corresponding flow geometry of these effects is shown in Figure 3.75.
The magnitudes of these normal forces are normally sufficiently small that they can be be neglected
when compared to changes in aerodynamic side—force due to angle of sideslip perturbations.

The reader is reminded of the factthat Fy ,Ly and Ny are defined in the stability axis

system. Next, the partial differentiations implied by Equations (3.164) — (3.166) will be systemati-
cally performed for Equations (3.241a) — (3.241c).

Partial Differentiation of Equation (3.241a) with Respect to f3

Partial differentiation of Equation (3.241a) with respect to 3 leads to:

dF
66’ = Cr, 4,8 (3.242)

For the normal range of angles of attack and for most conventional airplanes the deriva-
tive Cy  is negligible:
B

Cr,, =0 (3.243)

Partial Differentiation of Equation (3.241b) with Respect to [

Partial differentiation of Equation (3.241b) with respect to f leads to:

oL
T_ ¢ q5h (3.244)
8{3 Tg

For the normal range of angles of attack and for most conventional airplanes the deriva-
tive ClT is negligible:
B

C, =0 (3.245)
g

Partial Differentiation of Equation (3.241¢) with Respect to 3

Partia! differentiation of Equation (3.241c) with respect to f leads to:
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Ny _
?ﬁ_ = CnTﬂqle (3246)

The reader is asked to show that, by analogy to the development in Sub-section 3.2.17 for

the pitching moment, it follows that the derivative Cn, may be written as:
C (M) ﬂ

o T T A p; q,5b (3.247)

Note the minus sign in Eqn (3.247). The reader should observe, that a tractor installation

tends to reduce overall airplane directional stability whereas a pusher installation tends to enhance
directional stability.

3.2.19 ASSEMBLING THE PERTURBED STATE LONGITUDINAL AND LATERAL-
DIRECTIONAL THRUST FORCES AND MOMENTS

At this point the perturbed, longitudinal and lateral-directional thrust forces and moments
are assembled in matrix format in Table 3.9.

Table 3.9 Matrix Format for Perturbed State Longitudinal and Lateral-
Directiopal Thrust Forces and Moments
[ (3.206) (3.227)]
f '
[ q% (Cr,, +2Cr,) 0
u
: it VR G (3.248)
q;S 0 0 a
my (3.225) (3.230)
q;S¢c
) : (CmTu + ZCmTl) CmTu
(3.243)) .
r f b L
T, 0
q;S
, (3.245)
T\ -
ot R P (3.249)
nr (3.247)
q,Sb C
) ’ { Ty ] Note: bracketed numbers refer to equations in the text
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3.3 OVERVIEW OF USUAL SIGNS FOR AERODYNAMIC
COEFFICIENTS AND DERIVATIVES

To enable the reader to quickly review the various sign conventions and "usual’ signs which
occur for the many aerodynamic coefficients and derivatives, Figures 3.76 through 3.79 are included
in this Section.

These figures also allow the reader to review the pertinent perturbations which are associated
with various aerodynamic derivatives. It is hoped that these figures will be useful when reviewing
the material presented in Sections 3.1 and 3.2.

34 SUMMARY FOR CHAPTER 3

To solve the airplane equations of motion developed in Chapter 1, it is necessary to have
available a set of mathematical models which relate the acrodynamic and thrust forces and moments
to the appropriate motion and control surface variables. The purpose of this Chapter was to develop
and discuss these models.

The equations of motion in Chapter 1 are divided into two sets: equations for steady state
and equations for perturbed state flight respectively. Similarly, the mathematical models for acrody-
namic and thrust forces and moments are also divided into steady state models (Section 3.1) and per-
turbed state models (Section 3.2).

In estimating the magnitudes of the various coefficients and derivatives, it is important to
account for the effect of major airplane components, such as: wing/fuselage, vertical tail, horizontal
tail, canard, nacelles etc. In all cases, physical explanations and derivations were presented to pro-
vide the reader with an appreciation for the relative contributions of these components. To acquaint
the reader with typical numerical magnitudes for these coefficients and derivatives, numerical ex-
amples for the most important stability and control derivatives are given for four different airplanes.

Finally, the propulsive installation of an airplane can have significant effects on several coef-
ficients and derivatives. The most important of these effects were also discussed.

Appendix B contains a listing of stability and control derivatives for several flight conditions
and for a range of different airplanes.

A question which always arises is: how important is any given stability and control derivative
to the in—flight behavior of a given airplane? That question is addressed in Chapter 5. It is shown
in Chapter 5, that by carrying out a so—called derivative sensitivity analysis, it is possible to deter-
mine the importance of any derivative and inertial parameter.
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i, > 0 as shown
CDi > 0
Y
Crm,
X
Z Z
i, > 0 as shown
Cm, >0 or Cpy, <0 Cme >0 or Cy, <0 Cmih<0
Y L(]
X + a X + a
Vp Ve,
Z V4
iy, > 0 as shown
C,>0 o G <0 C. >0 C. >0
0 o iy
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o, p > 0 as shown

Clﬁ<0

T.E. Left

ACy = Cyp < 0

o,p > 0 as shown

Cy, <0

AC, = Cof > 0

>
%

Y

Vp,

Z
o, >0 as shown

Cnﬁ>0

Cpy, <0

Derivatives

Fisure 3.77 Review of Signs of Steady State Lateral-Directional Force and Momen

t
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Y ACp = CDUUL1

X

ACp > 0
as shown

Cp,>0 or<0

Y ACp = cD
ACph > 0 T
as shown

qc
12U,

Y ACp = Cp

X

ACh > 0
as shown

CDu > 0 but,usually = 0

CDq > 0 but,usvally =0

= . =
Y A(:l'l"l CmuUl Y AC l'l'l 2U] Y Acm = Cmq..z_%_}
X +u X
ACp >0 AC, > 0 ACy > 0
as shown Z as shown as shown Z
Cpn, >0 or<o Cn, <0 Cmq<0
Y AC, = CLuﬁ"l' Y L~ 2U1 Y AC, = 3U,
X +u -
AC; >0 7 AC, > 0 AC; > 0
as shown as shown as shown
CL,>0 or<0 C,,>0 Cp, >0

Derivatives

Figure 3.78 Review of Signs of Perturbed State, Longitudinal Speed and Rate
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Y _ o Pb Y ~c Ib
AC, Clp i AC, CerUI
P
X X
r
AC; > O 7 AC, > 0 7
as shown as shown

C1p <0 Clr >0

Y ACy = Cy 5

X X
ACy >0 7z ACy > 0 7
as shown as shown
Cy, <0 Cy, >0
Y Ac, =c, 22 Y AC. = . b
n r1I’2U1 \ I “f2U]
X X
r
AC, > 0
Z Z
as shown AC, >0
as shown
Cp, <0 or >0 Cp <0

Fisure 3.79 Review of Signs of Perturbed State, Lateral-Directional Rate
Derivatives
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PROBLEMS FOR CHAPTER 3

3.5

3.1

3.2

3.3

3.4

3.5

Re—derive Eqns (3.24), (3.25) and (3.26) for a canard (like the Beechcraft Starship) and for
a three—surface airplane (like the Piaggio P-~180). Assume that the canard airplane has a

trailing edge control surface on the canard (called a canard—vator). Data on both airplanes
may be found in Jane’s All the World’s Aircraft of the 1991-1994 period.

Re—derive Eqns (3.35), (3.36) and (3.37) for a canard (like the Beechcraft Starship) and for
a three—surface airplane (like the Piaggio P—180). Assume that the canard airplane has a
trailing edge control surface on the canard (called a canard—vator).

An airplane has a wing and a horizontal tail with identical planform and airfoil geometry (i.e.
aspect ratio, sweep angle, camber, thickness ratio and taper ratio). Assume that the tail size
is 1/4 that of the wing. Assuming that the wing has 3 degrees of geometric dihedral angle,
how much anhedral angle must the tail have for the airplane to have zero dihedral effect?

Complete the following table.

Parameter to Quantity Fill in: Increase, decrease or no change. Also:
be increased Affected indicate the sense of the change (i.e. + or -)

Sy Cnﬁ Example: Increases positively.

Xy, Ch, 77

Xy, Co, 7?

C 27

CLﬂh m, 17
wing camber Cm, 27

Xeg Cum, 77

Sv C[ﬁ ?7

vy Ch, 7

Sy Ca, 7 K

Xy Ca 7?7

Explain why a conventional wing—fuselage combination with a vertical canard mounted at
the nose of the fuselage is always directionally unstable.

Note: The following problems require the availability of either Parts V and VI of
Reference 3.1 or of the AAA program described in Appendix A.
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Find a three—view for the Fokker F-100 jet transport (see Jane’s All the World’s Aircraft of
the 1991-1994 period). Calculate all stability derivatives in Eqn (3.46a). Do this for the
following flight conditions:

* high altitude cruise at design cruise weight
* takeoff at sea—level and at maximum takeoff weight
* landing approach and at design landing weight

Perform sanity checks on your answers by comparing with suitable graphs in this chapter.
Find a three—view for the Fokker F-100 jet transport (see Jane’s All the World’s Aircraft of
the 1991-1994 period). Calculate all stability derivatives in Eqn (3.95a). Do this for the
following flight conditions:

* high altitude cruise at design cruise weight

* takeoff at sea~level and at maximum takeoff weight

* landing approach and at design landing weight
Perform sanity checks on your answers by comparing with suitable graphs in this chapter.
Find a three—view for the Boeing 777 jet transport (see Jane’s All the World’s Aircraft of
the 1993+ period). Calculate all stability derivatives in Eqn (3.162). Do this for the
following flight conditions:

* high altitude cruise at design cruise weight

* takeoff at sea—level and at maximum takeoff weight

* landing approach and at design landing weight
Perform sanity checks on your answers by comparing with suitable graphs in this chapter.
Find a three—view for the Boeing 777 jet transport (see Jane’s All the World’s Aircraft of
the 1993+ period). Calculate all stability derivatives in Eqn (3.197). Do this for the
following flight conditions:

* high altitude cruise at design cruise weight

* takeoff at sea—level and at maximum takeoff weight

* landing approach and at design landing weight

Perform sanity checks on your answers by comparing with suitable graphs in this chapter.

f St égj[]_/
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