Review of Aerodynamic Fundamentals

2: RE ODYNAMIC FUNDAMENTA

In this chapter a review is presented of those aerodynamic fundamentals which are important in un-
derstanding aircraft stability and control concepts. The assumption is made that the reader is reason-
ably famlhar with fundamental aerodynamic theory such as dlscussed in Reference 2.1.

2.1 'EF 1 FA

The following geometric airfoil parameters have been found to be important in affecting
aerodynamic characteristics of airfoils: ' :

1) maximum thickness ratio, (t/C)max

2) shape of the mean line (also referred to as camber). If the mean line is a straight line,
the an'foﬁ is said to be symmetrical.

3) leading e&gc shape or Ay parameter and leading edge radius (le.r.)
4) trailing edge angle, {qg

Figure 2.1 provides a geometric interpretation for these parametcrs

" The reader should consult Reference 2.2 for a detailed discussion of airfoil parameters and
airfoﬂ characteristics. Reference 2.2 also contains a large body of experimental data on a variety
of NACA (National Advisory Committee on Aeronautics, predecessor of NAS A, the National Aero-
nautics and Space Administration) airfoils. In addition, this reference contains explanations for the
numerical designations uged with NACA airfoils.

: : -
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Part VI of Reference 2.3 may be consulted for rapid empmcal methods used to predict sec-
tion lift, drag and pltchmg moment charactenstlcs from the basic geometric parameters seen in Fig-
ure 2.1. '

Figure 2.2 shows a typical graphical representation of those airfoil characteristics which are
of prime importance in the analysis of airplane stability and control properties. Table 2. 1 summa-
rizes the principal effect of the geometric parameters of Figure 2.1 on the acrodynamic characteris-
tics of Figure 2 2.

Because lifting surfaces (such as wings, tails, canards and pylons) can be thought of as span-
wise arrangements of airfoils, the basic charagteristics of airfoils have a major effect on the behavior
of lifting surfaces. It is therefore important to be aware of those airfoil characteristics which have
the potential of being driving’ factors in airplane stability and control.
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'|Geometric Airfoil Parameter Prmmpal Effect on Aerodynamic
- Characteqsucs other };han.D}'ag
;I—?;mum Thickness ratio, t/Cmax = -l\—/-[;-m;l—u-mnilft coefgg;_e;t:,;:m;“
| | | Aerodynamic center, Xac. = ’%‘c
|Shape of the mean fine Zero lift angle of attack, a

Maximum lift coefficient, ©i_,,

Pitching moment coefficient at
zero lift coefficient, Tm,

|Leading edge radius, Le.r. and leading Maxinum it coefficient, ¢, and
|{edge shape paramgter, Ay : _
| : N end of the linear angle of attack range, o *

| Trailing edge angle ¢TE | Aerodynannc center Koo = xc“

{Note: References 2. 2 and Part VI of 2 3 should be consulted for theoretlcal empmcal and exper-
: nnenta} detmls ' :

The following airfoil (two—dimensional) properties of Figure 2.2 will have a 31gmﬁcant ef-
fect on their lifting surface (three-dimensional) counterparts. Y

Mﬂt_,_ =" *angle of attack for zero lift: @
| * lift curve slope: ¢; _ _ _
* maximum lift coefficient: . | -(function of Reynolds Number, Ry )
“* angle of attack at Clos * %1 |
* end of the linear angle of attack range: o™
In Drag: * lift coefficient for muumum drag or design lift coefficient; cl@
| * minimum drag coefficient: ¢q,, (functionof Ryy) |
In Pitching Moment:  * pitching moment coefficient at zero lift coefficient: T,

* aerodynamic center (i.e. that point on the airfoil chord where the
variation of pitching moment coefficient with angle of attack is zero).
Figure 2.3 shows how the aerodynamlc center is located geometncally

. Xac

The followmg notation is normally used: Rac = <

‘\\‘.
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Table 2.2 gives an overview of typical numerical values associated with some of these quan-
tities. It will be noted that the airfoil lift-curve—slope, ¢; typically has a value of approximately

2m (roughly 6.3 per rad or 0.110 per deg). Note also that the location of airfoil acrodynamic center
is typically close to the quarter chord point: Xz = 0.25 . The reader should be aware of the fact

that most of these quantities are also a strong function of Mach Nﬁmber, M. The dependence on
Mach Number of the aerodynamic center location, X;. and the lift—curve—slope C, of airfoils

is of particular significance to airplane stability and control. For that reason these characteristics
are discussed in more detail in Sub—sections 2.2.1 and 2.2.2 respectively.

Definition: The aerodynamlc center of an a1rf011 is deﬁned as that point on its chord about
which the pitching moment coefficient is invariant with angle of attack. '

In other words: Xac = x%" is that point for which: ¢, = 0 The acrodynamic center of

an airfoil should not be confused w1th 1ts center of pressure.
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Airfoil ay Cm, oo ) O, ' ¢, =« *
(deg) - (l/deg) (deg) (deg)
0006 0 0 0.108 0250 .90 0.92 9.0
0009 0 0 0.109 0250 13.4 1.32 11.4
1408 08  -0023 0109 0250 14.0 135 10.0
1410 ~1.0 ~0.020 0,108 0.247 14.3 1.50 11.0
1412 ~1.1 0025 . 0.108. 0252 15.2 1.58 12.0
2412 ~2.0 —0.047 0.105 ~ 0.247 16.8 . 168 - 95
2415 2.0 0049 . 0106 0246 164 1.63 10.0
2418 2.3 —0.050 0.103 0241 14.0 1.47 10.0
2421 ~1.8 —0.040 0.103  0.241 16.0 1.47 8.0
2424 . 18 —0.040 0098 0231 - 160 129 8.4
23012 -14 0014 0.107  0.247 18.0 1.79 12.0
23015  -1.0 0007 0107  0.243 180 1.72 10.0
23018 -12 ~ -0.005  0.104 0243 16.0 1.60 1.8
23021  -1.2 0 0.103 0238 15.0 1.50 103
23024 0.8 0 0097 0231 15.0 1.40 9.7
64-006 0 0 0.109 0.256 9.0 0.80 7.2
64-009 0 0 0.110  0.262 11.0 1.17 10.0
641012 0 0 0.111 0262 14.5 145 11.0
641-212 -1.3 0027~ 0113 0262 150 1.55 11.0
641-412 2.6 —0.065" 0112 0267 150 1.67 8.0
64-206 1.0 —0.040 0.110 0253 120 1.03 8.0
64-209 —L1.5 —0.040 . 0107 0261 13.0 1.40 8.9
64210 -1.6 —0.040 0110 0258 14.0 1.45 10.8
64A010 O 0 0.110 0253 12.0 1.23 10.0
64A210 -1.5 0040 0105 0251 13.0 144 10.0
64A410 -3.0 —0.080  0.100 0254 15.0 1.61 10.0
641A212 20 -0.040 0.100  0.252 14.0 1.54 11.0

649A215 2.0 —0.040 0.095 0.252 15.0 1.50 120
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Definition: The center of pressure of an airfoil is that point on its chord where the resultant
of the pressure distribution (resultant aerodynamic force) acts.
_

- The lift distribution on any non-symmetrical (cambered) airfoil can be shown to be the sum
of two types of lift distribution: '

1.) the basic lift distribution which depends on the shape (camber) of the mean line. This
basic lift distribution has zero net lift but non—zero pitching moment: €y, < 0 for air-

foils with positive camber.

- 2.) the addjtional lift distribytion which depends linearly on the angle of attack, o.
The net lift of an airfoil is due to this additional lift distribution.

Apparently, the aerodynamic center of an airfoil can also be thought of as the centroid of the
additional lift distribution. Therefore, for a symmetrical airfoil the cgnter of pressure and the aero-
dynamic center coincide! ' o -

- Figure 2.3 presents two methods used to resolve the force and moment coefficients which
act on an airfoil. In this text the second method will be used. Expressing the center of pressure and
aerodynamic center locations relative to the leading edge of the airfoil as: Xac and’ X¢p respective-

ly it is found that for small angles of attack and for negligible drag contribution to the pitching mo-
ment: : '

Cmy = — C(Xep — Xac)/C . | 2.1

From this the location of the airfoil center of pressure can be sqlved:
R

Xcp = Xac — (Cm,)/(cp) 2.2)

Because the quantity cn,  is negative for positively cambered airfoils, the center of pres-
sure is behind the aerodynamic center. Note that:

cm, = T, . | o _ (2.“3)

Because a symmetrical airfoil has no net pitching moment at zero lift: Cm, =0 . As
symm.airfoil
aconsequence, for a symmetrical airfoil: X, = Xep - Donot forget that this property does NOT
apply to cambered (un—symmetrical airfoils).
| The data in Table 2.2 indicate that the aerodynamic center location for airfoils is roughly at
the quarter chord. Actually, the airfoil thickness ratio and trailing edge angle together define where

the aerodynamic center is located. Figure 2.4 (reproduced from Reference 2.4) shows this. Note
that the data in Figure 2.4 straddle the 25% chord location! -
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As the Mach Number increases from low sub sonic to transonic the airfoil center of pressure
and aerodynamic center tend to move aft (not necessarily at the same rate). For a thin, symmetrical
‘airfoil at exactly M=1 the center of pressure tends to be at the semi—chord (50%) position. Anexam-
ple of how the aerodynamic center moves aft with Mach Number is shown in Figure 2.5. This aft
shift of the aerodynamic center will be shown (Chapters 4 and 5) to have significant consequences
to the stability and controllability of airplanes.

. :
According to thin airfdﬂ'theory, the lift—curve slope of an airfoil, 'clu increases with Mach

Number in the subsonic speed range as follows:

clu . ’
cl = ____M=0 . ' ' ' : (2.4)

w o 1-m2 7

This in accordance with the so-called Prandtl-Glauert transformation as explained in detail
in-Reference 2.5 (pages 200-203). Figure 2.5 shows a graphical representation of Eqn.(2.4). Ac-
cording to Reference 2.6 (Chapter 3), in the supersonic speed range this relationship becomes:

=4 2.5
CluM MZ - 1 _ (2.5)

Note that both Equations (2.4) and (2.5) predict the lift-curve slope to extend to infinity
around M=1.0. This does not happen in reality because the theories used to derive these equations
become invalid in the Mach range around M=1.0. The ’fmred’ curve shown in Figure 2.5 represents
more closely what really happens.
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As indicated before, airfoils are integrated in a spanwise manner to form lifting surfaces such
as wings, tails, canards and pylons. The planform geometry of these lifting surfaces plays a major
role in determining their acrodynamic characteristics. In the following it is assumed that most of
these planforms can be approximated by a so—called straight tapered form as shown in Figure 2.6.
‘The following planform quantities are important in stability and control analyses:

=S

Taper ratio, A = rom _ (2.6)
i =b2__2b

Aspect ratio, A ST+ h 2.7

Area, S = %c,&(l-'-l{ ) | (2.8)

Mean geometric chord (mgc), T = %Cf(uﬁ“#) B 29
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Lateral locatipn of the mgc, ymge = %((11':_—2;)) (2.10)
Longitudinal location of the mgc, Xmge = Mtam\m 2.11)
6(1 + A)
~4n(l —A)

Sweep Angle of the n fraction locus: tanA, = tanA;g — (2.12)

Al + 1)

jion of the local chord

For a more general planform, the following integrals can be used to determine the length
andlocation of the mean geometric chord:

+b/2
Mean geometric chord: T = é - I cX(y)dy (2.13)
~b/2
. +b/2
Lateral location of the mgc, y,,;gc - %I yeydy (2.14)
~b/2
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+b/2

S
. b2

Longitudinal location of the mgc, Xmpg = 1 ] xc(y)dy (2.15)

Many lifting surfaces are equipped with trailing edge flaps and /or trailing edge control sur-
faces. The inboard and outboard stations of flaps and/or control surfaces are identified by semi-span
fractions called m; and v, respectively. Such flaps and/or control surfaces affect an area of the

planform called the flapped wing area, Sy, : -
S = s "My — 0~y + ng) @.16)
f 1+ M ! -

24 QQEFFIQIEN:[S AND REFERENCE GEQME!E S

In airplane stability and control, the following dlmensmnlcss aerodynamn: coefficients are
used frequently: :

Lift coefficient: C = é“_s S 2.17)

Drag coefficient: Cp = q—_% (2.18)
. .... L . FAy '

Side force coefficient: C, = S B 2.19)

Rolling moment coefficient: C, = qLﬁ . (2.20)

Pitching moment coefficient: Cp = f% ‘ (2.21)

Yawing moment coefficient: C, = ;T?) . (2.22)

It is important to always identify the reference geometries used when presenting and/or dis-
cussing aerodynamic data! For the moment coefficients, the location of the moment reference center
must also be identified! : : : : :
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2.5 ERODYNAMIC CHARACTERISTI F PLANFORM
AND FUSELAGE

~ Inthis section a very condensed discussion is presented of those acrodynamic characteristics

of planforms which are of major concern in the prediction and analysis of airplane stability and con-
trol behavior. These characteristics are:

2.5.1 Lift—curve slope, Cy |

2.5.2 Aerodynamic center, X,¢

'2.5.3 Zero-lift angle of attack, a;

254 Mbment 6oefficient about the aerodynamic center, Cr,,,

2.5.5 Downwash (and upwash), & and its rate of change with angle of attack; de /da

2.5.6 Effect of the fuselage on planform aeerynainic center,

All characteristics discussed in this section apply to a variety of lifting surfaces such as:

wings, horizontal tails, canards, vertical tails, pylons, etc. To distinguish the aerodyhamic charéicter-
istics of one lifting surfage from another, subscripts are used. The following subscripts are used:

A .
w for wing " 'h for horizontal tail ~ ~ p for pylon
¢ forcanard v for vertical tail : $ for store

The lift~curve slope of planforms, C;  has been found to depend primarily on the follow-
ing parameters: '

* Aspect ratio * Sweep angle ' * Taper ratio

* Section lift—curve slope | ' * Mach number

Part VI of Reference 2.3 contains methods for éstimating planfonn Cp, values (Pages

248-255). These methods have been programmed in the A_dvahced Aircraft Analysis (AAA) pro-
gram which is described in Appéndix A. Figure 2.7 shows how planform lift—curve slope varies with
Mach number, sweep angle and aspect ratio. Note the following behaviors:

In-the subsonic to transonic speed range:

* C.L“ increases with increasing ai\,fspect ratio
* Cp_ decreases with increasing sweep angle

*Cp,_ increases with increasing Mach number
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Observe that below M=1.0 the trend of CLU with Mach number follows the Prandtl-

Glauert transformation of Eqn (2.3).
In the supersonic speed range:

*Cp, increases with increasing aspect ratio
* CLu tends to follow the supersonic Prandtl-Glauvert transformation Eqgn (2.5). Note

that sweep angle does not matter very much in that speed range.

When estimating planform values for lift—curve slope it is a good idea to perform a "sanity’
check on the answers by comparing with Figure 2.7.

25.2 AERODYNAMIC CENTER

Definition: the acrodynamic center of a planform is defined as that point about which the
pitching moment coefficient with angle of attack is in variant: Cp,, = 0 .

The planform aerodynamic center will be assumed to be located on its mean geometric chord
(mge). For planforms with moderate sweep angle and moderate to high aspect ratios the acrodynam-
ic center is often close to the 25% chord point on the mge. For other points on the mgc, the variation
of pitching moment coefficient with angle of attack may be found from:

Cm, = Cp (Kper — xac)% = Cp, (Xrer — Xac) (2.23)
The geometric definition of the parameters X ., and X,c is given in Figure 2.8. This figure

also shows a simple geometric construction which can be used to determine the location of the mean
geometric chord (mgc).

The aerodynamic center of a planform has been found to be primarily a function of the fol-
lowing parameters:

* Aspect ratio * Sweep angle * Taper ratio
* Section lift—curve slope * Mach number

Methods for estimating planform aerodynamic center locations may be found in Part VI of
Reference 2.3 (pages 305-308). Figure 2.9 shows an example of how the a.c. location varies with
phanform geometry. Until compressibility effects begin to play a role, it is seen that the planform
aerodynamic center ranges from 25% to about 30% of the mgc. In the transonic speed range the
aerodynamic center tends to move aft. For very thin wings, at supersonic speeds, the aerodynamic
center moves close to the 50% chord point on the mgc. Figure 2.10 shows an example of how the
aerodynamic center moves with sweep angle, taper ratio and Mach number.

FFor a given center of gravity location Eqn (2.23) suggests that the variation of pitching mo-

ment coefficient with angle of attack is strongly influenced by the location of the aerodynamic cen-
ter. This will turn out to have a major influence on airplane controllability.
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2.5.3 ZERO-LIFT ANGLE OF ATTACK

The angle of attack of a planform is arbitrarily defined as the angle of attack of its root—chord.
As the wording implies, the zero-lift angle of attack of a planform is that angle of attack for which
the total planform lift equals zero. This quantity plays an important role in determining the required
wing incidence angle for cruise and/or for approach flight conditions. The following parameters
have been found to be instrumental in determining the zero-lift angle of attack of a planform:

* Aspect ratio * Sweep angle * Taper ratio
* Airfoil zero-lift angle of attack * Planform twist
The planform twist angle at a given spanwise station, y, &(y) is defined in Figure 2.11.

Note, that positive twist is defined as leading edge UP. Wings are typically twisted leading edge
down at outboard wing stations to prevent the tip from stalling before the root. Another reason for
wwisting wing planforms is to tailor the spanwise load distribution such as to achieve certain induced
drag or air—load distribution objectives.

The root angle of attack for which zero lift occurs at an intermediate span station, y is found
from:

Ar g, = %o(Y) — €7(y) (2.24)
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NOTE: Twist angles as Tip chord, y=b/2
shown are negative!

Intermediate chord, y=y

er ¥y =)

Root chord, y=0

Figur 2.11 Definition of Wing Twist

By integrating this quantity over the planform, the value of planform angle of attack for zero
planform lift is found as:

b/2
Gy, = % [ c(y)[ag(y) — ep(y)]dy (2.25)
—b/2

This equation applies only to wings without sweep. When flaps are present anywhere along
the span, their deflection can cause a significant shift in the planform angle of attack for zero lift.
Methods for computing the effect of sweep and flaps on Oy, are found in Part VI of Reference 2.3

(pages 245-247).

2.5.4 MOMENT COEFFICIENT ABOUT THE AERODYNAMIC CENTER

-

The pitching moment about the aecrodynamic center of a wing has significant consequences
for the trimmability of an airplane. In Sub—section 2.2.1 it was seen that positively cambered airfoils
tend to have negative pitching moments about their aerodynamic centers (See Table 2.2). A plan-
form consisting of positively cambered airfoils can therefore be expected to also have a negative
value for its pitching moment coefficient about the acrodynamic center: Cr, .. Methods for deter-

mining Cy,,, for various planforms and Mach numbers are found in Part VI of Reference 2.3. It is
noted that the value of Cy,,_ of a planform is the same as the pitching moment coefficient for zero
lift (not zero angle of attack!), "(jmu : see Eqn (2.3) where this is stated for airfoils. For a swept wing,
the value of Cy,,, is a strong function of the sweep angle, the spanwise twist distribution and the span-

wise variation of airfoil zero-lift angle of attack. This can be seen from the following equation:

b/2

b/2
Cm,, = g% J [Cm. (y)e(y)?]dy + m J [og, + ex(¥) — ag(]e(y)x, (y)dy| (2.26)
~-b/2 -b/2

Figure 2.12 shows the definition of the geometric terms in Eqn (2.26).

Chapter 2 50



Review of Aerodynamic Fundamentals

Root ‘5 x(y)

y .
PEREN Tip
I
I >y

Figure 2.12 Geometric Parameters for Computing  Cm

2.5.5 DOWNWASH, UPWASH AND DYNAMIC PRESSURE RATIO
(Adapted from Reference 2.4)

In Subsonic Flow

The downwash behind a wing is a consequence of the wing trailing vortex system. A typical
wing trailing vortex system is pictured in Figure 2.13. A vortex sheet is shed behind the lifting wing.
This vortex sheet is deflected downward (downwash) by the bound (or lifting) vortex and by the tip
vortices which together comprise the wing vortex system. In general, the vortex sheet will not be
flat although the curvature around the mid—span area is very small for large span wings. This is par-
ticularly true for high aspect ratio, low sweep angle wings. For such wings it has been found that
considering the vortex sheet to be approximately flat is a good approximation. Wings with consider-
able trailing edge sweep angles tend to produce a vortex sheet which is bowed upward near the plane
of symmetry. -

The tip vortices normally do not experience a vertical displacement of the same magnitude
as the central portion of the vortex sheet. In general they trail back comparatively close to the stream-
wise direction. Furthermore, as the vortex system moves downstream, the tip vortices tend to move
inboard. Also, with increasing distance behind the wing, the trailing—sheet vorticity tends to be
transferred to the tip vortices. This transfer of vorticity and the inboard movement of the tip vortices
takes place in such a way that the lateral center of gravity of the vorticity remains at a fixed spanwise
location. When all of the vorticity of the trailing—sheet has been transferred to the tip vortices, the
vortex system is considered top be fully rolled —up. In a non—viscous fluid this vortex system would
extend to infinity. This way of looking at the vortex system is consistent with the vortex laws formu-
lated by Helmholtz (See Ref. 2.5.).

Ahead of the downstream station of complete roll-up, the spanwise downwash distribution
is dependent on the spanwise lift distribution of the wing. However, when the roll-up is complete,
the downwash angles for all planforms of equal lift and equal effective span are identical!
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Figure 2.13 Geometry for Downwash Determination

~

As suggested by Figure 2.13, the shape of the vortex sheet will have a significant effect on
the downwash experienced by a horizontal tail placed in the flow field behind a wing. The location
of such a tail (vertical and horizontal) relative to the wing is therefore very important. Because the
wing-tip vortices are somewhat above the wing vortex sheet, the downwash above the sheet is some-
what larger than the downwash below the vortex sheet. The rate at which the downwash angle
changes with angle of attack is the so—alled downwash gradient, de/da . The numerical value of

this downwash gradient in the zero-lift plane ranges from 1.0 at the wing trailing edge to 2C; JaA
atinfinity. Figure 2.14 shows an example of how the downwash gradient varies for various horizon-
tal tail locations behind an unswept wing of different aspect ratios.

In stability considerations (as shown in Chapter 3) the parameter (1 — de/da)frequently oc-

curs. Figure 2.15 shows how this parameter varies for locations in front of and behind wings with
elliptical planforms. In front of the wing the term upwash is used instead of downwash. Upwash
is particularly important in the case of canard airplanes.

In subsonic flow the downwash gradient tends to vary with Mach number as predicted by the
Prandtl-Glauert transformation:
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Notes: 1. Valid only for straight, tapered wings at low Mach Numbers
2. For other aspect ratios, interpolate or extrapolate
3. See Part VI of Reference 2.3 for a more general method

_ Vertical distance of horizontal tail 0.25¢, above/below the wing zero lift line
b/2
P = Longitudinal distance of 0.25c. toward the horizontal tail 0.25¢, location
- b/2

Figure 2.14 Effect of Wing Aspect Ratio and Horizontal Tail Location on the
Downwash Gradient
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(de/da)y = (de/da)y;_ /(1 — M?) (2.27)

A method for calculating the downwash gradient behind arbitrary wings is given in Part VI
of Reference 2.3. Figure 2.16 shows an example of how the downwash gradient varies with Mach
number for several airplanes.

In the case of low aspect ratio wings and in the case of a canard configuration the tip vortex
of the wing or the canard may impinge on the the aft surface. Reference 2.7 contains a method to
account for that.

Upwash is induced ahead of a wing in a manner similar to that for downwash. To account
for the acrodynamic forces on propellers, nacelles and/or stores ahead of a wing due to this upwash
the design charts of Reference 2.7 may be used.

Dynamic Pressure Ratio

The aerodynamic forces on lifting surfaces are proportional to the local dynamic pressure
of the flow field. The reference (or free stream) dynamic pressure used in computing aerodynamic
forces and moments on the entire airplane is that based on airplane true air speed; q = O.SQV%.

The dynamic pressure in the downwash wake of a wing can be reduced by friction losses and/or by
separation phenomena. However, if an aft surface is mounted in the propeller wake it is possible
that (depending on engine power) the dynamic pressure is in fact larger than the free—stream dynam-
ic pressure. The change in local dynamic pressure is expressed in terms of a ratio of dynamic pressur-
es. For example, in the case of horizontal and vertical tails these ratios are expressed as:
Mh, = §;,/q and n, = q,/Tq respectively. Part VI of Reference 2.3 (Pages 269-271) contains

methods for estimating these dynamic pressure ratios.

In Transonic Flow

In transonic flow no accurate methods are available as yet to estimate downwash characteris-
tics. When estimates (or tunnel data) are available for wing lift—curve slope in the transonic region,
afirst order approximation for estimating the downwash gradient is to use the lift—curve slope ratio:

C
(de/dajy, = (de/da)yy g (2.28)

M=y

LAl

In Supersonic Flow

At supersonic speeds downwash is caused by two factors. First, the region behind the trail-
ing—edge shock or expansion wave is distorted by the wing vortex system in a manner similar to that
which occurs at subsonic speeds. Because of the variation of span load, a vortex sheet is shed which
rolls up with increasing downstream distance from the trailing edge. Tip vortices similar to their
subsonic counterparts are also present. At supersonic Mach numbers the entire flow field is swept
back and isolated regions of influence may exist over certain portions of the wing surface and in the
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flow field behind it. For instance, regions not affected by the wing tip are generally present.

Second, a change in flow direction occurs in the flow region between the leading edge shock
or expansion waves as shown in Figure 2.17. Since this region of the flow does not "see’ the wing
vortex system, numerical values for downwash can be calculated with shock—expansion theory. To
simplify the calculations it is standard practice to perform these calculations with the geometry of
the wing root and to assumne two—dimensional flow. For configurations where the tail span is less
than the wing span, this assumption is justified.

EXPANSION

EXPANSION

—— ——

W\ [ LINE OF
M = 2739 N\ VELOCITY
\  DISCONTINW (7Y

EXPANSION

.

YK
EXPANSION—\  \

Figure 2.17 Shock Distribution on a Wedge Airfoil in Supersonic Flow

2.5.6 EFFECT OF THE FUSELAGE ON WING AERODYNAMIC CENTER

When a fuselage is added to a wing, the aerodynamic center of the wing+fuselage shifts for-
ward compared to that of the wing alone. A physical explanation for this effect can be seen from
Figure 2.18. Considering the fuselage to be represented by a body of revolution placed in a potential
flow field the pressure distribution is roughly as indicated by the + and - signs in Figure 2.19.

In potential flow, at a given angle of attack, a the following observations can be made:

* net pressure drag is zero * net lift is zero * net pitching moment is positive.

As a consequence the fuselage will add a positively increasing pitching moment with each
increase of angle of attack: the fuselage adds an increment ACmﬂm > 0 to the wing. This increment
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Figure 2.18 A Body of Revolution in Potential Flow at Angle of Attack

in the static longitudinal stability derivative, Cr,, can be interpreted as a forward shift in aerody-
namic center: AX,c, ~ which is negative. This fuselage effect is also called the Munk effect (after

its discoverer, Max Munk). Part VI of Reference 2.3 contains a numerical integration method for
estimating the fuselage induced shift of the aerodynamic center. This method accounts for the effect
of wing up—wash and wing down—~wash on the fuselage. It is based on a method first developed by
Multhopp in Reference 2.10.

Figure 2.19 shows three numerical examples of this fuselage induced a.c. shift as computed
for different airplanes. It is shown in Part II of Reference 2.3 that typical center—of—gravity shifts
in airplanes range from 10%—25% of the mgc. The 4%, 14% and 32% fuselage induced shifts in
aerodynamic center location are therefore very important and must be accounted for in the design
of a new airplane! '

It has been found that the fuselage induced a.c. shift is essentially independent of Mach num-
ber for moderate to high fuselage slenderness ratios. Therefore, the aerodynamic center of a
wing+fuselage tends to shift aft-with Mach number more or less like that of a wing alone.

[t should be noted that nacelles and stores when mounted under a wing such that they pro-
trude forward from the wing leading edge, also cause a shiftin a.c. These shifts can also be predicted
with the Multhopp method.
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Piaggio P180
AXye,, = — 0.32

Cessna 172
Afacﬁls = —0.04

Learjet 24
Aiacf“s = - 0.].4

Figure 2.19 Numerical Examples of Fuselage Induced Shift in Aerodvnamic Center
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2.6 EFFECTIVENESS OF CONTROL SURFACES

The controllability of airplanes depends on the lift and moment effectiveness of flight con-
trol surfaces. Most control surfaces are designed as plain flaps (with open or closed gap) as illus-
trated in Figure 2.20. Closed gap configurations have greater effectiveness than open gap configura-
tions. Note that a control surface deflection is defined as positive when the trailing edge is down.

Hinge line

Open Gap
e N
| | ¢ -~ - +
| | . >
< -
Closed Gap

O

| Figure 2.20 Example of a Control Surface

The lift effectiveness of a control surface is designated by ¢ = % for an airfoil and
&

L= aa_%L for a planform. For an airfoil section, the magnitude of €y, depends primarily on the
(+]
following parameters:
* control surface chord ratio, cf/ c * section thickness ratio, t/c
* control surface deflection, & * Mach number

Figure 2.21 shows an example of how ¢, depends on the first two parameters. It is seen

that the chord ratio has primary influence while the thickness ratio has only secondary influence on
lift effectiveness. It will be shown in Chapter 3 that in most airplane control power derivatives the
lift effectiveness appears in product form with the moment arm of the control surface to the center
of gravity. Methods for estimating CL,, from ¢, are found in Part VI of Reference 2.3. Factors

which affect the numerical magnitude of CLa are, in addition to those mentioned for <,

+

* Sweep angle * Control surface inboard and outboard span stations, 1; and 1.

The latter two quantities are defined in Figure 2.6. Figure 2.22 shows a typical plot of plan-
form lift versus angle of attack, cross—plotted for control surface deflections. It is important to un-
derstand the graphical interpretation for CL;, :

oC
CL‘?j = ("Eglz)a=constant (2.29)
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This quantity can be viewed as the change in lift coefficient due to control surface deflection
at constant angle of attack. In many stability and control expressions in Chapter 3 the following
quantity (called angle—of-attack effectiveness) is also important:

d
Os = (a_g)C,_=constant (2.30)

This quantity can be viewed as the change in angle of attack due to control surface deflection
at constant lift coefficient. It may be seen that as long as ¢ < o * the following holds:

ay = A (2.31)

Figure 2.23 shows how a5 varies withcg/c. Itis seen that a control surface with a 30% chord

has 50% of the effectiveness of an all-moving (100% chord or variable incidence) planform. This
is the reason why hinged control surfaces have been used on so many airplanes: per unit chord length
they are very effective!
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Figure 2.23 Effect of Control Surface Chord Ratio on 04

i

For a three—dimensional control surface at very low sweep angles, a good approximation for

s IS:
5 b/2

%=% Jawmm@ (2.32)

-b/2
For variations with Mach number in subsonic flow, the Prandti—Glauvert transformation can
be used again to yield:
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Clanm = L
¢ = ——M=0_ and Cp = —M=0 (2.33)

Y1 - M2 ° J1 — M2

More general methods which account for the effect of sweep angle and for transonic and su-
per sonic flow are found in Part VI of Reference 2.3.

2.7 MODERN AIRFOILS COMPARED TO NACA AIRFOILS

o b

Since the advent of reliable computational methods for the prediction of airfoil behavior and
for the design of airfoils (for example, References 2.8 and 2.9) it is possible to develop airfoils with
lift, drag and pitching moment characteristics which are tailored to.specific applications and specific
flight conditions. Figure 2.24 shows a geometric comparison between older and newer airfoils.
Figure 2.25 show example data comparing modern airfoils with NACA type airfoils.

2.8 SUMMARY FOR CHAPTER 2

In this chapter the following airfoil, planform, fuselage and control surface aerodynamic
properties which are important to the stability and control of airplanes were reviewed:

* Lift—curve slope * Zero~lift angle of attack
* Zero-lift pitching moment coefficient * Aerodynamic center
* Fuselage induced aerodynamic center shift * Control surface lift effectiveness

In addition, a number of important geometric characteristics of planforms were introduced.

Most of the quantities mentioned in this chapter can be rapidly evaluated with the AAA pro-
gram described in Appendix A.
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Fi 2.24 Geometric arison of Modern and NACA Airfoils
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Figure 2.25 Comparison of Maximum Lift Capability of Modern and NACA Airfoils
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2.9

9 ___PROBLEMS FOR CHAPTER 2

2.1

22

23

2.4

2.5

For a thin airfoil, calculate and plot the theoretical section lift—curve slope for 0 <M < 2.0.

Using data from Reference 2.2 plot section lift—curve slope versus thickness ratio for NACA
44XX and 23YYY series airfoils.

Make accurate sketches of wing planforms, characterized by the following parameters:
Leading edge sweep angle: O degrees:
a) A=0 A=2,4,6,810 b)A=035A=2,4,6,8, 10
b)A=1.0 A=2,4,6,8,10 d)A=135A=2,4,6,8,10

Repeat this assignment for leading edge sweep angles of 30 and 60 degrees.

Consult recent and older versions of Jane’s All The World Aircraft to find examples of air—

- planes with wings which approximately fit some of the planforms sketched in Problem 2.3.

Calculate and plot the planform lift curve slope versus Mach number for the following two
families of wings:

Leading edge sweep angle: 0, 20, 40 and 60 degrees

Aspect ratio: 2, 6 and 10

Taper ratio: 0.35
Note: The method of Part V1 of Ref.2.3 or any other suitable method can be used.
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2.6 Calculate and plot the planform aerodynamic center location versus Mach number for the
following two families of wings:
Leading edge sweep angle: 0, 20, 40 and 60 degrees
Aspect ratio: 2, 6 and 10
Taper ratio: 0.35
Note: The method of Part VI of Ref.2.3 or any other suitable method can be used.
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