CHAPTER

Principles of Stability
and Control

An important problem to aviation is . . . improvement in the form of the aeroplane
leading toward natural inherent stability to such a degree as to relieve largely the
attention of the pilot while still retaining sufficient flexibility and control to maintain
any desired path, without seriously impairing the efficiency of the design.

From the First Annual Report
of the NACA, 1915

Y

7.1 INTRODUCTION

The scene: A French army drill field at Issy-les-Moulineaux just outside Paris.
The time: The morning of January 13, 1908. The character: Henri Farman, a
bearded, English-born but French-speaking aviator, who had flown for his first
time just four months earlier. The action: A delicately constructed Voisin-Farman
I-bis biplane (see Fig. 7.1) is poised, ready for the takeoff in the brisk Parisian
wind, with Farman seated squarely in front of the 50-hp Antoinette engine. The
winds ripple the fabric on the Voisin’s box kite—shaped tail as Farman powers to
a bumpy liftoff. Fighting against a head wind, he manipulates his aircraft to a
marker 1000 m from his takeoff point. In a struggling circular turn, Farman de-
flects the rudder and mushes the biplane around the marker, the wings remaining
essentially level to the ground. Continuing in its rather wide and tenuous circular
arc, the airplane heads back. Finally, Farman lands at his original takeoff point,
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514 CHAPTER 7 Principles of Stability and Control

PREVIEW BOX

Imagine that you have designed your own airplane
and you are ready to fly it for the first time. You have
followed the principles laid out in the previous chap-
ters of this book, and you are confident that your air-
plane will fly as fast, as high, as far, and as long as
you have planned. With confidence, you take off and
begin the first flight of your new design. Within mo-
ments after takeoff, you hit a gust of wind that mo-
mentarily pitches the airplane up, literally rotating
the airplane to a higher-than-intended angle of attack.
Now what? Are you going to have to fight to bring
your airplane under control, or will it automatically
return to its previous orientation after a few mo-
ments? Indeed, have you properly designed your air-
plane so that it will return to its original orientation?
How do you do that? That is, how do you insure that
your airplane, when disturbed by the gust of wind,
will not continue to pitch up and completely go out of
control? These are truly important questions, and you
will find answers in this chapter. The questions and
answers have to do with airplane stability, a major
subject of this chapter.

Assume that your airplane is stable: that is, it
will automatically return to its original orientation

after experiencing some type of disturbance. As you
are flying, you wish to speed up, but also maintain
level flight. You know from our conversations in
Chap. 6 that you must correspondingly reduce the
angle of attack. This can be accomplished by chang-
ing the elevator deflection on the tail. But how much
do you need to deflect the elevator? And how much
force must you exert on the elevator to get it to deflect
the proper amount? These questions may seem some-
what mundane, but if you do not know the proper an-

swers and you did not properly account for them in

your design, most likely you will not be able to con-
trol your airplane. The second major subject of this
chapter is airplane control, where you will find an-
swers to these questions.

If airplanes are unstable and/or if they are un-
controllable, they will most likely crash. This is seri-
ous business. This is a serious chapter. Please read it
with some care. At the same time, however, 1 predict
that you will enjoy reading this chapter because it
takes you into new territory associated with the flight -
of airplanes, with some different physics and differ-
ent mathematics than we have previously considered.

Figure 7.1 The Voisin-Farman I-bis plane.

(Source: National Air and Space Museum.)
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amid cheers from the crowd that had gathered for the occasion. Farman has been
~ in the air for I min 28 s—the longest flight in Europe to that date—and has just
perforrned the first circular flight of I-km extent. For this, he is awarded the
Grand Prix d’Aviation. (Coincidentally, in the crowd is a young Hungarian engi-
neer, Theodore von Karman, who is present only due to the insistence of his
female companion—waking at 5 AM in order to see history made. However, von
Karman is mesmerized by the flight, and his interest in aeronautical science is
catalyzed. Von Karman will go on to become a leading aerodynamic genius of
“the first half century of powered flight.)

The scene shifts to a small racetrack near Le Mans, France. The time: Just
seven months later, August 8, 1908. The character: Wilbur Wright, intense,
reserved, and fully confident. The action: A new Wright type A biplane (see
Fig. 1.25), shipped to France in crates and assembled in a friend’s factory near
Le Mans, is ready for flight. A crowd is present, enticed to the field by much
advance publicity and an intense curiosity to see if the “rumors” about the Wright
brothers’ reported success were really true. Wilbur takes off. Using the Wrights’
patented concept of twisting the wing tips (wing warping), Wilbur is able to bank
and turn at will. He makes two graceful circles and then effortlessly lands after
1 min 45 s of flight. The crowds cheer. The French press is almost speechless but
then heralds the flight as epoch-making. European aviators who witness this
demonstration gaze in amazement and then quickly admit that the Wrights’ air-
plane is far advanced over the best European machines of that day. Wilbur goes
on to make 104 flights in France before the end of the year and in the process
transforms the direction of aviation in Europe.

The distinction between these two scenes, and the reason for Wilbur’s mas-
tery of the air in comparison to Farman’s struggling circular flight, involves sta-
bility and control. The Voisin aircraft of Farman, which represented the best Eu-
ropean state of the art, had only rudder control and could make only a laborious,
flat turn by simply swinging the tail around. In contrast, the Wright airplane’s
wing-twisting mechanism provided control of roll, which when combined with
rudder control, allowed effortless turning and banking flight, figure-eights, etc.
Indeed, the Wright brothers were airmen (see Chap. 1) who concentrated on de-
signing total control into their aircraft before adding an engine for powered
flight. Since those early days, airplane stability and control have been dominant
aspects of airplane design. This is the subject of this chapter. ‘

Airplane performance, as discussed in Chap. 6, is governed by forces (along,
and perpendicular to, the flight path), with the translational motion of the air-
plane as a response to these forces. In contrast, airplane stability and control, dis-
cussed in this chapter, are governed by moments about the center of gravity, with
the rotational motion of the airplane as a response to these moments. Therefore,
moments and rotational motion are the main focus of this chapter.

Consider an airplane in flight, as sketched in Fig. 7.2. The center of gravity
(the point through which the weight of the complete airplane effectively acts) is
denoted as cg. The xyz orthogonal axis system is fixed relative to the airplane;
the x axis is along the fuselage, the Yy axis is along the wingspan perpendicular to
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Roll

Yaw A
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Figure 7.2 Definition of the airplane’s axes along with the translational and
rotational motion along and about these axes.

the x axis, and the z axis is directed downward, perpendicular to the xy plane.
The origin is at the center of gravity. The translational motion of the airplane is -
given by the velocity components U, V, and W along the x, y, and z directions,
respectively. (Note that the resultant free-stream velocity V, is the vector sum of
U, V, and W.) The rotational motion is given by the angular velocity compo-
nents P, 0, and R about the x, y, z axes, respectively. These rotational velocities
are due to the moments L', M, and N about the x, y, and z axes, respectively.
(The prime is put over the symbol L so that the reader will not confuse it with
lift.) Rotational motion about the x axis is called roll; L’ and P are the rolling
moment and velocity, respectively. Rotational motion about the y axis is called
pitch; M and Q are the pitching moment and velocity, respectively. Rotational *.
motion about the z axis is called yaw; N and R are the yawing moment and ve-
locity, respectively. :
There are three basic controls on an airplane—the ailerons, elevator, and
rudder—which are designed to change and control the moments about the x, ¥
and z axes. These control surfaces are shown in Fig. 2.14 and repeated 10
Fig. 7.3; they are flaplike surfaces that can be deflected back and forth at the
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Elevators

Horizontal stabilizer

Aileron

Vertical stabilizer
Rudder

Figure 7.3 Some airplane nomenclature.

command of the pilot. The ailerons are mounted at the trailing edge of the wing,
near the wing tips. The elevators are located on the horizontal stabilizer. In some
modern aircraft, the complete horizontal stabilizer is rotated instead of just the
elevator (so-called flying tails). The rudder is located on the vertical stabilizer, at
the trailing edge. Just as in the case of wing flaps discussed in Sec. 5.17, a down-
ward deflection of the control surface will increase the lift of the wing or tail. In
turn, the moments will be changed, as sketched in Fig. 7.4. Consider Fig. 7.4a.
One aileron is deflected up and the other down, creating a differential lifting
force on the wings, thus contributing to the rolling moment L’. In Fig. 7.4b, the
elevator is deflected upward, creating a negative lift at the tail, thus contributing
to the pitching moment M. In Fig. 7.4¢, the rudder is deflected to the right, cre-
ating a leftward aerodynamic force on the tail, thus contributing to the yawing
moment N.

Rolling (about the x axis) is also called lateral motion. Referring to Fig. 7.4a,
we see that ailerons control roll; hence, they are known as lateral controls.
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Figure 7.4 Effect of control defiections on roll, pitch, and yaw.

(a) Effect of aileron deflection; lateral control. (b) Effect of elevator
defiection; longitudinal control. (¢) Effect of rudder deflection:
directional control.

Pitching (about the y axis) is also called longitudinal motion. In Fig. 7.4b, we see
that elevators control pitch; hence, they are known as longitudinal controls.’
Yawing (about the z axis) is also called directional motion. Figure 7.4¢ shows that
the rudder controls yaw; hence, it is known as the directional control.

All these definitions and concepts are part of the basic language of airplane
stability and control; they should be studied carefully. Also, in the process, the
following question emerges: What is meant by the words stabiliry and control
themselves? This question is answered in Sec. 7.2.
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Criteria Concept of trim

Moments about cg Elevator deflection to trim
Equations for stability Elevator hinge moment

Neutral point Stick-fixed and stick-free stability

Static margin

Figure 7.5 Road map for Chap. 7.

Return to the general road map for this book, shown in Fig. 2.1. With this
chapter, we are still dealing with the overall subject of flight mechanics, but now
we are concentrating on the second subbox under flight mechanics, namely, sta-
bility and control. The road map for the present chapter is shown in Fig. 7.5.
There are two general routes shown, that for stability in the left column and that
for control in the right column. Both the subjects of stability and control can be
subdivided into categories labeled static and dynamic, as shown in Fig. 7.5. We
define the difference between these categories in the next section. In this chapter
we concentrate primarily (though not exclusively) on longitudinal stability and
control. We deal with such considerations of static longitudinal stability as the
calculation of longitudinal moments about the center of gravity, equations that
can be used to help us determine whether an airplane is stable or not; and we de-
fine two concepts used to describe the stability characteristics, namely, the neu-
tral point and the static margin. For the latter part of this chapter, we run down
the right side of the road map in Fig. 7.5, dealing primarily with static longitudi-
nal control. Here we examine the concept of trim in greater detail, and we look
at elevator deflections necessary to trim and the associated hinge moments for
the elevator. We also look at the differences between stick-fixed and stick-free
stability. Many of the terms used may seem unfamiliar and somewhat strange.
However, we spend the rest of this chapter helping you to learn these concepts
and making you more familiar with the language of airplane stability and control.
It will be useful for you to frequently return to Fig. 7.5 as we proceed through
this chapter, to help orient yourself about the details and where they fit into the
bigger picture.

7.2 DEFINITION OF STABILITY AND CONTROL

There are two types of stability: static and dynamic. They can be visualized as
follows.
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(a)

(&
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Figure 7.6 Tllustration of static stability.
(a) Statically stable system. (b) Statically
unstable system. (c) Statically neutral system.

7.2.1 Static Stability

Consider a marble on a curved surface, such as a bowl. Imagine that the bowl is
upright and the marble is resting inside, as shown in Fig. 7.6a. The marble is sta-
tionary; it is in a state of equilibrium, which means that the moments acting on
the marble are zero. If the marble is now disturbed (moved to one side, as shown
by the dotted circle in Fig. 7.6a) and then released, it will roll back toward the
bottom of the bowl, that is, toward its original equilibrium position. Such a sys-
tem 1s statically stable. In general, we can state that

If the forces and moments on the body caused by a disturbance tend initially to re-
turn the body toward its equilibrium position, the body is statically stable. The body
has positive static stability.

Now, imagine the bowl! is upside down, with the marble at the crest, as
shown in Fig. 7.6b. If the marble is placed precisely at the crest, the moments
will be zero, and the marble will be in equilibrinm. However, if the marble is now
disturbed (as shown by the dotted circle in Fig. 7.6b), it will tend to roll down the
side, away from its equilibrium position. Such a system is statically unstable. In
general, we can state that

If the forces and moments are such that the body continues to move away from its
equilibrium position after being disturbed, the body is statically unstable. The body
has negative static stability.

M
i
i
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Finally, imagine the marble on a flat horizontal surface, as shown in
Fig. 7.6¢. Its moments are zero; it is in equilibrium. If the marble is now dis-
turbed to another location, the moments will still be zero, and it will still be in
equilibrium. Such a system is neutrally stable. This situation is rare in flight
yehicles, and we will not be concerned with it here.

We emphasize that static stability (or the lack of it) deals with the initial ten-
dency of a vehicle to return to equilibrium (or to diverge from equilibrium) after
being disturbed. It says nothing about whether it ever reaches its equilibrium po-
sition, or how it gets there. Such matters are the realm of dynamic stability, as

follows.

7.2.2 Dynamic Stability

Dynamic stability deals with the time history of the vehicle’s motion after it ini-
tially responds to its static stability. For example, consider an airplane flying at
an angle of attack a, such that its moments about the center of gravity are zero.
The airplane is therefore in equilibrium at «,; in this situation, it is trimmed, and
a, is called the trim angle of attack. Now assume that the airplane is disturbed
(say, by encountering a wind gust) to a new angle of attack «, as shown in
Fig. 7.7. The airplane has been pitched through a displacement & — a,. Now, let
us observe the subsequent pitching motion after the airplane has been disturbed
by the gust. We can describe this motion by plotting the instantaneous displacement
versus time, as shown in Fig. 7.8. Here  — «, is given as a function of time 7. At
t = 0, the displacement is equal to that produced by the gust. If the airplane is
statically stable, it will initially tend to move back toward its equilibrium posi-
tion; that is, & — c, will initially decrease. Over a lapse of time, the vehicle may
‘g monotonically “home in” to its equilibrium position, as shown in Fig. 7.8a. Such
motion is called aperiodic. Alternately, it may first overshoot the equilibrium po-
sition and approach «, after a series of oscillations with decreasing amplitude, as
shown in Fig. 7.8b. Such motion is described as damped oscillations. In both sit-
uations, Figs. 7.8a and 7.8b, the airplane eventually returns to its equilibrium

8‘

Figure 7.7 Disturbance from the equilibrium angle of attack.
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Initial
disturbance

Displacement
Displacement

(a) (b)

Figure 7.8 Examples of dynamic stability. (a) Aperiodic. () Damped oscillations.

~

Displacement

Increasing oscillations
Figure 7.9 An example of dynamic instability.

position after some interval of time. These two situations are examples of -
dynamic stability in an airplane. Thus, we can state that

A body is dynamically stable if, out of its own accord, it eventually returns to and
remains at its equilibrium position over a period of time.

On the other hand, after initially responding to its static stability, the airplane
may oscillate with increasing amplitude, as shown in Fig. 7.9. Here, the equilib-
rium position is never maintained for any period of time, and the airplane even-
tually diverges completely; the airplane in this case is dyndmically unstable
(even though it is statically stable). Also, it is theoretically possible for the air-
plane to pitch back and forth with constant-amplitude oscillations. This is an
example of a dynamically neutral body; such a case is of little practical inter-
est here.

It is important to observe from the preceding examples that a dynamically
stable airplane must always be statically stable. However, static stability is 720
sufficient to ensure dynamic stability. Nevertheless, static stability is usually the
first stability characteristic to be designed into an airplane. (There are some €x-
ceptions, to be discussed later.) Such considerations are of paramount impor-
tance in conventional airplanes, and therefore, most of this chapter will deal w1
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static stability and control. A study of dynamic stability, although of great
importance, requires rather advanced analytical techniques beyond the scope of
this book.

7.2.3 Control

The conventional control surfaces (elevators, ailerons, and rudder) on an airplane
were discussed in Sec. 7.1 and sketched in Figs. 7.3 and 7.4. Their function is
usually (1) to change the airplane from one equilibrium position to another and
(2) to produce nonequilibrium accelerated motions such as maneuvers. The study
of the deflections of the ailerons, elevators, and rudder necessary to make the
airplane do what we want and of the amount of force that must be exerted by the
pilot (or the hydraulic boost system) to deflect these controls is part of a disci-
pline called airplane control, to be discussed later in this chapter.

7.2.4 Partial Derivative

Some physical definitions associated with stability and control have been given
in Secs. 7.2.1 through 7.2.3. In addition, a mathematical definition, namely, that
of the partial derivative, will be useful in the equations developed later, not only
in this chapter but in our discussion of astronautics (Chap. 8) as well. For those
readers having only a nodding acquaintance with calculus, hopefully this section
will be self-explanatory; for those with a deeper calculus background, this should
serve as a brief review.

Consider a function, say, f(x), of a single variable x. The derivative of f(x)
is defined from elementary calculus as

af _ [f(x + Ax) — f(X)]

= 1
dx A;I—EO Ax

Physically, this limit represents the instantaneous rate of change of f(x) with re-
A specttox.

4 Now consider a function that depends on more than one variable, for exam-
ple, the function g(x, y, z), which depends on the three independent variables x,
v, and z. Let x vary, while y and z are held constant. Then, the instantaneous rate
of change of g with respect to x is given by

95 = lim [g(x +Ax,y,2) ~ g(x,y,z)}
dx  Ax—0 Ax

Here dg/dx is the partial derivative of g with respect to x. Now let y vary, while
, holding x and z constant. Then, the instantaneous rate of change of g with
‘i respect to y is given by

ag .
— = lim
ay Ay—0

[g(x, y+ Ay, 2) —glx, y, z)}

Ay
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Here, dg/dy is the partial derivative of g with respect to y. An analogous defin-
ition holds for the partial derivative with respect to z, denoted by dg/dz.

In this book, we use the concept of the partial derivative as a definition only.
The calculus of partial derivatives is essential to the advanced study of virtually 3
any field of engineering, but such considerations are beyond the scope of this book. 3

If g = x2 4+ y? + 22, calculate 8g/dz.

H Solution
From the definition given in the preceding discussion, the partial derivative is taken with
respect to z, holding x and y constant.

dg  a(x* + y2+20) x> 8y* 972

=4t — 4+ —=04+0+2z=2
0z 0z az 3z+3z HOF ‘

7.3 MOMENTS ON THE AIRPLANE

A study of stability and control is focused on moments: moments on the airplane
and moments on the control surfaces. At this stage, it would be well for the reader
to review the discussion of aerodynamically produced moments in Sec. 5.2. Re-
call that the pressure and shear stress distributions over a wing produce a pitch-
ing moment. This moment can be taken about any arbitrary point (the leading
edge, the trailing edge, the quarter chord, etc.). However, there exists a particu-
Jar point about which the moments are independent of the angle of attack. This
point is defined as the aerodynamic center for the wing. The moment and its co-
efficient about the acrodynamic center are denoted by M, and Cjy ac, respec-
tively, where Cy ac = Mac/(Go0SC).

Reflecting again on Sec. 5.2, consider the force diagram of Fig. 5.5. Assume
the wing is flying at zero lift; hence, F; and F, are equal and opposite forces
Thus, the moment established by these forces is a pure couple, which we know
from elementary physics can be translated anywhere on the body at constant
value. Therefore, at zero lift, Mye = M4 = Manypoine- In turn,

Crac = (Curcja) =0 = (Cir,any poin) L=0

This says that the value of Cy , (Which is constant for angles of attack) can be
obtained from the value of the moment coefficient about any point when the
wing is at the zero-lift angle of attack ayo. For this reason, M, is sometimes
called the zero-lift moment. o

The aerodynamic center is a useful concept for the study of stability and con-
trol. In fact, the force and moment system on a wing can be completely specifie
by the lift and drag acting through the aerodynamic center, plus the mom?n
about the aerodynamic center, as sketched in Fig. 7.10. We adopt this convent!

for the remainder of this chapter.
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Figure 7.10 Contributions to the moment about the center of gravity of the airplane.

Now consider the complete airplane, as sketched in Fig. 7.10. Here we are
most concerned with the pitching moment about the center of gravity of the air-
plane M. Clearly, by examination of Fig. 7.10, M., is created by (1) L, D, and
M, of the wing; (2) lift of the tail; (3) thrust; and (4) aerodynamic forces and
moments on other parts of the airplane, such as the fuselage and engine nacelles.
(Note that weight does not contribute, since it acts through the center of gravity.)
These contributions to M, will be treated in detail later. The purpose of Fig. 7.10
is simply to illustrate the important conclusion that a moment does exist about
the center of gravity of an airplane, and it is this moment that is fundamental to
the stability and control of the airplane.

The moment coefficient about the center of gravity is defined as

M,
gooScC

Cug = (7.1)
Combining the preceding concept with the discussion of Sec. 7.2, we find an air-
plane is in equilibrium (in pitch) when the moment about the center of gravity is
zero; that is, when Mg = Cyy oo = 0, the airplane is said to be trimmed.

7.4 ABSOLUTE ANGLE OF ATTACK

Continuing with our collection of tools to analyze stability and control, we con-
sider a wing at an angle of attack such that lift is zero; that is, the wing is at the
zero-lift angle of attack oy —o, as shown in Fig. 7.11a. With the wing in this ori-
entation, draw a line through the trailing edge parallel to the relative wind V.
This line is defined as the zero-lift line for the airfoil. It is a fixed line: visualize
it frozen into the geometry of the airfoil, as sketched in Fig. 7.11a. As discussed
in Chap. 5, conventional cambered airfoils have slightly negative zero-lift an-
gles; therefore, the zero-lift line lies slightly above the chord line, as shown (with
overemphasis) in Fig. 7.11a.

Now consider the wing pitched to the geometric angle of attack « such that
lift is generated, as shown in Fig. 7.11b. (Recall from Chap. 5 that the geometric
angle of attack is the angle between the free-stream relative wind and the chord
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Voo Zero lift line

ar=9 Chord line

(a)

(b)

Figure 7.11 lliustration of the zero-lift line and absolute angle of attack. (a) No lift; (b) with lift.

Cr . Cr,

/

R [
Qr =0

(a) (b)

Figure 7.12 Lift coefficient versus (a) geometric angle of attack and (&) absolute angle of
attack.

line.) In the same configuration, Fig. 7.115 demonstrates that the angle between
the zero-lift line and the relative wind is equal to the sum of o and the absolute
value of a;—o. This angle is defined as the absolute angle of attack a,. From
Fig. 7.11b, o, = @ + a1 - (using a;-o in an absolute sense). The geometry of
Fig. 7.11a and 7.11b should be studied carefully until the concept of , is clearly
understood.

The definition of the absolute angle of attack has a major advantage. Wh
a, = 0, then L = 0, no matter what the camber of the airfoil. To further illu
trate, consider the lift curves sketched in Fig. 7.12. The conventional plot (as di
cussed in detail in Chap. 5), C; versus «, is shown in Fig. 7.12a. Here the lift
curve does not go through the origin, and, of course, o, — is different for differ-
ent airfoils. In contrast, when C is plotted versus «,, as sketched in Fig. 7.12
the curve always goes through the origin (by definition of «,). The curve
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‘Fig. 7.12b is identical to that in Fig. 7.12a; only the abscissa has been translated
by the value oy _g.

The use of a, in lieu of « is common in studies of stability and control. We
adopt this convention for the remainder of this chapter.

7.5 CRITERIA FOR LONGITUDINAL STATIC
STABILITY

Static stability and control about all three axes shown in Fig. 7.2 are usually a ne-
cessity in the design of conventional airplanes. However, a complete description
of all three types—Ilateral, longitudinal, and directional static stability and con-
trol (see Fig. 7.4)—is beyond the scope of this book. Rather, the intent here is to
provide only the flavor of stability and control concepts, and to this end, only the
airplane’s longitudinal motion (pitching motion about the y axis) is considered in
detail. This pitching motion is illustrated in Fig. 7.4b. It takes place in the plane
of symmetry of the airplane. Longitudinal stability is also the most important sta-
tic stability mode; in airplane design, wind tunnel testing, and flight research, it
usually earns more attention than lateral or directional stability.

Consider a rigid airplane with fixed controls, for example, the elevator in
some fixed position. Assume the airplane has been tested in a wind tunnel or free
flight and that its variation of M, with angle of attack has been measured. This
variation is illustrated in Fig. 7.13, where Cy , is sketched versus o,. For many
conventional airplanes, the curve is nearly linear, as shown in Fig. 7.13. The
value of Cy ., at zero lift (where o, = 0) is denoted by Cuo. The value of «,
where M., = 0 is denoted by «,; as stated in Sec. 7.3, this is the equilibrium, or
trim, angle of attack.

Consider the airplane in steady, equilibrium flight at its trim angle of attack
a,, as shown in Fig. 7.14a. Suddenly, the airplane is disturbed by hitting a wind
gust, and the angle of attack is momentarily changed. There are two possibilities:
an increase or a decrease in o,. If the airplane is pitched upward, as shown in
Fig. 7.14b, then «, > «,. From Fig. 7.13, if a, > ., the moment about the

CM, cg

)

g

(=)

Figure 7.13 Moment coefficient curve with a negative slope.
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Ch, cg iIs negative

CMy cg =0

(a)

Cpm, o 1s positive

(c)

Figure 7.14 Illustration of static stability: (@) Equilibrium position (trimmed). (b) Pitched upward by disturbance.
() Pitched downward by disturbance. In both (b) and (c), the airplane has the initial tendency to return to its
equilibrium position.

center of gravity is negative. As discussed in Sec. 5.4, a negative moment (by
convention) is counterclockwise, tending to pitch the nose downward. Hence, in
Fig. 7.14b, the airplane will initially tend to move back toward its equilibrium
position after being disturbed. On the other hand, if the plane is pitched down-
ward by the gust, as shown in Fig. 7.14c, then o, < «,. From Fig. 7.13, the re-
sulting moment about the center of gravity will be positive (clockwise) and will
tend to pitch the nose upward. Thus, again we have the situation in which the air-.
plane will initially tend to move back toward its equilibrium position after being
disturbed. From Sec. 7.2, this is precisely the definition 6f static stability. There- -
fore, we conclude that an airplane that has a Cyy,c,-versus-a, variation like that
shown in Fig. 7.13 is statically stable. Note from Fig. 7.13 that Cis o s positive
and that the slope of the curve 8Cy co/8c, is negative. Here, the partial deriva- -
tive, defined in Sec. 7.2.4, is used for the slope of the moment coefficient curve.
This is because (as we shall see) Cm,ce depends on a number of other variables in
addition to a,, and therefore it is mathematically proper to use 3C M.ce/ B0, Tather
than dCy ce/da, to represent the slope of the line in Fig. 7.13. As defined in .
Sec. 7.2.4, 3Cy q/d0, symbolizes the instantaneous rate of change of Cuce
with respect to «,, with all other variables held constant.

Consider now a different airplane, with a measured C M.cg Variation as shown
in Fig. 7.15. Imagine the airplane is flying at its trim angle of attack «, as shown
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Figure 7.15 Moment coefficient curve with a positive slope.

Ch, cg is positive

7N

CM,cg =0

0y > @,
Ene—— :
V..

(a) (b)

C, o is negative

Figure 7.16 Illustration of static instability. (a) Equilibrium position (trimmed). (b) Pitched
upward by disturbance. (c) Pitched downward by disturbance. In both (b) and (c), the
airplane has the initial tendency to diverge farther away from its equilibrium position.

in Fig. 7.16a. If it is disturbed by a gust, pitching the nose upward, as shown in
Fig. 7.16b, then «, > «,. From Fig. 7.15, this results in a positive (clockwise)
moment, which tends to pitch the nose even farther away from its equilibrium
position. Similarly, if the gust pitches the nose downward (Fig. 7.16¢), a negative
(counterclockwise) moment results, which also tends to pitch the nose farther
away from its equilibrium position. Therefore, because the airplane always tends
to diverge from equilibrium when disturbed, it is statically unstable. Note from
Fig. 7.15 that Cy; o is negative and 9C M.cg/ 0ct, 18 positive for this airplane.
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For both airplanes, Figs. 7.13 and 7.15 show a positive value of a,. Recall
from Fig. 6.8 that an airplane moves through a range of angle of attack as it flies
through its velocity range from Vi (where , is the largest) to Vinax (where o,
is the smallest). The value of «, must fall within this flight range of angle of at-
tack, or else the airplane cannot be trimmed for steady flight. (Remember that we
are assuming a fixed elevator position: We are discussing stick-fixed stability.)
When «, does fall within this range, the airplane is longitudinally balanced.

From the preceding considerations, we conclude the following.

The necessary criteria for longitudinal balance and static stability are

1. Cy o must be positive.
2. 9Cpu.cy/da, must be negative.

That is, the Cy ¢, curve must look like Fig. 7.13.

Of course, implicit in this criteria is that at, must also fall within the flight
range of angle of attack for the airplane. ‘

We are now in a position to explain why a conventional airplane has a hori-
zontal tail (the horizontal stabilizer shown in Fig. 7.3). First, consider an ordi-
nary wing (by itself) with a conventional airfoil, say an NACA 2412 section.
Note from the airfoil data in App. D that the moment coefficient about aerody-
namic center is negative. This is characteristic of all airfoils with positive cam-
ber. Now assume that the wing is at zero lift. In this case, the only moment on the
wing is a pure couple, as explained in Sec. 7.3; hence, at zero lift, the moment
about one point is equal to the moment about any other point. In particular,

Crae = Chtcg for zero lift (wing only) (712

On the other hand, examination of Fig. 7.13 shows that Cy, ¢ is, by definition, the
moment coefficient about the center of gravity at zero lift (when ¢, = 0). Hence,
from Eq. (7.2),

CM,O = CM,ac Wll’lg OIlly (73)

Equation (7.3) demonstrates that for a wing with positive camber (Cp ac negative),
Cy o is also negative. Hence, such a wing by itself is unbalanced. To rectify this
situation, a horizontal tail must be added to the airplane, as shown in Fig. 7.174
and 7.17b. If the tail is mounted behind the wing, as shown in Fig. 7.17a, and if
it is inclined downward to produce a negative tail lift as shown, then a clockwise
moment about the center of gravity will be created. If this clockwise moment 18
strong enough, then it will overcome the negative Cy o, and Cy o for the wing-
tail combination will become positive. The airplane will then be balanced.

The arrangement shown in Fig. 7.17a is characteristic of most conventional
airplanes. However, the tail can also be placed ahead of the wing, as shown in
Fig. 7.17b; this is called a canard configuration. For a canard, the tail is inclined
upward to produce a positive lift, hence creating a clockwise moment about the
center of gravity. If this moment is strong enough, then Cy o for the wing-tail com-
bination will become positive, and again the airplane will be balanced:
Unfortunately, the forward-located tail of a canard interferes with the smooth
aerodynamic flow over the wing. For this and other reasons, canard confi gurations
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Center of gravity of airplane

Positively cambered wingat ¢, = 0 Tail with negative lift

(a)

Center of gravity of airplane

4

Tail with positive lift Positively cambered wing at ¢; = 0

(b)

Figure 7.17 (a) Conventional wing-tail combination. The tail is set at such an angle as to
produce negative lift, thus providing a positive Cy 0. (b) Canard wing-tail combination. The
tail is set at such an angle as to produce positive lift, thus providing a positive Cy o.

have not been popular. Of course, a notable exception were the Wright Flyers,
which were canards. In fact, it was not until 1910 that the Wright brothers went to
a conventional arrangement. Using the word rudder to mean elevator, Orville
wrote to Wilbur in 1909 that “the difficulty in handling our machine is due to the
rudder being in front, which makes it hard to keep on a level course. . . . [ do not
think it is necessary to lengthen the machine, but to simply put the rudder behind
instead of before.” Originally, the Wrights thought the forward-located elevator
would help to protect them from the type of fatal crash encountered by Lilienthal.
This rationale persisted until the design of their model B in 1910. Finally, a mod-
ern example of a canard is the North American XB-70, an experimental supersonic
bomber developed for the Air Force in the 1960s. The canard surfaces ahead of the
wing are clearly evident in the photograph shown in Fig. 7.18. In recent years, ca-
nards have come back on the aeronautical scene, for some high-performance mil-
itary airplanes and special general aviation designs. The X-29 shown in Fig. 5.61
is a canard.

In retrospect, using essentially qualitative arguments based on physical rea-
soning and without resort to complicated mathematical formulas, we have devel-
oped some fundamental results for longitudinal static stability. Indeed, it is some-
! what amazing how far our discussion has progressed on such a qualitative basis.
I However, we now turn to some quantitative questions. For a given airplane, how
{ far should the wing and tail be separated in order to obtain stability? How large
, should the tail be made? How do we design for a desired trim angle o, ? These
and other such questions are addressed in the remainder of this chapter.
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Figure 7.18 The North American XB-70. Note the canard surfaces immediately behind the
cockpit.
(Source: Rockwell International Corp.)

7.6 QUANTITATIVE DISCUSSION: CONTRIBUTION
OF THE WING TO M,,

The calculation of moments about the center of gravity of the airplane M., is crit-
ical to a study of longitudinal static stability. The previous sections have already
underscored this fact. Therefore, we now proceed to consider individually the
contributions of the wing, fuselage, and tail to moments about the center of grav-
ity of the airplane, in the end combining them to obtain the total M.

Consider the forces and moments on the wing only, as shown in Fig. 7.19.
Here the zero-lift line is drawn horizontally for convenience; hence, the relative
wind is inclined at the angle o, with respect to the zero-lift line, where o, is the
absolute angle of attack of the wing. Let ¢ denote the mean zero-lift chord of
the wing (the chord measured along the zero-lift line). The difference between
the zero-lift chord and the geometric chord (as defined in Chap. 5) is usually
insignificant and will be ignored here. The center of gravity for the airplane is
located a distance hc behind the leading edge, and zc above the zero-lift line, as
shown. Hence, h and z are coordinates of the center of gravity in fractions of
chord length. The aerodynamic center is a distance hac, c from the leading edge-
The moment of the wing about the aerodynamic center of the wing is denoted
by My, and the wing lift and drag are L,, and D,, respectively, as shown:
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Figure 7.19 Airfoil nomenclature and geometry.

As usual, L,, and D,, are perpendicular and parallel, respectively, to the rela-
tive wind.

We wish to take moments about the center of gravity with pitch-up moments
positive as usual. Clearly, from Fig. 7.19, L,,, Dy, and M,,, all contribute to mo-
ments about the center of gravity. For convenience, split L, and D,, into compo-
nents perpendicular and parallel to the chord. Then, referring to Fig. 7.19, we find
the moments about the center of gravity of the airplane due to the wing are

M, = My, + Ly cosay(he — hae, ) + Dy sincy, (Ac — Ry, )

+ L, sinay,zc — Dy, COS 0ty 2C 74
[Study Eq. (7.4) and Fig. 7.19 carefully, and make certain that you understand
each term before progressing further.] For the normal-flight range of a conven-

tional airplane, o, is small; hence, the approximation is made that cosa,, ~ 1
and sin o, ~ @, (Where a,, is in radians). Then Eq. (7.4) becomes

Mg, = M, + (Ly + Dyty) (B = By, )e + (Luwty — Dy)ze  (1.5)

L" ‘ | Dividing Eq. (7.5) by gooSc and recalling that Cy = M/(g-Sc), we obtain the
L moment coefficient about the center of gravity as
1 Cotce, = Crtacy + (Crow + Cpuwe)(h — ko) + (Crwetw = Cpw)z (7.6

For most airplanes, the center of gravity is located close to the zero-lift line;
hence, z is usually small (z =~ 0) and will be neglected. Furthermore, o, (in
radians) is usually much less than unity, and Cp, is usually less than Crow:

i hence, the product Cp ,,, is small in comparison to Cy 4. With these assump-
H tions, Eq. (7.6) simplifies to
j CM,cgw = CM,ac,,, + CL,w(h - hac.,,) (77)

Referring to Fig. 7.12b, we find Cy ,, = (dCr w/d)ot, = a,ay, Where a, is the
lift slope of the wing. Thus, Eq. (7.7) can be written as

‘ CM,ng - CM,acw + awaw(h - hacw) (78)
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Equations (7.7) and (7.8) give the contribution of the wing to moments about the
center of gravity of the airplane, subject of course to the previously discussed
assumptions. Closely examine Eqs. (7.7) and (7.8) along with Fig. 7.19. On a
physical basis, they state the wing’s contribution to M., is essentially due to two
factors: the moment about the aerodynamic center My, and the lift acting
through the moment arm (h — hac,)C.

These results are slightly modified if a fuselage is added to the wing. Con-
sider a cigar-shaped body at an angle of attack to an airstream. This fuselage-
type body experiences a moment about its aerodynamic center, plus some lift
and drag due to the airflow around it. Now consider the fuselage and wing
Joined together: a wing-body combination. The airflow about this wing-body
combination is different from that over the wing and body separately; aerody-
namic interference occurs where the flow over the wing affects the fuselage -
flow, and vice versa. Due to this interference, the moment due to the wing-body
combination is not simply the sum of the separate wing and fuselage moments.
Similarly, the lift and drag of the wing-body combination are affected by aero-
dynamic interference. Such interference effects are extremely difficult to predict
theoretically. Consequently, the lift, drag, and moments of a wing-body combi-
nation are usually obtained from wind tunnel measurements. Let C,, and
Ch ac,, b€ the lift coefficient and moment coefficient about the aerodynamic
center, respectively, for the wing-body combination. Analogous to Egs. (7.7)
and (7.8) for the wing only, the contribution of the wing-body combination
t0 Mg 1s

Cucg = Citacy + Cryy(h — Racy) (1.9)

=)

CM,cgwh = CM.acwb + Qupop (h — hacwb) (7.10)

where ay, and o, are the slope of the lift curve and absolute angle of attack, re-
spectively, for the wing-body combination. In general, adding a fuselage to 2
wing shifts the aerodynamic center forward, increases the lift curve slope,
contributes a negative increment to the moment about the aerodynamic centt
We emphasize again that the aerodynamic coefficients in Egs. (7.9) and (7.1
are almost always obtained from wind tunnel data.

For a given wing-body combination, the aerodynamic center lies 0.05 chord length ahe;
of the center of gravity. The moment coefficient about the aerodynamic center is —U.{%
If the lift coefficient is 0.45, calculate the moment coefficient about the center of gravi

H Solution
From Egq. (7.9),

CMVngb = CMvanh + Cwa (h — hacwb)
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B — hye,, = 0.05
Cq,, =045
Ci ey, = —0.016
Cht g, = —0.016 + 0.45(0.05) = | 0.0065

535

EXAMPLE 7.3

A wing-body model is tested in a subsonic wind tunnel. The lift is found to be zero at a
geometric angle of attack @« = —1.5°. At o = 5°, the lift coefficient is measured as 0.52.
Also, at @ = 1.0° and 7.88°, the moment coefficients about the center of gravity are mea-
sured as —0.01 and 0.03, respectively. The center of gravity is located at 0.35¢. Calculate
the location of the aerodynamic center and the value of Cy g, -

B Solution
First, calculate the lift slope:

dC 0.52 - 52
el 052-0 = 0.52 = 0.08 per degree
da 5—(-1.5) 6.5

Awp =
write Eq. (7.10),
CM.ngb = CM,acwb + Awptup(h — hacwb)

evaluated at o = 1.0° [remember that ¢ is the geometric angle of attack, whereas in
Eq. (7.10), ayy, is the absolute angle of attack]:

—0.01 = Cu,aco + 0.08(1 + 1.5) (2 — hge,,)
Then evaluate it at « = 7.88°:
0.05 = Chyac,, + 0.08(7.88 + 1.5)(h — Age,,)

The preceding two equations have two unknowns, Chy ac,, and 2 — A, . They can be
solved simultaneously.
Subtracting the second equation from the first, we get
—0.06 =0 — 0.55(h — hg,,)
—0.06

h= by, = —5ez =0.11

The value of 4 is given: & = 0.35. Thus,

hac, = 0.35 — 0.11 =

In turn, —0.01 = Cir e, + 0.08(1 4 1.5)(0.11)

Chtsewy = | —0.032

Ry,
3
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7.7 CONTRIBUTION OF THE TAIL TO M,

An analysis of moments due to an isolated tail taken independently of the air-
plane would be the same as that given for the isolated wing above. However, in
real life, the tail is obviously connected to the airplane itself; it is not isolated.
Moreover, the tail is generally mounted behind the wing; hence, it feels the wake
of the airflow over the wing. As a result, there are two interference effects that in-
fluence the tail aerodynamics:

1. The airflow at the tail is deflected downward by the downwash due to the
finite wing (see Secs. 5.13 and 5.14); that is, the relative wind seen by the
tail is not in the same direction as the relative wind V,, seen by the wing.

2. Because of the retarding force of skin friction and pressure drag over the
wing, the airflow reaching the tail has been slowed. Therefore, the velocity
of the relative wind seen by the tail is less than V.. In turn, the dynamic
pressure seen by the tail is less than g,.

These effects are illustrated in Fig. 7.20. Here V,, is the relative wind as seen
by the wing, and V' is the relative wind at the tail, inclined below V,, by the down-
wash angle ¢. The tail lift L, and drag D, are (by definition) perpendicular and par-
allel, respectively, to V'. In contrast, the lift and drag of the complete airplane are
always (by definition) perpendicular and parallel, respectively, to V.. Therefore,
considering components of L, and D, perpendicular to V,,, we demonstrate in
Fig. 7.20 that the tail contribution to the total airplane lift is L, cose — D; sins. In
many cases, € is very small, and thus L, cose — D, sine ~ L,. Hence, for all prac-
tical purposes, it is sufficient to add the tail lift directly to the wing-body lift to obtain
the lift of the complete airplane.

Consider the tail in relation to the wing-body zero-lift line, as illustrated in
Fig. 7.21. It is useful to pause and study this figure. The wing-body combination
is at an absolute angle of attack as. The tail is twisted downward to provide a
positive Cy, o, as discussed at the end of Sec. 7.5. Thus the zero-lift line of the tail
is intentionally inclined to the zero-lift line of the wing-body combination at the

Figure 7.20 Flow and force diagram in the vicinity of the tail.
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Figure 7.21 Geometry of wing-tail combination.

tail-setting angle i,. (The airfoil section of the tail is generally symmetric, for
which the tail zero-lift line and the tail chord line are the same.) The absolute
angle of attack of the tail o, is measured between the local relative wind V" and
the tail zero-lift line. The tail has an aerodynamic center, about which there is a
moment M, and through which L, and D, act perpendicular and parallel, re-
spectively, to V'. As before, V’ is inclined below V, by the downwash angle ¢;
hence, L, makes an angle o, — & with the vertical. The tail aerodynamic center
is located a distance /, behind and z, below the center of gravity of the airplane.
Make certain to carefully study the geometry shown in Fig. 7.21; it is fundamen-
tal to the derivation that follows.

Split L, and. D, into their vertical components L,cos(aw, —¢&) and
D,sin (awp, —&) and their horizontal components L,sin(ow, —¢) and
D, cos(awp — £). By inspection of Fig. 7.21, the sum of moments about the
center of gravity due to L,, D,, and M, of the tail is

My, = —1,[L; cos(ays — &) + D, sin(awp — €)]
+ z,L; sin(awy, — ) — 2, D; cos(@wp, — &) + My, (7.11)
Here, M., denotes the contribution to moments about the airplane’s center of
gravity due to the horizontal tail.

In Eq. (7.11), the first term on the right-hand side, [, L; cos(aw, — €), is by far
the largest in magnitude. In fact, for conventional airplanes, the following sim-
plifications are reasonable:

1. 7z <.

2. D, KL,

3. The angle auy, — € is small; hence, sin(ow, — €) = 0 and cos(wa — &) == 1.
[ ~ 4. M, is small in magnitude.

With the preceding approximations, which are based on experience, Eq. (7.11) is
dramatically simplified to

My, = —LL, (7.12)

Define the tail lift coefficient, based on free-stream dynamic pressure go, =
1 peo V2 and the tail planform area S,, as

(7.13)
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Combining Egs. (7.12) and (7.13), we obtain
Mg, = —1:900S:Cr, (7.14)

Dividing Eq. (7.14) by go.Sc, where ¢ is the wing chord and § is the wing plan-
form area, gives

Mcgl l! SI 1.{

85 = Ches =~ 5 Cu (7.15) [

Examining the right-hand side of Eq. (7.15), we note that [, S, is a volume char- 1
acteristic of the size and location of the tail and that ¢S is a volume characteristic |
]

of the size of the wing. The ratio of these two volumes is called the tail volume
ratio Vy, where

= b (7.16)
F=cs '
Thus, Eq. (7.15) becomes
CM.cg, = _VHCL,I (717)

The simple relation in Eq. (7.17) gives the total contribution of the tail to mo-
ments about the airplane’s center of gravity. With the preceding simplifications
and by referring to Fig. 7.21, Egs. (7.12) and (7.17) say that the moment is equal
to tail lift operating through the moment arm /,.

It will be useful to couch Eq. (7.17) in terms of angle of attack, as was done
in Eq. (7.10) for the wing-body combination. Keep in mind that the stability cri-
terion in Fig. 7.13 involves 0Cy /30, ; hence, equations in terms of «, are di-
rectly useful. Specifically, referring to the geometry of Fig. 7.21, we see that the
angle of attack of the tail is

O = Qyp — Iy — & (7.18)

Let a, denote the lift slope of the tail. Thus, from Eq. (7.18),
Cr:=a; = a,(Quwp — i; — €) (7.19)
The downwash angle ¢ is difficult to predict theoretically and is usually obtained

from experiment. It can be written as

0 ‘
E=2¢& + —SOle (720) ;
do :

where & is the downwash angle when the wing-body combination is at zero lift.}
Both gg and 3¢ /9« are usually obtained from wind tunnel data. Thus, combinin
Egs. (7.19) and (7.20) yields

ae \ )
Cri=aaw |1~ —}—al +¢&)
oo

Substituting Eq. (7.21) into (7.17), we obtain

oo

de
Chircs, = —0; VEolyp (1 - —> +a;Vy(eg +1ip)
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Equation (7.22), although lengthier than Eq. (7.17), contains the explicit depen-
dence on angle of attack and will be useful for our subsequent discussions.

7.8 TOTAL PITCHING MOMENT ABOUT
THE CENTER OF GRAVITY

Consider the airplane as a whole. The total M., is due to the contribution of the
wing-body combination plus that of the tail:

CM cg — CVM cg -+ CM,cg, (723)

Here, Cy g is the total moment coefficient about the center of gravity for the
complete airplane. Substituting Egs. (7.9) and (7.17) into (7.23), we have

Swb

CM,cg = CM,acw., + CLwh (h - hacwb) - VHCL.I (724)

In terms of angle of attack, an alternate expression can be obtained by substitut-
ing Egs. (7.10) and (7.22) into Eq. (7.23): :

a de
Crtcg = CMacys + Aubllwb |:h — Racyy, — VHa—t (1 - 3—(1)} + Vga, (i + &)
wb

(7.25)

The angle of attack needs further clarification. Referring again to Fig. 7.13,
we find the moment coefficient curve is usually obtained from wind tunnel data,
preferably on a model of the complete airplane. Hence, «, in Fig. 7.13 should be
interpreted as the absolute angle of attack referenced to the zero-lift line of the
complete airplane, which is not necessarily the same as the zero-lift line for the
wing-body combination. This comparison is sketched in Fig. 7.22. However, for
many conventional aircraft, the difference is small. Therefore, in the remainder
of this chapter, we assume the two zero-lift lines in Fig. 7.22 to be the same.

ey

Figure 7.22 Zero-lift line of the wing-body combination compared with that of the complete airplane.
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Thus, aw, becomes the angle of attack of the complete airplane ¢,. Consistent
with this assumption, the total lift of the airplane is due to the wing-body combi-
nation, with the tail lift neglected. Hence, C Lw = C and the lift slope a,;, = a,

where C; and g are for the complete airplane. With these interpretations,
Eq. (7.25) can be rewritten as

0

a &
CM,cg =t CM,ﬂCwb -+ ac, [/’l — hanb — VH;’ (1 - £)J -+ VHa,(i, + 50)

(7.26)

Equation (7.26) is the same as Eq. (7.25), except that the subscript wb on some
terms has been dropped in deference to properties for the whole airplane.

Consider the wing-body model in Example 7.3. The area and chord of the wing are 0.1 m?
and 0.1 m, respectively. Now assume that a horizontal tail is added to this model. The dis-
tance from the airplane’s center of gravity to the tail’s aerodynamic center is 0.17 m, the
tail area is 0.02 m?, the tail-setting angle is 2.7°, the tail lift slope is 0.1 per degree, and
from experimental measurement, €0 =0 and de/0a = 0.35. If @ = 7.88°, calculate
Ci.cg for the airplane model.

m Solution
From Eq. (7.26),
a de .
CM.cg = CM,acw;, +aa, |h— hacwb - VH"a— I— % + VHa!(lr + &)
where Ci.ac,, = —0.032 (from Example 7.3)
a = 0.08 (from Example 7.3)
o, =7.88+1.5=09.38° (from Example 7.3)
B~ By, = 0.11 - (from Example 7.3)
1S 0.17(0.02)
Vb=—=——""22-0.34
f7 s T 010D
a; = 0.1 per degree
d
2 035
o
I =27°
&y = 0
. 0.1
Thus, Ch.cg = —0.032 + 0.08(9.38) [0.11 —0.34 (m) 1 - 0.35)J

+0.34(0.1)(2.7 + 0)

=—0.032-0.125+0.092 = | —0.065
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7.9 EQUATIONS FOR LONGITUDINAL
STATIC STABILITY

The criteria necessary for longitudinal balance and static stability were devel-
oped in Sec. 7.5: they are (1) Cy o must be positive and (2) dC,cg/ 0t must be
~ negative, both conditions with the implicit assumption that «, falls within the
practical flight range of angle of attack; that is, the moment coefficient curve
must be similar to that sketched in Fig. 7.13. In turn, the ensuing sections devel-
oped a quantitative formalism for static stability culminating in Eq. (7.26) for
Cp.cg- The purpose of this section is to combine the preceding results to obtain
formulas for the direct calculation of Cyo and dCy,cg/0¢s. In this manner, we
will be able to make a quantitative assessment of the longitudinal static stability
of a given airplane, as well as point out some basic philosophy of airplane design.
Recall that, by definition, Cys o is the value of Cy g When o = 0, that is,
when the lift is zero. Substituting o, = 0 into Eq. (7.26), we directly obtain

Cuo = (Creg)r=0 = Cracy, + Vrar(is + €0) (7.27)

Examine Eq. (7.27). We know that C o must be positive in order to balance
the airplane. However, the previous sections have pointed out that Cyy,ac,, 15 n€g-
ative for conventional airplanes. Therefore, Vya, (i + &) must be positive and
large enough to more than counterbalance the negative Cy »c. Both Vi and a, are
positive quantities, and &g is usually so small that it exerts only a minor effect.
Thus, i, must be a positive quantity. This verifies our previous physical argu-
ments that the tail must be set at an angle relative to the wing in the manner
shown in Figs. 7.17a and 7.21. This allows the tail to generate enough negative
lift to produce a positive Cy o.

Consider now the slope of the moment coefficient curve. Differentiating
Eq. (7.26) with respect to «,, we obtain

5Che
3Cues _ [h e — Ve (1 - a_sﬂ (7.28)
a

day,

‘ : This equation clearly shows the powerful influence of the location 4 of the cen-
i | ter of gravity and the tail volume ratio Vy in determining longitudinal static
stability.

Equations (7.27) and (7.28) allow us to check the static stability of a given
airplane, assuming we have some wind tunnel data for a, a;, Cpy ac,,> €05 and
d¢/da. They also establish a certain philosophy in the design of an airplane. For
example, consider an airplane where the location % of the center of gravity is es-
sentially dictated by payload or other mission requirements. Then the desired
amount of static stability can be obtained simply by designing Vy large enough,
via Eq. (7.28). Once Vy is fixed in this manner, then the desired Cy o (or the de-
sired @, ) can be obtained by designing i, appropriately, via Eq. (7.27). Thus, the
values of Cy o and 9C g/, basically dictate the design values of i, and Vy,
respectively (for a fixed center-of-gravity location).
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Consider the wing-body-tail wind tunnel model of Example 7.4. Does this model have
longitudinal static stability and balance?

M Solution
From Eq. (7.28),

BCMCg a de
Ones gl h—hp, — Ve (1=
da,, a4 Ao B o

where, from Examples 7.3 and 7.4,

a =0.08
h — hye,, = 0.11
Vg =0.34
a; = 0.1 per degree
a3
%~ 035
do
9C g 0.1
Thus, —= =0.08{0.11 -0.34——(1 - 0.35) [ = | —0.0133
us da, { 0.08" V= 200138

The slope of the moment coefficient curve is negative; hence, the airplane model is stati-
cally stable.

However, is the model longitudinally balanced? To answer this, we must find Cp,0,
which in combination with the preceding result for 8Cy ¢,/ will yield the equilibrium
angle of attack .. From Eq. (7.27),

Cuo= CM,acw}J + Vya (i, + &)

where from Examples 7.3 and 7.4,

Cit.acyy, = —0.032
i =2.7°

Thus, Cuo = —0.032 4 0.34(0.1)(2.7) = 0.06

From Fig. 7.13, the equilibrium angle of attack is obtained from
0 = 0.06 — 0.0133¢,

Thus, o, = 4.5°

Clearly, this angle of attack falls within the reasonable flight range. Therefore, the i
plane is longitudinally balanced as well as statically stable. '
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710 NEUTRAL POINT

Consider the situation where the location 4z of the center of gravity is allowed to
move, with everything else remaining fixed. In fact, Eq. (7.28) indicates that sta-
tic stability is a strong function of 4. Indeed, the value of 3C ¢ /0, can always
be made negative by properly locating the center of gravity. In the same vein,
there is one specific location of the center of gravity such that 9Cy ¢,/0ct, = 0.
The value of 4 when this condition holds is defined as the neutral point, denoted
by h.. When h = h,, the slope of the moment coefficient curve is zero, as illus-
trated in Fig. 7.23.

The location of the neutral point is readily obtained from Eq. (7.28) by set-
ting A = h, and 0Cy /30, = 0, as follows.

3
0=a |:h,1 e, — Vi (1 - —5)} (7.29)

Solving Eq. (7.29) for h,, we have

hn = hacy, + Vi (1 - —) (7.30)
a oa

Examine Eq. (7.30). The quantities on the right-hand side are, for all practi-
cal purposes, established by the design configuration of the airplane. Thus, for a
given airplane design, the neutral point is a fixed quantity, that is, a point that is
frozen somewhere on the airplane. It is quite independent of the actual location
h of the center of gravity.

Citee

Figure 7.23 Effect of the location of the center of gravity,
relative to the neutral point, on static stability.
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The concept of the neutral point is introduced as an alternative stability cri-
terion. For example, inspection of Egs. (7.28) and (7.30) shows that 9Cp,ce /00,
is negative, zero, or positive depending on whether 4 is less than, equal to, or
greater than h,. These situations are sketched in Fig. 7.23. Remember that & is
measured from the leading edge of the wing, as shown in Fig. 7.19. Hence,
h < h, means that the center-of-gravity location is forward of the neutral point.
Thus, an alternative stability criterion is as follows:

For longitudinal static stability, the position of the center of gravity must always be
forward of the neutral point.

Recall that the definition of the aerodynamic center for a wing is that point
about which moments are independent of the angle of attack. This concept can
now be extrapolated to the whole airplane by considering again Fig. 7.23. Clearly,
when h = h,, Cy c, 1s independent of the angle of attack. Therefore, the neutral
point might be considered the aerodynamic center of the complete airplane.

Again examining Eq. (7.30), we see that the tail strongly influences the lo-
cation of the neutral point. By proper selection of the tail parameters, principally
Vu, h, can be located at will by the designer.

For the wind tunnel model of Examples 7.3 to 7.5, calculate the neutral point location.

m Solution
From Egq. (7.30),

where Ry, = 0.24 (from Example 7.3). Thus,

0.1
n=0244034( — - 0.
h 0.24 +0.3 <0.08) (1 -0.35)

h, =0.516

Note from Example 7.3 that k& = 0.35. Compare this center-of-gravity location with the
neutral point location of 0.516. The center of gravity is comfortably forward of the neutral
point; this again confirms the results of Example 7.5 that the airplane is statically stable.

7.11 STATIC MARGIN

A corollary to the preceding discussion can be obtained as follows. Solve
Eq. (7.30) for Ay, .

hanb =h, — VHﬁ <1 - a_8> <731)
a
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Static margin
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Figure 7.24 Tlustration of the static margin.

Note that in Egs. (7.29) to (7.31), the value of Vi is not precisely the same num-
ber as in Eq. (7.28). Indeed, in Eq. (7.28), V4 is based on the moment arm [, mea-
sured from the center-of-gravity location, as shown in Fig. 7.21. In conirast, in
Eq. (7.29), the center-of-gravity location has been moved to the neutral point,
and Vy is therefore based on the moment arm measured from the neutral point
location. However, the difference is usually small, and this effect will be ignored
here. Therefore, substituting Egq. (7.31) into Eq. (7.28) and canceling the terms
involving Vy, we obtain

aCM,cg
da,

The distance h, — h is defined as the static margin and is illustrated in Fig. 7.24.
Thus, from Eq. (7.32),

9Ch co
day,

=a(h —h,) (7.32)

= —a(h, — h) = —a x static margin (7.33)

Equation (7.33) shows that the static margin is a direct measure of longitu-
dinal static stability. For static stability, the static margin must be positive. More-
over, the larger the static margin, the more stable the airplane.
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For the wind tunnel model of the previous examples, calculate the static margin.

3 Solution
From Example 7.6, h, = 0.516 and 4 = 0.35. Thus, by definition,

Static margin = A, — h = 0.516 — 0.35 = | 0.166

For a check on the consistency of our calculations, consider Eq. (7.33).
0C g

Bao
This is the same value calculated in Example 7.5; our calculations are indeed consistent.

= —a X static margin = —0.08(0.166) = —0.0133 per degree

EXAMPLE 7.7
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DESIGN BOX

Let us boil down all the previous discussion to some
plain speaking about the location of the lift force act-
ing on the airplane relative to the center of gravity
when the airplane is statically stable and when it is
trimmed. Such plain speaking helps the airplane de-
signer to have a clearer concept of how to design for cg
a specified amount of stability (or instability). ® M

A diagram that is frequently shown for a stati- ac
cally stable airplane is sketched in Fig. 7.25a. Here
we will see the lift acting through a point situated be-
hind the center of gravity, and we say this is neces-
sary for static stability. But what does this really (@)
mean? What is the real significance of Fig. 7.25a?
Let us look at it more closely.

First, recall that the lift of the airplane is due to
the component of the net integrated pressure distrib-
ution exerted over the external surface of the
airplane—the wings, fuselage, tail, etc.—acting per-
pendicular to the relative wind. This pressure dis-
tribution exerts a distributed load over the whole
airplane. However, as is frequently done, we can con-
ceptualize the mechanical effect of this distributed
load by replacing it with a single concentrated force
acting through an arbitrary point plus the moments

Trimmed A Lairplanc
Mcg =0

acting about the same point. This is what is shown in ' o )
Fig. 7.25a; we show the lift as a single concentrated :
force acting through a point, and we also indicate the Figure 7.25 A diagram for static stability, with the

moments about this point. The point that is chosen in
Fig. 7.25a is the aerodynamic center of the airplane = . , D ~ :
(the neutral point). In Fig. 7.25a, the lift shown is the  negative (pitch-down) moment about the center
total lift of the airplane, including the contnbuuon *-. gravity, as shown in Fig: 7.25b. Hence, the initial te
from the tail. + dency after encountering the gust will be to pitch th
. In Sec::7.10: we demonstrated that ‘the aerody- nose down, reducing thé angle of attack and restorin
© namic center (neutral point) must be located behind - the airplane to its trimmed condition~—the precise.
the center of ‘gravity in order to. have static stablllty - tion of static stability: It isiclear from Fig. 7.25 th
We now have a simple picture in 7:25b that: ‘the lift acting‘through the aerodynannc center is
ily proves this. In Fig. 7.25a the lane i is trimmed; * hind the center of grav1ty, the aupla.ne wﬂl be st
‘thatis, M, = =0. Imagine that the alrplane cncountersf’ : -
a gust such that its‘angle of attack is mot i - 'We note in passmg that for the alrplane
creased. In turn, the Lift will mom tanl mc;rease, : Fig. 7. 25q t6 be: trimmed; MCg = 0. The lift is sho
shown in Fig. 7.25b. Here, L; is the lift before the. . ractmg through the moment:arm: (h —h)c, henct
gust, and L, is the increased lift in response to the ating a pitch-down moment about the center of grav
gust. Since the lift is acting through a point behind’ ity equal to —[(h, — h)cL]. In turn, ithe mome
the center of gravity, the increased lift results in a :about the aerodynarmc center of the alrplane M,

Lift acting behind the center of gravity.
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must be equal and opposite in order to have zero total
moments about the center of gravity.  That is,
M, must be a positive (pitch-up) moment, as shown
in Fig. 7.25a. Usually, much of this pitch-up moment
is due to a download on the tail, similar to that illus-
trated in Fig. 7.17a. If the airplane configuration
were a canard, then the positive M, would be due to
an upload on the canard, similar to that illustrated in
Fig. 7.17b: Indeed, when the airplane designer is try-
ing to make a choice between the conventional rear-
tail and the' canard configurations, this situation is

one of the advantages listed in favor of the canard. In-

Fig. 7.25, the lift shown is the total lift of the air-
plane, equal to the weight in steady, level flight. For a
conventional rear-tail configuration, the download on
the tail requires the wing to produce more lift in order
for the total lift to equal the weight. In contrast, with
the canard configuration, the upload on the canard
contributes to the overall lift, hence requiring less lift
from the wing. In turn, this reduces the induced drag
generated from the wing,

Figure 7.25 reflects a commonly shown diagram
illustrating longitudinal static ‘stability, with' the lift
shown acting behind the center of gravity. An alter-
native picture illustrating static stability is- shown in
Fig. 7.26. This picture is not so-.commonly seen, but
it is- perhaps a *“purer” explanation of the nature of
longitudinal static stability. Recall that the lift of the
airplane is due to the net integrated effect of the pres-
sure distribution acting over the entire surface of the
airplane. This pressure distribution has a centroid
(analogous to the centroid of an area or a solid, which
you calculate from differential calculus). The cen-
troid of the pressure distribution is called the center
of pressure. The centerof pressure;, bemg a centroid;
is that point about which the net moment due to' the
distributed pressure is zero. Hence, when we simu-
late the mechanical effect of the distributed pressure

distribution by a single concentrated force, it is most
natural to locate this concentrated force at the center

of -pressure.- Indeed, the center. of pressiire:can be
thought of as “that point on the airplane through
which the hft effecnvely acts.”

To be more specific, S
we can simulate the mechanical effect of the distrib- - -

La' lane
Trimmed 1P

Me=0

Center of pressure
at the cg

(@

Lajrplane

&)

L

airplane

@ )
Figure 7.26' A diagram for static stabilify, with the
lift acting at the center of pressure. .. '

uted’ pressure: loads on the airplane by first locating
the center of pressure and then drawing the lift
through this point, with zero moments about this
point. This is.the d1agram shown in F1g 7.26. More-

-wover, when the azrplane is trlmmed the center of
, pressure is preczsely located at the center of gravity.

o ckontinuéd,yén next page)
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(continued from page 547)

This is the case shown in Fig. 7.26a; with the lift act-
ing through the center of pressure and with the center
of pressure at the center of gravity, there is no mo-
ment about the center of gravity, and by definition,
the airplane is trimmed. This is what nature does.
When the airplane is trimmed, the pressure distribu-
tion over the airplane has been adjusted so that the
center of pressure is precisely at the center of gravity.

When the angle of attack of the airplane
changes, the pressure distribution over the surface
changes, and hence the center of pressure shifts—its
location is a function of the angle of attack. For lon-
gitudinal static stability, the shift in the center of pres-
sure must be in the direction shown in Fig. 7.26b. For
static stability, the shift in the center of pressure must

be rearward, to create a restoring moment about the
center of gravity, as shown in Fig. 7.26b. Similarly,
consider the originally trimmed airplane encounter-
ing a gust which decreases the angle of attack, as
shown in Fig. 7.26¢. For static stability, the shift in
the center of pressure must be forward in order to cre-
ate a restoring moment about the center of gravity, as
shown in Fig. 7.26c. Hence, a statically stable air-
plane must be designed to have the shifts of the cen-
ter of pressure in the directions shown in Fig. 7.26b -
and c. '

In summary, Figs. 7.25 and 7.26 are alternative
but equally effective diagrams to illustrate the neces- ~
sary condition for longitudinal static stability. These
figures  supplement,  and are totally consistent
with, the more detailed mathematical descriptions in
Secs. 7.6 to 7.11.

7.12 CONCEPT OF STATIC LONGITUDINAL
CONTROL

A study of stability and control is double-barreled. The first aspect—that of stability
itself—has been the subject of the preceding sections. However, for the remainder
of this chapter, the focus will turn to the second aspect—control. In regard to our
road map in Fig. 7.5, we are moving to the right-hand column. ‘
Consider a statically stable airplane in trimmed (equilibrium) flight. Recalling
Fig. 7.13, we see that the airplane must therefore be flying at the trim angle of attack
.. In turn, this value of a, corresponds to a definite value of lift coefficient,
namely, the trim lift coefficient C; . For steady, level flight, this corresponds to ,
a definite velocity, which from Eq. (6.26) is

2w

T (7.34
pooSCme

Vieim =

Now assume that the pilot wishes to fly at a lower velocity Vi < Viim- At ¢
lower velocity, the lift coefficient, hence the angle of attack, must be increased
offset the decrease in dynamic pressure (remember from Chap. 6 that the lift mus
always balance the weight for steady, level flight). However, from Fig. 7.13, ifﬂ
is increased, Cy o becomes negative (i.e., the moment about the center of gra‘{lt}'
is no longer zero), and the airplane is no longer trimmed. Consequently, if pothin
else is changed about the airplane, it cannot achieve steady, level, equilibrium”
flight at any other velocity than Vi, or at any other angle of attack than .-
Obviously, this is an intolerable situation—an airplane must be able t(
change its velocity at the will of the pilot and still remain balanced. The only W&
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CM,cg
CM, cg

Figure 7.27 Change in trim angle of Figure 7.28 Change in trim angle of attack
attack due to change in slope of moment due to change in Cyyg.
coefficient curve.

to accomplish this is to effectively change the moment coefficient curve for the
airplane. Say that the pilot wishes to fly at a faster velocity but still remain in
steady, level, balanced flight. The lift coefficient must decrease, hence a new
angle of attack «, must be obtained, where «, < .. At the same time, the moment
coefficient curve must be changed such that Cy ¢, =0 at «,. Figures 7.27
and 7.28 demonstrate two methods of achieving this change. In Fig. 7.27, the
slope is made more negative, such that Cy ¢, goes through zero at ,. From
Eq. (7.28) or (7.32), the slope can be changed by shifting the center of gravity. In
our example, the center of gravity must be shifted forward. Otto Lilienthal (see
Sec. 1.5) used this method in his gliding flights. Figure 1.15 shows Lilienthal
hanging loosely below his glider; by simply swinging his hips, he was able to
shift the center of gravity and change the stability of the aircraft. This principle
is carried over today to the modern hang gliders for sports use.

However, for a conventional airplane, shifting the center of gravity is highly
impractical. Therefore, another method for changing the moment curve is employed,
as shown in Fig. 7.28. Here, the slope remains the same, but Cj ¢ is changed
such that Cyr g = O at o, This is accomplished by deflecting the elevator on the
horizontal tail. Hence, we have arrived at a major concept of static, longitudinal
control, namely, that the elevator deflection can be used to control the trim angle
of attack, hence to control the equilibrium velocity of the airplane.

Consider Fig. 7.28. We stated earlier, without proof, that a translation of the
moment curve without a change in slope can be obtained simply by deflecting the
elevator. But how and to what extent does the elevator deflection change C Mig?
To provide some answers, first consider the horizontal tail with the elevator fixed
in the neutral position, that is, no elevator deflection, as shown in Fig. 7.29. The
absolute angle of attack of the tail is «,, as defined earlier. The variation of tail lift
coefficient with «; is also sketched in Fig. 7.29; note that it has the same general
shape as the airfoil and wing lift curves discussed in Chap. 5. Now assume that
the elevator is deflected downward through angle 8., as shown in Fig. 7.30. This is the
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Figure 7.29 Tail lift coefficient curve with no elevator
deflection.
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Figure 7.30 Tail lift coefficient with elevator deflection.

same picture as a wing with a deflected flap, as discussed in Sec. 5.17. Consequently,
just as in the case of a deflected flap, the deflected elevator causes the tail lift co-
efficient curve to shift to the left, as shown in Fig. 7.30. By convention (and for
convenience later), a downward elevator deflection is positive. Therefore, if the
elevator is deflected by an angle of, say, 5° and then held fixed as the complete
tail is pitched through a range of «,, then the tail lift curve is translated to the left.
If the elevator is then deflected farther, say to 10°, the lift curve is shifted even
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Figure 7.31 Tail lift coefficient versus elevator deflection at constant
angle of attack; a cross-plot of Fig. 7.30.

farther to the left. This behavior is clearly illustrated in Fig. 7.30. Note that for all
the lift curves, the slope 3Cy /0, is the same.

With the preceding discussion in mind, now consider the tail at a fixed angle
of attack, say, («,);. If the elevator is deflected from, say, 0 to 15°, then C; , will
increase along the vertical dashed line in Fig. 7.30. This variation can be cross-
plotted as C; , versus §,, as shown in Fig. 7.31. For most conventional airplanes, the
curve in Fig. 7.31 is essentially linear, and its slope dC /33, is called the elevator
control effectiveness. This quantity is a direct measure of the “strength” of the ele-
vator as a control; because 8, has been defined as positive for downward deflections,
9Cy /38, is always positive.

Consequently, the tail lift coefficient is a function of both «, and 8, (hence,

. the partial derivative notation is used, as discussed earlier). Keep in mind that,
‘ B physically, 8C , /0« is the rate of change of C; , with respect to «,, keeping &,
. E constant; similarly, 8C; /34, is the rate of change of C,, with respect to 4.,
L keeping «, constant. Hence, on a physical basis,
0CyL, 0Cr,
Cr; = ' — 8, 7.35
Lt da, a, 38, ( )
E Recalling that the tail lift slope is ¢, = 3C, ,/da,, we see that Eq. (7.35) can be
ﬂ written as
! acC
Cr.=awa, + WL[ 3. (7.36)

Substituting Eq. (7.36) into (7.24), we have for the pitching moment about the
center of gravity

T S PP Ty op TR s O PR - 3 ST

aC
Curtcg = Criacy, + Crown(h — hye) — Vi (a,a, + B(SLJ 8e> (7.37)

Equation (7.37) gives explicitly the effect of elevator deflection on moments
i about the center of gravity of the airplane.

%, The rate of change of Cy, ., due only to elevator deflection is, by definition,
1 0Cp.cg/08.. This partial derivative can be found by differentiating Eq. (7.37)
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with respect to §,., keeping everything else constant.

0Cw ce 9Cy,
IoMeg _ _y , 7.
38, 7758, (7.38)

Note that, from Fig. 7.31, 8C, , /94, is constant; moreover, Vy is a specific value
for the given airplane. Thus, the right-hand side of Eq. (7.38) is a constant.
Therefore, on a physical basis, the increment in Cy ¢, due only to a given elevator
deflection §, is

aCL't
94,

Equation (7.39) now answers the questions asked earlier concerning how
and to what extent the elevator deflection changes Cy ;. Consider the moment
curve labeled 6, = O in Fig. 7.32. This is the curve with the elevator fixed in the
neutral position; it is the curve we originally introduced in Fig. 7.13. If the elevator
is now deflected through a positive angle (downward), Eq. (7.39) states that all
points on this curve will be shifted down by the constant amount ACy, ... Hence,
the slope of the moment curve is preserved; only the value of C ¢ is changed by
elevator deflection. This now proves our earlier statement made in conjunction
with Fig. 7.28.

For emphasis, we repeat the main thrust of this section. The elevator can be
used to change and control the trim of the airplane. In essence, this controls the
equilibrium velocity of the airplane. For example, by a downward deflection of
the elevator, a new trim angle «, smaller than the original trim angle «, can be
obtained. (This is illustrated in Fig. 7.32.) This corresponds to an increase in velocity
of the airplane.

As another example, consider the two velocity extremes—stalling velocity
and maximum velocity. Figure 7.33 illustrates the elevator deflection necessary to

ACp g = —Vy

8. (7.39)

CM,cg

Original Cy o

New Cys ¢
Original trim angle of attack

New trim angle of attack

Figure 7.32 Effect of elevator deflection on moment coefficient.
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Figure 7.33 Elevator deflection required for trim at (a) low flight velocity and (b) high flight velocity.

trim the airplane at these two extremes. First consider Fig. 7.33a, which corresponds
to an airplane flying at V,, & V;;. This would be the situation on a landing approach,
for example. The airplane is flying at C,_, ; hence, the angle of attack is large.
Therefore, from our previous discussion, the airplane must be trimmed by an
up-elevator position, that is, by a negative §,. On the other hand, consider Fig. 7.33b,
which corresponds to an airplane flying at V,,, &~ Vi, (near full throttle). Because
deo 18 large, the airplane requires only a small C, to generate the required lift
force; hence, the angle of attack is small. Thus, the airplane must be trimmed by
a down-elevator position, that is, by a positive §,.

© 1 7.3 CALCULATION OF ELEVATOR
o ANGLE TO TRIM

The concepts and relations developed in Sec. 7.12 allow us now to calculate the
1 precise elevator deflection necessary to trim the airplane at a given angle of attack.
i | Consider an airplane with its moment coefficient curve given as in Fig. 7.34. The
b equilibrium angle of attack with no elevator deflection is c,. We wish to trim the
airplane at a new angle of attack o,,. What value of §, is required for this purpose?

To answer this question, first write the equation for the moment curve with
8. = O (the solid line in Fig. 7.34). This is a straight line with a constant slope
i ‘ equal to dCycg/ 0, and intercepting the ordinate at Cy 0. Hence, from analytic
: ] geometry, the equation of this line is

3Ch,cq
oo,

CM,cg = CM’() + [ 2 (740)

| Now assume the elevator is defiected through an angle 8,. The value of Cyy ¢ will
j change by the increment ACy, ,, and the moment equation given by Eq. (7.40)
is now modified as

0Cu cq

CM,cg = CM,O + o, + ACM,cg (741)

a
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Cu \C8

Cur,o

Figure 7.34 Given the equilibrium angle of attack at zero
elevator deflection, what elevator deflection is necessary to
establish a given new equilibrium angle of attack?

The value of ACu ; Was obtained earlier as Eq. (7.39). Hence, substituting

Eq. (7.39) into (7.41), we obtain
9C M cg o — Vi aCL,
g, 94,
Equation (7.42) allows us to calculate Cy ¢ for any arbitrary angle of attack
o, and any arbitrary elevator deflection §,. However, we are interested in the
specific situation where Cp ey = 0 atag = Qn and where the value of §, necessary
to obtain this condition is 8, = Suim. That is, we want t0 find the value of &,
which gives the dashed line in Fig. 7.34. Substituting the preceding values into

Eq. (7.42), we have

Se (7.42)

CM.cg - CM,O +

8CM,cg 8CL,r
oy — VH
00, a8,

‘Strim

0=Cuo+

and solving for Syim, We obtain

_ CM,O + (aCM,cg/aaa)an

Suim = 7.43)
i Va(3CL.,/057) (

Equation (7.43) is the desired result. It gives the elevator deflection necessary to
trim the airplane at a given angle of attack .. In Eq. (7.43), Vj 1s a known value
from the airplane design, and Ca,0, dC.cq/00a, and 3Cy /38, are known values
usually obtained from wind tunnel or free-flight data.

Consider a full-size airplane with the same aerodynamic and design characteristics as the
wind tunnel model of Examples 7.3 to 7.7. The airplane has a wing area of 19 m’, 8
weight of 2.27 x 10* N, and an elevator control effectiveness of 0.04. Calculate the elevator
defiection angle necessary to trim the airplane at a velocity of 61 m/s at sea level.
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® Solution
First, we must calculate the angle of attack for the airplane at Vo, = 61 mvs. Recall that
2w 2(2.27 x 10%)

C.= = =0.52
LT peVZS T 1.225(61)2(19)

From Example 7.3, the lift slope is @ = 0.08 per degree. Hence, the absolute angle of attack
of the airplane is

C .
Uy = —L = % =6.5°
a 0.08
From Eg. (7.43), the elevator deflection angle required to trim the airplane at this angle of

attack is
CM,O + (BCM,cg/aaa)an

e = Y 3G, /950)
where Cuo =0.06 (from Example 7.5)
%‘:—g = —0.0133 (from Example 7.5)
o, = 6.5° (this is the o, calculated previously)
Ve =034 (from Example 7.4)
aBC;SLeJ =0.04 (given in the preceding information)

Thus, from Eq. (7.43),

0.06 + (—0.0133)(6.5) -
Btrim = = | —1.94°
‘ 0.34(0.04) -

Recall that positive § is downward. Hence, to trim the airplane at an angle of attack of
6.5°, the elevator must be deflected upward by 1.94°.
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7.14 STICK-FIXED VERSUS STICK-FREE
STATIC STABILITY

The second paragraph of Sec. 7.5 initiated our study of arigid airplane with fixed
controls, for example, the elevator fixed at a given deflection angle. The ensuing
sections developed the static stability for such a case, always assuming that the
elevator can be deflected to a desired angle 8, but held fixed at that angle. This is
the situation when the pilot (human or automatic) moves the control stick to a
given position and then rigidly holds it there. Consequently, the static stability
that we have discussed to this point is called stick-fixed static stabiliry. Modern
high-performance airplanes designed to fly near or beyond the speed of sound
have hydraulically assisted power controls; therefore, a stick-fixed static stability
analysis is appropriate for such airplanes.
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However, consider a control stick connected to the elevator via wire cables
without a power boost of any sort. This was characteristic of most early airplanes
until the 1940s and is representative of many light, general aviation, private aircraft
of today. In this case, to hold the stick fixed in a given position, the pilot must
continually exert a manual force. This is uncomfortable and impractical. Conse-
quently, in steady, level flight, the control stick is left essentially free; in turn, the
elevator is left free to float under the influence of the natural aerodynamic forces
and moments at the tail. The static stability of such an airplane is therefore called
stick-free static stability. This is the subject of Secs. 7.15 and 7.16.

7.15 ELEVATOR HINGE MOMENT

Consider a horizontal tail with an elevator that rotates about a hinge axis, as .
shown in Fig. 7.35. Assume the airfoil section of the tail is symmetric, which 1s "»
almost always the case for both the horizontal and vertical tail. First, consider the
tail at zero angle of attack, as shown in Fig. 7.35a. The aerodynamic pressure
distribution on the top and bottom surfaces of the elevator will be the same, that s,
symmetric about the chord. Hence, there will be no moment exerted on the elevator
about the hinge line. Now assume that the tail is pitched to the angle of attack o,
but the elevator is not deflected; that is, §, = 0. This is illustrated in Fig. 7.35b.
As discussed in Chap. 5, there will be a low pressure on the top surface of the air-
foil and a high pressure on the bottom surface. Consequently, the aerodynamic
force on the elevator will not be balanced, and there will be a moment about the
hinge axis tending to deflect the elevator upward. Finally, consider the horizon-
tal tail at zero angle of attack but with the elevator deflected downward and held
fixed at the angle 8., as shown in Fig. 7.35¢. Recall from Sec. 5.17 that a flap de-
flection effectively changes the camber of the airfoil and alters the pressure dis-
tribution. Therefore, in Fig. 7.35¢, there will be low and high pressures on the
top and bottom elevator surfaces, respectively. As a result, a moment will again
be exerted about the hinge line, tending to rotate the elevator upward. Thus, we
see that both the tail angle of attack o, and the elevator deflection §, result in a
moment about the elevator hinge line—such a moment is defined as the elevator
hinge moment. It is the governing factor in stick-free static stability, as discussed
in Sec. 7.16.

Let H, denote the elevator hinge moment. Also, referring to Fig. 7.36, we
see the chord of the tail is c,, the distance from the leading edge of the elevator
to the hinge line is c;, the distance from the hinge line to the trailing edge is Ce»
and that portion of the elevator planform area that lies behind (aft of) the hinge
line is S,. The elevator hinge moment coefficient Cj, is then defined as

C H.
P
LpooV2Sece

(144)

where V,, is the free-stream velocity of the airplane.
Recall that the elevator hinge moment is due to the tail angle of attack and
the elevator defiection. Hence, C,, is a function of both «, and &,. Moreover
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experience has shown that at both subsonic and supersonic speeds, Cj, is approx- ' ,
imately a linear function of «, and §,. Thus, recalling the definition of the partial
derivative in Sec. 7.2.4, we can write the hinge moment coefficient as

0Cy, Ch,

Cp = —= 8, 7.4 ;
= e 4T s, (7.45) :

where C},, /3, and 9C),_ /08, are approximately constant. However, the actual
magnitudes of these constant values depend in a complicated way on ¢, /¢,
¢y /¢, the elevator nose shape, gap, trailing-edge angle, and planform. Moreover,
H, is very sensitive to local boundary layer separation. As a result, the values of ! :
the partial derivatives in Eq. (7.45) must almost always be obtained empirically,
such as from wind tunnel tests, for a given design.

Consistent with the convention that downward elevator deflections are positive,
hinge moments that tend to defiect the elevator downward are also defined as
positive. Note from Fig. 7.35b that a positive «, physically tends to produce a
negative hinge moment (tending to deflect the elevator upward). Hence,
9C;, /9, is usually negative. (However, if the hinge axis is placed very far back,
near the trailing edge, the sense of H, may become positive. This is usually not
done for conventional airplanes.) Also, note from Fig. 7.35¢ that a positive &,
usually produces a negative H,; hence, dC,, /34, is also negative. ‘

PN

i

7.16 STICK-FREE LONGITUDINAL
STATIC STABILITY

Let us return to the concept of stick-free static stability introduced in Sec. 7.14. If
the elevator is left free to float, it will always seek some equilibrium defiection
angle such that the hinge moment is zero; thatis, H, = 0. This is obvious, because
as long as there is a moment on the free elevator, it will always rotate. It will come
to rest (equilibrium) only for that position where the moment is zero.

Recall our qualitative discussion of longitudinal static stability in Sec. 7.5.
Imagine that an airplane is flying in steady, level flight at the equilibrium angle-
of attack. Now assume the airplane is disturbed by a wind gust and is momentarily
pitched to another angle of attack, as sketched in Fig. 7.14. If the airplane is sta-
tically stable, it will initially tend to return toward its equilibrium position. In.
subsequent sections, we saw that the design of the horizontal tail was a powerﬁll
mechanism governing this static stability. However, until now, the elevator wa
always considered fixed. But if the elevator is allowed to float freely when th
airplane is pitched by some disturbance, the elevator will seek some momentar
equilibrium position different from its position before the disturbance. This de
flection of the free elevator will change the static stability characteristics of Fh
airplane. In fact, such stick-free stability is usually less than stick-fixed stability
For this reason, it is usually desirable to design an airplane such that the difference
between stick-free and stick-fixed longitudinal stability is small.

With this in mind, consider the equilibrium deflection angle of a free eleva
tor. Denote this angle by 8., as sketched in Fig. 7.37. At this angle, H, =
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v o1

Figure 7.37 Hlustration of free elevator deflection.

Thus, from Eq. (7.45),

aCh aCy,
C, =0= < —— e 7.46
he s, T s, O (7.46)
Solving Eq. (7.46) for 8. gives
o0C, /d
S = — S Shel 0% (7.47)
3Cy, /93,

Equation (7.47) gives the equilibrium, free-floating angle of the elevator as a
function of tail angle of attack. As stated earlier, both partial derivatives in
Eq. (7.47) are usually negative; hence, a positive «, yields a negative Sree (an
upward deflection). This is intuitively correct, as verified by Fig. 7.37, which
shows a negative Sgee.

Obviously, 8¢ affects the tail lift coefficient, which, in turn, affects the static
stability of the airplane. The tail lift coefficient for angle of attack c«, and fixed-
elevator deflection 8, was given in Eq. (7.36), repeated here:

aCyr

—=Ls,
08,

Cr,=auo +

However, for a free elevator, 8, = 8gee. Denoting the tail lift coefficient for a free

’

elevator as C; ,, we see that a substitution of Eq. (7.47) into (7.36) gives

% aCy,
‘ y Cz,t = a,Q; + 88_@—[ 6free
, aCy, 0Cp,/0a,
Cro=att — ——— s X

35, 9Cy, /08,

or Crr=aF (7.48)

where F is the free elevator factor, defined as

1 3CL, aCy, /0,

F=1 kel
a 05, 0Ch /933,
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The free elevator factor is a number usually less than unity and usually on the order
of 0.7 to 0.8. It represents a reduction in the tail’s contribution to static stability when
the elevator is free. The magnitude of this reduction is developed in the following.

Consider now the moment about the center of gravity of the airplane. For a
fixed elevator, the moment coefficient is given by Eq. (7.24),

CM,cg = CM,acwb + Cwa (h - hacwb) - VHCL,I

For a free elevator, the tail lift coefficient is now changed to C; ,. Hence, the mo-
ment coefficient for a free elevator Cy, , is

Crtce = Choacu + Crop(h = hac,,) — VuCl, (7.49)
Substituting Eq. (7.48) into (7.49), we get

Cl/\/l,cg =Cupmacy, + Cr,,(h — ha,) — Vya,o, F (7.50)

Equation (7.50) gives the final form of the moment coefficient about the center
of gravity of the airplane with a free elevator.

By using Eq. (7.50), the same analyses as given in Sec. 7.9 can be used to obtain %
equations for stick-free longitudinal static stability. The results are as follows:

Cllw,o = Cumac,, + FVua,(i; + o) (7.51)
3
B = R, + FVg <1 - —8> (7.52)
a Jda
3Cl ..
——= =—ah, —h) (7.53)
Ja

Equations (7.51), (7.52), and (7.53) apply for stick-free conditions, denoted by
the prime notation. They should be compared with Egs. (7.27), (7.30), and (7.33),
respectively, for stick-fixed stability. Note that &, — & is the stick-free static margin;
because I < 1.0, this is smaller than the stick-fixed static margin.

Hence, it is clear from Eqgs. (7.51) to (7.53) that a free elevator usually de-
creases the static stability of the airplane.

Consider the airplane of Example 7.8. Its elevator hinge moment derivatives ar¢
dCh, /80, = ~0.008 and 8Cy, /88, = —0.013. Assess the stick-free static stability of this
airplane.

H Solution
First, obtain the free elevator factor F, defined from Eq. (7.48),

1 9CL, 9Ch, /day

F=1- kO
a 05, 9Cy, /a6,
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where a, = 0.1 (from Example 7.4)
a;:;” = 0.04 (from Example 7.8)
1 —0.008
F=1-—(0.04 = 0.754
0.1(0 )<—0.013)

The stick-free static stability characteristics are given by Egs. (7.51) to (7.53). First, from
Eg. (7.51),

C;VI,O = CM,acwb + FVga, (i, + 5‘0)
where Ciacwy, = —0.032  (from Example 7.3)

Vg =0.34 (from Example 7.4)
i =27° (from Example 7.4}

g =0 (from Example 7.4)
Thus, C?w,o = —0.032 + 0.754(0.34)(0.1)(2.7)
Cjw,o = 0.037

This is to be compared with Cy o = 0.06 obtained for stick-fixed conditions in Example 7.5.
From Eq. (7.52),

, a de
by, =hacy + FVp—|1— —
a o
where hac,, = 0.24  (from Example 7.3)
0
8—2 =0.35 (from Example 7.4)

a =0.08 (from Example 7.4)

0.1
h! =024+ 0.754(0.34) | — } (1 —0.35
n + 0.3 )(0.08>( )

R R AR e R R e

h! = 0.448

A P

This is to be compared with A, = 0.516 obtained for stick-fixed conditions in Exam-
ple 7.6. Note that the neutral point has moved forward for stick-free conditions, hence de-
creasing the stability. In fact, the stick-free static margin is

h —h =0.448 — 0.35 = 0.098

This is a 41 percent decrease, in comparison with the stick-fixed static margin from Ex-
ample 7.7. Finally, from Eq. (7.53),

0C )y cq

FPaa —a(h), — h) = —0.08(0.098) = | —0.0078

561



562

CHAPTER 7 Principles of Stability and Control

Thus, as expected, the slope of the stick-free moment coefficient curve, although still
negative, is small in absolute value. '

In conclusion, this problem indicates that stick-free conditions cut the static stability
of our hypothetical airplane by nearly one-half. This helps to dramatize the differences
between stick-fixed and stick-free considerations.

=

(a) No yaw (b) Yaw to the right (c) Yaw to the left

Figure 7.38 Effect of the vertical stabilizer on directional stability.

7.17 DIRECTIONAL STATIC STABILITY

Returning to Fig. 7.2, we note that the preceding sections have dealt with longi-
tudinal stability and control, which concerns angular motion about the y axis—
pitching motion. In this section, we briefly examine the stability associated with
angular motion about the z axis—yawing motion. Stability in yaw is called di-
rectional stability. In regard to our road map in Fig. 7.5, we are moving to the
second box at the bottom of the left-hand column.

Examining Fig. 7.3, we see the vertical stabilizer (vertical fin, or vertical tail)
is the conventional mechanism for directional stability. Its function is easily seen
in Fig. 7.38. Consider an airplane in equilibrium flight with no yaw, as sketched in
Fig. 7.38a. The vertical tail, which is designed with a symmetric airfoil section, is
at zero angle of attack to the free stream, and it experiences no net aerodynamic
force perpendicular to V. Assume the airplane is suddenly yawed to the right by
a disturbance, as shown in Fig. 7.38b. The vertical tail is now at an angle of attack
6 and experiences an aerodynamic force F,, perpendicular to V.. This force cre-
ates a restoring yawing moment about the center of gravity that tends to rotate the
airplane back toward its equilibrium position. The same situation prevails when the
airplane is yawed to the left by a disturbance, as sketched in Fig. 7.38c.
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" For conventional airplanes, typical values of V,; are . These numbers are considerably smaller than typical

. given by Raymer (see Bibliography) as follows: - values.of Vi, which range from 0.4 to 1.0 (in Exam-
: V. ple 7.4, weused Vy = 0.34), because of the use of b
e L . v rather than ¢ in the definition of V.
General aviation, single-engine 0.04 - :
Twin turboprop ; 0.08
Jet fighter : 0.07

Jet transport i 0.09:

Figure 7.39 Moment arm of the vertical tail.

The magnitude of the restoring moment in yaw is equal to Foilyr, where [, 1s
the moment arm from the aerodynamic center of the vertical tail to the airplane’s
center of gravity, as shown in Fig. 7.39. Since the aerodynamic force on the ver-
tical tail F,, is proportional to the area of the vertical tail S,,, shown as the shaded
area in Fig. 7.39, the design parameter governing directional stability can be
shown to be the vertical tail volume ratio, defined as

1S,
1 Vertical tail volume ratio = V,, = = (7.54)

bS

where b is the wingspan and S is the wing planform area. The definition of V, in
Eq. (7.54) is similar to the definition of the horizontal tail volume ratio Vy de-
fined by Eq. (7.16), except that V,, uses b rather than the chord ¢ as the nondi-
mensionalizing length in the denominator.

7.18 LATERAL STATIC STABILITY

Return to Fig. 7.2. In this section we briefly examine the stability associated with
angular motion about the x axis—rolling motion. Stability in roll is called lateral
stability. In regard to our road map in Fig. 7.5, we are moving to the third box at
the bottom of the left-hand column.

Consider an airplane in steady, level flight. Let us take a view of this airplane
from behind, looking in the direction of flight, as sketched in Fig. 7.40a. The lift
equals the weight. They act equal and opposite to each other; there is no net side

g
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L

Figure 7.40 Generation of slideslip. Figure 7.41 Effect of dihedral.

force. The airplane is suddenly perturbed by a gust that causes the right wing to
dip; that is, a roll to the right ensues. This is sketched in Fig. 7.40b. The lift vec-
tor is now rotated from the vertical through angle ¢, called the bank angle. The
vector resolution of L and W results in a side force F , which causes the airplane -
to accelerate in the direction of F. This sidewise motion of the airplane is called .
a slideslip. Relative to the airplane, there appears a slideslip velocity Vs, shown
in Fig. 7.40p.

Consider the effect of this slideslip velocity on the lift generated by the right
and left wings. This is illustrated in Fig. 7.41. In Fig. 7.41a, the airplane is shown
with the right and left wings in the same plane, perpendicular to the plane of
symmetry of the fuselage. Let L, and L, be the lift generated by the right and left‘
wings, respectively. The slideslip velocity Vi will affect the lift generated by
each wing, but since the two wings are in the same plane, Vs makes the same
angle 8 with respect to both wings; therefore, L, = L,, as shown in Fig. 7.41a.
As a result, there is no restoring moment to return the airplane to its original
equilibrium position, shown in Fig. 7.40a. However, consider the case where
both wings are bent upward through angle I, as shown in Fig. 7.41b; that is, the;
wings are designed with a V shape. This is called dihedral, and T" is the dihedf?-l :



PESIGN BOX

For a given airplane design; the amotint. of thedral :
depends on:the: location of the wing relative to the -
fuselage, that is, low-wing, midwing, or high-wing
location. The schematics in Figs. 7.40 and 7.41 show: -
a low-wing design. More dihedral is needed for a..
~'low-wing_ position than for a midwing or high-wing.

position. Also, a swept-back wing requires less dihe-
dral than a straight wing, Some degree of lateral sta-

but too much makes the airplane very sluggish to
aileron control 1nputs “Indeed, the combination of

mid- or high-wing location along with yswe,cpback;
~ may have too much inherent lateral stability, and an--

hedral (negative dihedral) must be used to counteract
some of this. Raymer (see Bibliography) gives:the
following typical values of dihedral (and anhedral)
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Wing Position
: osniep Low -Middle . High
Unswept (civil) 5t07 -2to4  0Oto2

Subsonic swept wing ~ 3to7 —2t02 —5to-2

Supersonic swept wing' . 0:to.5 —5to0 ~5t00

The amount.of dlhedral shownin Fig. 7.41b is greatly
 bility is usually necessary in conventional airplanes.

exaggerated for the purpose of illustration. The
amount of dihedral (or anhedral) for some actual air-

" planes can be seen from the three views shown earlier

in this book, that is, the F-86- (Fig. 2.15), the F4U
Corsair (Fig.  2:16), ‘the X-29 (Fig. 2.19), the F3F

(Fig. 2.20), the F-104 (Fig. 4.45), the X-1 (Fig. 5.28),

the U-2 (Fig. 5.49), the English Electric Lightning

_(Fig. 5.58), the Mirage C (Fig. 5.62), the Concorde

(Fig. 5.63), and the P-38 (Fig. 7.42).

angle (in degrees) for various classes of airplanes:

angle. Here, the slideslip velocity makes an angle 6, with respect to the right
wing and a larger angle 6, with respect to the left wing. As a result, the lift on the
left wing L, is smaller than the 1ift on the right wing, and this creates a restoring
rolling moment that tends to return the airplane to its equilibrium position, as
shown in Fig. 7.41b. Hence, dihedral is the design feature of the airplane that
provides lateral stability.

B There are more sophisticated explanations of the dihedral effect. Also, there
‘ | is always a coupling between yawing and rolling motion, so that one does not
4 occur without the other. It is beyond the scope of this book to go into these mat-
ters further. You will examine these effects when you embark on a more ad-
E vanced study of stability and control. The function of this section and Sec. 7.17
3 has been only to introduce some of the most basic thoughts about directional and
lateral stability.

719 A COMMENT

This brings to a close our technical discussion of stability and control. The pre-
' ceding sections constitute an introduction to the subject; however, we have just
: scratched the surface. There are many other considerations: control forces, dy-
namic stability, etc. Such matters are the subject of more advanced studies of sta-
bility and control and are beyond the scope of this book. However, this subject is
one of the fundamental pillars of aeronautical engineering, and the interested
reader can find extensive presentations in books such as those of Perkins and
Hage, and Etkin (see Bibliography at the end of this chapter).
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7.20 HISTORICAL NOTE: THE WRIGHT BROTHERS
VERSUS THE EUROPEAN PHILOSOPHY
ON STABILITY AND CONTROL

The two contrasting scenes depicted in Sec. 7.1—the lumbering, belabored flight
of Farman versus the relatively effortless maneuvering of Wilbur Wright—
underscore two different schools of aeronautical thought during the first decade
of powered flight. One school, consisting of virtually all early European and
U.S. aeronautical engineers, espoused the concept of inherent stability (statically
stable aircraft); the other, consisting solely of Wilbur and Orville Wright, prac-
ticed the design of statically unstable aircraft that had to be controlled every
instant by the pilot. Both philosophies have their advantages and disadvantages,
and because they have an impact on modern airplane design, we examine their
background more closely.

The basic principles of airplane stability and control began to evolve at the
time of George Cayley. His glider of 1804, sketched in Fig. 1.8, incorporated a
vertical and horizontal tail that could be adjusted up and down. In this fashion,
the complete tail unit acted as an elevator.

'The next major advance in airplane stability was made by Alphonse Penaud,
a brilliant French aeronautical engineer who committed suicide in 1880 at the
age of 30. Penaud built small model airplanes powered by twisted rubber bands,
a precursor of the flying balsa-and-tissue paper models of today. Penaud’s design
had a fixed wing and tail, like Cayley’s, even though at the time Penaud was not
aware of Cayley’s work. Of particular note was Penaud’s horizontal tail design,
which was set at a negative 8° with respect to the wing chord line. Here we find
the first true understanding of the role of the tail-setting angle i, (see Secs. 7.5
and 7.7) on the static stability of an airplane. Penaud flew his model in the Tui-
leries Gardens in Paris on August 18, 1871, before members of the Société de
Navigation Aérienne. The aircraft flew for 11 s, covering 131 ft. This event,
along with Penaud’s theory for stability, remained branded on future aeronauti-
cal designs right down to the present. !

After Penaud’s work, the attainment of “inherent” (static) stability became
a dominant feature in aeronautical design. Lilienthal, Pilcher, Chanute, and
Langley all strived for it. However, static stability has one disadvantage: The
more stable the airplane, the harder it is to maneuver. An airplane that is highly
stable is also sluggish in the air; its natural tendency to return to equilibrium
somewhat defeats the purpose of the pilot to change its direction by means of
control deflections. The Wright brothers recognized this problem in 1900. Since
Wilbur and Orville were airmen in the strictest meaning of the word, they aspired -
for quick and easy maneuverability. Therefore, they discarded the idea of
inherent stability that was entrenched by Cayley and Penaud. Wilbur wrote that
“we . . . resolved to try a fundamentally different principle. We would arrange the
machine so that it would not tend to right itself.” The Wright brothers designed
their aircraft to be statically unstable! This feature, along with their developm@f}t
of lateral control through wing warping, is primarily responsible for the fantast)
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7.21 Historical Note: The Development of Flight Controls

aerial performance of all their airplanes from 1903 to 1912 (when Wilbur died).
Of course, this design feature heavily taxed the pilot, who had to keep the
airplane under control at every instant, continuously operating the controls to
compensate for the unstable characteristics of the airplane. Thus, the Wright
airplanes were difficult to fly, and long periods were required to train pilots for
these aircraft. In the same vein, such unstable aircraft were more dangerous.
These undesirable characteristics were soon to be compelling. After
Wilbur’s dramatic public demonstrations in France in 1908 (see Sec. 1.8), the
~ European designers quickly adopted the Wrights’ patented concept of combined
lateral and directional control by coordinated wing warping (or by atlerons) and
rudder deflection. But they rejected the Wrights’ philosophy of static instability.
By 1910, the Europeans were designing and flying aircraft that properly mated
the Wrights’ control ideas with the long-established static stability principles.
However, the Wrights stubbornly clung to their basic unstable design. As a result,
by 1910 the European designs began to surpass the Wrights’ machines, and the
lead in aeronautical engineering established in the United States in 1903 now
swung to France, England, and Germany, where it remained for almost 20 years.
In the process, static stability became an unquestioned design feature in all
successful aircraft up to the 1970s.

It is interesting that very modern airplane design has returned full circle to
the Wright brothers’ original philosophy, at least in some cases. Recent light-
weight military fighter designs, such as the F-16 and F-18, are statically unstable
, in order to obtain dramatic increases in maneuverability. At the same time, the
“ airplane is instantaneously kept under control by computer-calculated and elec-
s trically adjusted positions of the control surfaces—the fly-by-wire concept. In
this fashion, the maneuverability advantages of static instability can be realized
without heavily taxing the pilot: The work is done by electronics! Even when
maneuverability is not a prime feature, such as in civil transport airplanes, static
instability has some advantages. For example, the tail surfaces for an unstable
airplane can be smaller, with a subsequent savings in structural weight and
reductions in aerodynamic drag. Hence, with the advent of the fly-by-wire system,
the cardinal airplane design principle of static stability may be somewhat relaxed
: in the future. The Wright brothers may indeed ride again!

7.21 HISTORICAL NOTE: THE DEVELOPMENT
i OF FLIGHT CONTROLS

Figure 7.3 illustrates the basic aerodynamic control surfaces on an airplane—the
ailerons, elevator, and rudder. They have been an integral part of airplane designs
for most of the 20th century, and we take them almost for granted. But where are
their origins? When did such controls first come into practical use? Who had the
first inspirations for such controls?

In Sec. 7.20, we already mentioned that by 1809 George Cayley employed a
movable tail in his designs, the first effort at some type of longitudinal control.
L Cayley’s idea of moving the complete horizontal tail to obtain such control
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persisted through the first decade of the 20th century. Henson, Stringfellow,
Penaud, Lilienthal, and the Wright brothers all envisioned or utilized movement
of the complete horizontal tail surface for longitudinal control. It was not until
1908 to 1909 that the first “modern” tail control configuration was put into prac-
tice. This was achieved by the French designer Levavasseur on his famous
Antoinette airplanes, which had fixed vertical and horizontal tail surfaces with
movable, flaplike rudder and elevator surfaces at the trailing edges. So the con-
figuration for elevators and rudders shown in Fig. 7.3 dates back to 1908, five
years after the dawn of powered flight.
The origin of ailerons (a French word for the extremity of a bird’s wing) is
steeped in more history and controversy. It is known that the Englishman M. P.
W. Boulton patented a concept for lateral control by ailerons in 1868. Of course,
at that time no practical aircraft existed, so the concept could not be demon-
strated and verified, and Boulton’s invention quickly retreated to the background
and was forgotten. Ideas of warping the wings or inserting vertical surfaces
(spoilers) at the wing tips cropped up several times in Europe during the late
19th century and into the first decade of the 20th century, but always in the con-
text of a braking surface that would slow one wing down and pivot the airplane
about a vertical axis. The true function of ailerons or wing warping, that for lat-
eral control for banking and consequently turning an airplane, was not fully
appreciated until Orville and Wilbur incorporated wing warping on their Flyers
(see Chap. 1). The Wright brothers’ claim that they were the first to invent wing
warping may not be historically precise, but clearly they were the first to demon-
strate its function and to obtain a legally enforced patent on its use (combined
with simultaneous rudder action for total control in banking). The early Euro-
pean airplane designers did not appreciate the need for lateral control until
Wilbur’s dramatic public flights in France in 1908. This is in spite of the fact that
Wilbur had fully described their wing warping concept in a paper at Chicago on
September 1, 1901, and again on June 24, 1903; indeed, Octave Chanute clearly
described the Wrights’ concept in a lecture to the Aero Club de France in Paris in
April 1903. Other aeronautical engineers at that time, if they listened, did not pay
much heed. As a result, European aircraft before 1908, even though they were
making some sustained flights, were awkward to control. :
However, the picture changed after 1908, when in the face of the indisputable
superiority of the Wrights’ control system, virtually everybody turned to some
type of lateral control. Wing warping was quickly copied and was employed on
numerous different designs. Moreover, the idea was refined to include movable
surfaces near the wing tips. These were first separate “winglets” mounted either
above, below, or between the wings. But in 1909, Henri Farman (see Sec. 7.1)
designed a biplane named the Henri Farman IIl, that included a flaplike aileron
at the trailing edge of all four wing tips; this was the true ancestor of the conven-
tional modern-day aileron, as sketched in Fig. 7.3. Farman’s design was soon
adopted by most designers, and wing warping quickly became passé. Only the
Wright brothers clung to their old concept; a Wright airplane did not incorporate
ailerons until 1915, six years after Farman’s development.
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7.22 HISTORICAL NOTE: THE “TUCK-UNDER”
PROBLEM

A quick examination of Fig. 7.21, and the resulting stability equations such as
Egs. (7.26), (7.27), and (7.28), clearly underscores the importance of the down-
wash angle ¢ in determining longitudinal static stability. Downwash is a rather
skittish aerodynamic phenomenon, very difficult to calculate accurately for real
airplanes and therefore usually measured in wind tunnel tests or in free flight. A
classic example of the stability problems that can be caused by downwash, and
how wind tunnel testing can help, occurred during World War 11, as described in
the following.

In numerous flights during 1941 and 1942, the Lockheed P-38, a twin-engine,
twin-boomed, high-performance fighter plane (see Fig. 7.42), went into sudden
dives from which recovery was exceptionally difficult. Indeed, several pilots
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Figure 7.42 The Lockheed P-38 of World War II fame.
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were killed in this fashion. The problem occurred at high subsonic speeds, usu-
ally in a dive, where the airplane had a tendency to nose over, putting the plane
in yet a steeper dive. Occasionally, the airplane would become locked in this
position, and even with maximum elevator deflection, a pullout could not be
achieved. This “tuck-under” tendency could not be tolerated in a fighter aircraft
that was earmarked for a major combat role.

Therefore, with great urgency, NACA was asked to investigate the problem.
Since the effect occurred only at high speeds, usually above Mach 0.6,
compressibility appeared to be the culprit. Tests in the Langley 30-ft by 60-ft
low-speed tunnel and in the 8-ft high-speed tunnel (see Sec. 4.24) correlated the
tuck-under tendency with the simultaneous formation of shock waves on the
wing surface. Such compressibility effects were discussed in Secs. 5.9 and 5.10,
where it was pointed out that beyond the critical Mach number for the wing,
shock waves will form on the upper surface, encouraging flow separation far
upstream of the trailing edge. The P-38 was apparently the first operational
airplane to encounter this problem. The test engineers at Langley made several
suggestions to rectify the situation, but all involved major modifications of the
airplane. For a model already in production, a quicker fix was needed.

Next, the 16-ft high-speed wind tunnel at the NACA Ames Aeronautical
Laboratory in California (see again Sec. 4.24) was pressed into service on the
P-38 problem. Here, further tests indicated that the shock-induced separated flow
over the wing was drastically reducing the lift. In turn, because the downwash is
directly related to lift, as discussed in Secs. 5.13 and 5.14, the downwash angle ¢
was greatly reduced. Consequently (see Fig. 7.21), the tail angle of attack o, was
markedly increased. This caused a sharp increase in the positive lift on the tail,
creating a strong pitching moment, nosing the airplane into a steeper dive. After
the series of Ames tests in April 1943, Al Erickson of NACA suggested the addi-
tion of flaps on the lower surface of the wing at the 0.33¢ point in order to
increase the lift, hence increase the downwash. This was the quick fix that
Lockheed was looking for, and it worked.

7.23 Summary

Some of the important points of this chapter are given as follows,

1. If the forces and moments on a body caused by a disturbance tend initially to returnl -
the body foward its equilibrium position, the body is statically stable. In contrast, if
these forces and moments tend inirially to move the body away from its :
equilibrium position, the body is statically unstable.

2. The necessary criteria for longitudinal balance and static stability are (a) Ca,o MUSt
be positive, (b) 8Cy ¢/ 0, must be negative, and (c¢) the trim angle of attack Qe
must fall within the flight range of angle of attack for the airplane. These criteria
may be evaluated quantitatively for a given airplane from

Cu0 = Crmacy, + Vea:(i; + &)

8C 5
and TN g b, — Ve (12
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Problems

where the tail volume ratio is given by
LS
7S
3. The neutral point is that location of the center of gravity where dCyycg/dc, = 0.1t
can be calculated from

3
By = ey, + Vig ot <1 - —8) (7.30)
a

4. The static margin is defined as k, — k. For static stability, the location of the center
of gravity must be ahead of the neutral point; that is, the static margin must be
positive.

5. The effect of elevator deflection 8, on the pitching moment about the center of
gravity is given by

aC
CMng = Cyoacy, + Crw(h— hac) — Vi <araf + ———85[“{ 8g> (7.37)
€
6. The elevator deflection necessary to trim an airplane at a given angle of attack o, is

CM,O + (aCM,cg/aaa)au
Vy(3CyL./33.)

(7.43)

Strim =

Bibliography

Etkin, B.: Dynamics of Flight, Wiley, New York, 1959.

Gibbs-Smith, C. H.: Aviation: An Historical Survey from Its Origins to the End of World
War II, Her Majesty’s Stationery Office, London, 1970.

Perkins, C. D., and R. E. Hage: Airplane Performance, Stability, and Control, Wiley,
New York, 1949.

Raymer, D. P.: Aircraft Design: A Conceptual Approach, 3d ed., American Institute of
Aeronautics and Astronautics, Reston, VA, 1999.

Problems

7.1 For a given wing-body combination, the acrodynamic center lies 0.03 chord length
ahead of the center of gravity. The moment coefficient about the center of gravity
is 0.0050, and the lift coefficient is 0.50. Calculate the moment coefficient about
the aerodynamic center.

7.2 Consider a model of a wing-body shape mounted in a wind tunnel. The flow
conditions in the test section are standard sea-level properties with a velocity of
100 m/s. The wing area and chord are 1.5 m? and 0.45 m, respectively. Using the
wind tunnel force and moment-measuring balance, the moment about the center
of gravity when the lift is zero is found to be —12.4 N - m. When the model is
pitched to another angle of attack, the lift and moment about the center of gravity
are measured to be 3675 N and 20.67 N - m, respectively. Calculate the value of
the moment coefficient about the acrodynamic center and the location of the
aerodynamic center.
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7.3 Consider the model in Prob. 7.2. If a mass of lead is added to the rear of the model
such that the center of gravity is shifted rearward by a length equal to 20 percent of
the chord, calculate the moment about the center of gravity when the lift is 4000 N.

7.4 Consider the wing-body model in Prob. 7.2. Assume that a horizontal tail with no
elevator is added to this model. The distance from the airplane’s center of gravity
to the tail’s aerodynamic center is 1.0 m. The area of the tail is 0.4 m?, and the
tail-setting angle is 2.0°. The lift slope of the tail is 0.12 per degree. From
experimental measurement, &g = 0 and d¢/8a = 0.42. If the absolute angle of
attack of the model is 5° and the 1ift at this angle of attack is 4134 N, calculate the
moment about the center of gravity.

7.5 Consider the wing-body-tail model of Prob. 7.4. Does this model have
longitudinal static stability and balance?

7.6 For the configuration of Prob. 7.4, calculate the neutral point and static margin.
h =0.26.

7.7 Assume that an elevator is added to the horizontal tail of the configuration given
in Prob. 7.4. The elevator control effectiveness is 0.04. Calculate the elevator
deflection angle necessary to trim the configuration at an angle of attack of 8°.

7.8 Consider the configuration of Prob. 7.7. The elevator hinge moment derivatives
are 0Cy, /0a; = —0.007 and 0Cy, /38, = —0.012. Assess the stick-free static
stability of this configuration. :

7.9 Consider the canard configuration as illustrated in Fig. 7.17b, and represented by
the XB-70 shown in Fig. 7.18. You will sometimes encounter a statement, either
written or verbal, that the canard configuration is inherently statically unstable.
This is absolutely not true. Prove that the canard configuration can be made
statically stable. What design condition must hold to insure its stability?




