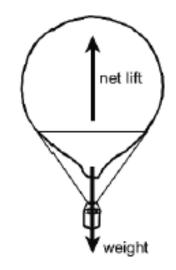
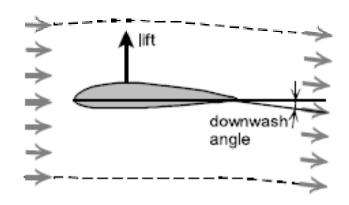
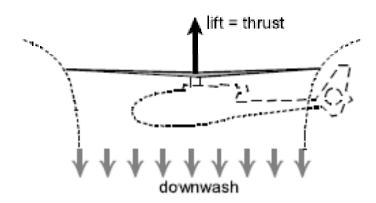
Corso di MECCANICA DEL VOLO Modulo Prestazioni


INTRO- Il Velivolo

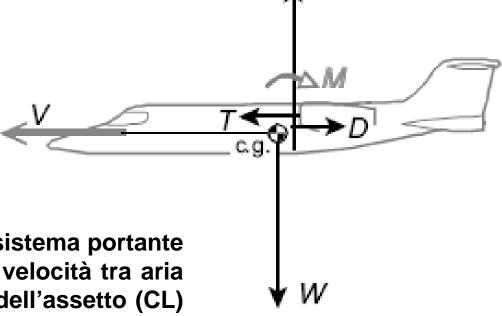
Prof. F. Nicolosi


Il volo, come è possibile ?

AEROSTATI



AERODINE

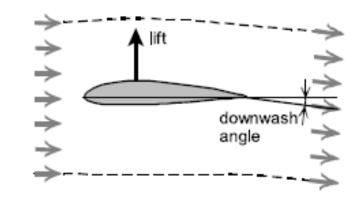

(a) lift on a wing and downwash in forward flight

(b) lift on a helicopter rotor and downwash in hovering flight

L'AEROPLANO (Velivolo)

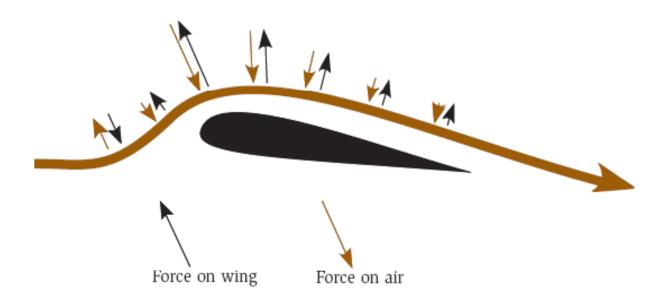
$$L = C_L \frac{1}{2} \rho V^2 S$$

La portanza (LIFT) è generata dal sistema portante principale (l'ala) in funzione della velocità tra aria e velivolo, della densità dell'aria, dell'assetto (CL) e della superficie (estensione) dell'ala stessa.


La portanza dovrà eguagliare il peso del velivolo (W) in volo.

La resistenza aerodinamica (avanzare in un mezzo (gas) con una certa viscosità DEVE essere vinta ed equilibrata dalla SPINTA T.

L'AEROPLANO (Velivolo)


La portanza (LIFT)

$$L = C_L \frac{1}{2} \rho V^2 S_1$$

PRINCIPIO DI AZIONE E REAZIONE

(a) lift on a wing and downwash in forward flight

ARCHITETTURA DEL VELIVOLO

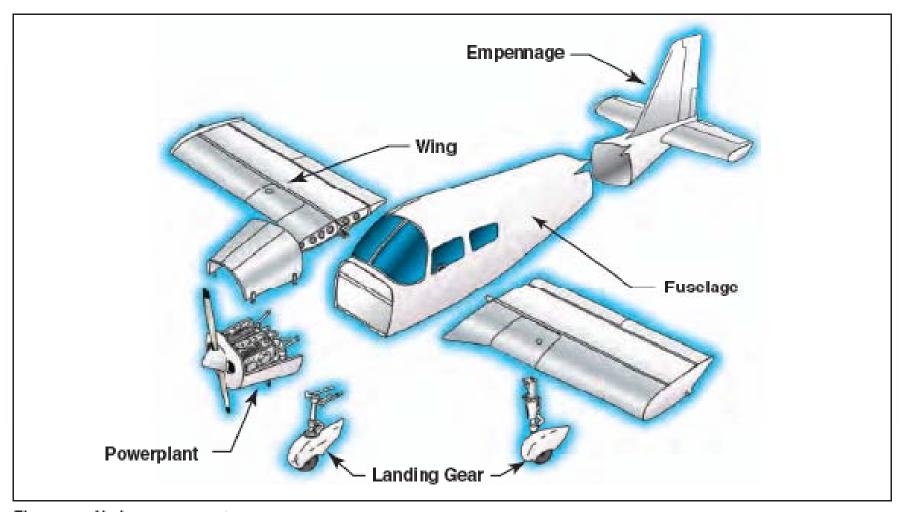


Figure 1-1. Airplane components.

ARCHITETTURA DEL VELIVOLO

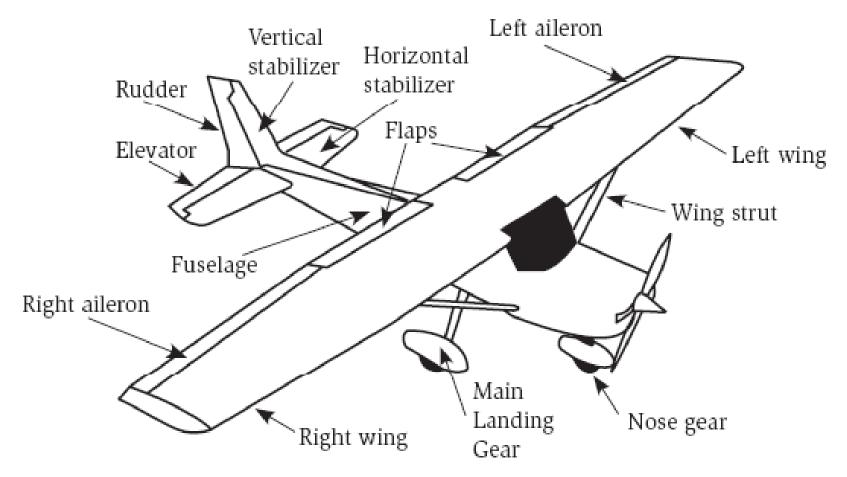
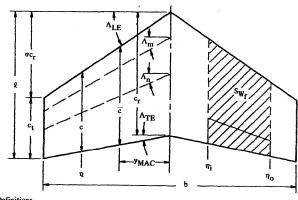


Fig. 1.1. Main components of an airplane.


L'ala – caratteristiche geometriche

- Superficie alare (forma in pianta)
- Apertura alare

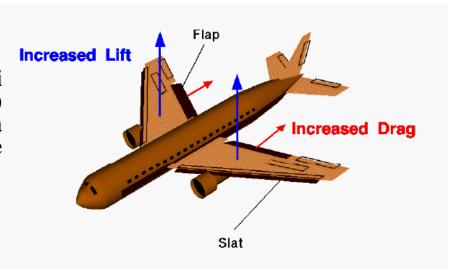
AR=b^2/S Allungam. Alare (Aspect Ratio)

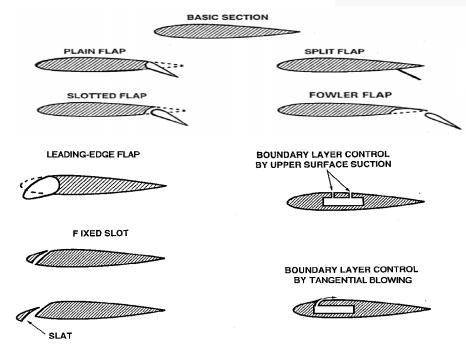
Corda media aerodinamica
$$c = \frac{2}{S} \int_0^{b/2} c(y)^2 dy$$
MAC

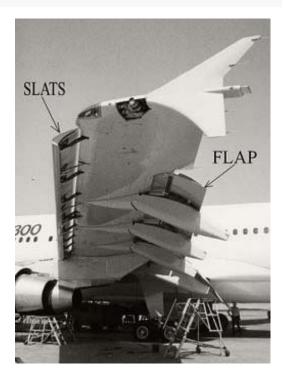
$$\bar{c} = \frac{2}{S} \int_0^{b/2} c(y)^2 \, dy$$

Definitions

wing (parallel to axis of symmetry) at any given span station y


Angolo di freccia


 λ =ct/cr Rapporto di rastremazione



<u>Ipersostentatori – Flap / Slat</u>

I sistemi di ipersostentazione al bordo di uscita (flaps) e al bordo di attacco (slats) permettono di incrementare la capacità portante dell'ala nelle fasi di decollo e atterraggio

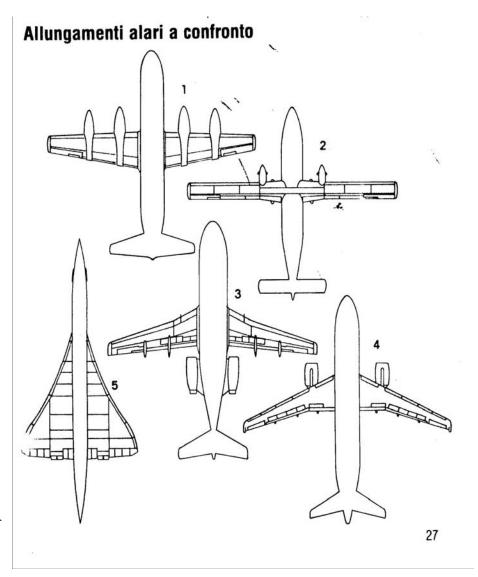
Velivoli Trasporto Jet – Dati geometrici e di massa

	Wto (tonn)	Pass.	Autonomia (nm) 1nm =1,852 Km	S (m2)	Wto/S [kg/m²]	b (m)	AR	c/4
Long Range			,		101			
A330	204	330	5000	325	627	58	10. 3	30°
A340	246	380	7200	325	756	58	10. 3	30°
B747-300	363	450	5650 (11000 Km)	511	710	59.6	7	37°
MD11	273	405	5000	341	800	51.7	7.8	35°
A300	170	370	4380	260	653	44.8	7.7	28°
A310	150	280	3730	219	684	43.9	8.8	28°
B767	128	255	6210	283	452	47	7.8	31°
Short/Medium								
A320	66	150	2640	122	540	33.9	9.5	25°
B707	151	189	5000	283	533	44.4	7	35°
B727	86	189	2400	158	544	32.9	6.9	32°
B737-300	61	150	2350	102	598	28.3	7.8	25°
MD80	63	170	1563	118	534	32.9	9.2	24.5°
BAe 146	42	96	1176	77.3	543	26	8.7	15°
Fokker 100	41.5	119	1200	94.3	436	28	8.3	17°

Configurazioni di velivoli Trasporto Jet – Valori dell'allungamento alare AR

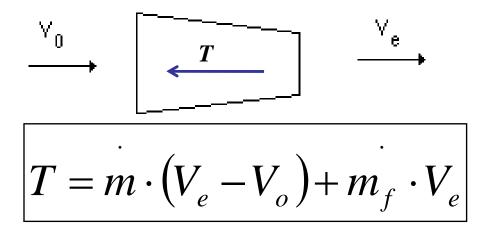
Valori tipici:

1 Lockeed Electra AR=7.5


2 Shorts 360 AR=12.4

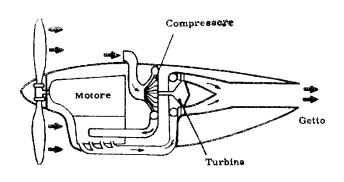
3 Fokker F28 AR=8

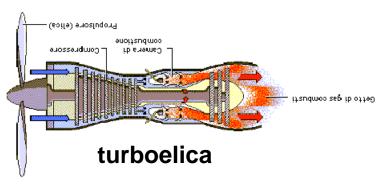
4 Airbus A320 AR=9.4

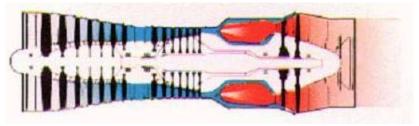

5 Concorde AR=2

AR più elevato riduce la resistenza indotta, ma produce maggiore sollecitazione flettente (a parità di portanza) e quindi conduce ad ali con più elevato peso strutturale.

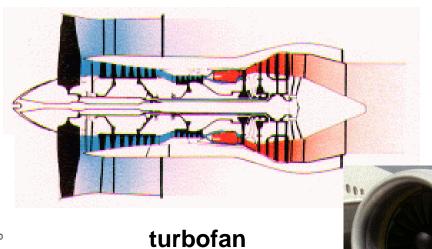
ELEMENTI DI PROPULSIONE


Principio di funzionamento generale di un elemento propulsivo


La spinta T dipende dalla portata di massa entrante \mathcal{M} e dall'incremento di velocità che essa subisce. In generale c'è una variazione di quantità di moto nel fluido (azione sul fluido) ed associata una reazione (spinta) sul motore o gruppo motopropulsore (motore-elica) (terzo principio della dinamica)


Nell'equazione compare anche il piccolo termine dovuto all'aggiunta della massa di combustibile (molto piccola)

Tipi di propulsione



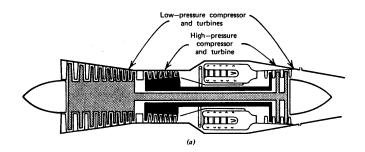
motoelica

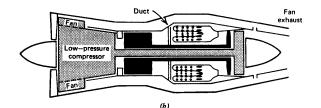
turbogetto

12

Schema confronto motori

TURBOJET - Turbogetto puro

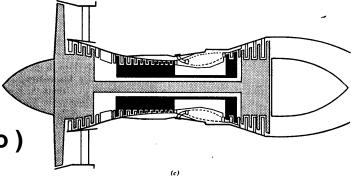

- -Spinta elevatissima
- -- Consumi fortissimi
- -(Usato ad esempio nel Concorde)

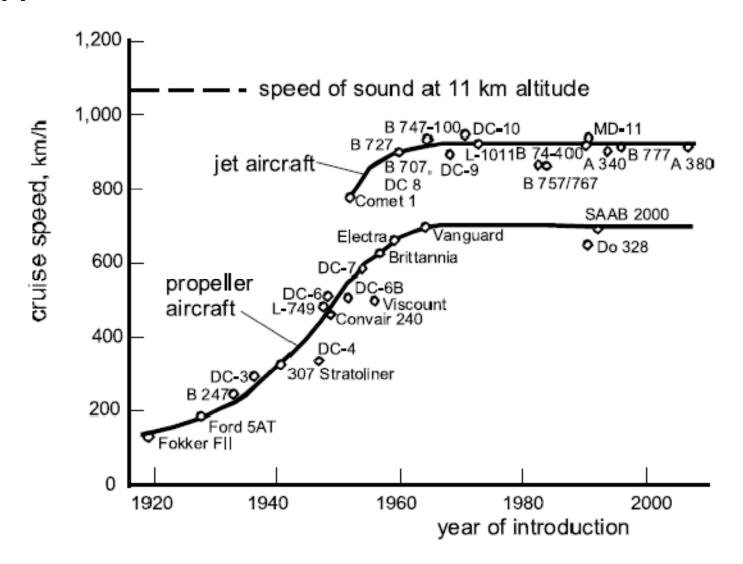

TURBOFAN A BASSO bpr (By-Pass-Ratio) (circa 1.5, tipico di motori di caccia militari)

- -Forte spinta
- -- Alto consumo

TURBOFAN AD ALTO bpr (By-Pass-Ratio) (circa 5, tipico di motori di velivoli da trasporto)

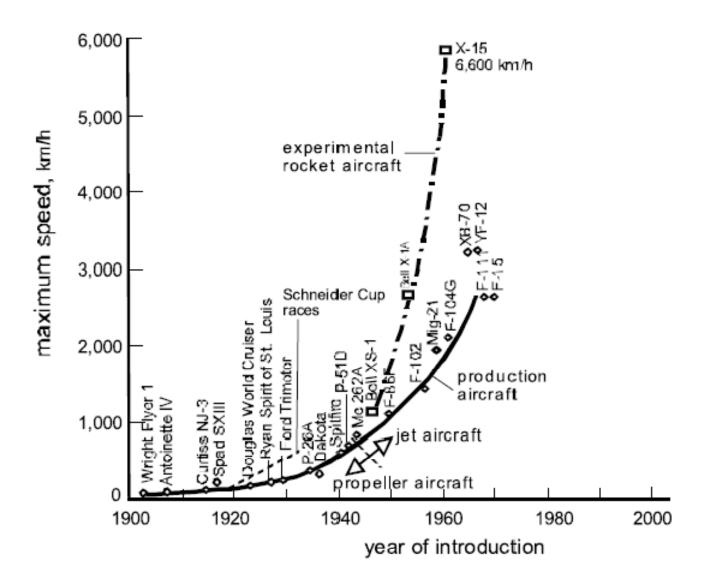
- -Spinta non elevatissima
- -- Consumo ridotto rispetto al turbogetto




Figure 6.26 Variations on the gas turbine. (a) Dual axial-flow compressor turbojet. (b) Dual axial-flow compressor, forward fan engine with long ducts. (c) High bypass ratio turbofan with short ducts. (d) Single axial-flow compressor, direct propeller drive turboprop. (e) Single axial-flow compressor, free turbine propeller drive turboprop. (f) Dual axial-flow compressor, turbojet with afterburner. (g) Dual axial-flow compressor, industrial turboshaft engine.

Sviluppo storico motori

Motore	Anno	Cilindri	Potenza (shp)	Peso (lbs)	Peso/Potenza (lbs/hp)
Fratelli Wright	1909	4	12	200	16.6
Wright J5-C Lindbergh Flight	1927	9 - radiali	220	500	2.27
Rolls Royce Merlin	1940	12 a V	1130 at 3000rpm	1430	1.26
Lycoming O-360-A	circa 1980	4	180 at 2700 rpm	180	1.58
TURBOPROP					
Pratt&Whitney PT6A-27		•	680	300	0.50


TURBOFAN		SPINTA(Ibs)	Peso/Spinta
Pratt&Whitney JT9D-7A	HBI Turbo		8850	0.22

Sviluppo storico del velivolo – ricerca della velocità

(b) subsonic airliners

Sviluppo storico del velivolo – ricerca della velocità

(a) military and experimental aircraft