Esercitazione VI: Stabilità longitudinale

Coefficiente di momento dell'ala

Il centro aerodinamico dell'ala è stato valutato al 26% della corda media aerodinamica, attraverso un confronto di tipo statistico con dati riportati da velivoli della stessa categoria.

Il coefficiente di momento dell'ala rispetto al suo centro aerodinamico è stato determinato facendo una media integrale dei contributi dei tre profili nelle tre stazioni di riferimento:

$$C_{m0_w} = C_{m1} + C_{m2} = \frac{2}{S\overline{c}} \int_{0}^{b/2} \left[C_{lb} xc + C_{m_{ac}} c^2 \right] dy$$

con i seguenti dati:

У	С	C_l	C_m	х
0	5.179	0.833	-0.110	1.26
2.75	3.810	0.270	-0.072	0.32
11	1.040	0.192	-0.093	-3.31

Sviluppando i calcoli risulta un $C_{m0w} = -0.0913$.

Coefficiente di momento della fusoliera

Il coefficiente di momento della fusoliera è dato dalla relazione:

$$C_{mfus} = C_{m0f} + C_{m\alpha f} \alpha .$$

Per determinare i termini C_{m0f} e $C_{m\alpha f}$ si fa uso del metodo delle strisce.

• Dividendo la fusoliera in 14 strisce si calcola il C_{m0f} , che risulta essere:

$$C_{m0f} = \frac{K_2 - K_1}{36.5S \cdot cma} \sum_{i=1}^{n} \left\{ \left(w_i \right)_f^2 \left[\alpha_{0ala} + \left(i_{CLi} \right)_f \right] \Delta x_i \right\} = -0.0858$$

dove:

 $k_2 - k_1 = 0.97$ fattori costanti funzioni della snellezza della fusoliera (cfr grafico sottostante);

 $\alpha_{0ala}=\alpha_{0w}-i_{w}=-5$ angolo di portanza nulla dell'ala rispetto alla linea di riferimento della fusoliera;

 $(i_{C_L})_f = 0$ inclinazione della linea media di fusoliera, costante e nulla per tutta la fusoliera;

 $\Delta x_i = 2.607$ lunghezza della striscia i-esima.

e inoltre:

n = 14 numero di strisce in cui è stata suddivisa la fusoliera;

 w_i larghezza della i-esima striscia.

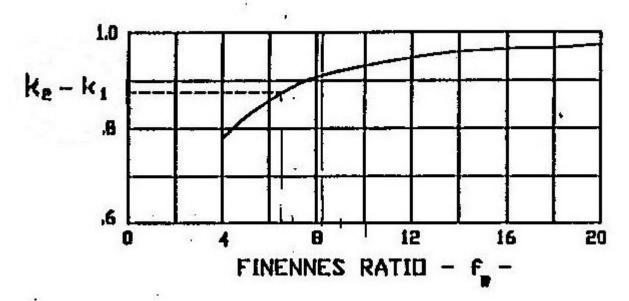


Figura 1: k2 - k1 in funzione della snellezza della fusoliera

• Suddividendo inoltre la parte prodiera della fusoliera in 5 parti uguali e la parte poppiera in 6 parti uguali, si calcola il C_{maf} , che risulta essere:

$$C_{m\alpha f} = \frac{1}{36.5S \cdot cma} \left\{ \sum_{i=1}^{5} w_i \left[\left(\frac{\partial \varepsilon_u}{\partial \alpha} \right)_1 + 1 \right] \Delta x_1 + \sum_{i=6}^{12} w_i \left[\left(\frac{\partial \varepsilon_u}{\partial \alpha} \right)_2 + 1 \right] \Delta x_2 \right\} = 0.0097,$$

con:

 w_i larghezza della i-ma striscia;

 $\Delta x_1 = 3.42$ m, lunghezza dei tratti di fusoliera precedenti all'ala;

 $\Delta x_2 = 2.37$ m, lunghezza dei tratti di fusoliera seguenti all'ala;

$$\left(\frac{\partial \varepsilon_u}{\partial \alpha}\right)_1 = \left(\frac{\partial \overline{\varepsilon}_u}{\partial \alpha}\right) \frac{a_w}{0.0785}$$
: upwash sui tratti di fusoliera precedenti all'ala;

$$\frac{\partial \overline{\varepsilon}_u}{\partial \alpha}$$
 = [1; 1; 1.2; 1.5; 2.4]: valori ottenuti dal grafico a disposizione;

$$\left(\frac{\partial \varepsilon_u}{\partial \alpha}\right)_2 = \left[\frac{x_2}{l_{f2}} \left(1 - \frac{\partial \overline{\varepsilon}}{\partial \alpha}\right) - 1\right];$$

 x_2 ascissa del centroide della generica striscia della parte poppiera della fusoliera;

 l_{f2} = 14.24 m, lunghezza della parte poppiera della fusoliera;

 $\frac{\partial \overline{\varepsilon}}{\partial \alpha}$ = 0.369: downwash sul piano orizzontale di coda, calcolato attraverso relazioni grafiche relative alla geometria dell'ala.

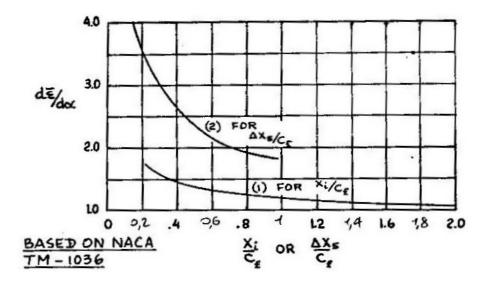


Figura 2: de_dalfa indotto sulla fusoliera

Centro aerodinamico del velivolo parziale

L'avanzamento del centro aerodinamico del velivolo parziale rispetto al centro aerodinamico dell'ala è dato dalla relazione:

$$x_{ac_{VP}} - x_{ac_{w}} = -\frac{C_{m\alpha f}}{C_{L\alpha}} = -0.1244 (cma),$$

da cui risulta:

$$x_{ac_{VP}} = 0.1356 \, (cma) \, .$$