VELIVOLO 03

Specifica di missione

Tipo velivolo Turboelica da trasporto regionale

(parti in composito 20%)

Carico pagante 90 passeggeri

Normativa **FAR 25**

Autonomia di percorso

(fase 5)

1000 nm alla quota di 20000 ft alla velocità di crociera economica

di 240 kts

Assumere:

E=16 Cp=0.55 lb/(hp h) $\eta_P=0.80$

Riserva o equivalente 80 nm per aeroporto alternativo a 8000 ft

e 180 kts (fase 8)

20000 ft

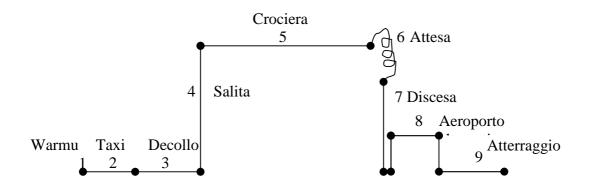
Velocità max alla quota di 300 kts (max grado ammissione)

Quota di crociera 20000 ft

Lunghezza di decollo 3500 ft a S/L di altitudine

Lunghezza di atterraggio 3500 ft a S/L di altitudine

Rateo di salita


Fase di attesa 45 minuti di attesa (fase 6)

(Assumere sempre E=16)

Varie

Velivoli simili: ATR 72 e 42

> FOKKER 50 **SAAB 2000**

CAPITOLO 1

Determinazione dei pesi

Sulla base dei valori forniti dalla specifica di progetto e del profilo di missione assegnato eseguiamo una stima dei pesi del velivolo.

Le quantità da determinare sono le seguenti :

• W_{to} Peso massimo al decollo

• WE Peso a vuoto

• WPL Peso del carico pagante

• WF Peso del combustibile

• Wcrew Peso dell'equipaggio

• Wtfo Peso dei lubrificanti non consumabili

Tra i termini sopra elencati sussistono le seguenti relazioni :

$$W_{OE} = W_E + W_{tfo} + W_{crew}$$

$$W_{TO} = W_{OE} + W_F + W_P$$

Determiniamo il valore dei vari componenti.

1.1 Peso del carico pagante (W_{PL})

Per carico pagante intendiamo i passeggeri più i rispettivi bagagli. Assumiamo un peso di 175 lbs per ogni passeggero + un peso di 30 lbs per il rispettivo bagaglio. Dalla specifica sappiamo che il numero dei passeggeri è 90. Il peso del carico pagante sarà il seguente :

$$W_{PL} = 18450 \text{ lbs}$$

1.2 Peso dell'equipaggio (W_{crew})

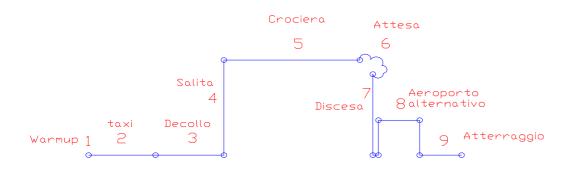
Il peso dell'equipaggio comprende il peso dei piloti, degli assistenti di volo e dei loro bagagli. Dobbiamo prima stabilire il numero dei componenti dell'equipaggio. Facciamo riferimento ai velivoli della stessa categoria:

	<u>Velivolo</u>	<u>Equipaggio</u>
•	ATR 42	3
•	ATR 72	4
•	Saab 2000	4
•	Fokker 50	4

Prendiamo un numero dei componenti dell'equipaggio pari a 4. Per il peso di ogni singolo individuo e del rispettivo bagaglio utilizziamo gli stessi valori considerati per i passeggeri. Il risultato è il seguente :

$$W_{crew} = 820 lbs$$

1.3 Peso dei lubrificanti non consumabili (W_{tfo})


Poiché il nostro velivolo ha un numero di passeggeri inferiore a 100 (e di conseguenza avrà un WTO inferiore a 100000 lbs) si assume :

$$W_{tfo} = 0 lbs$$

1.4 Peso del combustibile (W_F)

Per la determinazione della quantità di combustibile che deve essere imbarcata (e che sia in grado di soddisfare i requisiti della specifica di progetto) utilizziamo il " *FUEL FRACTION METHOD*".

Il profilo di missione presente nella specifica è il seguente :

E' costituito dalle seguenti **fasi**:

- 1. Warmup
- 2. Taxi
- 3. Decollo
- 4. Salita
- 5. Crociera
- 6. Attesa
- 7. Discesa
- 8. Aeroporto alternativo
- 9. Atterraggio

Consideriamo i rapporti tra i pesi alla fine ed all'inizio di ogni fase.

Fasi
$$(1)-(2)-(3)-(4)-(7)-(9)$$

I valori dei rapporti relativi alle fasi 1-2-3-4-7-9 li determiniamo da tabelle di tipo statistico. Prendiamo i valori relativi ai velivoli da trasporto regionale :

$$\frac{W_1}{W_{TO}} = 0.990 \qquad \frac{W_2}{W_1} = 0.995 \qquad \frac{W_3}{W_2} = 0.995 \qquad \frac{W_4}{W_3} = 0.985$$

$$\frac{W_7}{W_6} = 0.985 \qquad \frac{W_9}{W_8} = 0.995$$

Fase (5): Crociera

Per la crociera utilizziamo la formula di Breguet per l'autonomia di percorso:

$$R_{cr} = 375 \cdot \left(\frac{\eta}{c_p}\right) \cdot \left(\frac{L}{D}\right) \cdot \ln\left(\frac{W_4}{W_5}\right)$$
 [sm]

Consideriamo i seguenti valori (forniti dalla specifica di progetto):

$$\begin{split} R_{cr} &= 1000 \text{ nm} = 11513 \text{ sm} \\ E &= L/D = 16 \\ C_p &= 0.55 \text{ lb/(hp*h)} \\ \eta &= 0.80 \end{split}$$

Otteniamo il seguente risultato:

$$\frac{W_5}{W_4} = 0.8764$$

Fase (6): Attesa

Per la crociera utilizziamo la *formula di Breguet per l'autonomia oraria* (relativa ai velivoli ad elica) :

$$E_{ltr} = 375 \cdot \left(\frac{1}{V_{ltr}}\right) \cdot \left(\frac{\eta_p}{c_p}\right) \cdot \left(\frac{L}{D}\right) \cdot \ln\left(\frac{W_5}{W_6}\right)$$
 [h]

Consideriamo i seguenti valori (alcuni ottenuti dalla specifica, altri da tabelle di tipo statistico) :

$$\begin{split} V_{ltr} &= 0.8*Vcr = 192 \; kts = 220.8 \; mph \\ E_{ltr} &= 45 \; min = 0.75 \; h \\ E &= L/D = 16 \\ C_p &= 0.65 \; lb/(hp*h) \\ \eta &= 0.77 \end{split}$$

Otteniamo il seguente risultato:

$$\frac{W_6}{W_5} = 0.977$$

Fase (8): Aeroporto alternativo

Utilizziamo nuovamente la formula di Breguet per l'autonomia di percorso:

$$R_{AA} = 375 \cdot \left(\frac{\eta}{c_p}\right) \cdot \left(\frac{L}{D}\right) \cdot \ln\left(\frac{W_4}{W_5}\right) \quad [\text{sm}]$$

Consideriamo i seguenti valori (forniti dalla specifica di progetto):

$$R_{AA} = 80 \text{ nm} = 92.08 \text{ sm}$$

 $E = L/D = 16$
 $C_p = 0.65 \text{ lb/(hp*h)}$
 $\eta = 0.77$

Otteniamo il seguente risultato:

$$\frac{W_8}{W_7} = 0.9871$$

A questo punto possiamo calcolare il rapporto del peso a fine missione su quello a inizio missione :

$$M_{ff} = \frac{W_9}{W_{TO}} = \frac{W_1}{W_{TO}} \cdot \frac{W_2}{W_1} \cdot \frac{W_3}{W_2} \cdot \frac{W_4}{W_3} \cdot \frac{W_5}{W_4} \cdot \frac{W_6}{W_5} \cdot \frac{W_7}{W_6} \cdot \frac{W_8}{W_7} \cdot \frac{W_9}{W_8} = 0.8$$

Peso del combustibile

Il peso del combustibile è dato da:

$$egin{aligned} W_{Fused} &= W_{TO} - W_9 = W_{TO} \cdot \left(1 - M_{ff}
ight) \ W_F &= W_{Fused} + W_{Fres} \ W_{Fres} &= M_{res} \cdot W_{Fused} \end{aligned}$$

Nota : nel nostro caso la riserva è specificata in termini di attesa e eventuale destinazione alternativa dopo la discesa. Avendo considerato già queste fasi in Mff poniamo Mres = 0. Quindi :

$$W_F = W_{Fused} = 0.20 \cdot W_{TO}$$

1.5 Peso massimo al decollo (W_{TO}) e peso a vuoto (W_{E})

Per la determinazione del peso massimo al decollo e del peso a vuoto sussistono le seguenti relazioni :

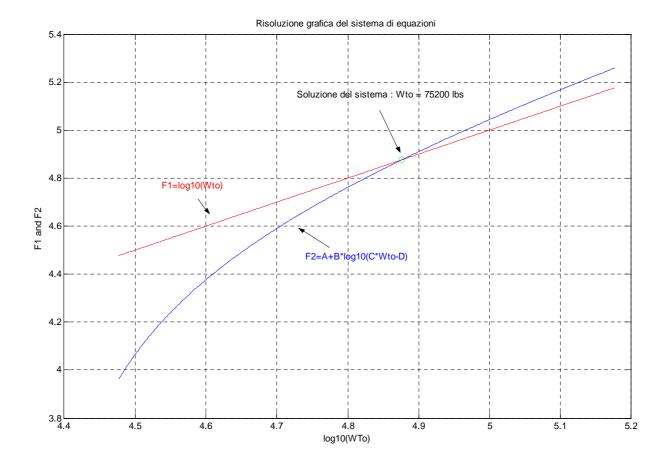
$$\begin{cases} W_E = C \cdot W_{TO} - D \\ \log_{10} W_{TO} = A + B \cdot \log_{10} W_E \end{cases}$$

(<u>Nota</u> : la seconda relazione è di tipo statistico)

dove:

$$A = 0.3764$$

$$B = 0.9758$$

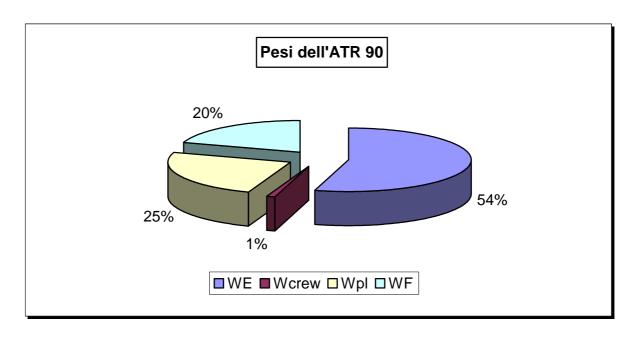

$$C = \left[1 - (1 + M_{res}) \cdot (1 - M_{ff}) \cdot M_{fio}\right] = 0.7998$$

$$D = W_{PL} + W_{crew} = 19270$$

Risolviamo il sistema di equazioni per via grafica :

$$F_{1} = \log_{10} W_{TO}$$

$$F_{2} = A + B \cdot \log_{10} (C \cdot W_{TO} - D)$$

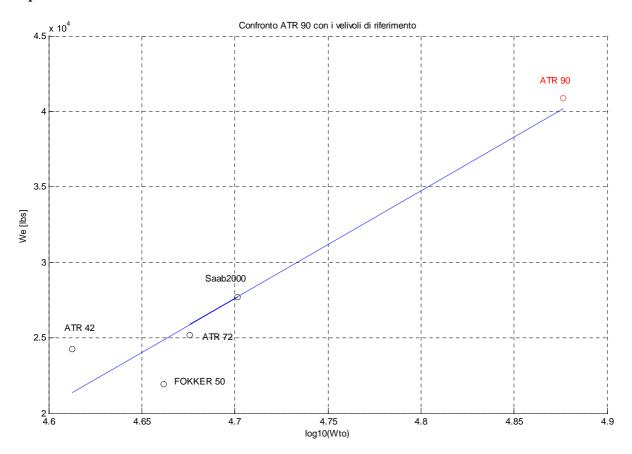


Otteniamo i seguenti risultati :

$$W_{TO} = 75200 \, \text{lbs}$$

 $W_E = 40871 \, \text{lbs}$

<u>Pesi del velivolo – Tabella riassuntiva</u>


Tipo di peso	Peso [lbs]	Peso [kg]
Wto	75200	34110
WE	40871	18539
Wcrew	820	372
WOE	41691	18911
Wpl	18450	8369
WF	15059	6831

Appare subito evidente che una metà circa del peso massimo al decollo e costituito dal peso a vuoto del velivolo. La restante parte (che rappresenta il carico utile) è costituita per metà dal carico pagante e per metà dal combustibile.

Infine riportiamo un diagramma in cui le grandezze W_E e W_{TO} sono messe a confronto con quelle dei velivoli di riferimento :

E' possibile osservare che il nostro velivolo rispetta la legge di tipo statistico sopra evidenziata. E' evidente che l'ATR 90 sia un velivolo di categoria superiore rispetto a quelli di riferimento. Ci aspettavamo una situazione di questo tipo visto l'elevato numero di passeggeri rispetto agli altri turboelica da trasporto regionale.

Riduzione del peso dovuta al composito

Nella specifica è imposto che il 20% del peso del nostro velivolo sia composto da elementi in materiale composito. Questa imposizione determinerà una riduzione del peso a vuoto del velivolo. Andiamo a stimare questa riduzione di peso considerando la seguente distribuzione del materiale composito .

Il 20% del peso a vuoto del nostro velivolo è in composito. Ripartiamo questa percentuale di peso sui seguenti componenti :

Ala	Impennaggi Fusoliera		Arredamento	Sistema di circolazione dell'aria		
2%	5%	5%	5%	3%		

Il peso a vuoto del velivolo e : $W_E = 40871lbs$

Il peso dei componenti sopra elencati è stato stimato utilizzando il software messo a disposizione dall'università di Stanford (in cui è possibile avere una stima su basi statistiche del peso dei vari componenti di un velivolo in base alla sua categoria, al WTO, al numero di passeggeri, alla quota di crociera, ecc). Riportiamo inoltre i fattori di riduzione del peso di tali componenti dovuto all'utilizzo di materiale composito :

Parti del velivolo	Pesi (lbs)	Wcom/Wmetal
Ala	7655	0.75
Impennaggi	2550	0.75
Fusoliera	6849	0.85
Arredamnento interno	5400	0.5
Sistema di circolazione dell'aria	1350	0.8

Il peso totale di questi componenti (nell'ipotesi che siano interamente metallici) è il seguente :

$$W_{PARTI} = 23804lbs$$

Il peso delle restanti parti del velivolo è:

$$W_{RESTI} = W_E - W_{PARTI} = 17067 lbs$$

Ora calcoliamo la riduzione di peso che si ha sull'ala.

Il 2% del peso a vuoto è costituito da 817.42 lbs. Questo 2% si trova sull'ala ed è costituito da materiale composito. In questo caso, considerando in fattore di riduzione, il suo peso sarebbe :

$$W_{AIA-COMP} = 817.42 \cdot 0.75 = 613.07 lbs$$

Invece la parte di ala che è ancora metallica è :

$$W_{AIA-METAL} = 7655 - 817.42 = 6837.58lbs$$

Il peso complessivo dell'ala sarà ora:

$$W_{ALA} = 7450.65lbs$$

Nota : considerando una parte dell'ala in composito abbiamo ottenuto una riduzione del peso dell'ala di circa il 3%.

Procedendo allo stesso modo con gli altri componenti otteniamo i seguenti risultati :

Componente W [lbs]		Wmetal [lbs]	Wcomp [lbs]	Wnew [lbs]	% riduzione	
Ala	7655	6837.58	613.07	7450.65	2.67	
Impennaggio	2550	506.45	1532.66	2039.11	20.03	
Fusoliera	6849	4805.45	1737.02	6542.47	4.48	
Arredamento	5400	3356.45	1021.78	4378.23	18.92	
Sist. circ. aria	1350	123.87	980.90	1104.77	18.16	

We nuovo(lbs)	% di riduzione	Wto nuovo (lbs)	<u>% di riduzione</u>
38582.224	5.6	72911.224	3.04

Otteniamo in questo modo una riduzione di circa il 6% sul peso a vuoto e una del 3% sul peso massimo al decollo. Questo potrebbe comportare un incremento del carico utile. Il peso che viene ridotto utilizzando materiale composito è 2289 lbs. Se si volesse sfruttare questo peso aumentando il numero di passeggeri (considerando il peso di ogni passeggero + il bagaglio di 205 lbs) se ne potrebbero portare altri 11. Oppure si potrebbe aumentare la quantità di combustibile imbarcato.

<u>Nota</u>: questo discorso è qualitativo in quanto un incremento del numero di passeggeri comporta un incremento della robustezza e quindi del peso strutturale. Anche la quantità di combustibile che si può imbarcare è vincolata alla capacità dei serbatoi alari (che dipende dalle caratteristiche geometriche dell'ala : spessore percentuale dei profili, rapporto di rastremazione, lunghezza delle corde, ecc).

CAPITOLO 2

Punto di progetto

La determinazione del punto di progetto di un velivolo ad elica viene effettuata imponendo che siano rispettati i seguenti requisiti :

- Velocità di stallo
- Lunghezza di decollo
- Lunghezza di atterraggio
- Velocità di crociera
- Velocità di salita
- Tempo di salita

Analizziamo una alla volta le varie limitazioni. Alla fine, analizzando i risultati ottenuti sceglieremo il punto di progetto.

Nota: per l'imposizione delle limitazioni faremo riferimento alla FAR 25.

2.1 Dimensionamento in base alla velocità di stallo

La velocità di stallo è data dalla seguente relazione :

$$V_S = \sqrt{\left(\frac{2}{\rho} \cdot \frac{W}{S} \cdot \frac{1}{C_{L \max}}\right)}$$

Dobbiamo considerare due valori della velocità di stallo:

 V_S = Velocità di stallo in configurazione pulita

 V_{SL} = Velocità di stallo in configurazione di atterraggio (flaps down)

Utilizziamo come valori delle velocità di stallo quelle dei velivoli di riferimento riportate sul *Jane's* :

$$V_{S} = 122 \cdot kts = 206 \cdot \frac{ft}{s}$$

$$V_{SL} = 98 \cdot kts = 165 \cdot \frac{ft}{s}$$

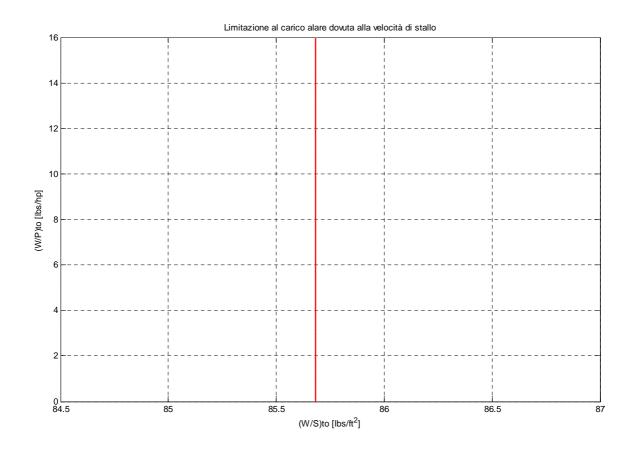
Prendiamo i valori di C_{Lmax} e C_{Lmax-L} tipici dei velivoli della categoria :

$$C_{L \max} = 1.7$$

$$C_{L \max - L} = 2.8$$

Imponiamo le due limitazioni per il carico alare :

$$\left(\frac{W}{S}\right)_{TO} < V_S^2 \cdot \frac{\rho}{2} \cdot C_{L \max}$$


$$\left(\frac{W}{S}\right)_{TO} < V_{SL}^2 \cdot \frac{\rho}{2} \cdot C_{L \max - L}$$

Otteniamo i seguenti valori :

$$\left(\frac{W}{S}\right)_{TO} < 85.68 \frac{lb}{ft^2} (flaps - up)$$

$$\left(\frac{W}{S}\right)_{TO} < 91.06 \frac{lb}{ft^2} (flaps - down)$$

Scegliamo la più stringente delle due, cioè quella relativa alla configurazione pulita:

2.2 Dimensionamento in base alla distanza di decollo

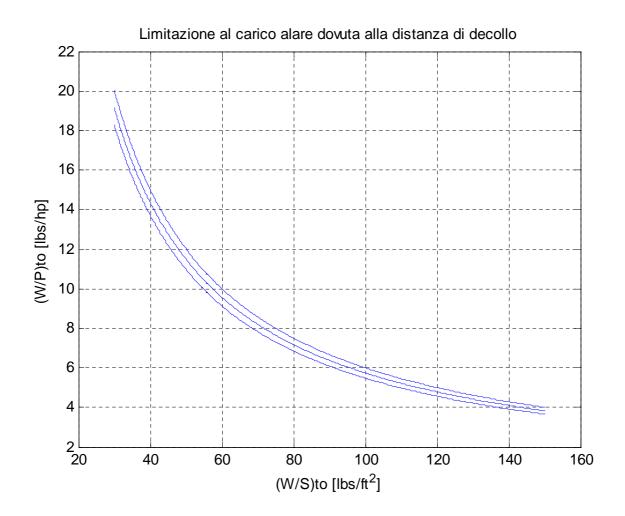
Per i velivoli della FAR 25 esiste una relazione di tipo statistico fra la distanza di decollo STOFL (lunghezza di campo necessaria al decollo, tenendo in conto dell'eventuale decollo abortito) e i parametri $(W/S)_{TO}$ e $(W/P)_{TO}$:

$$S_{TOFL} = 37.5 \cdot TOP_{25}$$

$$TOP_{25} = \frac{\left(\frac{W}{S}\right)_{TO} \cdot \left(\frac{W}{P}\right)_{TO}}{2.8 \cdot \sigma \cdot C_{L \max - TO}}$$

Nota:

$$S_{TOFL}[ft]$$


$$\left(\frac{W}{S}\right)_{TO}[psf]$$

$$\left(\frac{W}{P}\right)_{TO}\left[\frac{lbs}{hp}\right]$$

Il valore della lunghezza di decollo ci è stato fornito dalla specifica :

$$S_{TOFL} = 3500 ft$$
 a S/L

Poniamo σ =1 (stiamo considerando la condizione di decollo al livello del mare). Determiniamo la limitazione dovuta alla lunghezza di decollo per tre diversi valori di $C_{Lmax-TO}$ (1.9; 2; 2.1):

2.3 Dimensionamento in base alla distanza di atterraggio

Per la FAR 25 la lunghezza del campo di atterraggio è definita come la lunghezza della distanza totale di atterraggio (S_L) divisa per 0.6:

$$S_{FL} = \frac{S_L}{0.6}$$

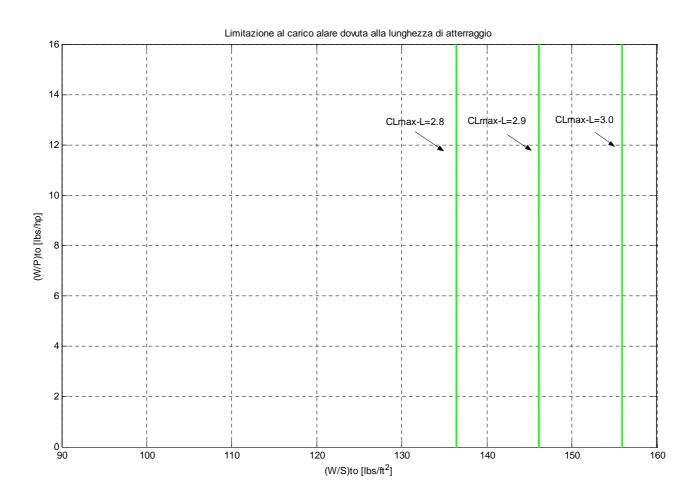
Su base statistica : $S_{FL} = 0.3 \cdot V_A^2$

 $V_A=1.3\cdot V_{SL}$ ne viene fuori una limitazione per V_{SL} e quindi per $(W/S)_L$ e di conseguenza per $(W/S)_{TO}$.

La lunghezza di atterraggio totale è data dalla specifica :

$$S_{L} = 3500 ft$$

$$S_{FL} = \frac{S_{L}}{0.6} = 5833 ft$$


$$M_{ff} = \frac{W_{L}}{W_{TO}} = 0.8$$

$$\left(\frac{W}{S}\right)_{L} = 0.8 \cdot \left(\frac{W}{S}\right)_{TO}$$

$$V_{A} = 139.4 kts = 235.4 ft/s$$

$$V_{SL} = 107.3 kts = 181.4 ft/s$$

Poiché $V_{SL} = \sqrt{\frac{2}{\rho} \cdot \left(\frac{W}{S}\right)_L \cdot \frac{1}{C_{L_{max-L}}}}$, sostituendo in questa espressione i valori trovati e considerando tre diversi valori di $C_{L_{max-L}}$ (2.8 ; 2.9 ; 3) otteniamo le seguenti limitazioni :

2.4 Dimensionamento in funzione delle caratteristiche di salita

Stima delle polari

Per il dimensionamento in funzione delle caratteristiche di salita è necessario effettuare una stima delle polari nelle varie configurazioni di volo. Una polare parabolica è data dalla seguente equazione :

$$C_D = C_{Do} + \frac{C_L^2}{\pi \cdot AR \cdot e}$$

Esiste una relazione fra la superficie bagnata S_{wet} e l'area parassita f:

$$\log_{10} f = a + b \cdot \log_{10} S_{wet}$$

I valori di a e b sono gabellati in funzione del coefficiente d'attrito. Fissiamo $c_f = 0.005$. Otteniamo :

$$a = -2.3010$$

 $b = 1$

Esiste inoltre una relazione di tipo statistico fra S_{wet} ed W_{TO} :

$$\log_{10} S_{wet} = c + d \cdot \log_{10} W_{TO}$$

c e d sono gabellati in base alla categoria di velivolo:

$$c = -0.0866$$

 $d = 0.8099$

Dobbiamo stimare un valore della superficie del nostro velivolo. Consideriamo i carichi alari dei velivoli di riferimento:

Velivolo	Wto [lb]	S [ft^2]	Wto/S[lb/ft^2]
ATR 42	41005	586.6	69.9
ATR 72	47400	656.6	72.2
Fokker 50	45900	753.5	60.9
Saab 2000	50265	600	83.8

Facendo una media dei valori del carico alare sopra riportati prendiamo il seguente valore del carico alare per il nostro velivolo :

$$\frac{W_{TO}}{S} = 71.7 \frac{lb}{ft^2}$$

$$W_{TO} = 7291 \, lbs$$

$$S = 1017 \, ft^2$$

Dobbiamo stabilire l'apertura alare del nostro velivolo. Consideriamo i valori dell'allungamento alare dei velivoli di riferimento:

Velivolo	b [ft]	S [ft^2]	AR
ATR 42	80	586.6	10.9
ATR 72	88	656.6	11.8
Fokker 50	95	753.5	12.0
Saab 2000	81	600	10.9

Facendo una media degli allungamenti alari dei quattro velivoli otteniamo:

$$AR = 11.4$$

$$b = \sqrt{AR \cdot S} = 107.7 \, ft$$

Dalle relazioni sopra elencate possiamo determinare la superficie bagnata S_{wet} , l'area parassita f e il C_{Do} :

$$S_{wet} = 7108.5 ft^2$$

 $f = 35.54 ft^2$
 $C_{Do} = \frac{f}{S} = 0.035$

A questo punto possiamo ricavare le polari relative alle varie configurazioni :

a. Polare in configurazione pulita

$$\Delta C_{Do} = 0$$

$$e = 0.8$$

$$C_D = 0.035 + 0.034 \cdot C_L^2$$

b. Polare in configurazione di decollo con carrello retratto

Gli ipersostentatori sono parzialmente estesi. Questo comporta un incremento del ΔC_{Do} (Coefficiente di resistenza a portanza nulla) :

$$\Delta C_{Do} = 0.015$$

e = 0.75

$$C_D = 0.05 + 0.036 \cdot C_L^2$$

c. Polare in configurazione di decollo con carrello esteso

Vi è un ulteriore incremento di ΔC_{Do} rispetto al caso precedente :

$$\Delta C_{Do} = 0.015 + 0.020$$

$$e = 0.75$$

$$C_D = 0.07 + 0.036 \cdot C_L^2$$

d. Polare in configurazione di atterraggio con carrello retratto

Gli ipersostentatori sono completamente estesi ma non abbiamo l'incremento di ΔC_{Do} dovuto al carrello :

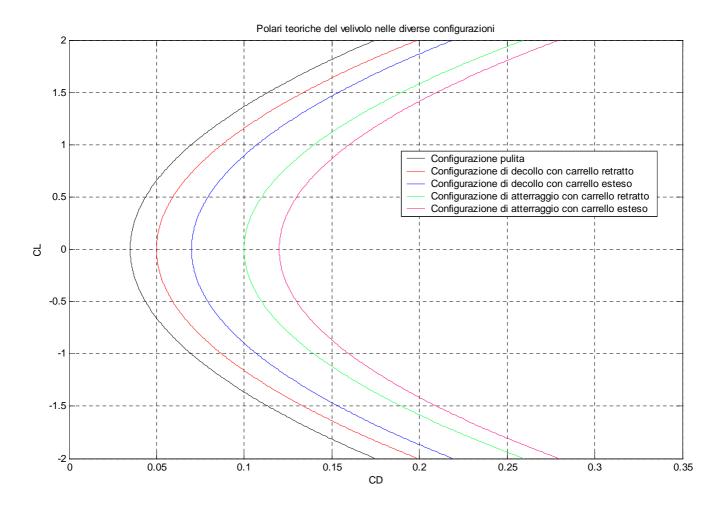
$$\Delta C_{Do} = 0.065$$

$$e = 0.7$$

$$C_D = 0.1 + 0.0391 \cdot C_L^2$$

e. Polare in configurazione di atterraggio con carrello esteso

Gli ipersostentatori sono completamente estesi, producendo un incremento di $\Delta C_{Do.}$ Un ulteriore incremento è fornito dal carrello esteso :


$$\Delta C_{Do} = 0.065 + 0.020$$

$$e = 0.7$$

$$C_D = 0.12 + 0.0391 \cdot C_L^2$$

<u>Nota</u>: abbiamo scelto i valori di e più bassi per ottenere condizioni più limitative relativamente alle prestazioni di salita nel diagramma $\left(\frac{W}{P}\right)_{TO} \left[\left(\frac{W}{S}\right)_{TO}\right]$

Riportiamo i diagrammi delle polari ottenute :

Requisiti di salita (FAR 25)

FAR 25.111 (OEI) – Tratto iniziale di salita

- $CGR \ge 0.012$
- Ipersostentatori al decollo $(C_{L_{\text{max}-TO}} = 1.9)$
- Carrello retratto
- Velocità $V = 1.2 \cdot V_{STO}$ (uguale ad 1.2 volte la velocità di stallo al decollo)
- Potenza al decollo
- OEI (un motore in operativo)

$$C_L = 1.32$$
 $C_D = 0.113$ $\frac{L}{D} = 11.68$ $\left(\frac{W}{P}\right)_{TO} \cdot \sqrt{\frac{W}{S}} = 178.54$

FAR 25.121 (OEI) – Transizione di salita

- $CGR \ge 0$
- Ipersostentatori al decollo $(C_{L_{\text{max}-TO}} = 1.9)$
- Carrello estratto
- Velocità $V_{LOF} = 1.1 \cdot V_{STO} < V < 1.2 \cdot V_{STO}$
- Potenza al decollo
- OEI (un motore in operativo)

$$C_L = 1.32$$
 $C_D = 0.134$ $\frac{L}{D} = 9.85$ $\left(\frac{W}{P}\right)_{TO} \cdot \sqrt{\frac{W}{S}} = 86.22$

FAR 25.121 (OEI) – Secondo tratto di salita

- $CGR \ge 0.024$
- Ipersostentatori al decollo $(C_{L_{\text{max}-TO}} = 1.9)$
- Carrello retratto
- Velocità $V = 1.2 \cdot V_{STO}$
- Potenza al decollo
- OEI (un motore in operativo)

$$C_L = 1.32$$
 $C_D = 0.113$ $\frac{L}{D} = 11.68$ $\left(\frac{W}{P}\right)_{TO} \cdot \sqrt{\frac{W}{S}} = 79.87$

FAR 25.121 (OEI) – Salita in rotta

- $CGR \ge 0.012$
- Ipersostentatori retratti
- Carrello retratto
- Velocità $V = 1.25 \cdot V_s$
- Potenza massima continua
- OEI (un motore in operativo)

$$C_L = 1.09$$
 $C_D = 0.075$ $\frac{L}{D} = 14.53$ $\left(\frac{W}{P}\right)_{TO} \cdot \sqrt{\frac{W}{S}} = 91.64$

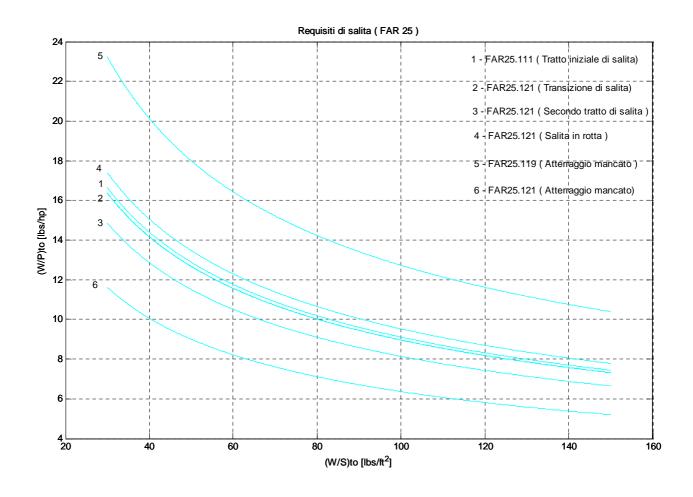
FAR 25.119 (AEO) – Atterraggio mancato

- $CGR \ge 0.032$
- Ipersostentatori all'atterraggio ($C_{L \text{max}-TO} = 2.8$)
- Carrello estratto
- Velocità $V = 1.3 \cdot V_{SL}$
- $\bullet \quad W = W_{L-MAX} = 0.9 \cdot W_{TO}$

$$C_L = 1.66$$
 $C_D = 0.227$ $\frac{L}{D} = 7.31$ $\left(\frac{W}{P}\right)_{TO} \cdot \sqrt{\frac{W}{S}} = 117.64$

FAR 25.121 (OEI) - Atterraggio mancato

- $CGR \ge 0.021$
- Ipersostentatori in configurazione di avvicinamento


$$\left(C_{L \max - A} = \frac{\left(C_{L \max - TO} + C_{L \max - L}\right)}{2} = 2.35\right)$$

- Velocità $V = 1.5 \cdot V_{SA}$
- Potenza al decollo e peso velivolo $W = 0.9 \cdot W_{TO}$
- OEI (Un motore in operativo)

$$C_L = 1.04$$
 $C_D = 0.138$ $\frac{L}{D} = 7.75$ $\left(\frac{W}{P}\right)_{TO} \cdot \sqrt{\frac{W}{S}} = 58.14$

Nota: l'ultima è la condizione più stringente.

Riportiamo nel diagramma tutte le limitazioni determinate :

2.5 - Dimensionamento preliminare – Velocità di crociera

Per i velivoli di una certa classe la velocità di crociera è legata in modo lineare al cosiddetto **Indice di potenza**, espresso dalla seguente relazione :

$$I_{P} = \sqrt[3]{\frac{\left(\frac{W}{S}\right)}{\sigma \cdot \left(\frac{W}{P}\right)_{cr}}}$$

<u>Nota</u> : osservando la relazione dell'indice di potenza appare evidente che imporre una certa velocità di crociera nella specifica limita il carico alare.

Dalla specifica il valore della velocità di crociera è di 240 kts alla quota di 20000 ft.

$$\rho_o = 1.226 \frac{kg}{m^3}$$

$$z = 2000 ft = 6096m \quad \rho = 0.653 \frac{kg}{m^3}$$

$$\sigma = \frac{\rho}{\rho_o} = 0.553$$

$$V_{cr} = 240kts = 444.5 \frac{km}{h}$$

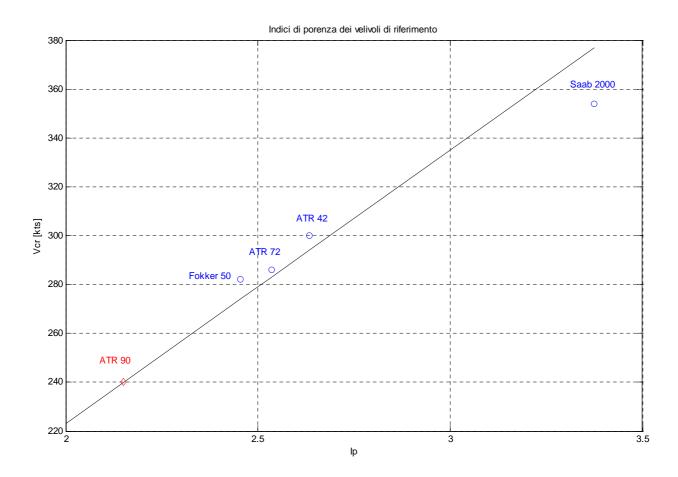
Per i turboelica possiamo considerare la seguente relazione :

$$k_{Z} = 0.2019 + 1.8532 \cdot \sigma - 0.6013 \cdot \sigma^{2}$$

$$\sigma < 0.86 \quad (z > 5000 ft)$$

$$k_{V} = 1.0 - 0.00263513 \cdot \left(\frac{V_{CR}}{100}\right) + 0.0283865 \cdot \left(\frac{V_{CR}}{100}\right)^{2} \text{ con V in [kts]}$$

Per la determinazione dell'indice di potenza del nostro velivolo ci riferiamo ai velivoli della stessa categoria, costruendo la seguente tabella :

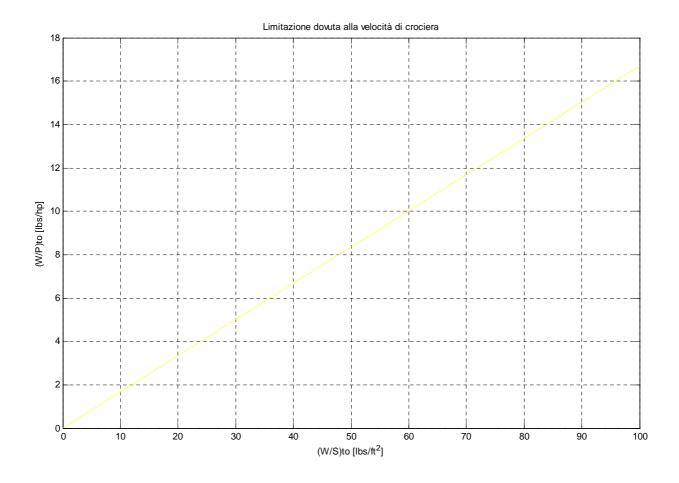

	(W/S)to	(W/P)to	Vcr	Zcr								
Velivolo	[lb/ft^2]	[lb/hp]	[kts]	[ft]	σ	Kz	Kv	φ	Pcr/Pto	(W/P)cr	lp	Vcr/lp
ATR 42	69.9	8.54	300	25000	0.45	0.91	1.25	0.75	0.85	10.01	2.63	113.94
ATR72	72.2	9.88	286	25000	0.45	0.91	1.22	0.75	0.84	11.80	2.54	112.80
FOKKER 50	60.9	9.18	282	25000	0.45	0.91	1.22	0.75	0.83	11.02	2.45	114.87
SAAB 2000	83.8	6.04	354	31000	0.36	0.79	1.35	0.75	0.80	7.55	3.38	104.88

Il valore dell'indice di potenza per il nostro velivolo lo otteniamo considerando una media dei valori di $\frac{V_{cr}}{I_P}$ per i velivoli di riferimento. Quindi si ha :

$$\frac{V_{cr}}{I_P} = 111.62 \quad Vcr = 240kts \quad I_P = 2.15$$

Nota: l'indice di potenza ottenuto è più basso rispetto a quello dei velivoli della stessa categoria. Ciò è dovuto alla velocità di crociera richiesta dalla specifica; tale velocità è molto più bassa rispetto agli altri turboelica da trasporto regionale.

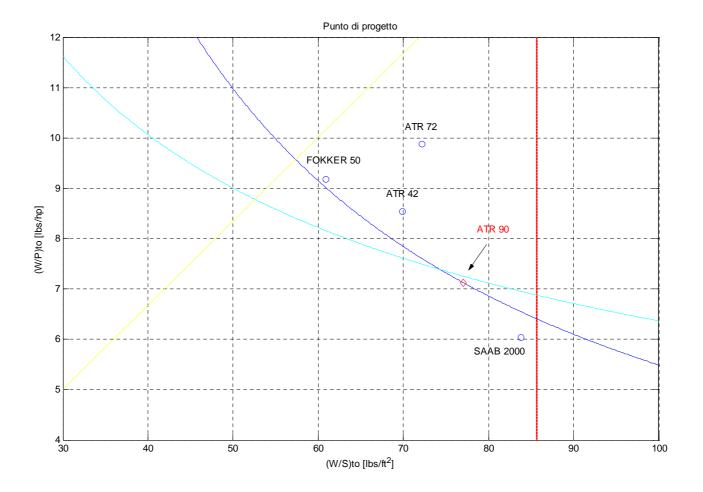
Riportiamo in un diagramma l'andamento degli indice di potenza in funzione della velocità di crociera per i velivoli di riferimento e per l'ATR 90.


Si noti come per i vari velivoli all'aumentare della velocità di crociera l'indice di potenza aumenta con legge lineare.

Riassumiamo in una tabella i valori determinati per il nostro velivolo:

Velivolo	Vcr [kts]	Vc/lp	lp	Zcr [ft]	σ	Kz	Κv	φ
ATR 90	240	112	2.15	20000	0.53	1.02	1.16	0.75

La limitazione dovuta alla velocità di crociera è la seguente :


$$\left[\left(\frac{W}{P} \right)_{TO} = \frac{k_V \cdot k_Z \cdot \varphi}{I_P^3 \cdot \sigma} \cdot \left(\frac{W}{S} \right)_{TO} \right]$$

2.6 - Determinazione del punto di progetto

Sovrapponendo i diagrammi ottenuti (considerando solo le condizioni più restrittive) otteniamo la zona entro la quale scegliere il punto di progetto.

Riportiamo per completezza i punti di progetto dei velivoli presi come riferimento :

La scelta è stata fatta sulla base dei seguenti criteri :

- 1. Realizzare un elevato carico alare W/S (cioè a parità di peso ottenere la superficie alare piccola possibile)
- 2. Avere un elevato rapporto W/P (cioè a parità di peso avere la più bassa potenza necessaria)

Sulla base di tali affermazioni bisognerebbe cercare di prendere il punto di progetto quanto in alto e quanto più a destra possibile.

Notiamo che i punti di progetto di quasi tutti i velivoli di riferimento finiscono al di fuori delle limitazioni imposte. Risulta molto restrittiva la limitazione dovuta alla corsa di decollo, la quale è corta rispetto a quelle degli altri velivoli. Quello che si sta

cercando di realizzare è un velivolo capace di decollare ed atterrare su piste brevi. Per soddisfare questo requisito può essere necessario un impianto propulsivo notevole (con una potenza elevata che però non verrà sfruttata essendo le prestazioni richieste in crociera non molto elevate). Oppure possiamo soddisfare i requisiti richiesti aumentando la superficie alare (anche se sappiamo che un incremento della superficie alare comporta un incremento di area parassita e quindi di resistenza). Abbiamo fissato il punto di progetto cercando di trovare un compromesso fra la potenza necessaria e la superficie alare. I risultati ottenuti sono i seguenti :

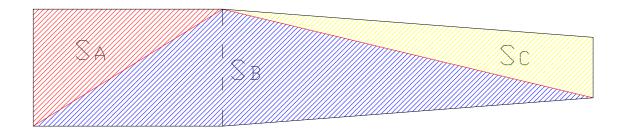
$$\left(\frac{W}{S}\right)_{TO} = 77 \frac{lbs}{ft^2}$$

$$\left(\frac{W}{P}\right)_{TO} = 7.13 \frac{lbs}{hp}$$

$$S = 947 ft^2 = 88m^2$$

$$P = 10226hp$$

CAPITOLO 3 PROGETTO DELL'ALA

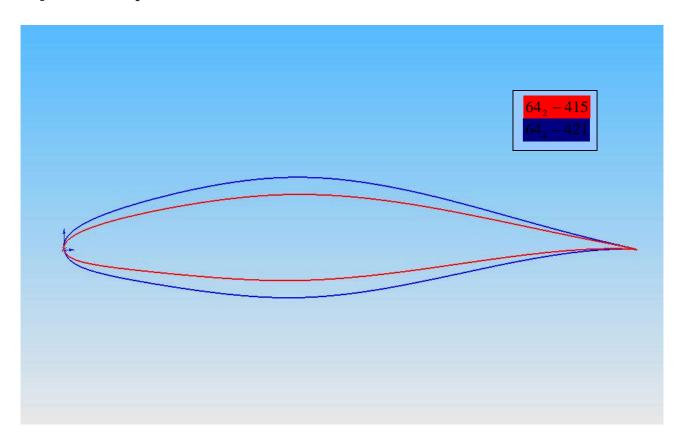

3.1 - POSIZIONE IN FUSOLIERA

Nel progetto dell'ala rientrano alcune scelte importanti che andranno a definire in modo marcato, il carattere e la classificazione del nostro velivolo. Innanzitutto, dobbiamo determinare la posizione dell'ala rispetto alla fusoliera. Dando uno sguardo ai velivoli di riferimento, ci accorgiamo che l'unico fra questi a figurare con un'ala bassa è il SAAB 2000, mentre sia i due velivoli ATR che il FOKKER 100 sono stati concepiti con ala alta. Siccome, l'intenzione è quella di progettare un velivolo particolarmente stabile, si è scelto di utilizzare la configurazione ad ala alta, che può dare qualche problema a livello di ingombro nella fusoliera.

3.2 - FORMA IN PIANTA

Per la forma in pianta dell'ala ci siamo riferiti a quella dei velivoli ATR, che si presenta diritta fino al 33.8% dell'apertura dopo di che si va rastremando. Per motivi strutturali, la rastremazione parte dalla stazione immediatamente successiva a quella in cui vengono posizionate le gondole motore.

La forma in pianta dell'ala da noi considerata si presenta così come in figura:



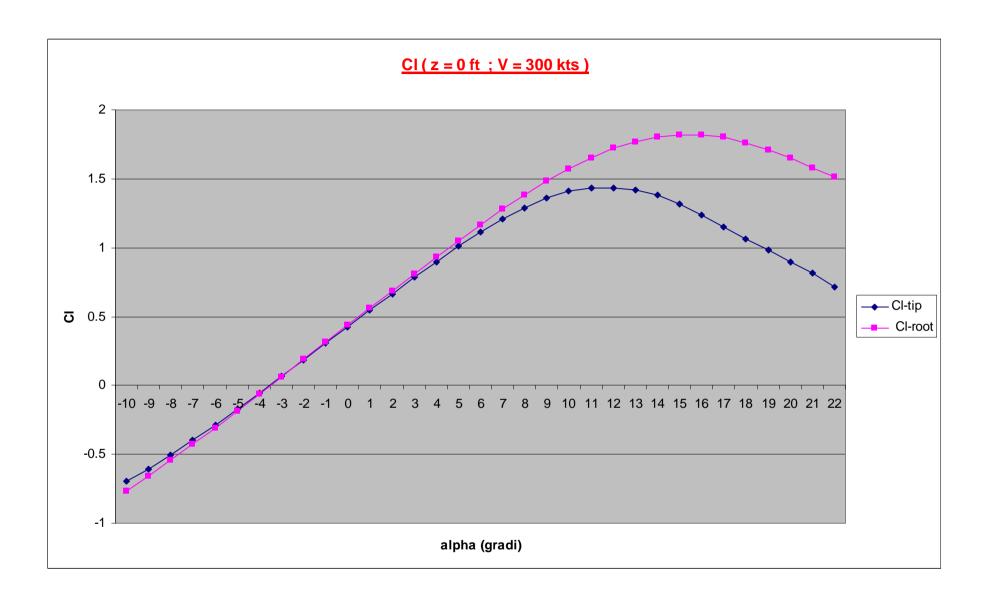
Stabilita la forma in pianta della nostra ala abbiamo determinato le diverse aree di influenza così come indicate in figura. Ognuna di queste aree ha un suo peso nella determinazione dei coefficienti aerodinamici, peso che viene espresso tramite i coefficienti di influenza, che sono di seguito calcolati:

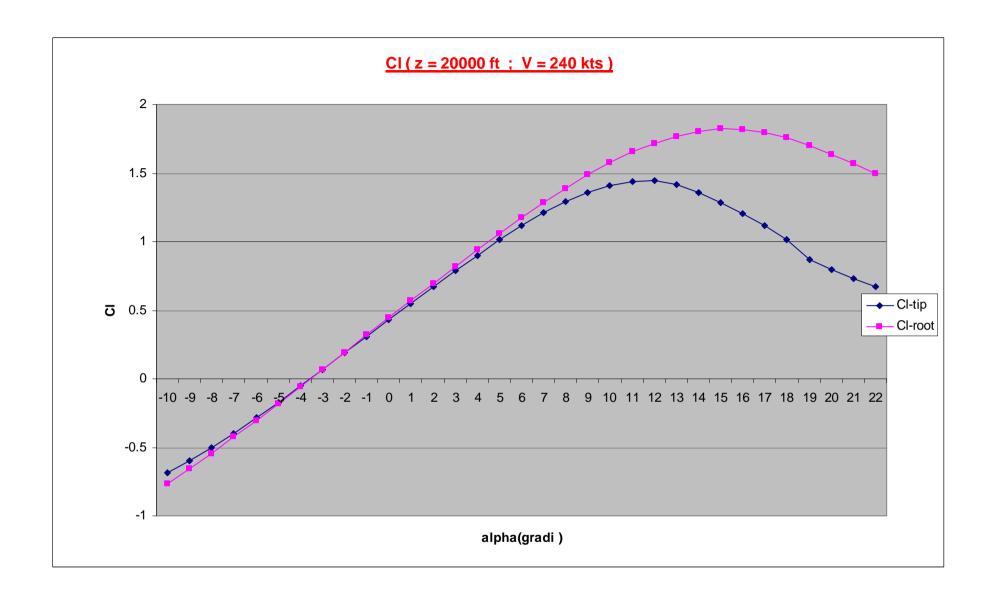
$$K_A = \frac{2S_A}{S} = 0.200$$

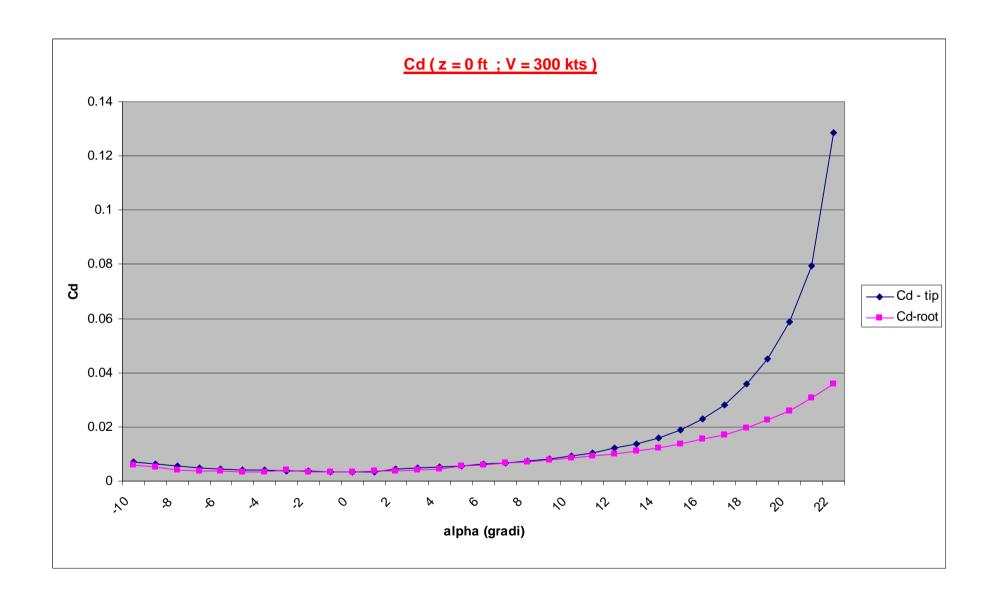
 $K_B = \frac{2S_B}{S} = 0.590$
 $K_C = \frac{2S_C}{S} = 0.200$

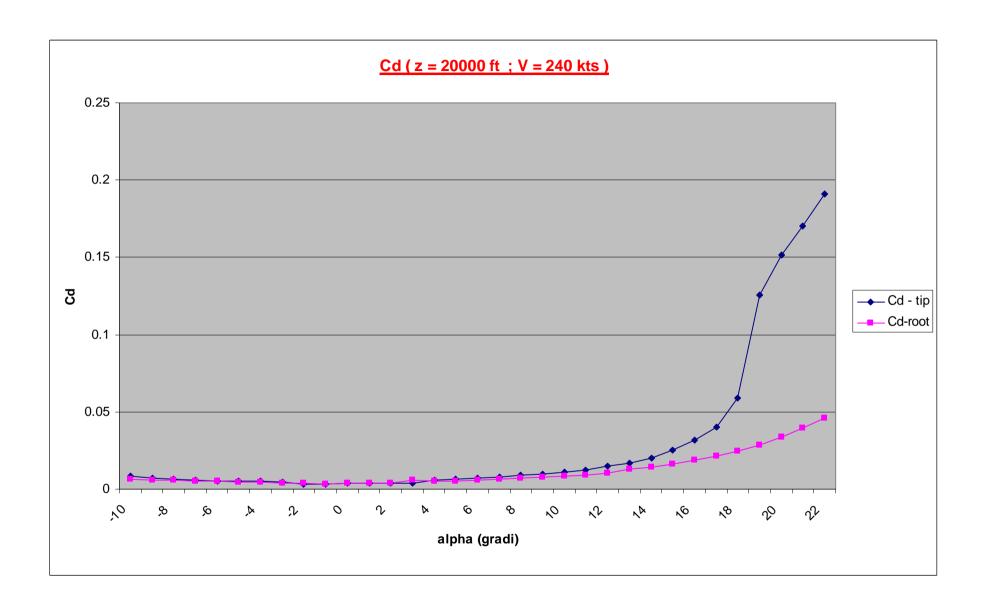
3.3 - PROFILO

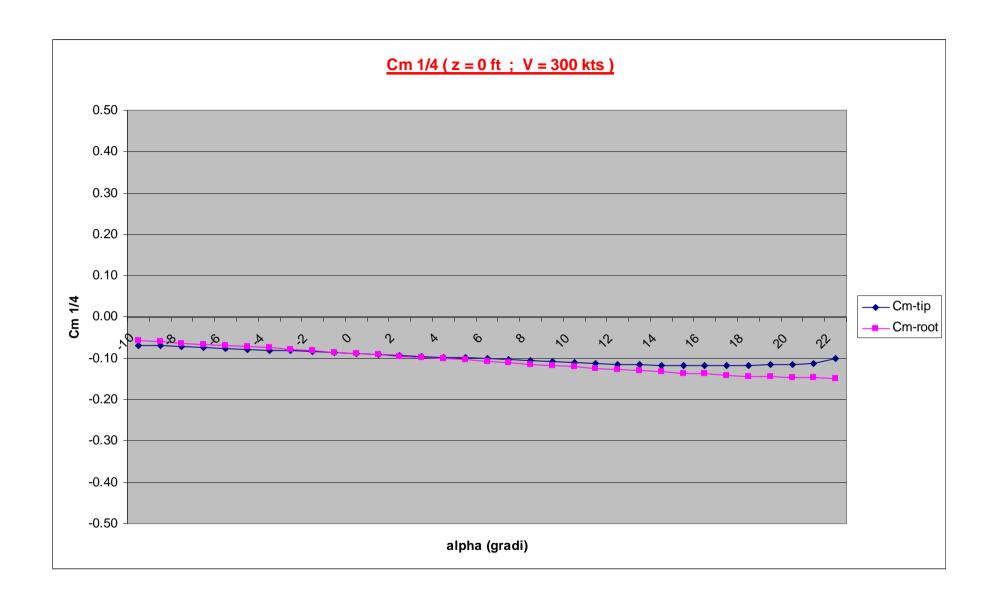
Per la scelta del profilo, abbiamo preso spunto dal FOKKER 100, che monta profili della sesta serie laminare. In particolare, abbiamo un 64_4 – 421 alla radice, ed un 64_2 – 415 alla tip.

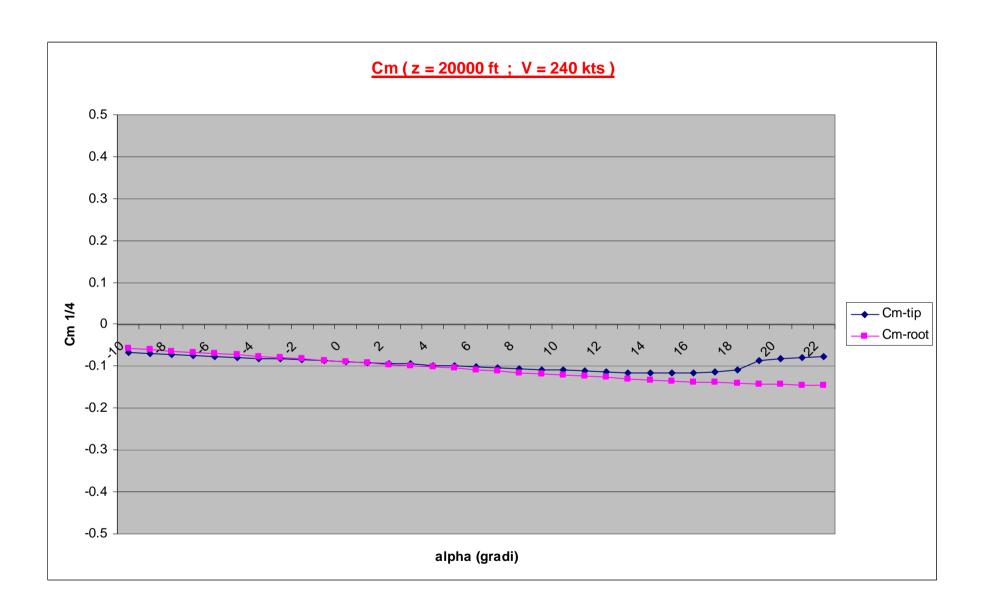

Calcoliamo la polare del profilo medio, riferito alla forma in pianta da noi prescelta. A tal proposito, dobbiamo prima calcolare le caratteristiche aerodinamiche dei due profili. Dopo aver caricato i due profili in Java-Foil sia a quota zero che alla quota di crociera di 20000 ft.

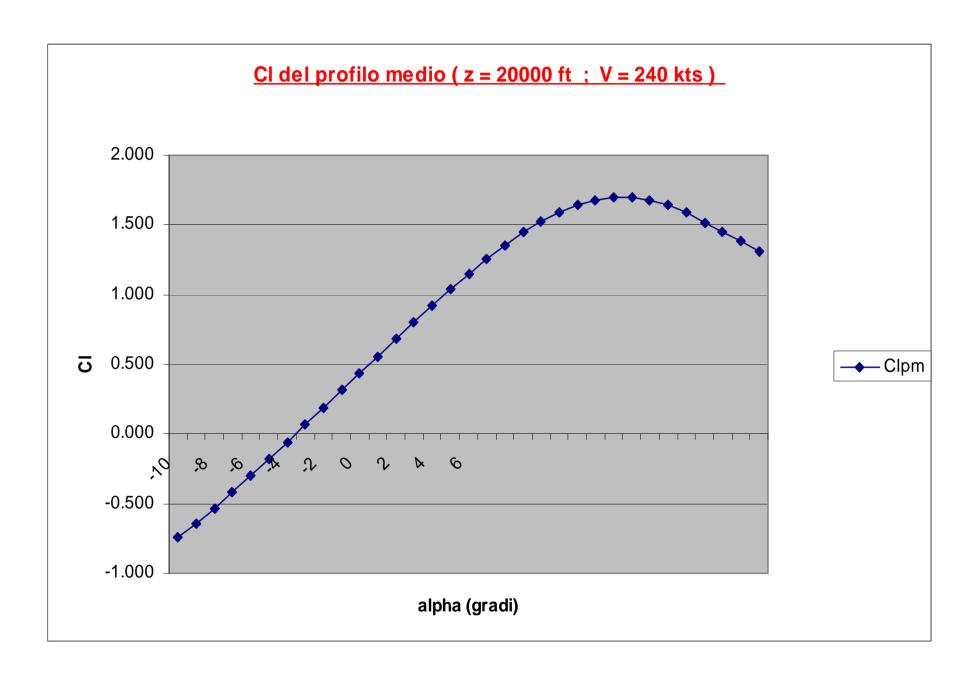

tip airfoil		Re=18000000		z=0 ft				
alfa	CI	Cd	Cm 0.25	TU	TL	SU	SL	L/D
[°]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
-10	-0.694	0.00689	-0.068	0.501	0.008	0.998	0.991	-100.813
-9	-0.605	0.00616	-0.07	0.485	0.008	0.998	0.992	-98.225
-8	-0.506	0.00538	-0.072	0.474	0.01	0.997	0.993	-94.081
-7	-0.4	0.00483	-0.074	0.463	0.012	0.997	0.994	-82.987
-6	-0.289	0.00454	-0.076	0.45	0.014	0.997	0.995	-63.626
-5	-0.173	0.00421	-0.078	0.442	0.017	0.997	0.996	-41.134
-4	-0.055	0.00399	-0.08	0.433	0.023	0.997	0.996	-13.732
-3	0.065	0.00383	-0.082	0.422	0.032	0.997	0.997	17.063
-2	0.186	0.00377	-0.084	0.414	0.05	0.997	0.997	49.445
-1	0.307	0.00316	-0.086	0.408	0.393	0.997	0.997	96.928
0	0.427	0.00323	-0.089	0.395	0.408	0.997	0.997	132.214
1	0.547	0.00327	-0.091	0.382	0.415	0.997	0.997	167.328
2	0.667	0.0043	-0.093	0.088	0.423	0.998	0.997	155.048
3	0.785	0.0047	-0.095	0.043	0.434	0.998	0.997	166.81
4	0.899	0.00514	-0.097	0.027	0.443	0.998	0.997	175.043
5	1.01	0.00553	-0.099	0.018	0.452	0.997	0.997	182.725
6	1.113	0.0062	-0.101	0.012	0.464	0.997	0.997	179.463
7	1.207	0.00655	-0.103	0.009	0.476	0.997	0.998	184.442
8	1.291	0.00725	-0.106	0.007	0.488	0.997	0.998	177.955
9	1.361	0.00811	-0.108	0.005	0.503	0.997	0.998	167.836
10	1.408	0.00922	-0.11	0.004	0.516	0.996	0.998	152.644
11	1.432	0.01036	-0.112	0.003	0.533	0.995	0.998	138.193
12	1.435	0.01209	-0.114	0.003	0.548	0.994	0.998	118.717
13	1.417	0.01371	-0.115	0.002	0.566	0.993	0.998	103.382
14	1.381	0.01574	-0.117	0.002	0.584	0.989	0.998	87.707
15	1.315	0.01874	-0.118	0.001	0.603	0.929	0.998	70.166
16	1.236	0.02272	-0.118	0.001	0.625	0.859	0.998	54.387
17	1.152	0.0282	-0.117	0.001	0.646	0.792	0.998	40.869
18	1.066	0.03584	-0.117	0.001	0.67	0.725	0.999	29.752
19	0.982	0.04515	-0.116	0.001	0.697	0.662	0.999	21.749
20	0.897	0.05857	-0.115	0.001	0.729	0.584	0.999	15.322
21	0.813	0.07934	-0.112	0.001	0.772	0.485	0.999	10.249
22	0.717	0.12865	-0.101	0.001	0.992	0.275	0.995	5.569

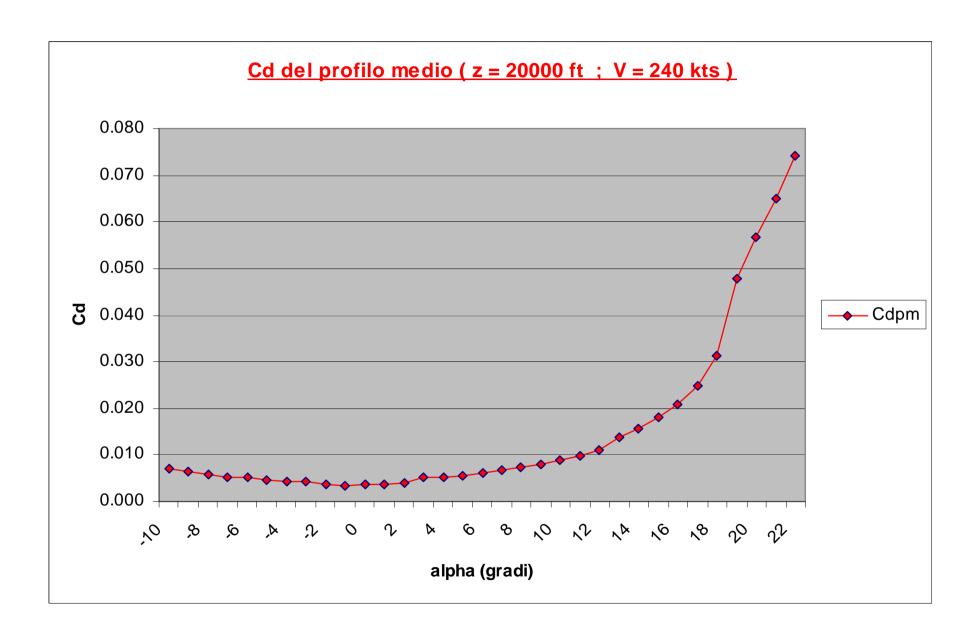

root airfoil		Re=35000000		z=0 ft				
alfa	CI	Cd	Cm 0.25	TU	TL	SU	SL	L/D
[°]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
-10	-0.769	0.00579	-0.056	0.439	0.015	0.995	0.991	-132.682
-9	-0.66	0.00532	-0.059	0.435	0.015	0.995	0.992	-124.07
-8	-0.546	0.00423	-0.063	0.428	0.017	0.995	0.993	-129.286
-7	-0.429	0.00387	-0.066	0.414	0.021	0.995	0.993	-110.934
-6	-0.308	0.00358	-0.069	0.405	0.024	0.995	0.993	-86.229
-5	-0.186	0.0035	-0.072	0.4	0.027	0.995	0.993	-53.008
-4	-0.061	0.0034	-0.075	0.395	0.033	0.995	0.994	-18.063
-3	0.064	0.00397	-0.078	0.391	0.041	0.995	0.994	16.041
-2	0.189	0.00342	-0.082	0.388	0.054	0.995	0.994	55.149
-1	0.314	0.00349	-0.085	0.367	0.081	0.995	0.994	89.866
0	0.438	0.00338	-0.088	0.353	0.374	0.995	0.994	129.825
1	0.563	0.00378	-0.091	0.111	0.392	0.995	0.994	149.131
2	0.687	0.00374	-0.095	0.063	0.396	0.995	0.994	183.512
3	0.811	0.00412	-0.098	0.045	0.399	0.995	0.995	197.045
4	0.933	0.00436	-0.101	0.033	0.404	0.995	0.995	214.255
5	1.052	0.00552	-0.104	0.025	0.41	0.995	0.995	190.615
6	1.168	0.00595	-0.108	0.019	0.42	0.995	0.995	196.255
7	1.279	0.00647	-0.111	0.016	0.435	0.995	0.995	197.6
8	1.384	0.00695	-0.114	0.013	0.438	0.995	0.995	199.033
9	1.482	0.00773	-0.117	0.01	0.444	0.994	0.995	191.601
10	1.571	0.0084	-0.12	0.008	0.45	0.994	0.996	187.052
11	1.651	0.00922	-0.124	0.007	0.459	0.994	0.996	179.119
12	1.721	0.01014	-0.127	0.006	0.475	0.994	0.996	169.713
13	1.771	0.0112	-0.13	0.006	0.484	0.993	0.996	158.087
14	1.803	0.0123	-0.133	0.006	0.492	0.993	0.996	146.591
15	1.819	0.01369	-0.136	0.004	0.503	0.992	0.997	132.871
16	1.818	0.01547	-0.138	0.003	0.523	0.989	0.997	117.523
17	1.802	0.01714	-0.141	0.002	0.531	0.983	0.997	105.099
18	1.762	0.01958	-0.143	0.002	0.543	0.949	0.998	90.005
19	1.709	0.02241	-0.144	0.002	0.566	0.909	0.998	76.293
20	1.648	0.02603	-0.146	0.002	0.576	0.87	0.998	63.319
21	1.58	0.03072	-0.147	0.001	0.591	0.831	0.998	51.45
22	1.51	0.03577	-0.148	0.001	0.613	0.799	0.998	42.22

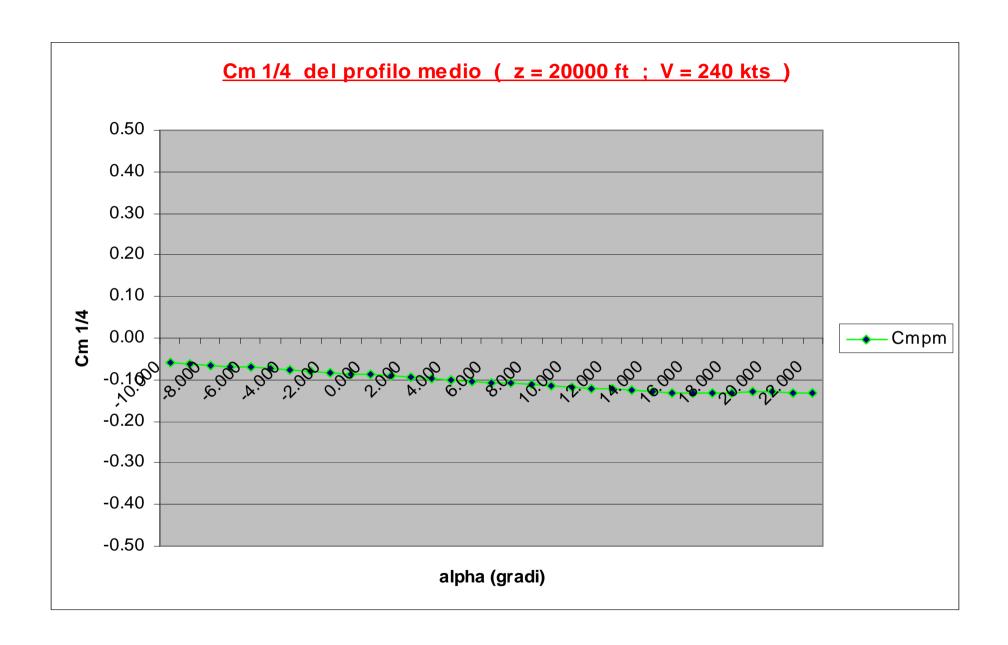

tip airfoil		Re=8000000		z=20000 ft				
alfa	CI	Cd	Cm 0.25	TU	TL	SU	SL	L/D
[°]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
-10	-0.689	0.00816	-0.068	0.558	0.009	0.998	0.989	-84.537
-9	-0.602	0.00727	-0.07	0.542	0.01	0.998	0.993	-82.789
-8	-0.505	0.00633	-0.072	0.528	0.011	0.998	0.994	-79.731
-7	-0.399	0.00573	-0.074	0.513	0.012	0.998	0.995	-69.717
-6	-0.288	0.00522	-0.076	0.501	0.015	0.998	0.996	-55.185
-5	-0.172	0.00526	-0.079	0.487	0.019	0.998	0.996	-32.663
-4	-0.053	0.00488	-0.081	0.476	0.027	0.998	0.996	-10.939
-3	0.067	0.00456	-0.083	0.464	0.044	0.998	0.997	14.664
-2	0.188	0.00349	-0.085	0.454	0.423	0.998	0.997	53.766
-1	0.308	0.00336	-0.087	0.445	0.431	0.998	0.997	91.848
0	0.429	0.00371	-0.089	0.435	0.44	0.998	0.997	115.571
1	0.549	0.0038	-0.091	0.427	0.451	0.998	0.997	144.574
2	0.669	0.00389	-0.093	0.418	0.46	0.998	0.997	172.143
3	0.786	0.0037	-0.095	0.407	0.472	0.998	0.998	212.537
4	0.901	0.00597	-0.098	0.04	0.483	0.998	0.998	150.793
5	1.011	0.00663	-0.1	0.024	0.496	0.998	0.998	152.473
6	1.115	0.00732	-0.102	0.016	0.509	0.998	0.998	152.216
7	1.21	0.00776	-0.104	0.011	0.524	0.998	0.998	155.807
8	1.291	0.00887	-0.106	0.008	0.538	0.997	0.998	145.572
9	1.358	0.00971	-0.108	0.007	0.555	0.997	0.998	139.833
10	1.408	0.01102	-0.11	0.005	0.571	0.996	0.998	127.724
11	1.44	0.01252	-0.112	0.004	0.589	0.995	0.999	114.976
12	1.442	0.01462	-0.114	0.003	0.608	0.994	0.999	98.596
13	1.416	0.01693	-0.115	0.003	0.629	0.969	0.999	83.622
14	1.357	0.02025	-0.115	0.002	0.65	0.892	0.999	66.976
15	1.284	0.02513	-0.115	0.002	0.673	0.815	0.999	51.105
16	1.204	0.03147	-0.115	0.002	0.699	0.745	0.999	38.263
17	1.117	0.04033	-0.114	0.001	0.729	0.668	0.999	27.695
18	1.014	0.05923	-0.11	0.001	0.768	0.529	0.999	17.127
19	0.868	0.12536	-0.088	0.001	0.994	0.163	0.996	6.921
20	0.793	0.15135	-0.082	0.001	0.995	0.107	0.996	5.24
21	0.729	0.17033	-0.08	0.001	0.995	0.09	0.996	4.283
22	0.67	0.19075	-0.078	0.001	0.995	0.076	0.996	3.513

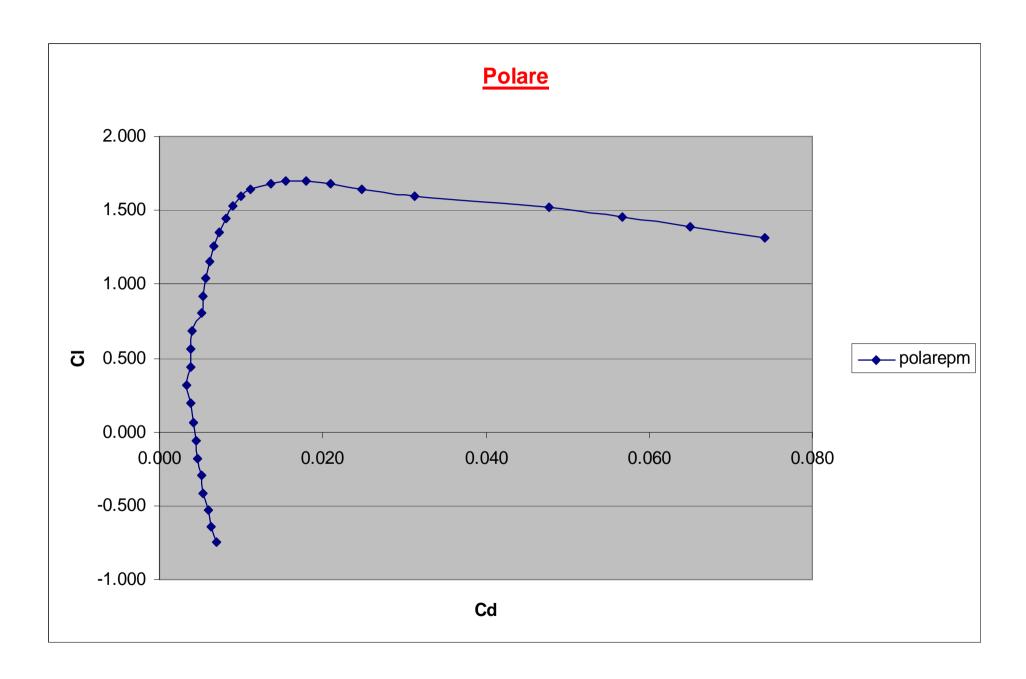

root airfoil		Re=16000000		z=20000 ft				
alfa	CI	Cd	Cm 0.25	TU	TL	SU	SL	L/D
[°]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
-10	-0.767	0.00675	-0.058	0.48	0.016	0.998	0.993	-113.729
-9	-0.658	0.00614	-0.061	0.472	0.018	0.998	0.994	-107.133
-8	-0.544	0.00591	-0.064	0.463	0.021	0.998	0.995	-92.069
-7	-0.426	0.00523	-0.067	0.453	0.023	0.998	0.996	-81.534
-6	-0.305	0.00525	-0.07	0.446	0.027	0.998	0.996	-58.201
-5	-0.182	0.00464	-0.073	0.44	0.033	0.998	0.997	-39.314
-4	-0.058	0.00436	-0.076	0.433	0.042	0.998	0.997	-13.281
-3	0.067	0.00419	-0.08	0.425	0.056	0.998	0.997	16.092
-2	0.193	0.00394	-0.083	0.419	0.098	0.998	0.997	48.906
-1	0.318	0.00337	-0.086	0.413	0.41	0.998	0.997	94.259
0	0.443	0.00383	-0.089	0.409	0.415	0.998	0.997	115.678
1	0.567	0.00383	-0.092	0.405	0.42	0.998	0.997	148.137
2	0.692	0.00399	-0.096	0.394	0.426	0.998	0.997	173.47
3	0.816	0.00554	-0.099	0.081	0.434	0.998	0.997	147.183
4	0.938	0.00516	-0.102	0.049	0.441	0.998	0.997	181.885
5	1.057	0.00544	-0.105	0.035	0.447	0.998	0.998	194.245
6	1.173	0.00589	-0.109	0.027	0.453	0.998	0.998	199.177
7	1.284	0.0065	-0.112	0.021	0.463	0.998	0.998	197.385
8	1.388	0.00711	-0.115	0.017	0.473	0.997	0.998	195.365
9	1.486	0.0078	-0.118	0.014	0.481	0.997	0.998	190.521
10	1.576	0.00848	-0.121	0.011	0.491	0.997	0.998	185.775
11	1.654	0.00936	-0.124	0.009	0.503	0.997	0.998	176.618
12	1.717	0.01034	-0.127	0.008	0.513	0.996	0.998	166.008
13	1.767	0.01306	-0.13	0.007	0.527	0.995	0.998	135.216
14	1.802	0.0145	-0.133	0.006	0.539	0.993	0.998	124.261
15	1.822	0.01636	-0.136	0.005	0.552	0.99	0.999	111.387
16	1.818	0.01849	-0.138	0.004	0.567	0.959	0.999	98.301
17	1.797	0.02115	-0.139	0.004	0.581	0.917	0.999	84.958
18	1.758	0.02459	-0.141	0.003	0.598	0.875	0.999	71.485
19	1.702	0.02861	-0.142	0.003	0.615	0.837	0.999	59.508
20	1.638	0.03347	-0.143	0.002	0.632	0.801	0.999	48.943
21	1.568	0.03926	-0.145	0.002	0.653	0.767	0.999	39.939
22	1.493	0.04571	-0.146	0.002	0.672	0.734	0.999	32.676




Dobbiamo calcolare le caratteristiche aerodinamiche del profilo medio. A tal proposito ci riferiamo ai coefficienti di influenza sopra calcolati. Cominciamo col calcolare lo spessore percentuale del profilo medio:


sappiamo che


$$\begin{split} \tau_{\scriptscriptstyle A} &= 21 \\ \tau_{\scriptscriptstyle B} &= 21 \Longrightarrow \tau = 19.590\% \\ \tau_{\scriptscriptstyle C} &= 15 \end{split}$$



α	Cla	Clb	Clc	Ka*C	Kb*C	Kc*C	CI	Cda	Cdb	Cdc	ka*C	Kb*C	Kc*C	Cd	α	Cma	Cmb	Cmc	Ka*C	Kb*C	Kc*C	Cm
[°]		[-]	[-]	[-]		[-]	[-]	[-]	[-]		[-]	[-]	[-]	[-]	l _o 1	[-]	[- 1	[-]	[-]	[-]	[-]	[-]
-10	-0.767	-0.767	-0.689	-0.153		-0.138			0.0067		0.001	0.004	0.002	0.007	-10	-0.058	-0.058	-0.068	-0.012	-	-	-
-9	-0.658	-0.658	-0.602	-0.132	-0.388	-0.120	-0.640	0.0061	0.0061	0.0072	0.001	0.004	0.001	0.006	-9	-0.061	-0.061	-0.07	-0.012	-0.036	-0.014	-0.062
-8	-0.544	-0.544	-0.505	-0.109	-0.321	-0.101	-0.531	0.0059	0.0059	0.0063	0.001	0.003	0.001	0.006	-8	-0.064	-0.064	-0.072	-0.013	-0.038	-0.014	-0.065
-7	-0.426	-0.426	-0.399	-0.085	-0.251	-0.080	-0.416	0.0052	0.0052	0.0057	0.001	0.003	0.001	0.005	-7	-0.067	-0.067	-0.074	-0.013	-0.040	-0.015	-0.068
-6	-0.305	-0.305	-0.288	-0.061	-0.180	-0.058	-0.299	0.0052	0.0052	0.0052	0.001	0.003	0.001	0.005	-6	-0.07	-0.07	-0.076	-0.014	-0.041	-0.015	-0.071
-5	-0.182	-0.182	-0.172	-0.036	-0.107	-0.034	-0.178	0.0046	0.0046	0.0052	0.001	0.003	0.001	0.005	-5	-0.073	-0.073	-0.079	-0.015	-0.043	-0.016	-0.073
-4	-0.058	-0.058	-0.053	-0.012	-0.034	-0.011	-0.056	0.0043	0.0043	0.0048	0.001	0.003	0.001	0.004	-4	-0.076	-0.076	-0.081	-0.015	-0.045	-0.016	-0.076
-3	0.067	0.067	0.067	0.013	0.040	0.013	0.066	0.0041	0.0041	0.0045	0.001	0.002	0.001	0.004	-3	-0.08	-0.08	-0.083	-0.016	-0.047	-0.017	-0.080
-2	0.193	0.193	0.188	0.039	0.114	0.038	0.190	0.0039	0.0039	0.0034	0.001	0.002	0.001	0.004	-2	-0.083	-0.083	-0.085	-0.017	-0.049	-0.017	-0.083
-1	0.318	0.318	0.308	0.064	0.188	0.062	0.313	0.0033	0.0033	0.0033	0.001	0.002	0.001	0.003	-1	-0.086	-0.086	-0.087	-0.017	-0.051	-0.017	-0.085
0	0.443	0.443	0.429	0.089	0.261	0.086	0.436	0.0038	0.0038	0.0037	0.001	0.002	0.001	0.004	0	-0.089	-0.089	-0.089	-0.018	-0.053	-0.018	-0.088
1	0.567	0.567	0.549	0.113	0.335	0.110	0.558	0.0038	0.0038	0.0038	0.001	0.002	0.001	0.004	1	-0.092	-0.092	-0.091	-0.018	-0.054	-0.018	-0.091
2	0.692	0.692	0.669	0.138	0.408	0.134	0.680	0.0039	0.0039	0.0038	0.001	0.002	0.001	0.004	2	-0.096	-0.096	-0.093	-0.019	-0.057	-0.019	-0.094
3	0.816	0.816	0.786	0.163	0.481	0.157	0.802	0.0055	0.0055	0.0037	0.001	0.003	0.001	0.005	3	-0.099	-0.099	-0.095	-0.020	-0.058	-0.019	-0.097
4	0.938	0.938	0.901	0.188	0.553	0.180	0.921				0.001	0.003	0.001	0.005	4	-0.102	-0.102	-0.098	-0.020	-0.060	-0.020	-0.100
5	1.057	1.057	1.011	0.211	0.624	0.202	1.037	0.0054	0.0054	0.0066	0.001	0.003	0.001	0.006	5	-0.105	-0.105	-0.1	-0.021	-0.062	-0.020	-0.103
6	1.173	1.173	1.115	0.235	0.692	0.223	1.150	0.0058	0.0058	0.0073	0.001	0.003	0.001	0.006	6	-0.109	-0.109	-0.102	-0.022	-0.064	-0.020	-0.107
7	1.284	1.284	1.21	0.257	0.758	0.242	1.256		0.0065		0.001	0.004	0.002	0.007	7	-0.112	-0.112	-0.104	-0.022	-0.066	-0.021	-0.109
8	1.388	1.388	1.291	0.278	0.819	0.258	1.355	0.0071	0.0071	0.0088	0.001	0.004	0.002	0.007	8	-0.115	-0.115	-0.106	-0.023	-0.068	-0.021	-0.112
9	1.486	1.486	1.358	0.297	0.877	0.272	1.446		0.0078		0.002	0.005	0.002	0.008	9	-0.118	-0.118	-0.108	-0.024	-0.070	-0.022	-0.115
10	1.576	1.576	1.408	0.315	0.930	0.282	1.527		0.0084		0.002	0.005	0.002	0.009	10	-0.121	-0.121	-0.11	-0.024	-0.071	-0.022	-0.118
11	1.654	1.654	1.44	0.331	0.976	0.288	1.595		0.0093		0.002	0.006	0.003	0.010	11	-0.124	-0.124	-0.112	-0.025	-0.073	-0.022	-0.120
12	1.717	1.717	1.442	0.343	1.013	0.288	1.645		0.0103		0.002	0.006	0.003	0.011	12	-0.127	-0.127	-0.114	-0.025	-0.075	-0.023	-0.123
13	1.767	1.767	1.416	0.353	1.043	0.283	1.679		0.0130		0.003	0.008	0.003	0.014	13	-0.13	-0.13	-0.115	-0.026	-0.077	-0.023	-0.126
14	1.802	1.802	1.357	0.360	1.063	0.271	1.695	0.0	0.0145	0.0.0	0.003	0.009	0.004	0.016	14	-0.133	-0.133	-0.115	-0.027	-0.078	-0.023	-0.128
15	1.822	1.822	1.284	0.364	1.075	0.257	1.696		0.0163		0.003	0.010	0.005	0.018	15	-0.136	-0.136	-0.115	-0.027	-0.080	-0.023	
16	1.818	1.818	1.204	0.364	1.073	0.241	1.677		0.0184		0.004	0.011	0.006	0.021	16	-0.138	-0.138	-0.115	-0.028	-0.081	-0.023	-0.132
17	1.797	1.797	1.117	0.359	1.060	0.223	1.643		0.0211	0.0.00	0.004	0.012	0.008	0.025	17	-0.139	-0.139	-0.114	-0.028	-0.082	-0.023	-0.133
18	1.758	1.758	1.014	0.352	1.037	0.203	1.592		0.0245		0.005	0.015	0.012	0.031	18	-0.141	-0.141	-0.11	-0.028	-0.083	-0.022	-0.133
19	1.702	1.702	0.868	0.340	1.004	0.174	1.518		0.0286		0.006	0.017	0.025	0.048	19	-0.142	-0.142	-0.088	-0.028	-0.084	-0.018	-0.130
20	1.638	1.638	0.793	0.328	0.966	0.159	1.453		0.0334		0.007	0.020	0.030	0.057	20	-0.143	-0.143	-0.082	-0.029	-0.084	-0.016	-0.129
21	1.568	1.568	0.729	0.314	0.925	0.146	1.385	0.0392	0.0392	0.1703	0.008	0.023	0.034	0.065	21	-0.145	-0.145	-0.08	-0.029	-0.086	-0.016	-0.131
22	1.493	1.493	0.67	0.299	0.881	0.134	1.313	0.0457	0.0457	0.1907	0.009	0.027	0.038	0.074	22	-0.146	-0.146	-0.078	-0.029	-0.086	-0.016	-0.131

Abbiamo in linea di massima determinato la geometria dell'ala. Non ci resta altro che scegliere un eventuale svergolamento che sarà valutato analizzando l'andamento del carico lungo l'apertura.

3.4 - CARATTERISTICHE AERODINAMICHE DELL'ALA ISOLATA

Per calcolare le caratteristiche aerodinamiche dell'ala isolata dobbiamo innanzitutto determinare il coefficiente angolare della retta di portanza. In questo ci viene incontro il programma WING, che in input, riceve i seguenti dati:

ALA	ATR	90
33101.59	[Kg]	Weight
0.64998	[Kg/m3]	ro_cr
31.5	[m]	b

3	numero staz.(assegnate di seguito)						
eta	c[m]	xle[m]	xac%c	Cla[1/deg]	Cmac	azl[deg]	epsg[deg]
0	3.28	0	0.25	0.124	-0.0891	-3.6	-1
0.337	3.28	0	0.25	0.124	-0.0891	-3.6	-1
1	1.71	0.785	0.25	0.12	-0.0893	-3.5	-3.5

Si noti che nell'input del programma è stato introdotto lo svergolamento aerodinamico. L'ala ha un calettamento di -1° alla radice, e si va a svergolare fino a -3.5° alla tip. Lo svergolamento è stato assegnato in modo tale che il massimo carico aerodinamico si sposti verso la radice dell'ala.

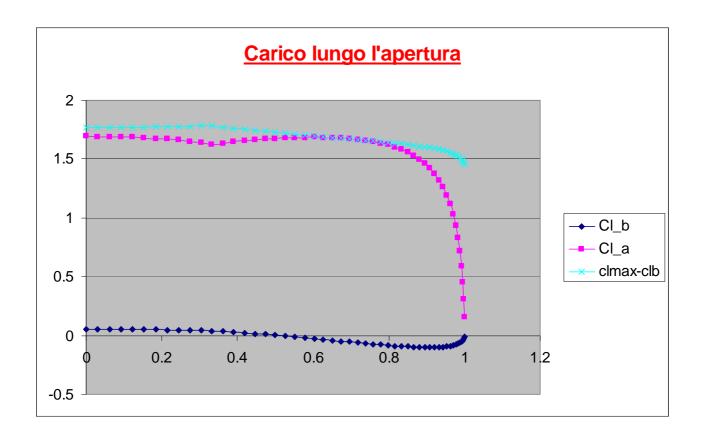
Facendo girare questo programma ad un qualsiasi angolo di attacco, ricaviamo il coefficiente angolare della retta di portanza e "l'alfa zero lift".

$$\alpha_{0l} = -1.95$$
 $Cl_{\alpha} = 0.09866$

Per disegnare la parte lineare della retta di portanza, non ci resta altro che assegnare $Cl^* = 1.256$, ovvero il valore del Cl valutato alla fine del tratto lineare della nostra retta di portanza, che supponiamo essere pari al valore che il Cl assume al termine del tratto lineare della retta di portanza del profilo medio. Ora dobbiamo valutare α^* ovvero l'angolo d'attacco che l'ala assume quando $Cl = Cl^* = 1.256$. Facendo girare il programma wing a diversi angoli d'attacco, troviamo che

$$\alpha * = 10.8^{\circ}$$
.

A questo punto il tratto lineare è determinato; dobbiamo tracciare il tratto non lineare della retta di portanza. Dobbiamo calcolare il punto (α_{max}, C_{Lmax}) .


Il $C_{L_{\text{max}}}$ va determinato tramite il sentiero di stallo:

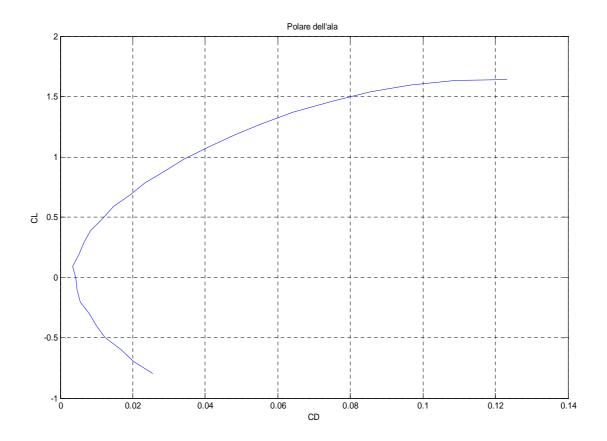
Facendo girare il programma wing a diversi angoli d'attacco, siamo pervenuti ad un angolo $\alpha_{\rm max}$ =14.5° per il quale $C_{L\rm max}$ =1.62. In particolare per questo angolo d'attacco

il programma wing, ci dice che la curva $C_{l_{\max}} - C_{l_b}$ è tangente alla curva del carico addizionale C_{l_a} .

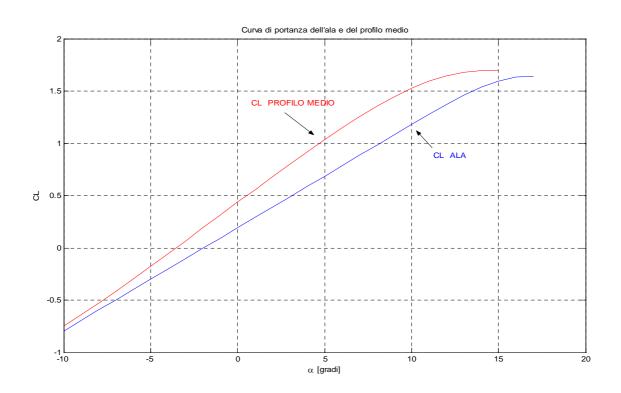
y/(b/2)	С	gam_b	gam_a	gam	Cl_b	Cl_a	CI	c*Cl	alfa_abs	alfa_i	Clmax	Clmax-clb	(Clmax-Clb)/Cla
0	3.28	0.0027	0.0881	0.0908	0.0528	1.6917	1.7445	5.722	10.4687	3.0313	1.822	1.7692	1.045811905
0.0308	3.28	0.0027	0.0881	0.0908	0.0527	1.6913	1.744	5.7202	10.4643	3.0357	1.822	1.7693	1.04611837
0.0616	3.28	0.0027	0.088	0.0907	0.0525	1.6899	1.7424	5.715	10.4514	3.0486	1.822	1.7695	1.047103379
0.0923	3.28	0.0027	0.0879	0.0906	0.0521	1.6876	1.7397	5.7061	10.4295	3.0705	1.822	1.7699	1.04876748
0.1229	3.28	0.0027	0.0877	0.0904	0.0515	1.6843	1.7358	5.6934	10.3984	3.1016	1.822	1.7705	1.051178531
0.1534	3.28	0.0026	0.0875	0.0901	0.0507	1.6801	1.7307	5.6768	10.3574	3.1426	1.822	1.7713	1.054282483
0.1837	3.28	0.0026	0.0872	0.0898	0.0496	1.6747	1.7243	5.6557	10.3057	3.1943	1.822	1.7724	1.058338807
0.2139	3.28	0.0025	0.0868	0.0894	0.0483	1.6681	1.7164	5.6298	10.242	3.258	1.822	1.7737	1.063305557
0.2439	3.28	0.0024	0.0864	0.0889	0.0467	1.6601	1.7068	5.5984	10.1647	3.3353	1.822	1.7753	1.06939341
0.2737	3.28	0.0023	0.0859	0.0883	0.0447	1.6505	1.6952	5.5602	10.0709	3.4291	1.822	1.7773	1.076825204
0.3032	3.28	0.0022	0.0853	0.0875	0.0422	1.6389	1.6811	5.5139	9.957	3.543	1.822	1.7798	1.085972298
0.3324	3.28	0.002	0.0846	0.0866	0.0388	1.6245	1.6633	5.4555	9.8133	3.6867	1.821798	1.78299764	1.09756703
0.3612	3.2226	0.0018	0.0836	0.0853	0.0343	1.6337	1.6681	5.3755	9.8717	3.5369	1.805413	1.77111332	1.084111722
0.3898	3.155	0.0014	0.0824	0.0838	0.0289	1.6454	1.6742	5.2822	9.9446	3.3564	1.789143	1.76024278	1.069796268
0.418	3.0883	0.0011	0.0811	0.0822	0.0228	1.655	1.6777	5.1813	9.9958	3.1989	1.7731	1.7502998	1.057582961
0.4457	3.0225	0.0008	0.0798	0.0806	0.0162	1.6629	1.6791	5.0751	10.0297	3.0603	1.757341	1.74114127	1.047051097
0.4731	2.9577	0.0004	0.0784	0.0788	0.0093	1.6695	1.6788	4.9654	10.0493	2.9375	1.741753	1.73245341	1.037707942
0.5	2.894	0.0001	0.0769	0.077	0.0022	1.6747	1.6769	4.853	10.0562	2.8291	1.72645	1.72425	1.029587389
0.5264	2.8314	-0.0002	0.0754	0.0752	-0.005	1.6787	1.6737	4.7389	10.0517	2.734	1.711431	1.71643104	1.022476345
0.5524	2.77	-0.0005	0.0739	0.0734	-0.0123	1.6815	1.6692	4.6237	10.0364	2.6516	1.69664	1.70893964	1.016318549
0.5778	2.7098	-0.0008	0.0724	0.0716	-0.0196	1.6831	1.6635	4.5079	10.0108	2.5813	1.68219	1.70178958	1.01110426
0.6026	2.651	-0.0011	0.0708	0.0697	-0.0269	1.6836	1.6567	4.3918	9.9752	2.5232	1.668081	1.69498086	1.006759836
0.6269	2.5935	-0.0014	0.0693	0.0679	-0.0341	1.6827	1.6487	4.2757	9.9295	2.4772	1.654257	1.68835659	1.003361615
0.6506	2.5373	-0.0017	0.0677	0.066	-0.0411	1.6806	1.6395	4.1599	9.8736	2.4438	1.640774	1.68187366	1.00075786
0.6737	2.4827	-0.0019	0.0661	0.0642	-0.048	1.677	1.6291	4.0445	9.8072	2.4232	1.627632	1.67563207	0.999184299
0.6961	2.4296	-0.0021	0.0645	0.0624	-0.0546	1.672	1.6174	3.9295	9.7296	2.4162	1.614889	1.66948871	0.998498032
0.7179	2.378	-0.0023	0.0629	0.0606	-0.061	1.6654	1.6044	3.8152	9.6402	2.4235	1.602487	1.66348669	0.998851141
0.739	2.328	-0.0025	0.0612	0.0588	-0.0671	1.657	1.5899	3.7013	9.538	2.4462	1.590483	1.6575829	1.00035178
0.7594	2.2797	-0.0026	0.0596	0.0569	-0.0729	1.6467	1.5738	3.5878	9.4219	2.4853	1.578877	1.65177734	1.003083342
0.7791	2.2331	-0.0028	0.0579	0.0552	-0.0783	1.6342	1.556	3.4747	9.2906	2.5425	1.56767	1.64597001	1.007202307
0.798	2.1883	-0.0029	0.0562	0.0534	-0.0832	1.6194	1.5362	3.3616	9.1423	2.6193	1.556918	1.6401178	1.012793504
0.8162	2.1453	-0.003	0.0545	0.0516	-0.0877	1.6019	1.5142	3.2484	8.9754	2.7177	1.546564	1.63426382	1.020203396
0.8336	2.104	-0.0031	0.0528	0.0498	-0.0917	1.5815	1.4899	3.1347	8.7875	2.84	1.536665	1.62836496	1.029633234
0.8502	2.0647	-0.0031	0.0511	0.0479	-0.095	1.5578	1.4628	3.0202	8.5761	2.9887	1.527221	1.62222122	1.041353974
0.866	2.0273	-0.0031	0.0492	0.0461	-0.0978	1.5304	1.4326	2.9043	8.3384	3.1668	1.518233	1.6160326	1.055954391
0.881	1.9918	-0.0032	0.0474	0.0442	-0.0999	1.4989	1.399	2.7865	8.0712	3.3774	1.509699	1.6095991	1.073853559
0.8952	1.9583	-0.0031	0.0455	0.0423	-0.1013	1.4628	1.3616	2.6663	7.771	3.6243	1.501621	1.60292072	1.09578939
0.9085	1.9268	-0.0031	0.0435	0.0404	-0.1018	1.4216	1.3198	2.5428	7.4338	3.9114	1.494054	1.59585435	1.122576217
0.9209	1.8973	-0.0031	0.0414	0.0383	-0.1015	1.3746	1.2731	2.4154	7.0551	4.2431	1.487	1.58849999	1.155608897
0.9325	1.8699	-0.003	0.0392	0.0362	-0.1003	1.3213	1.221	2.2832	6.6305	4.6242	1.480401	1.58070075	1.196322372
0.9432	1.8446	-0.0029	0.0369	0.034	-0.0981	1.261	1.1629	2.1451	6.1548	5.0595	1.474314	1.57241352	1.246957589
0.9529	1.8214	-0.0027	0.0345	0.0318	-0.0948	1.193	1.0982	2.0003	5.623 5.03	5.5544	1.468795	1.56359519	1.3106414
0.9618	1.8004	-0.0026	0.0319	0.0293	-0.0905	1.1167	1.0263	1.8477		6.1139	1.463732	1.55423198	1.391807988
0.9698	1.7815	-0.0024	0.0292	0.0268	-0.085	1.0314	0.9465	1.6862	4.3707	6.7432	1.459181	1.54418078	1.497169653
0.9768	1.7648	-0.0022	0.0262	0.024	-0.0782	0.9365	0.8583	1.5147	3.6406	7.4467	1.455198	1.53339848	1.637371575
0.983 0.9882	1.7503	-0.002 -0.0017	0.0231	0.0212 0.0181	-0.0703	0.8316	0.7613	1.3325	2.8359	8.2283	1.451671 1.448713	1.5219713	1.830172318
0.9882	1.738 1.7279	-0.0017	0.0198 0.0162	0.0181	-0.0612 -0.0508	0.7163 0.5906	0.6551 0.5398	1.1386 0.9327	1.9543 0.9954	9.0903 10.0332	1.448713	1.50991302 1.49712364	2.107933855 2.53491981
0.9924	1.7279	-0.0014	0.0162	0.0148	-0.0508	0.5906	0.5398	0.9327	-0.0387	11.0548	1.446324	1.49712364	3.261917498
0.9957	1.7201	-0.0011	0.0124	0.0113	-0.0394	0.4549	0.4155	0.7147	-0.0387	12.1489	1.444446	1.48384627	4.742196484
0.9981	1.7145	-0.0007	0.0084	0.0077	-0.027	0.1575	0.2831	0.4853	-1.1417	13.304	1.443081	1.47008091	9.244345714
0.9995	1.7111	-0.0004	0.0043	0.0039	-0.0137	0.15/5	0.1437	0.246	-2.3022	13.304	1.442284	1.45596445	9.244343714

Il coefficiente angolare trovato α_{max} =14.5°, non è relativo all'ala isolata, in quanto il programma wing non tiene conto della non linearità della curva. A questo va aggiunto un $\Delta\alpha_{Cl\,max}$, che possiamo ricavare in funzione dell'angolo di freccia, dalle curve riportate sugli appunti a pag. W20/b:

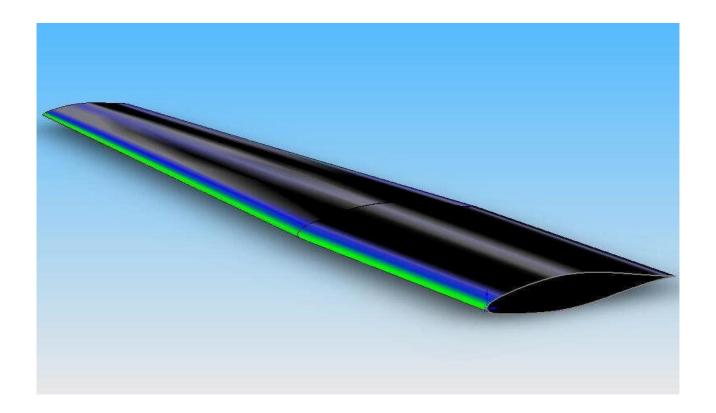
$$\Delta \alpha_{Cl \max} = 2.25 \Rightarrow \alpha_{Cl \max} = 14.5 + 2.25 = 16.75^{\circ}$$

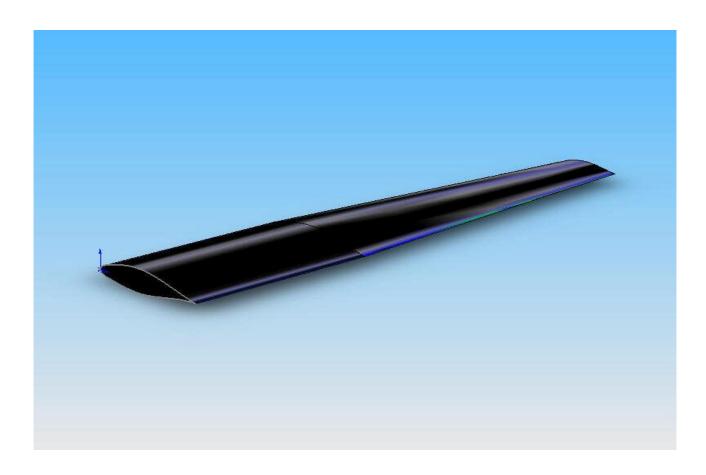

A questo punto, possiamo tracciare il tratto non lineare della retta di portanza. Infatti questa la si approssima alla seguente cubica:

$$y(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$


Ove i coefficienti a_0, a_1, a_2, a_3 li si calcola ponendo le seguenti condizioni:

- 1 la curva passa per il punto (α^*, C_L^*) ed ivi, la sua derivata prima è $C_{L\alpha}$;
- 2 la curva passa per il punto $(\alpha_{\max}, C_{L_{\max}})$ ed ivi la sua derivata prima è zero.

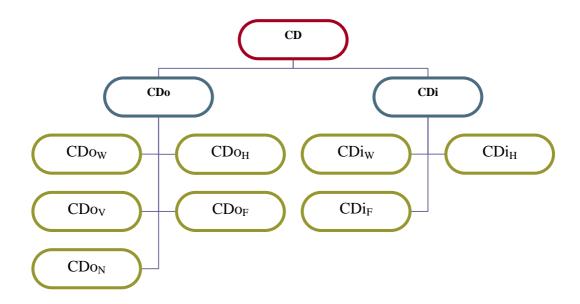

Elaborando tutto con un programma matlab, otteniamo la polare della nostra ala:



Con relativa retta di portanza

A questo punto abbiamo determinato tutte le incognite relative all'ala che si presenta come nelle seguenti figure 3D elaborate con il software Solid Work

4. Polari del velivolo completo


Lo scopo del presente capitolo, è quello di determinare la resistenza totale del nostro velivolo attraverso la determinazione dei vari contributi alla resistenza, delle maggiori parti che lo compongono quali, ala, fusoliera, piano di coda orizzontale, verticale, gondole motore, posizione del carico pagante etc..

La resistenza di un velivolo viene identificata analiticamente attraverso il coefficiente di resistenza. Questo può essere calcolato come la somma di diversi contributi,uno indipendente dall'assetto e dovuto agli sforzi d'attrito che nascono sul componente, quale quello di resistenza parassita (CD_0) e l'altro dipendente dall'assetto quale quello di resistenza indotta (CD_i) .

Da quello che è stato appena detto possiamo quindi scrivere il coefficiente di resistenza come:

$$CD = CDo + CDi$$

$$CDo = CDo_W + CDo_H + CDo_V + CDo_F + CDo_N$$

$$CDi = CDi_W + CDi_H + CDi_F$$

considerando quindi la sovrapposizione degli effetti di resistenza parassita e indotta per ogni parte del velivolo, otteniamo il coefficiente di resistenza totale.

4.1. Resistenza parassita CD_{θ}

In questo paragrafo ci preoccuperemo di determinare i contributi al CDo al fine di avere una stima della *resistenza parassita* totale del velivolo.

Andiamo quindi a determinare i vari contributi, ricordando che:

- CDo_W resistenza parassita dell'ala
- CDo_F resistenza parassita fusoliera
- CDo_V resistenza parassita piano verticale
- CDo_H resistenza parassita piano orizzontale
- CDo_N resistenza parassita gondole motore

4.1.1. Resistenza parassita dell'ala CD_{0W}

Ai fini della determinazione del coefficiente di attrito totale, il contributo dell'ala lo si è posto pari a quello del profilo medio considerato nel capitolo precedente, quando abbiamo determinato le caratteristiche di portanza dell'ala. Tale contibuto è pari a

$$CD_{0W} = Cd_{pm} = 0.004 = 40 COUNT$$

4.1.2. Resistenza parassita della fusoliera CD_0

La resistenza di attrito della fusoliera può essere valutata attraverso la seguente formula:

$$CD_{0F} = Rwf \cdot Cf_{fus} \cdot \left[1 + \frac{60}{\left(\frac{lf}{df}\right)^3} + 0.0025 \left(\frac{lf}{df}\right) \right] \cdot S_{wetf} + CD_{bfus}$$

• CDbfus è la resistenza di base della fusoliera

$$CD_{bfus} = \left[0.029 \left(\frac{db}{df}\right)^{3} \cdot \left[CD_{0fusbase} \cdot \left(\frac{S}{S_{fus}}\right)\right]^{\frac{1}{2}}\right] \cdot \frac{S_{fus}}{S}$$

I parametri della fusoliera sono stati determinati attraverso l'applet presente sul sito di Stanford, nel quale venivano assegnati in ingresso, il numero di posti, la distanza tra due file, la lunghezza del cockpit, e della zona caudale e le dimensioni degli spazi di servizio davanti la prima e dietro l'ultima fila. In uscita abbiamo ottenuto i seguenti risultati:

- lf (lunghezza fusoliera) =101 ft
- Swetfus. (area bagnata fusoliera) = 16.7 ft²

- C_f fus (coefficiente di attrito fusoliera) = 0.00175
- Rwf (parametro funzione del numero di Reynolds della fusoliera) = 10^7

Sapendo questi parametri è stato possibile valutare il $CD_{0F} = 0.00991$ pari a 99.1 COUNT.

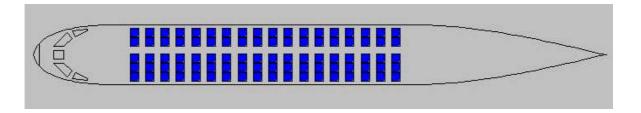
4.1.3. Resistenza parassita del piano orizzontale di coda CD_{0H}

La resistenza di attrito può essere valutata attraverso la seguente formula:

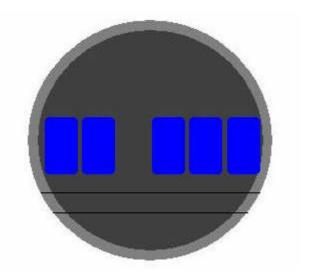
$$CDo_H = Cdo \cdot \frac{S_H}{S}$$

- Cdo coefficiente di resistenza 2D valutato dall'ABBOTT in corrispondenza del Reynolds di crociera conoscendo il profilo del piano che è un NACA 0012
- S_H (superficie del piano di coda) 182 ft²
- S (superficie di riferimento, si è presa quella dell'ala) 946 ft²

In definitiva il coefficiente di attrito è $CD_{0H} = 0.0011$ pari a 11 COUNT.


4.1.4. Resistenza parassita del piano verticale CD_{0V}

La resistenza di attrito del piano verticale può essere valutata così come si è fatto per il piano orizzontale con la seguente formula:


$$CDo_V = Cdo \cdot \frac{S_V}{S}$$

- Cdo coefficiente di resistenza 2D valutato da ABBOTT in corrispondenza del Reynolds di crociera, conoscendo il profilo del piano che è un NACA 0012
- S_V (superficie del piano verticale)
- S (superficie di riferimento, si è presa quella dell'ala)

Sempre utilizzando l'applet del sito di Stanford è stato determinato il diametro della fusoliera, dando in ingresso l'altezza e la larghezza dei sediolini in conformità alle norme, la disposizione dei sediolini lungo la sezione e l'altezza del pavimento dal puntto estremo inferiore della sezione:

• df (diametro fusoliera) = 10.78 ft

In definitiva il coefficiente di attrito del piano verticale è $CD_{0V} = 0.001$ pari a 10 COUNT.

4.1.5. Resistenza parassita gondole motori CD_{0N}

La resistenza di attrito della gondola motore è stimata, nello stesso modo in cui si è stimata la resistenza della fusoliera sostituendo nella formula , riportata di sotto, le grandezze relative alla gondola:

$$CD_{0N} = Rwf \cdot Cf_{N} \cdot \left[1 + \frac{60}{\left(\frac{l_{N}}{d_{N}}\right)^{3}} + 0.0025 \cdot \left(\frac{l_{N}}{d_{N}}\right) \right] \cdot S_{wetN} + CD_{bN}$$

• CDbfus è la resistenza di base della fusoliera

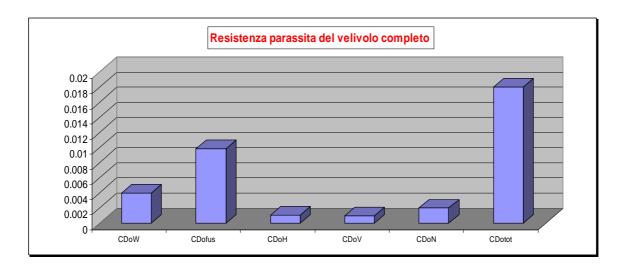
$$CD_{bN} = \left[0.029 \left(\frac{db}{d_N}\right)^3 \left[CD_{0Nbase} \cdot \left(\frac{S}{S_N}\right)\right]^{\frac{1}{2}}\right] \cdot \frac{S_N}{S}$$

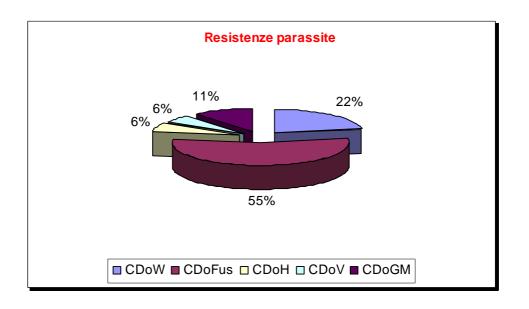
- l_N (lunghezza gondola motore)11.80 ft
- d_N (diametro gondola motore) 4.5 ft
- S_{wetN}. (area bagnata gondola motore) 222 ft²
- C_{fN} (coefficiente di attrito gondola motore) 0.00175
- ullet R_{wN} (parametro funzione del numero di Reynolds della gondola motore)

Sapendo questi parametri è stato possibile valutare il $CD_{0N}=0.00202$ pari a 20.2 COUNT.

A questo punto, calcolati tutti i contributi possiamo dare la sitma del coefficiente di resistenza parassita totale del nostro velivolo, ricordando che :

$$CDo = CDo_W + CDo_H + CDo_V + CDo_F + CDo_N$$


ricaviamo che $CD_0 = 0.01803$ pari a 180.3 COUNT


Nella tabella che segue e nei grafici sono riportati in modo riassuntivo tutti i contributi.

Come si può evincere dai grafici, i contributi maggiori alla resistenza parassita sono dati dalla fusoliera e dall'ala, seguiti dalle gondole motore e dai piani di coda.

La resistenza parassita va ad occupare per il 60% di quello che è la torta della resistenza del velivolo.

Resistenza parassita						
CDow	0.00400					
CDo _{fus}	0.00991					
CDo _H	0.00110					
CDo _V	0.00100					
CDo _N	0.00202					
CD _{0tot}	0.01803					

4.2. Resistenza indotta *CDi*

In questo paragrafo, così come abbiamo fatto per il contributo della resistenza parassita, ci preoccuperemo di determinare i contributi al CDi dei vari componenti, al fine dideterminare il CD totale del nostro velivolo.

4.2.1. Resistenza indotta dall'ala CD_{iW}

Il CD_{iW} è stato già stimato nel capitolo precedente riguardante il progetto dell'ala attraverso il codice di calcolo WING. Tuttavia i valori così ottenuti, possono essere corretti tenendo conto dell'interferenza ala-fusoliera, sapendo che tale effetto mi determina una variazione di distribuzione di carico che risulta essere così diversa da quella dell'ala isolata.

Il metodo, che si adopera per determinare tale contributo, è quello di moltiplicare il coefficiente dell'ala isolata per il fattore 1/s. Il fattore s, per il nostro velivolo, può essere ricavato in funzione del rapporto d_f / b (diametro fusoliera / apertura alare), come si può vedere dalla figura sottostante.

Dalle nostre dimensioni ricaviamo:

$$\frac{d_{fus}}{b} = 0.1$$

$$s=0.98$$

$$\frac{1}{s} = 1.02$$

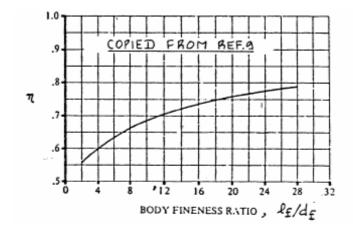
quindi l'interferenza ala fusoliera ammonta a circa il 2% della resistenza indotta calcolate per l'ala isolata.

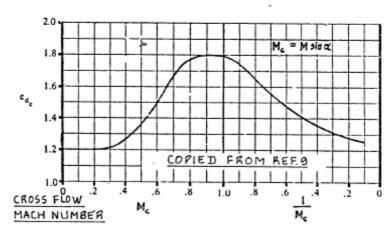
Di seguito riportiamo la tabella che ci illustra la variazione del CD indotto con l'angolo d'attacco alfa ,per l'ala isolata e lo stesso termine che tiene conto dell'interferenza.

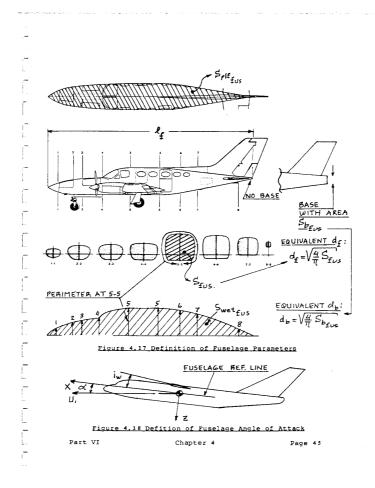
alpha	CDi ala fusoliera
-10	0.018797
-9	0.01452
-8	0.010804
-7	0.007648
-6	0.005054
-5	0.00302
-4	0.001547
-3	0.000635
-2	0.000285
-1	0.000495
0	0.001266
1	0.002598
2	0.004491
3	0.006944
4	0.009959
5	0.013534
6	0.01767
7	0.022368
8	0.027626
9	0.033446
10	0.039825
11	0.046766
12	0.054268
13	0.062331
14	0.070954
15	0.080139
16	0.089884
17	0.100191

4.2.2. Resistenza indotta viscosa CDi_F

Per quanto riguarda questo termine, è possibile valutarlo attraverso la seguente formula :


$$CD_{ifus} = 2 \cdot (\alpha_B)^2 \cdot S_{\underline{bfus}} + \eta \cdot Cd_c \cdot (\alpha_B)^3 \cdot S_{plfus}$$


$$\alpha_B = \alpha_W - i_W$$


I termini che compaiono nella relazione sono:

- S_{bfus} (superficie di base fusoliera)= 7.460 ft²
- S (superficie alare) = 946 ft²
- S_{plfus} (superficie laterale fusoliera) = 1096 ft²
- η (rapporto che introduce la tridimensionalità del flusso)=0.675
- Cd_c (parametro relativo al cross-flow) =0.0174

Di seguito sono riportati i digrammi per la determinazione di alcuni parametri ed una figura che ne illustra altri.

Di seguito è riportata la tabella con la variazione del $\text{CDi}_{\rm f}$ al varare dell'angolo d'attacco alfa body

alphaw	alphab	CDi fus
-10	-9	0.004131
-9	-8	0.002936
-8	-7	0.001997
-7	-6	0.001283
-6	-5	0.000763
-5	-4	0.000406
-4	-3	0.000183
-3	-2	0.000061
-2	-1	0.000010
-1	0	0.000000
0	1	0.000010
1	2	0.000061
2	3	0.000183
3	4	0.000406
4	5	0.000763
5	6	0.001283
6	7	0.001997
7	8	0.002936
8	9	0.004131
9	10	0.005611
10	11	0.007409
11	12	0.009555
12	13	0.012079
13	14	0.015012
14	15	0.018384
15	16	0.022228
16	17	0.026572
17	18	0.031449

4.2.3. Resistenza di trim CDi_H

Per determinare il coefficiente di resistenza di trim è necessario determinare il coefficiente di portanza del piano di coda orizzontale al variare dell'angolo d'attacco.

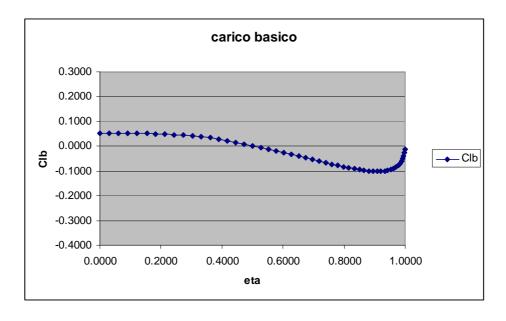
Questo può essere determinato, insieme al coefficiente di portanza del velivolo completo attraverso la risoluzione del seguente sistema:

$$\begin{aligned} CL_W + CL_H \cdot \frac{S_H}{S} &= CL \\ CL_W \cdot x_{\underline{w}} - CL_H \cdot \frac{\left(l_t - x_w\right)}{c} \cdot \frac{S_H}{S} + C_{\left(MAC_{wb}\right)} &= 0 \end{aligned}$$

In esso sono presenti i seguenti termini:

- CL_w coefficiente di portanza dell'ala. Il sistema va risolto per ogni valore di tale coefficiente in modo da determinare CL_w CL_H ad ogni assetto.
- S_H ,superficie del piano di coda 182 ft²
- S, superficie alare 946 ft²
- l_t distanza del fuoco del piano di coda orizzontale dal baricentro del velivolo

- c corda media aerodinamica determinata con il programma WING e pari a 9.72 ft
- ullet x_w è la distanza tra baricentro velivolo parziale e baricentro del velivolo completo
- CM_{ACwb} è il coefficiente di momento focale del velivolo parziale esso è dato dalla somma di $CM_{AC}^{\ \ \ \ }$ coefficiente di momento focale dell'ala e del $C_{MO}^{\ \ \ \ }$ coefficiente momento focale della fusoliera, per il quale si assume un valore tipico di -0.12 per velivoli da trasporto regionale quale il nostro.


4.2.3.1 Calcolo del CM_{ACwb}

Il carico aerodinamico complessivo agente in una singola sezione dell'ala è costituito da tre parti: una dovuta al carico basico, una dovuta al carico addizionale ed una dovuta al coefficiente di momento focale del profilo. La forza risultante del carico addizionale può pensarsi applicata nel centro aerodinamico dell'ala e quindi non dà contributo al coefficiente di momento focale complessivo.

Per la determinazione del coefficiente di momento focale dell'ala è la seguente:

$$C_{\text{Mac}^{W}} = C_{\text{M1}} + C_{\text{M2}} = \frac{2}{S \cdot c} \cdot \int_{0}^{\frac{b}{2}} C_{\text{I}}(y) \cdot x_{\text{ac}}(y) \cdot c(y) \, dy + \frac{2}{S \cdot c} \cdot \int_{0}^{\frac{b}{2}} C_{\text{Mac}}(y) \, c(y)^{2} \, dy$$

dove il primo termine rappresenta il contributo del carico basico. La distribuzione di carico basico viene qui riportata:

Di seguito sono riportati rispettivamente le leggi di distribuzione delle corde, dei centri aerodinamici x_{ac} supposti al 25% della corda del profilo e dei coefficienti aerodinamici C_{Mac} dove per tutti abbiamo supposto un tratto costante fino al 33% della semiapertura e una legge lineare tra il 33% e l'estremità.

c = 10.81 (tratto costante fino al 33%)

$$c = -0.151y + 13.46$$
 (oltre il 33%)

 $x_{ac} = 2.70$ (tratto costante fino al 33%)

$$x_{ac} = 0.0383y + 2.03$$
 (oltre il 33%)

 $C_{Mac} = -0.0891$ (tratto costante fino al 33%)

$$C_{\text{Mac}} = -0.0002y - 0.0891 \ (oltre\ il\ 33\%)$$

A questo punto è possibile calcolare il $C_{Mac}^{\ \ w}$ l'integrazione numerica svolta con la regola dei trapezi e implementata in MATLAB.

Ottenuto il $C_{Mac}^{w} = -0.0884$ possiamo ricavare il

$$C_{Mac}^{\ \ wb} = C_{Mac}^{\ \ w} + C_{M0}^{\ \ f} = -0.2084$$

Calcolo posizione del centro aerodinamico del velivolo *4.2.3.2* parziale

La posizione del centro aerodinamico del velivolo parziale in percentuale della corda media aerodinamica è possibile calcolarla con la seguente formula:

$$x_{ACwb} = x_{ACw} - \frac{C_{m\alpha F}}{CL_{\alpha w}}$$

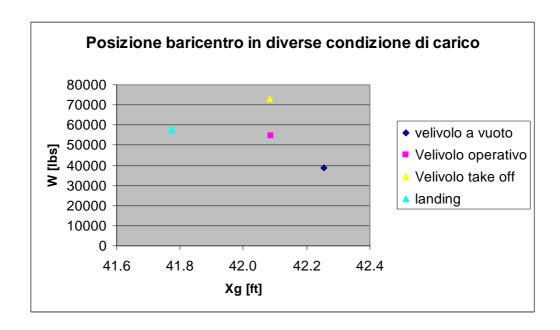
$$C_{m\alpha F} = \frac{K_f \cdot (W_f)^2 \cdot L_f}{C_{m\alpha F}}$$

 $C_{m\alpha F} = \frac{K_f \cdot (W_f)^2 \cdot L_f}{S \cdot c}$ ed è numericamente pari a 0.0204

- $CL_{\alpha w} = 0.098$ coefficiente angolare della retta di portanza dell'ala
- $x_{ACw} = 0.284$ centro aerodinamico dell'ala

con l'ausilio della formula riportata sopra ricaviamo che

$$x_{ACwb} = 0.0774$$


Come possiamo notare, la posizione del centro aerodinamico dell'ala è più arretrata rispetto a quella del velivolo parziale e ciò mette in evidenza l'effetto instabilizzante della fusoliera.

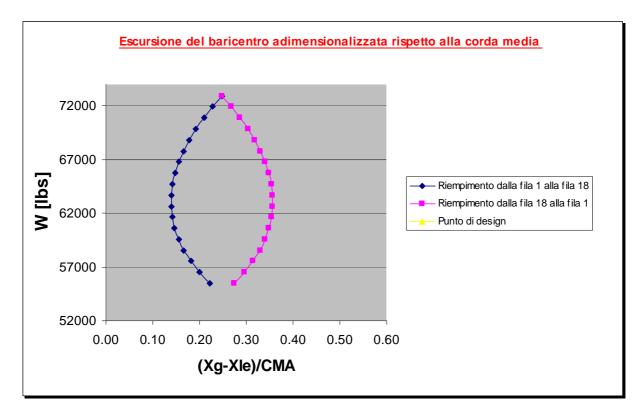
4.2.3.3 Posizione del baricentro del velivolo completo

La posizione del baricentro del velivolo la si determina considerando il sistema velivolo come un sistema a masse concentrate dove conoscendone il peso di ogni singola parte si può determinare una stima dell'escursione del baricentro man mano che si aggiungono i vari componenti. I pesi dei vari componenti sono stati determinati grazie all'applet sul sito dell' università di Standford, dove dato il peso a vuoto del nostro aeroplano ci da una stima del peso di vari componenti.

Ottenuti così i vari pesi, introducendo un sistema di riferimento con origine nella prua dell'aereo e direzione positiva dell'asse longitudinale (asse di rollio -X-) verso la poppa, abbiamo posizionato le masse concentrate rappresentanti le parti del velivolo e facendo riferimento anche alle configurazioni dei velivoli simili abbiamo stimato l'escursione del baricentro. Nella tabella sottostante sono riassunti i risultati mentre nel grafico che segue si può avere un'idea dell'escursione.

Componenti	Xg (ft)	Yg (ft)	Zg (ft)	W (lbs)	Xg*W	Yg*W	Zg*W
Fusoliera	45.0	0.0	0.0	8465.0	380925.0	0.0	0.0
Ala	43.3	0.0	5.0	7451.0	322404.8	0.0	37255.0
Piano orizzontale	90.0	0.0	14.5	1359.0	122310.0	0.0	19705.5
Piano verticale	85.0	0.0	10.0	680.0	57800.0	0.0	6800.0
Motore destro	38.1	17.0	4.0	2500.0	95135.0	42500.0	10000.0
Motore sinistro	38.1	-17.0	4.0	2500.0	95135.0	-42500.0	10000.0
Carrello principale	45.0	0.0	-5.0	629.0	28305.0	0.0	-3145.0
Carrello secondario	9.7	0.0	-5.0	315.0	3039.8	0.0	-1575.0
Mobilio	40.5	0.0		5400.0	218430.0	0.0	
Apparati di bordo	33.0	0.0	0.0	9283.0	306339.0	0.0	0.0
Velivolo a vuoto	42.3	0.0	2.0				
Carburante	43.3	0.0	5.0	15059.0	652054.7	0.0	75295.0
crew	12.0	0.0	0.0	820.0	9840.0	0.0	0.0
Velivolo operativo	42.1	0.0	2.8				
payload	42.1	0.0	0.0	18450.0	776560.5	0.0	0.0
Velivolo al decollo	42.1	0.0	2.1				
Landing	41.8						

Questo lavoro non basta per la ricerca delle posizioni del baricentro max avanzato e max arretrato, ecco perché abbiamo considerato la condizione di riempimento dalla prima all'ultima fila e dall'ultima alla prima. Da questa analisi infatti, si è pervenuti alla determinazione delle due condizioni prima citate.


Le tabelle che seguono riassumono il procedimento adottato, mentre il grafico riporta l'escursione in percentuale della corda media aerodinamica proiettata in questo caso sull'asse di simmetria del velivolo.

Riempimento dalla prima all'ultima fila

File	Xg (ft)	Yg (ft)	Zg (ft)	Wfila (lbs)	Wtot (ft)	Xg*Wfila	Xgfinale (ft)	Xgadim
1	28.40	0.00	0.00	1025	55476	29110.00	41.83	0.22
2	29.21	0.00	0.00	1025	56501	59870.25	41.62	0.20
3	30.01	0.00	0.00	1025	57526	92280.75	41.44	0.18
4	30.82	0.00	0.00	1025	58551	126341.50	41.30	0.17
5	31.62	0.00	0.00	1025	59576	162052.50	41.19	0.16
6	32.43	0.00	0.00	1025	60601	199413.75	41.11	0.15
7	33.23	0.00	0.00	1025	61626	238425.25	41.06	0.14
8	34.04	0.00	0.00	1025	62651	279087.00	41.03	0.14
9	34.84	0.00	0.00	1025	63676	321399.00	41.04	0.14
10	35.65	0.00	0.00	1025	64701	365361.25	41.07	0.14
11	36.45	0.00	0.00	1025	65726	410973.75	41.12	0.15
12	37.26	0.00	0.00	1025	66751	458236.50	41.20	0.16
13	38.06	0.00	0.00	1025	67776	507149.50	41.30	0.17
14	38.87	0.00	0.00	1025	68801	557712.75	41.42	0.18
15	39.67	0.00	0.00	1025	69826	609926.25	41.56	0.19
16	40.48	0.00	0.00	1025	70851	663790.00	41.71	0.21
17	41.28	0.00	0.00	1025	71876	719304.00	41.89	0.23
18	42.09	0.00	0.00	1025	72901	776468.25	42.09	0.25

Riempimento dall'ultima alla prima fila

File	Xg (ft)	Yg (ft)	Zg (ft)	Wfila (ft)	Wtot (ft)	Xg*Wfila	Xgfinale (ft)	Xgadim
18	55.8	0	0	1025	55476	57195.00	42.34	0.27
17	55	0	0	1025	56501	112739.75	42.56	0.30
16	54.19	0	0	1025	57526	166634.25	42.73	0.31
15	53.39	0	0	1025	58551	218878.50	42.88	0.33
14	52.58	0	0	1025	59576	269472.50	42.99	0.34
13	51.78	0	0	1025	60601	318416.25	43.07	0.35
12	50.97	0	0	1025	61626	365709.75	43.12	0.35
11	50.17	0	0	1025	62651	411353.00	43.14	0.36
10	49.36	0	0	1025	63676	455346.00	43.14	0.36
9	48.56	0	0	1025	64701	497688.75	43.11	0.35
8	47.75	0	0	1025	65726	538381.25	43.06	0.35
7	46.95	0	0	1025	66751	577423.50	42.98	0.34
6	46.14	0	0	1025	67776	614815.50	42.88	0.33
5	45.34	0	0	1025	68801	650557.25	42.77	0.32
4	44.53	0	0	1025	69826	684648.75	42.63	0.30
3	43.73	0	0	1025	70851	717090.00	42.47	0.29
2	42.92	0	0	1025	71876	747881.00	42.29	0.27
1	42.12	0	0	1025	72901	777021.75	42.09	0.25

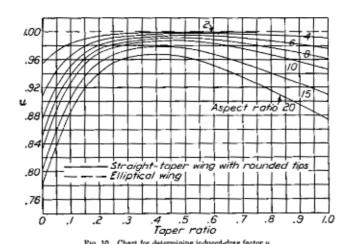
In tabella sono state evidenziate le due posizioni critiche, baricentro max avanzato e max arretrato più quella di pieno carico che sono :

xcgAV (ft)	xcgARR (ft)	xcgPC (ft)
41.03	43.14	42.08

mentre in percentuale della corda media aerodinamica

xcgAV	xcgARR	xcgPC
%MAC	%MAC	%MAC
0.14	0.34	0.25

I dati ottenuti sono in linea con quelli che la teoria prevede, rispettivamente 18%, 30%, 25% per le posizioni di baricentro max avanzato arretrato e a pieno carico.


Dopo questa analisi siamo pronti a determinare il CL_H e di conseguenza il CDi_H e quindi il CD totale del velivolo nelle tre condizioni sopra descritte.

4.2.3.4 Calcolo della resistenza di trim

A questo punto abbiamo tutti i termini per la risoluzione del sistema e quindi :

$$CDi_{H} = \frac{\left(CL_{H}\right)^{2}}{\pi \cdot AR_{H} \cdot u} \cdot \frac{S_{H}}{S}$$

• u -fattore di resistenza indotta che si stima in funzione dell' allungamento del piano di coda e del rapporto di rastremazione

Nella tabella seguente sono riportati i valori di CL_H e del CL al variare dell'angolo d'attacco nella posizione di baricentro avanzato.

alpha	CLw	CLhAV	CLAV
-10	-0.794	-0.256	-0.843
-9	-0.696	-0.248	-0.743
-8	-0.597	-0.241	-0.643
-7	-0.498	-0.233	-0.543
-6	-0.400	-0.225	-0.443
-5	-0.301	-0.218	-0.343
-4	-0.202	-0.210	-0.243
-3	-0.104	-0.203	-0.143
-2	-0.005	-0.195	-0.042
-1	0.094	-0.187	0.058
0	0.192	-0.180	0.158
1	0.291	-0.172	0.258
2	0.390	-0.165	0.358
3	0.488	-0.157	0.458
4	0.587	-0.149	0.558
5	0.686	-0.142	0.658
6	0.784	-0.134	0.759
7	0.883	-0.126	0.859
8	0.982	-0.119	0.959
9	1.080	-0.111	1.059
10	1.179	-0.104	1.159
11	1.2776	-0.096	1.259
12	1.3737	-0.089	1.357
13	1.4622	-0.082	1.446
14	1.538	-0.076	1.523
15	1.5961	-0.071	1.582
16	1.6315	-0.069	1.618
17	1.639	-0.068	1.626

Nella tabella seguente sono riportati i valori di ${\rm CL_H}$ e del ${\rm CL}$ al variare dell'angolo d'attacco nella posizione di baricentro arretrato.

alpha	CLw	CLhARR	CLARR
-10	-0.794	-0.434	-0.878
-9	-0.696	-0.405	-0.773
-8	-0.597	-0.376	-0.669
-7	-0.498	-0.347	-0.565
-6	-0.400	-0.319	-0.461
-5	-0.301	-0.290	-0.357
-4	-0.202	-0.261	-0.253
-3	-0.104	-0.233	-0.148
-2	-0.005	-0.204	-0.044
-1	0.094	-0.175	0.060
0	0.192	-0.147	0.164
1	0.291	-0.118	0.268

alpha	CLw	CLhARR	CLARR	
2	0.390	-0.089	0.373	
3	0.488	-0.060	0.477	
4	0.587	-0.032	0.581	
5	0.686	-0.003	0.685	
6	0.784	0.026	0.789	
7	0.883	0.054	0.893	
8	0.982	0.083	0.998	
9	1.080	0.112	1.102	
10	1.179	0.141	1.206	
11	1.2776	0.169	1.310	
12	1.3737	0.197	1.412	
13	1.4622	0.223	1.505	
14	1.538	0.245	1.585	
15	1.5961	0.262	1.647	
16	1.6315	0.272	1.684	
17	1.639	0.274	1.692	

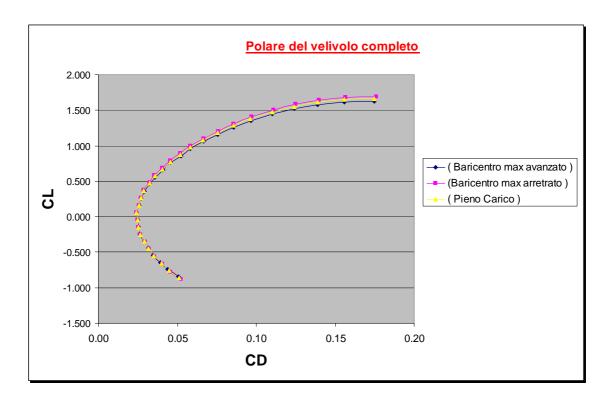
4.3 Calcolo del CD totale

Dopo aver valutato i vari contributi di resistenza parassita e indotta dei vari componenti siamo pronti per determinare il CD totale e quindi la polare del nostro velivolo nelle varie configurazioni quali quelle di baricentro max avanzato, max arretrato e a pieno carico.

Riportiamo di seguito le tabelle da cui poi abbiamo tratto le polari del velivolo completo.

Baricentro max avanzato

alphab	CDo_tot	CDcool	CDi_wing	CDi fusol.	CDihAV	CDiN	CD_totAV
-9	0.01803	0.002	0.018797	0.00413	0.00090	0.00019	0.044046
-8	0.01803	0.002	0.01452	0.00294	0.00085	0.00013	0.038466
-7	0.01803	0.002	0.010804	0.00200	0.00080	0.00009	0.033716
-6	0.01803	0.002	0.007648	0.00128	0.00075	0.00006	0.029763
-5	0.01803	0.002	0.005054	0.00076	0.00070	0.00003	0.026578
-4	0.01803	0.002	0.00302	0.00041	0.00065	0.00002	0.024125
-3	0.01803	0.002	0.001547	0.00018	0.00061	0.00001	0.022374
-2	0.01803	0.002	0.000635	0.00006	0.00056	0.00000	0.021292
-1	0.01803	0.002	0.000285	0.00001	0.00052	0.00000	0.020847
0	0.01803	0.002	0.000495	0.00000	0.00048	0.00000	0.021007
1	0.01803	0.002	0.001266	0.00001	0.00044	0.00000	0.02175
2	0.01803	0.002	0.002598	0.00006	0.00041	0.00000	0.023098
3	0.01803	0.002	0.004491	0.00018	0.00037	0.00001	0.025082
4	0.01803	0.002	0.006944	0.00041	0.00034	0.00002	0.027735
5	0.01803	0.002	0.009959	0.00076	0.00031	0.00003	0.031091
6	0.01803	0.002	0.013534	0.00128	0.00028	0.00006	0.035179
7	0.01803	0.002	0.01767	0.00200	0.00025	0.00009	0.040033
8	0.01803	0.002	0.022368	0.00294	0.00022	0.00013	0.045686
9	0.01803	0.002	0.027626	0.00413	0.00019	0.00019	0.052169


10	0.01803	0.002	0.033446	0.00561	0.00017	0.00026	0.059516
11	0.01803	0.002	0.039825	0.00741	0.00015	0.00035	0.067757
12	0.01803	0.002	0.046766	0.00955	0.00013	0.00045	0.076925
13	0.01803	0.002	0.054268	0.01208	0.00011	0.00057	0.087054
14	0.01803	0.002	0.062331	0.01501	0.00009	0.00071	0.098176
15	0.01803	0.002	0.070954	0.01838	0.00008	0.00087	0.110323
16	0.01803	0.002	0.080139	0.02223	0.00007	0.00106	0.123529
17	0.01803	0.002	0.089884	0.02657	0.00006	0.00127	0.137825
18	0.01803	0.002	0.100191	0.03145	0.00006	0.00151	0.153245

Baricentro max arretrato

alphab	CDo_tot	CDcool	CDi_wing	CDi fusol.	CDihARR	CDiN	CD_totARR
-9	0.01803	0.00200	0.01880	0.00413	0.00258	0.00019	0.04573
-8	0.01803	0.00200	0.01452	0.00294	0.00225	0.00013	0.03987
-7	0.01803	0.00200	0.01080	0.00200	0.00194	0.00009	0.03486
-6	0.01803	0.00200	0.00765	0.00128	0.00166	0.00006	0.03068
-5	0.01803	0.00200	0.00505	0.00076	0.00140	0.00003	0.02728
-4	0.01803	0.00200	0.00302	0.00041	0.00116	0.00002	0.02463
-3	0.01803	0.00200	0.00155	0.00018	0.00094	0.00001	0.02271
-2	0.01803	0.00200	0.00064	0.00006	0.00074	0.00000	0.02147
-1	0.01803	0.00200	0.00028	0.00001	0.00057	0.00000	0.02090
0	0.01803	0.00200	0.00049	0.00000	0.00042	0.00000	0.02095
1	0.01803	0.00200	0.00127	0.00001	0.00029	0.00000	0.02160
2	0.01803	0.00200	0.00260	0.00006	0.00019	0.00000	0.02288
3	0.01803	0.00200	0.00449	0.00018	0.00011	0.00001	0.02482
4	0.01803	0.00200	0.00694	0.00041	0.00005	0.00002	0.02745
5	0.01803	0.00200	0.00996	0.00076	0.00001	0.00003	0.03080
6	0.01803	0.00200	0.01353	0.00128	0.00000	0.00006	0.03490
7	0.01803	0.00200	0.01767	0.00200	0.00001	0.00009	0.03980
8	0.01803	0.00200	0.02237	0.00294	0.00004	0.00013	0.04551
9	0.01803	0.00200	0.02763	0.00413	0.00010	0.00019	0.05207
10	0.01803	0.00200	0.03345	0.00561	0.00017	0.00026	0.05952
11	0.01803	0.00200	0.03982	0.00741	0.00027	0.00035	0.06788
12	0.01803	0.00200	0.04677	0.00955	0.00039	0.00045	0.07719
13	0.01803	0.00200	0.05427	0.01208	0.00053	0.00057	0.08748
14	0.01803	0.00200	0.06233	0.01501	0.00068	0.00071	0.09877
15	0.01803	0.00200	0.07095	0.01838	0.00083	0.00087	0.11107
16	0.01803	0.00200	0.08014	0.02223	0.00094	0.00106	0.12440
17	0.01803	0.00200	0.08988	0.02657	0.00102	0.00127	0.13878
18	0.01803	0.00200	0.10019	0.03145	0.00103	0.00151	0.15422

Baricentro a pieno carico

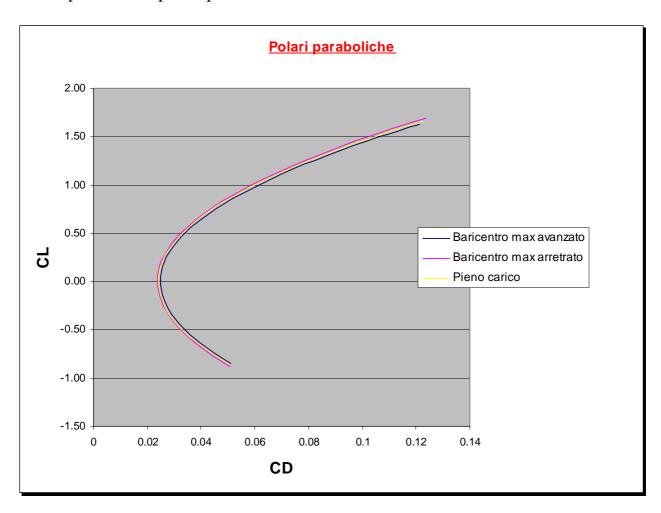
alphab	CDo_tot	CDcool	CDi_wing	CDi fusol.	CDihPC	CDiN	CD_totPC
-9	0.01803	0.002	0.018797	0.004131	0.00161	0.00019	0.044759
-8	0.01803	0.002	0.01452	0.002936	0.00145	0.00013	0.039067
-7	0.01803	0.002	0.010804	0.001997	0.00129	0.00009	0.034213
-6	0.01803	0.002	0.007648	0.001283	0.00115	0.00006	0.030163
-5	0.01803	0.002	0.005054	0.000763	0.00101	0.00003	0.026888
-4	0.01803	0.002	0.00302	0.000406	0.00088	0.00002	0.024353
-3	0.01803	0.002	0.001547	0.000183	0.00076	0.00001	0.022527
-2	0.01803	0.002	0.000635	6.07E-05	0.00065	0.00000	0.021377
-1	0.01803	0.002	0.000285	1E-05	0.00055	0.00000	0.020871
0	0.01803	0.002	0.000495	0	0.00045	0.00000	0.020977
1	0.01803	0.002	0.001266	1E-05	0.00037	0.00000	0.021674
2	0.01803	0.002	0.002598	6.07E-05	0.00029	0.00000	0.022982
3	0.01803	0.002	0.004491	0.000183	0.00022	0.00001	0.024935
4	0.01803	0.002	0.006944	0.000406	0.00017	0.00002	0.027563
5	0.01803	0.002	0.009959	0.000763	0.00012	0.00003	0.030901
6	0.01803	0.002	0.013534	0.001283	0.00008	0.00006	0.034979
7	0.01803	0.002	0.01767	0.001997	0.00004	0.00009	0.03983
8	0.01803	0.002	0.022368	0.002936	0.00002	0.00013	0.045487
9	0.01803	0.002	0.027626	0.004131	0.00001	0.00019	0.051981
10	0.01803	0.002	0.033446	0.005611	0.00000	0.00026	0.059347
11	0.01803	0.002	0.039825	0.007409	0.00000	0.00035	0.067612
12	0.01803	0.002	0.046766	0.009555	0.00002	0.00045	0.076814
13	0.01803	0.002	0.054268	0.012079	0.00004	0.00057	0.086982
14	0.01803	0.002	0.062331	0.015012	0.00006	0.00071	0.098146
15	0.01803	0.002	0.070954	0.018384	0.00009	0.00087	0.110333
16	0.01803	0.002	0.080139	0.022228	0.00011	0.00106	0.123573
17	0.01803	0.002	0.089884	0.026572	0.00013	0.00127	0.137891
18	0.01803	0.002	0.100191	0.031449	0.00013	0.00151	0.153316

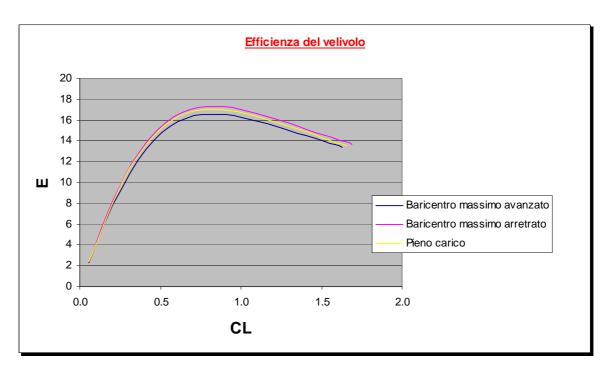
Determinate le polari fisiche del velivolo completo è facile ricavare i valori dei parametri e e Cdo, che ci permettono di determinare le polari paraboliche dalla relazione:

$$CD = CD_0 + \frac{CL^2}{\pi \cdot AR \cdot e}$$

Sono riportati di seguito, i valori del CDo e del fattore di Oswald e nelle tre condizioni

Fattore di Oswald				
e_AV	e_ARR	e_PC		
0.77	0.80	0.78166		
CDoAV	CDoARR	CDoPC		

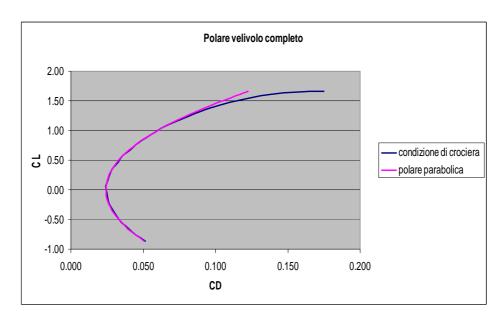

0.0238

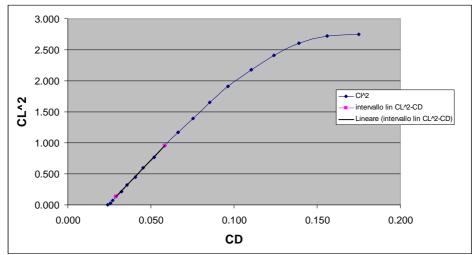

0.0249

Questi valori rientrano nel range di valori tipici dei velivoli da trasporto regionale che sono per e~0.8 -0.85 e CDo~0.018-0.025 .

0.0241

Riportiamo le polari paraboliche e le efficienze





Per concludere riportiamo il confronto tra polare parabolica e fisica in condizione di crociera notando che queste due curve in un certo intervallo di CL coincidono ed è quindi possibile studiare in tale intervallo la polare fisica come polare parabolica calcolata con :


$$CD = CD_0 + \frac{CL^2}{\pi \cdot AR \cdot e}$$

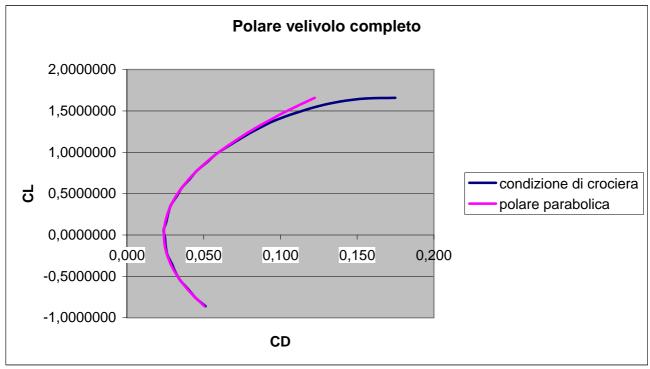
evidenziando però gli estremi di validità (CL_1 - CL_2) di questa relazione. Questo intervallo logicamente è caratterizzato dall'andamento lineare della curva CL^2 – CD.

Per completezza riportiamo così come abbiamo fatto per le polari le efficienze fisica e parabolica, notando come le due curve ad alti assetti tendono ad allontanarsi mentre coincidono per un buon intervallo di assetti intermedi.

CAPITOLO 5 Potenze necessarie e potenze disponibili

5.1 - Potenze necessarie

Per la determinazione delle potenze necessarie la condizione di volo che consideriamo è quella di volo livellato stazionario le cui equazioni del moto sono le seguenti:


L=W

T=D

Precisiamo che considerare l'aereo in volo livellato stazionario significa assumere nulli l'angolo di rampa, l'angolo di rollio e l'accelerazione.

Supponiamo a questo punto che l'aereo voli in condizione di volo livellato stazionario ad una data velocità ed altitudine. E' chiaro che per mantenere questa velocità ed altitudine, deve essere generata la spinta sufficiente per vincere la resistenza aerodinamica; questa spinta è la spinta richiesta per mantenere le suddette condizioni di volo. La variazione di Tno con la velocità asintotica è detta curva di spinta richiesta o necessaria.

Per la costruzione delle curve di spinta necessaria abbiamo considerato la polare parabolica del velivolo completo in crociera di cui di seguito ne riportiamo il grafico:

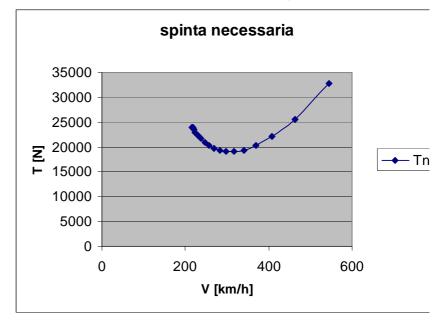
Conoscendo i Cl, abbiamo determinato la velocità utilizzando la seguente formula :

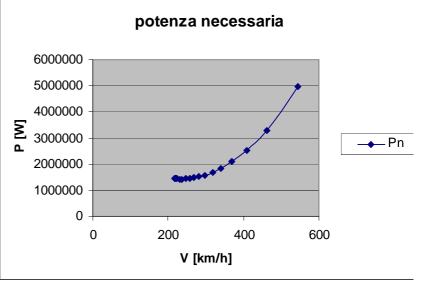
$$V = \frac{W}{1/2 \cdot \rho \cdot S \cdot Cl}$$

- W= peso dell'aereo già determinato in precedenza (determinazione dei pesi) e pari a **324011N**
- S= superficie alare determinata nel punto di progetto e pari a 87.96 m^2

Chiaramente abbiamo fatto un discorso a varie quote e quindi la densità ρ è quella relativa alla quota che consideriamo.

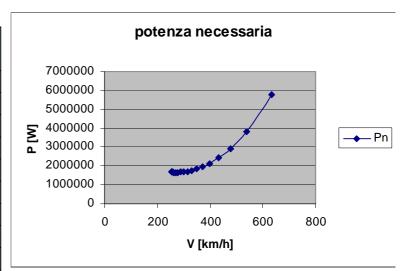
Conoscendo i Cd possiamo scrivere quanto segue: $D = Tno = 1/2 \cdot \rho \cdot S \cdot V^2 \cdot Cd$

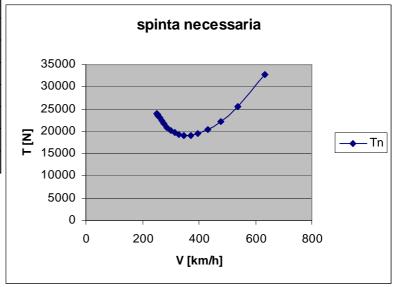

Conosciuta la spinta necessaria possiamo determinare la potenza necessaria definita come l'energia o il lavoro nell'unità di tempo; essa sarà pari alla spinta richiesta al volo per la velocità di volo:


$$\prod no = Tno \cdot V = D \cdot V$$

Di seguito riportiamo i risultati dei calcoli ottenuti in Excel con i relativi grafici:

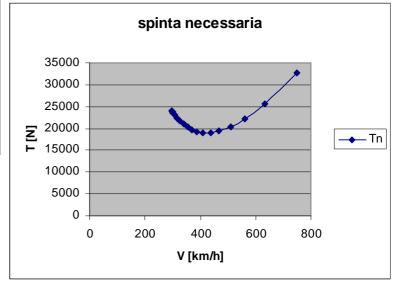
Z=0 ft


V	V		
[m/s]	[km/h]	Pn [W]	Tn[N]
60	217	1441277	23917
60	217	1440570	23849
61	220	1437473	23532
62	224	1433330	23023
64	230	1429978	22382
66	237	1429690	21671
68	247	1435083	20956
71	257	1448867	20300
75	269	1474172	19742
78	283	1515684	19314
83	299	1580783	19063
88	318	1681409	19058
95	341	1838136	19411
103	370	2089082	20314
114	409	2512149	22129
128	462	3290198	25621
151	545	4954024	32743

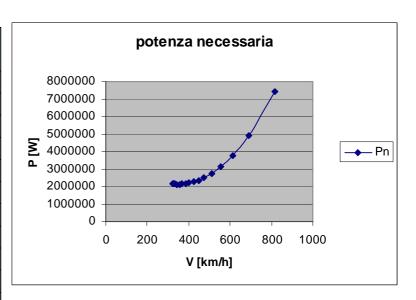


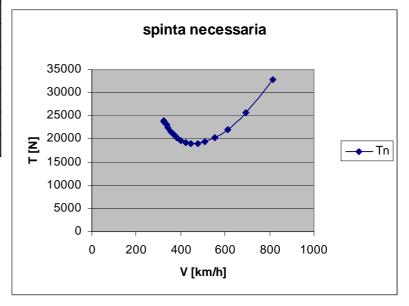
Z=10000 ft

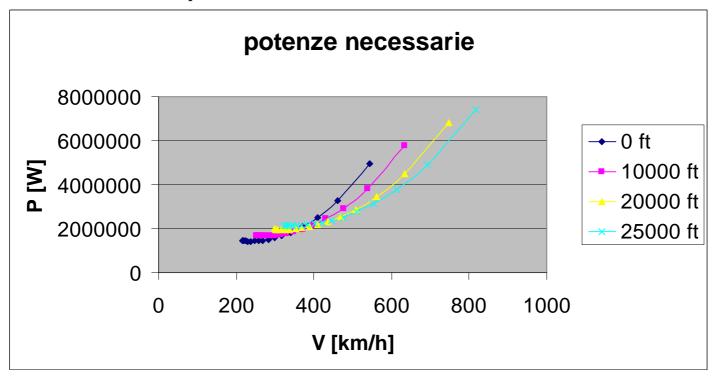
Z=10000	V		
V [m/s]	[km/h]	Pn [W]	Tn[N]
70	253	1679625	23917
70	253	1678801	23849
71	256	1675192	23532
73	261	1670364	23023
74	268	1666457	22382
77	277	1666121	21671
80	287	1672406	20956
83	299	1688470	20300
87	313	1717959	19742
91	329	1766337	19314
97	348	1842201	19063
103	370	1959468	19058
110	397	2142113	19411
120	431	2434559	20314
132	476	2927589	22129
150	539	3834306	25621
176	635	5773283	32743

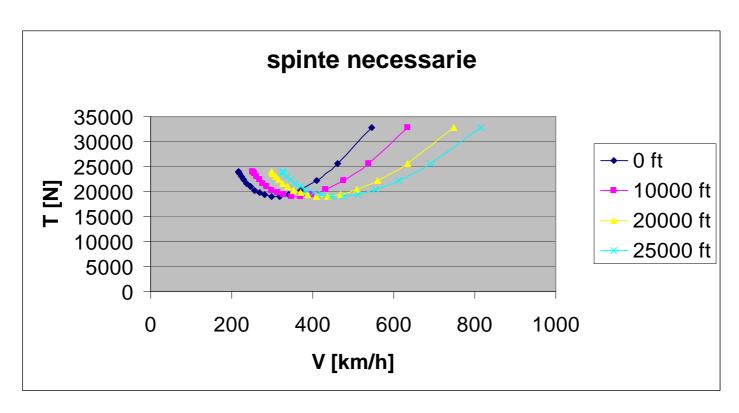


$Z = 20000 \eta$) ft
------------------	------


Z = 20000) ji		T
	\mathbf{V}		
V [m/s]	[km/h]	Pn [W]	Tn[N]
83	298	1980128	23917
83	299	1979157	23849
84	302	1974902	23532
86	308	1969210	23023
88	316	1964604	22382
91	326	1964208	21671
94	339	1971617	20956
98	353	1990555	20300
103	369	2025321	19742
108	388	2082353	19314
114	410	2171791	19063
121	436	2310038	19058
130	468	2525360	19411
141	509	2870128	20314
156	561	3451366	22129
176	635	4520304	25621
208	748	6806186	32743




Z=25000 ft


Z=2500	υji		
V	V		
[m/s]	[km/h]	Pn [W]	Tn[N]
90	325	2158834	23917
90	326	2157775	23849
91	329	2153136	23532
93	336	2146931	23023
96	345	2141909	22382
99	356	2141478	21671
103	369	2149556	20956
107	385	2170202	20300
112	403	2208105	19742
118	423	2270285	19314
124	447	2367795	19063
132	476	2518518	19058
142	511	2753273	19411
154	555	3129156	20314
170	612	3762852	22129
192	692	4928261	25621
227	816	7420443	32743

Infine di seguito riportiamo il confronto dei grafici delle spinte e delle potenze necessarie alle varie quote:



5.2 - Potenze disponibili

Per quanto riguarda il motore è stato scelto il turboelica PW150A la cui casa costruttrice è la Pratt & Whitney.

Di seguito riportiamo uno spaccato del motore PW150A:

t and a supply to the state of the supply of	TAKE OFF	RATING	
	THERMO ESHP	MECH SHP	SHAFT RPM
PT6A-11AG PT6A-15AG PT6A-25A PT6A-25A PT6A-25A PT6A-25A PT6A-25A PT6A-27B PT6A-36 PT6A-36 PT6A-37A PT6A-112 PT6A-113B PT6A-135B PT6A-61-135B PT6A-61-135B PT6A-64-127 PT6A-65AG PT6A-65B PT6A-65	668 751 669 683 683 683 886 751 823 886 919 751 898 940 1090 11090 11218 1218 1218 1218 1218 1461 1645 1583 1461 1645 1687 1687 1687 1689 1774 1689 1774 1834 1689 1774 1835 1857 1857 1874 2896 2296 2296 2390 2416 2416 2497 2543 2950 3253 3247 3296 3366 3366 33192 3365 3366 33192 3365 6880	550 680 680 550 550 680 680 680 680 680 680 680 680 600 675 615 750 600 675 615 750 600 675 615 750 600 675 615 750 600 675 615 750 600 675 615 750 600 675 615 750 600 675 615 750 600 600 675 615 750 600 600 600 600 600 600 600 600 600 6	1900 1900 1900 2000 2000 1700 2000 2000 2000 2000 1700 17

Il motore turboelica è essenzialmente un'elica azionata da un motore a turbina a gas; l'aria in ingresso è compressa tramite un compressore a flusso assiale, miscelata con il carburante e bruciata nel combustore ed infine espulsa attraverso un ugello. Tuttavia, diversamente dal turbogetto, la turbina aziona non solo il compressore ma

anche l'elica. Per la maggior parte delle turboeliche solo il 5 % circa della spinta totale è associata al getto di scarico, mentre il rimanente 95 % proviene dall'elica. Le prestazioni di una turboelica sono frequentemente misurate in termini di potenza. La parte principale di una turboelica è l'albero proveniente dal motore al quale l'elica è fissata attraverso alcuni tipi di meccanismi e ingranaggi.

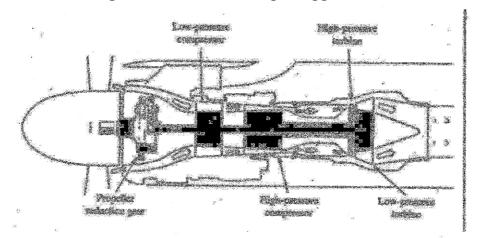
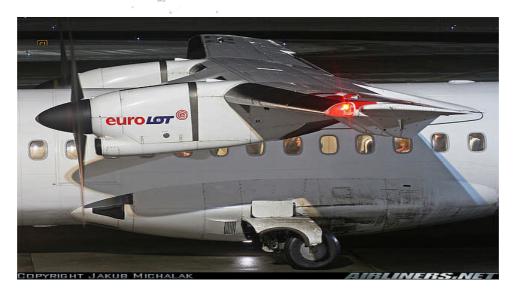
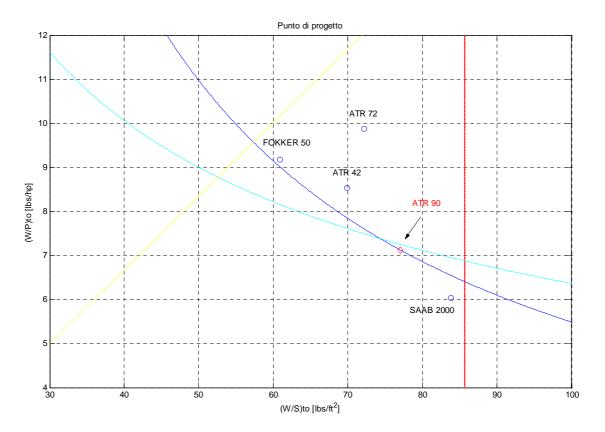



Fig. 6.21 : Schema di motore tarboehea


La prima cosa che abbiamo fatto è stata quella di determinare la potenza all'albero. Tale potenza è stata calcolata nel seguente modo: $\prod a = \prod ao \cdot \phi \cdot kz \cdot kv$

Пао= potenza massima (o potenza di targa) di un singolo motore al livello del mare=**3759876** W

Osserviamo che la potenza di targa è quella scelta nel punto di progetto.

 Φ = grado di ammissione (Φ =1)

Kz= effetto quota (tiene conto della diminuzione della potenza all'aumentare della quota)

Kz (da z=0 ft a z=5000 ft)=
$$1.0-0.01 \cdot \left(\frac{z}{1000}\right)$$
 z in ft
Kz(z>5000 ft)= $0.95-0.02173 \cdot \left(\frac{z-5000}{1000}\right)$ z in ft

quota [ft]	kz
0	1
10000	0.84135
20000	0.62405
25000	0.5154

Kv= effetto Ram (tiene conto dell'aumento della potenza all'aumentare della velocità)

Kv=1.00 - 0.0014
$$\cdot \left(\frac{V}{100}\right)$$
 + 0.00827 $\cdot \left(\frac{V}{100}\right)^2$ V in km/h

Riportiamo di seguito i valori ottenuti in Excel al variare della quota: Z=0 ft

V [m/s]	V [km/h]	kv	Pa[W]
60	217	1.031	3875846
60	218	1.038	3904602
61	220	1.041	3914047
62	224	1.044	3924768
64	230	1.047	3937040
66	238	1.051	3951224
69	247	1.055	3967802
71	257	1.061	3987433
75	269	1.067	4011040
79	283	1.074	4039962
83	299	1.084	4076209
88	318	1.097	4122954
95	341	1.113	4185503
103	371	1.137	4273454
114	409	1.172	4406131
129	463	1.232	4632501
151	545	1.353	5088875
218	786	1.500	5640871

Z=10000 ft

V [m/s]	V [km/h]	kv	Pa[W]
70	254	1.042	3297605
71	257	1.053	3330655
73	261	1.056	3341507
75	268	1.060	3353821
77	277	1.065	3367915
80	288	1.070	3384202
83	300	1.076	3403235
87	314	1.083	3425767
92	330	1.092	3452859
97	348	1.102	3486041
103	370	1.115	3527619
110	398	1.132	3581226
120	432	1.155	3652937
132	477	1.187	3753744
150	539	1.235	3905768
176	635	1.317	4165055
226	812	1.482	4687581

Z=20000 ft

V [m/s]	V [km/h]	kv	Pa[W]
83	298	1.069	2509240.2
83	299	1.070	2510029.4
84	302	1.071	2513857.6
86	308	1.074	2520535
88	316	1.078	2530071.1
91	327	1.084	2542583.3
94	339	1.090	2558205.9
98	353	1.098	2576986.4
103	370	1.108	2599364.5
108	388	1.119	2626427.5
114	411	1.134	2659849.9
121	437	1.152	2702147.5
130	469	1.175	2757381.6
141	509	1.207	2832532.6
156	562	1.253	2940694.2
177	636	1.325	3109633.9
208	749	1.453	3410314.9

Z=25000 ft

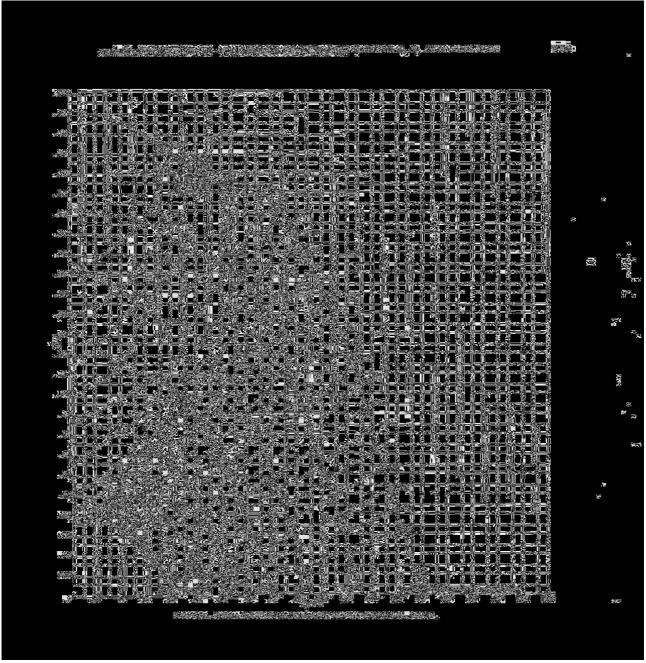
V [m/s]	V [km/h]	kv	Pa[W]
90	325	1.071	2076023
91	326	1.089	2109733
92	330	1.094	2120795
93	336	1.101	2133345
96	345	1.108	2147706
99	356	1.117	2164297
103	370	1.127	2183680
107	385	1.139	2206621
112	403	1.153	2234196
118	424	1.170	2267962
124	448	1.192	2310257
132	476	1.220	2364771
142	511	1.258	2437670
154	555	1.311	2540109
170	613	1.390	2694531
193	693	1.526	2957787
227	817	1.800	3488022

A questo punto abbiamo fissato il diametro dell'elica facendo riferimento ai velivoli simili:

diametro dell'elica dei velivoli di riferimento

ATR 42	ATR 72	Fokker 50	Saab 2000
3,49 m	3,49 m	3,66	3,81

L'elica scelta è un'elica a passo variabile (a giri costanti) di diametro **D=4m**.



Nota la potenza all'albero al variare della velocità possiamo valutare il coefficiente di potenza:

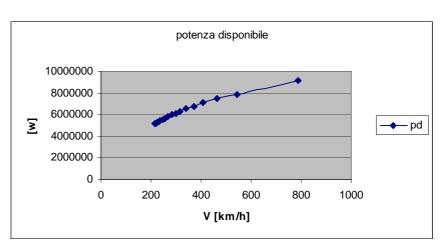
$$Cp = \frac{\prod a}{\rho \cdot n^3 \cdot D^5}$$
 n= 34 giri/s

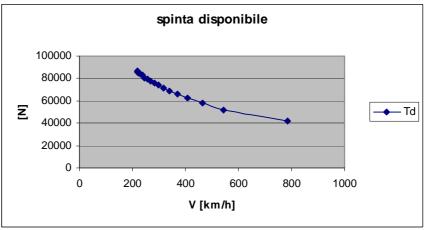
Si valuta parallelamente il rapporto di funzionamento: $\gamma = \frac{V}{n \cdot D}$

Con i valori di gamma e Cp si entra nel diagramma relativo all'elica quadripala tratto dal **Report Naca** $N^{\circ}640$ che riportiamo di seguito e si ricavano i corrispondenti valori di Ct :

Noti i Ct è possibile ricavare:

- il rendimento propulsivo $\eta = \frac{Ct}{Cp} \cdot \gamma$
- la spinta disponibile $T = Ct \cdot \rho \cdot n^2 \cdot D^4$
- la potenza disponibile $\prod d = T \cdot V$, che è anche pari a $\prod d = \eta \cdot \prod a$

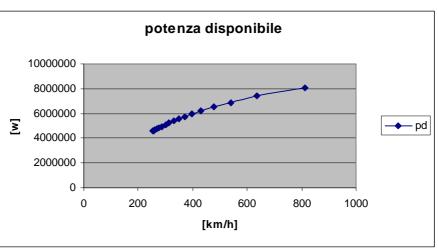

Chiaramente la spinta disponibile e la potenza disponibile sono state moltiplicate per due in quanto due sono i motori installati sull'ATR90.

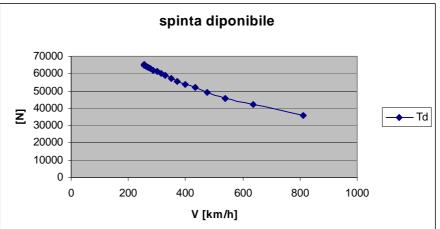


Di seguito riportiamo i risultati ottenuti in Excel con i relativi grafici: **Z**=0 *ft*

L-0 jt	~	Q.		D 1 FYY77	D 1 51 7777	77.1.F.N.1.1
gamma	Ср	Ct	eta	Pd [W]	Pd [kW]	Td [N]
0.44	0.079	0.119	0.671	2602051	2602	43140
0.44	0.079	0.119	0.668	2608163	2608	43140
0.45	0.079	0.118	0.668	2615440	2615	42778
0.46	0.080	0.117	0.673	2642985	2643	42415
0.47	0.080	0.116	0.683	2689171	2689	42053
0.49	0.080	0.114	0.691	2728885	2729	41327
0.50	0.080	0.111	0.695	2758056	2758	40240
0.53	0.081	0.109	0.708	2822850	2823	39515
0.55	0.081	0.107	0.723	2899156	2899	38790
0.58	0.082	0.105	0.740	2989781	2990	38065
0.61	0.083	0.102	0.753	3069020	3069	36977
0.65	0.084	0.099	0.769	3169253	3169	35890
0.70	0.085	0.095	0.780	3264255	3264	34440
0.76	0.087	0.091	0.795	3395634	3396	32989
0.84	0.089	0.086	0.804	3542384	3542	31177
0.95	0.094	0.080	0.805	3727609	3728	29002
1.11	0.103	0.072	0.777	3952726	3953	26102
1.61	0.114	0.058	0.814	4592402	4592	21026

Pd*2	Td*2
[W]	[N]
5204103	86280
5216327	86280
5230880	85555
5285970	84830
5378342	84105
5457769	82655
5516112	80480
5645700	79030
5798313	77580
5979562	76130
6138040	73954
6338506	71779
6528509	68879
6791268	65979
7084767	62354
7455217	58003
7905453	52203
9184803	42053
7 1000	0.64

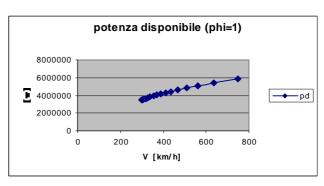


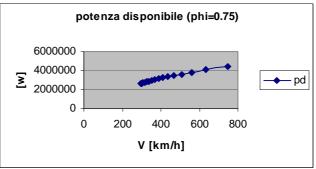


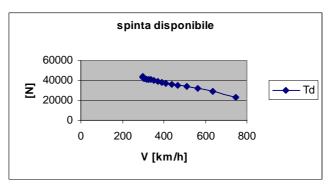
Z=100000 ft

gamma(D=4m)	Ср	Ct	eta	Pd [W]	Pd [kW]	Td[N]
0.52	0.091	0.122	0.696	2294473	2294	32566
0.52	0.092	0.121	0.691	2301354	2301	32299
0.53	0.092	0.120	0.696	2326084	2326	32032
0.55	0.092	0.119	0.706	2367242	2367	31765
0.57	0.093	0.118	0.720	2423804	2424	31498
0.59	0.093	0.116	0.731	2473280	2473	30964
0.61	0.094	0.115	0.751	2555609	2556	30697
0.64	0.094	0.113	0.767	2627251	2627	30164
0.67	0.095	0.110	0.778	2687683	2688	29363
0.71	0.096	0.107	0.792	2762604	2763	28562
0.76	0.097	0.104	0.810	2856869	2857	27761
0.81	0.099	0.101	0.832	2977947	2978	26960
0.88	0.101	0.097	0.850	3105892	3106	25893
0.97	0.103	0.092	0.866	3251773	3252	24558
1.10	0.108	0.086	0.880	3438539	3439	22956
1.30	0.115	0.079	0.894	3721573	3722	21088
1.66	0.129	0.067	0.861	4035197	4035	17885

D 142	T 140
Pd*2	Td*2
[W]	[N]
4588945	65132
4602707	64598
4652167	64064
4734484	63530
4847609	62996
4946560	61929
5111218	61395
5254501	60327
5375365	58726
5525207	57124
5713737	55522
5955895	53921
6211785	51785
6503546	49116
6877079	45913
7443146	42176
8070395	35769
7-2000	0 f4

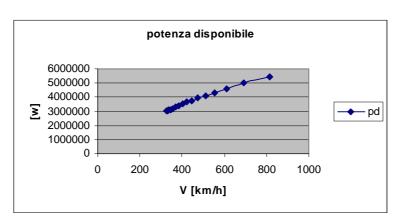


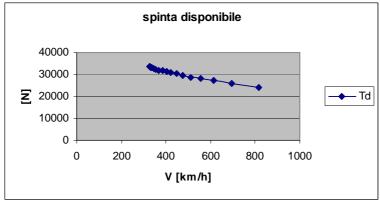



Z=200000 ft

gamma	Ср	Ct	eta	Pd [W]	Pd [kW]	Td [N]
0.61	0.096	0.110	0.698	1750717	1751	21127
0.61	0.096	0.110	0.699	1754829	1755	21127
0.62	0.096	0.109	0.700	1758505	1759	20935
0.63	0.096	0.109	0.711	1792213	1792	20935
0.65	0.097	0.108	0.720	1822378	1822	20743
0.67	0.097	0.107	0.733	1864311	1864	20551
0.69	0.098	0.106	0.749	1917080	1917	20359
0.72	0.099	0.105	0.768	1979269	1979	20167
0.76	0.100	0.102	0.774	2011603	2012	19590
0.79	0.101	0.100	0.789	2072547	2073	19206
0.84	0.102	0.098	0.807	2146248	2146	18822
0.89	0.103	0.095	0.819	2213602	2214	18246
0.96	0.106	0.093	0.844	2325936	2326	17862
1.04	0.108	0.089	0.853	2417262	2417	17094
1.15	0.113	0.085	0.867	2548416	2548	16325
1.30	0.119	0.080	0.873	2713218	2713	15365
1.53	0.131	0.073	0.855	2917033	2917	14021

	Td*2	Pd*2[w]
Pd*2[w]	[N]	phi=0.75
3501434	44174	2626075
3509658	43022	2632244
3517010	42254	2637757
3584426	41870	2688320
3644757	41485	2733567
3728622	41101	2796467
3834160	40717	2875620
3958539	40333	2968904
4023206	39181	3017405
4145094	38028	3108821
4292496	37260	3219372
4427205	36492	3320403
4651871	35339	3488903
4834525	34187	3625893
5096833	31882	3822624
5426435	29193	4069826
5834067	23047	4375550

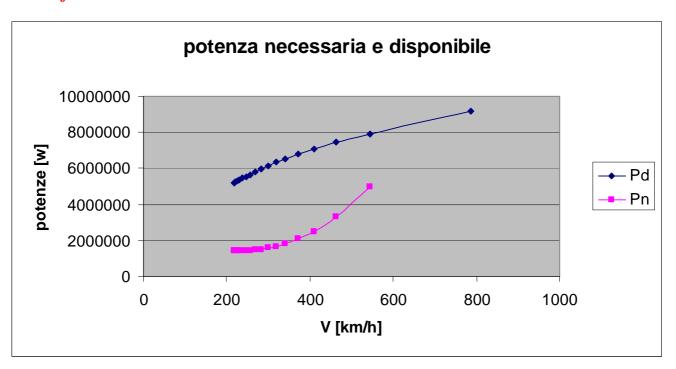


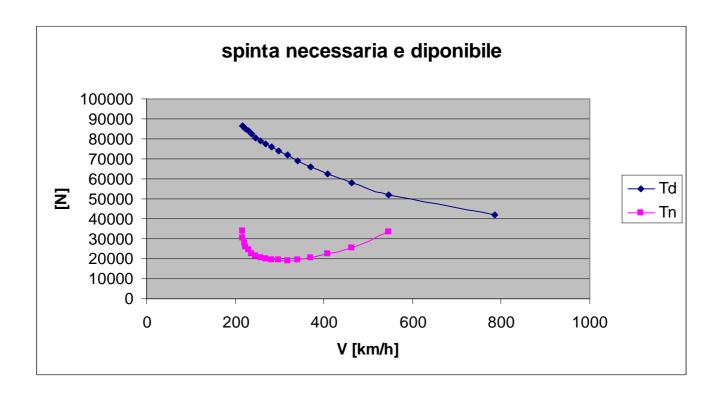


Z=25000 ft

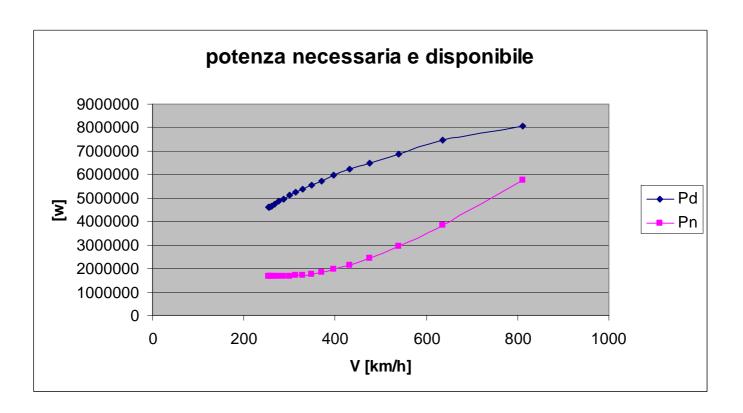
Z-23000 Ji						
gamma(D=4m)	Ср	Ct	eta	Pd [W]	Pd [kW]	Td [N]
0.66	0.094	0.104	0.731	1518205	1518	16804
0.67	0.096	0.104	0.721	1521771	1522	16804
0.67	0.097	0.103	0.719	1524152	1524	16643
0.69	0.097	0.102	0.721	1538287	1538	16481
0.70	0.098	0.101	0.728	1563184	1563	16320
0.73	0.098	0.100	0.738	1598117	1598	16158
0.75	0.099	0.099	0.752	1642266	1642	15997
0.79	0.100	0.098	0.768	1694399	1694	15835
0.82	0.102	0.097	0.785	1754639	1755	15673
0.87	0.103	0.096	0.805	1824944	1825	15512
0.91	0.105	0.094	0.817	1888233	1888	15189
0.97	0.108	0.092	0.831	1966246	1966	14865
1.04	0.111	0.089	0.838	2041638	2042	14381
1.13	0.116	0.087	0.853	2167340	2167	14058
1.25	0.123	0.084	0.857	2309961	2310	13573
1.42	0.135	0.080	0.841	2488620	2489	12926
1.67	0.159	0.074	0.778	2712216	2712	11957

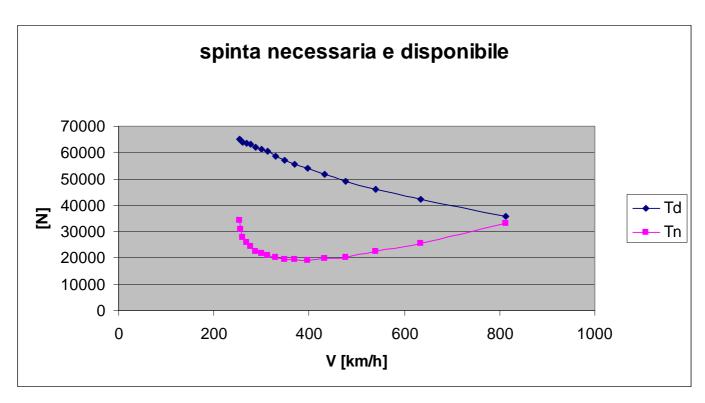
DJ#3	T1*0
Pd*2	Td*2
[W]	[N]
3036411	33609
3043543	33609
3048304	33286
3076573	32963
3126368	32639
3196234	32316
3284532	31993
3388798	31670
3509279	31347
3649888	31024
3776467	30377
3932491	29731
4083276	28761
4334679	28115
4619923	27146
4977240	25853
5424432	23914

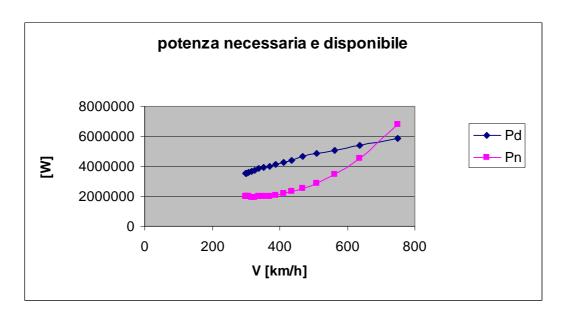

5.3 - Confronto tra potenze necessarie e potenze disponibili


Possiamo ora effettuare il confronto tra le potenze necessarie al volo orizzontale e le potenze disponibili fornite dai motori alle varie quote.

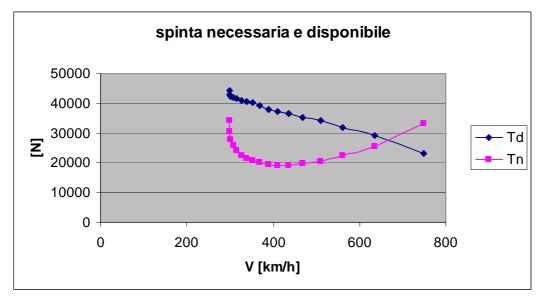
Si possono presentare tre possibilità:

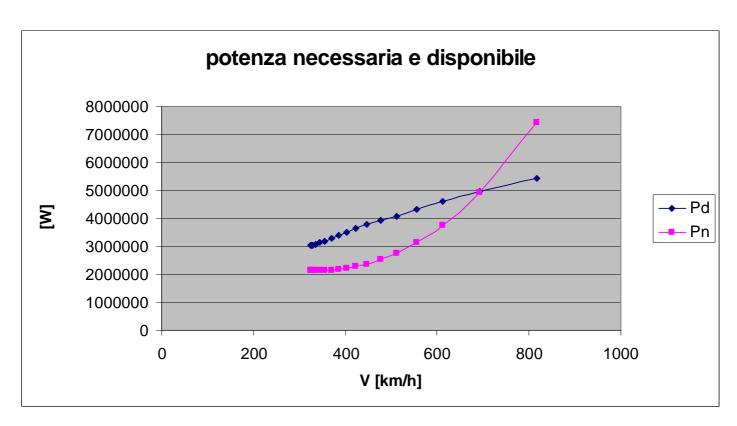

- la potenza necessaria al volo orizzontale è uguale alla potenza disponibile. In generale ciò accade nelle condizioni di volo rettilineo uniforme corrispondenti ai punti di intersezione (due,uno o nessuno) delle due curve medesime
- la potenza disponibile è maggiore della potenza necessaria al volo orizzontale. I superi di potenza disponibile rispetto alla potenza necessarie possono essere impiegati per accelerare il velivolo e/o per farlo salire permettendo cioè di aumentare l'energia cinetica e/o l'energia potenziale
- se,infine, la potenza disponibile è minore della potenza necessaria al volo orizzontale, il velivolo decelera riducendo la sua energia cinetica, e/o scende di quota diminuendo la sua energia potenziale.

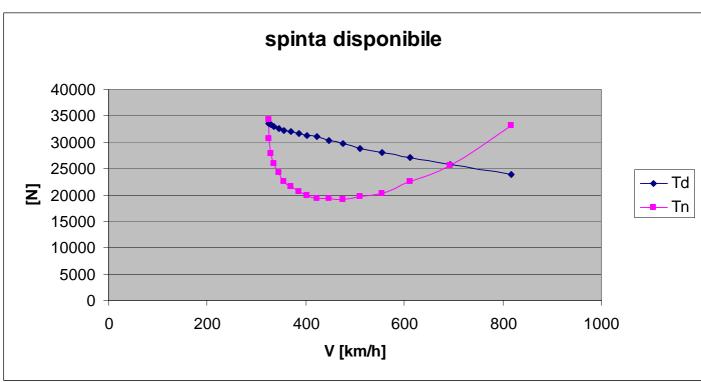

Z=0 ft



Z=10000 ft




Z=20000 ft



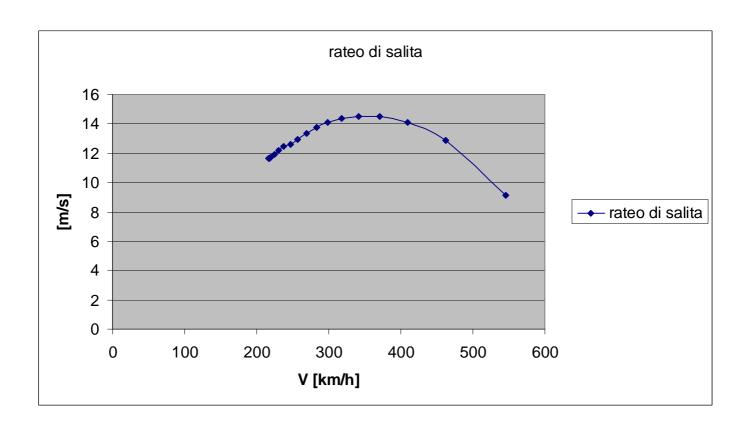
Z=25000 ft

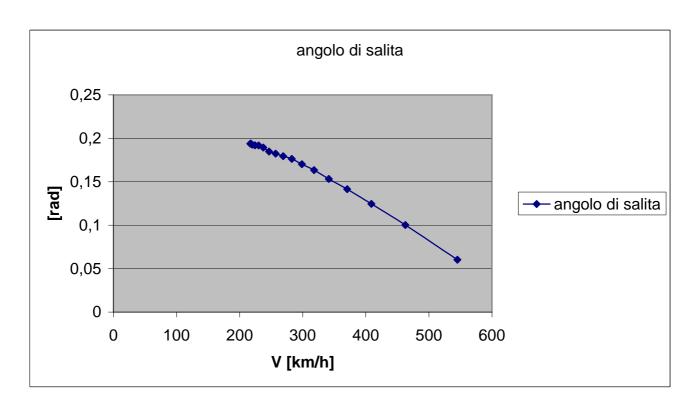
5.4 - Calcolo delle prestazioni di volo

I valori del rateo di salita e dell'angolo di inclinazione della traiettoria in funzione della velocità di volo, ad una quota fissata, possono ottenersi confrontando le caratteristiche necessarie con quelle disponibili nel modo descritto dalle seguenti formule:

$$Rc = \frac{\prod d - \prod no}{W}$$
 [m/s] $\gamma = \arcsin(\frac{Rc}{V})$ [rad]

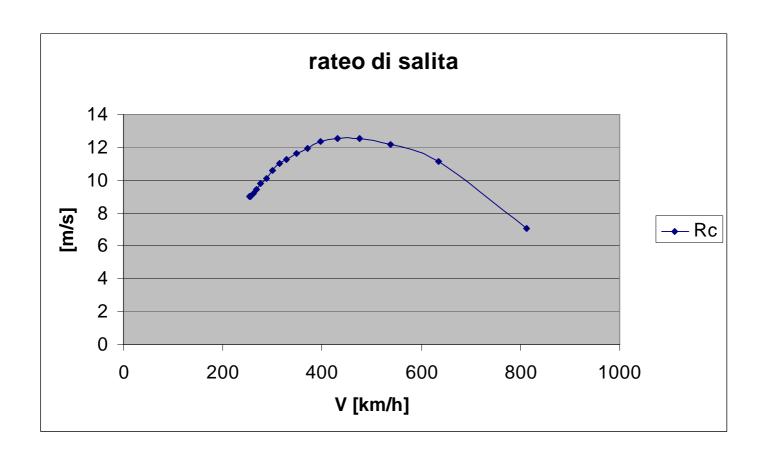
Ricordiamo che il rateo di salita è la velocità verticale dell'aereo, in altre parole è la velocità con la quale il velivolo cambia quota.

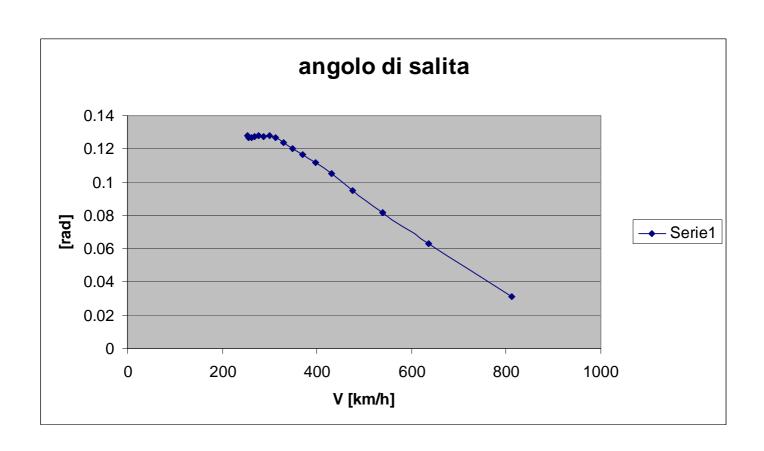



Riportiamo di seguito i risultati ottenuti in Excel al variare della quota:

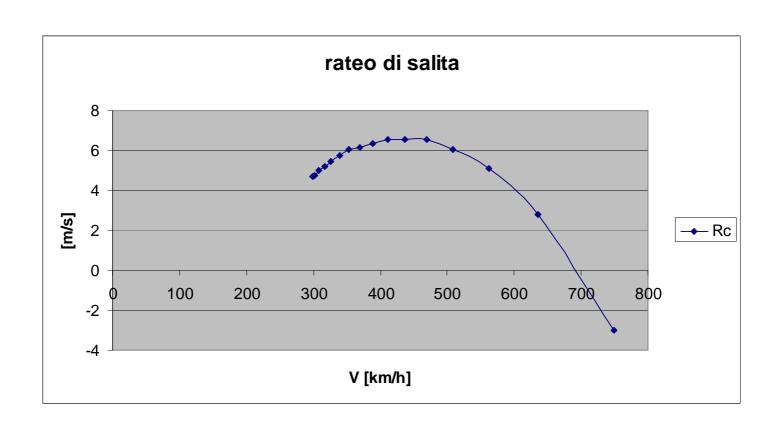
Z = 0 ft

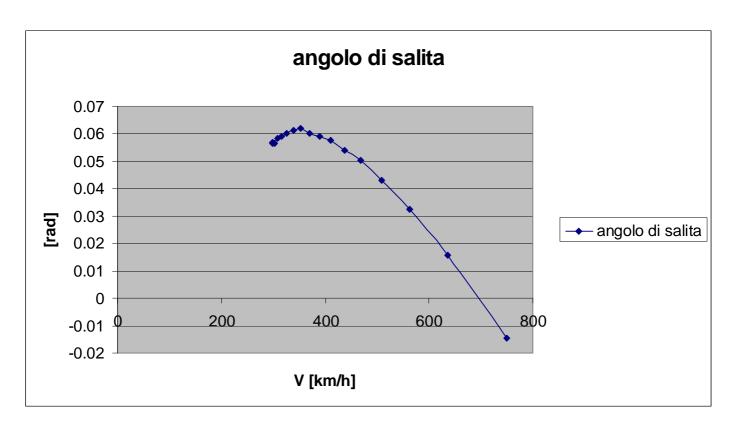
V	V						gommo
[m/s]	v [km/h]	Pd [w]	Pn [W]	rc	Td [N]	Tn	gamma- s
60	217	5204103	1441277	11.61326	86280	34231	0.193749
60	218	5216327	1440570	11.65317	86280	30656	0.193962
61	220	5230880	1437473	11.70765	85555	27949	0.192678
62	224	5285970	1433330	11.89046	84830	25924	0.191997
64	230	5378342	1429978	12.1859	84105	24254	0.191732
66	238	5457769	1429690	12.43192	82655	22608	0.189405
69	247	5516112	1435083	12.59534	80480	21605	0.184816


71	257	5645700	1448867	12.95275	79030	20735	0.182324
75	269	5798313	1474172	13.34566	77580	19975	0.179524
79	283	5979562	1515684	13.77693	76130	19345	0.176315
83	299	6138040	1580783	14.06513	73954	19253	0.170286
88	318	6338506	1681409	14.37327	71779	19058	0.163495
95	341	6528509	1838136	14.47597	68879	19667	0.153329
103	371	6791268	2089082	14.51243	65979	20351	0.141463
114	409	7084767	2512149	14.11254	62354	22531	0.124527
129	463	7455217	3290198	12.85456	58003	25656	0.100179
151	545	7905453	4954024	9.109039	52203	33253	0.060187

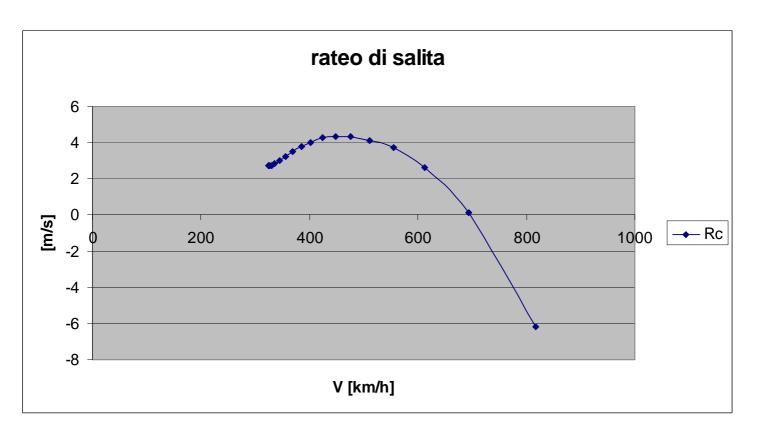


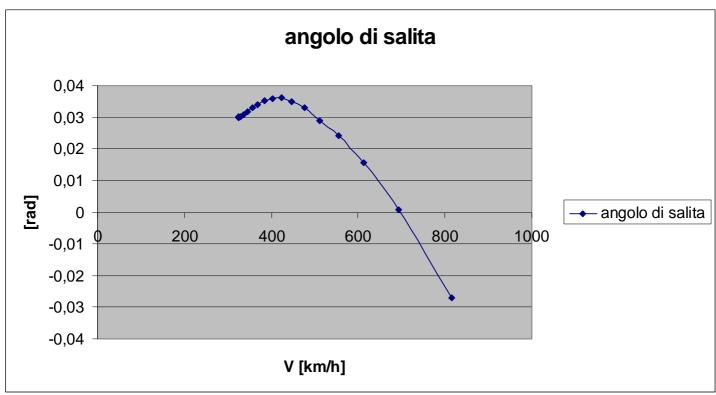
Z=10000 ft


	ooo ji	T					
V	${f V}$						gamma-
[m/s]	[km/h]	Pd [w]	Pn [W]	rc	Td [N]	Tn	S
70	254	4588945	1679625	8.979079	65132	34231	0.12779
71	257	4602707	1678801	9.024096	64598	30656	0.126992
73	261	4652167	1675192	9.187884	64064	27949	0.126865
75	268	4734484	1670364	9.45684	63530	25924	0.127241
77	277	4847609	1666457	9.818036	62996	24254	0.127938
80	288	4946560	1666121	10.12447	61929	22608	0.127096
83	300	5111218	1672406	10.61326	61395	21605	0.127832
87	314	5254501	1688470	11.0059	60327	20735	0.126698
92	330	5375365	1717959	11.28791	58726	19975	0.123634
97	348	5525207	1766337	11.60106	57124	19345	0.12023
103	370	5713737	1842201	11.94878	55522	19253	0.116373
110	398	5955895	1959468	12.33423	53921	19058	0.111899
120	432	6211785	2142113	12.56029	51785	19667	0.104903
132	477	6503546	2434559	12.55817	49116	20351	0.094984
150	539	6877079	2927589	12.18937	45913	22531	0.081469
176	635	7443146	3834306	11.13802	42176	25656	0.063154
226	812	8070395	5773283	7.089609	35769	33253	0.031427



Z=20000 ft


V	V						gommo
· '	'	Dalf1 D FXV 1			(D. 1. (NT)	Tr.	gamma-
[m/s]	[km/h]	Pd [w]	Pn [W]	rc	Td [N]	Tn	S
83	298	3501434	1980128	4.695228	44174	34231	0.05669
83	299	3509658	1979157	4.72361	43022	30656	0.0569
84	302	3517010	1974902	4.759432	42254	27949	0.056691
86	308	3584426	1969210	4.985067	41870	25924	0.058263
88	316	3644757	1964604	5.18548	41485	24254	0.059057
91	327	3728622	1964208	5.445538	41101	22608	0.060063
94	339	3834160	1971617	5.748393	40717	21605	0.061084
98	353	3958539	1990555	6.073818	40333	20735	0.061925
103	370	4023206	2025321	6.166105	39181	19975	0.060086
108	388	4145094	2082353	6.366267	38028	19345	0.05903
114	411	4292496	2171791	6.545165	37260	19253	0.057431
121	437	4427205	2310038	6.534244	36492	19058	0.053886
130	469	4651871	2525360	6.563083	35339	19667	0.050422
141	509	4834525	2870128	6.062748	34187	20351	0.042886
156	562	5096833	3451366	5.078427	31882	22531	0.032538
177	636	5426435	4520304	2.796605	29193	25656	0.015838
208	749	5834067	6806186	-3.00026	23047	33253	-0.01442

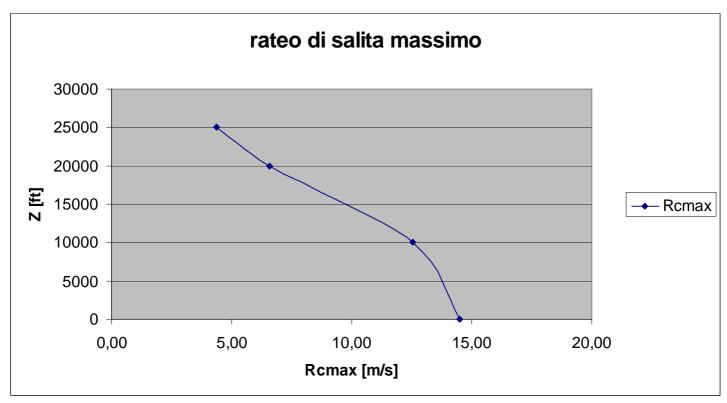


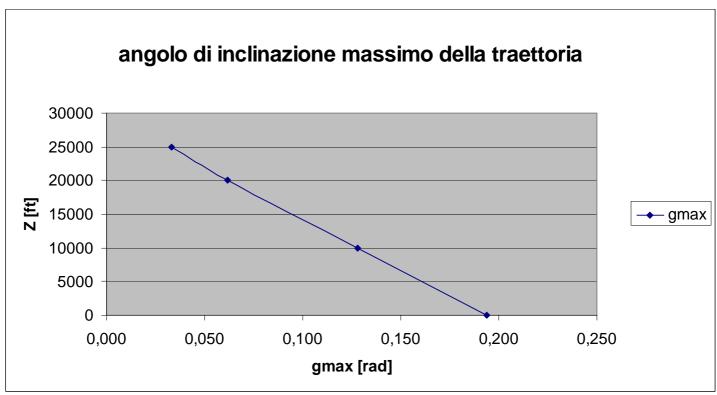
Z=25000 ft

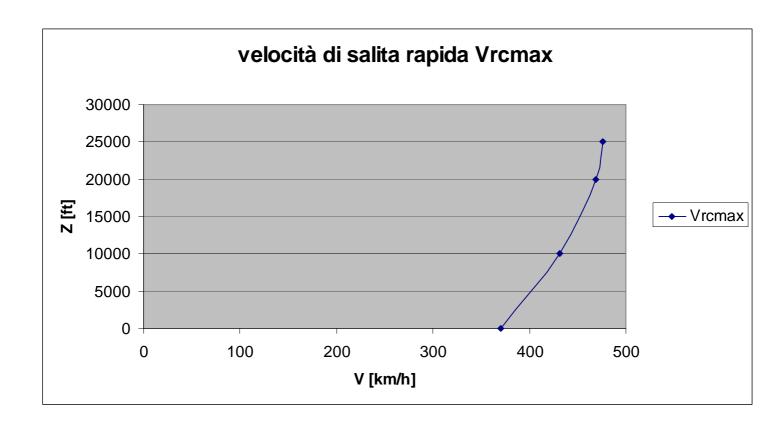
V	V						gamma-
[m/s]	[km/h]	Pd [w]	Pn [W]	rc	Td [N]	Tn	\mathbf{s}
90	325	3036411	2158834	2.708478	33609	34231	0.029984
91	326	3043543	2157775	2.733759	33609	30656	0.030193
92	330	3048304	2153136	2.76277	33286	27949	0.030172
93	336	3076573	2146931	2.869171	32963	25924	0.030745
96	345	3126368	2141909	3.038351	32639	24254	0.031726
99	356	3196234	2141478	3.255311	32316	22608	0.032919
103	370	3284532	2149556	3.502896	31993	21605	0.034127
107	385	3388798	2170202	3.760969	31670	20735	0.035155
112	403	3509279	2208105	4.015831	31347	19975	0.035879
118	424	3649888	2270285	4.25789	31024	19345	0.036199
124	448	3776467	2367795	4.347606	30377	19253	0.034979
132	476	3932491	2518518	4.363967	29731	19058	0.032999
142	511	4083276	2753273	4.104806	28761	19667	0.028917
154	555	4334679	3129156	3.720625	28115	20351	0.024135
170	613	4619923	3762852	2.645191	27146	22531	0.015543
193	693	4977240	4928261	0.151165	25853	25656	0.000785
227	817	5424432	7420443	-6.16032	23914	33253	-0.02716

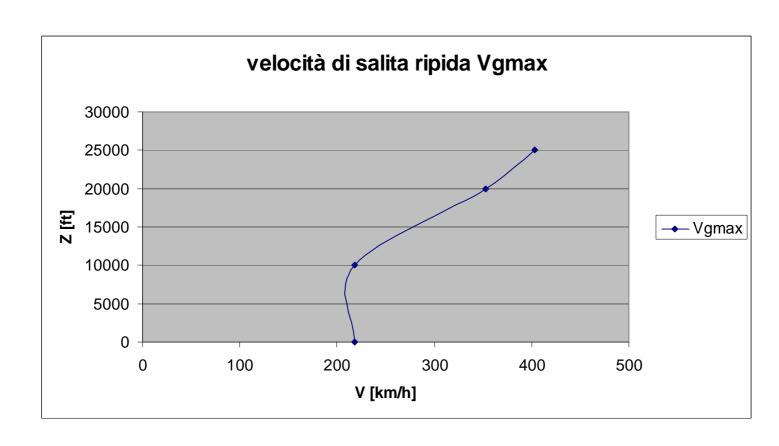
La conoscenza di tali andamenti funzionali consente la determinazione di alcuni diagrammi significativi per le prestazioni di volo:

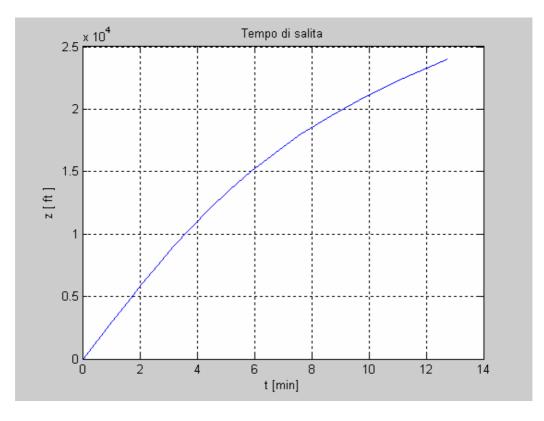
- rateo di salita massimo Rc_{max} in funzione della quota
- angolo di inclinazione massimo della traiettoria gamma_{max} in funzione della quota
- velocità di salita rapida Vrc_{max} in funzione della quota

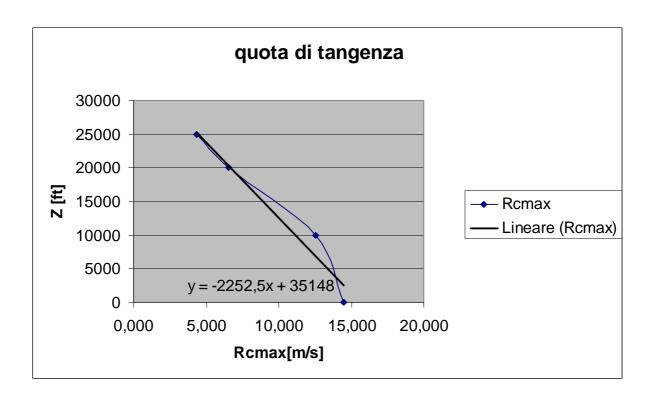

- velocità di salita ripida Vgamma_{max} in funzione della quota
- ullet tempo minimo t_{min} per il raggiungimento di una determinata quota in funzione della quota stessa:


$$t \min = \int_{z_1}^{z_2} \frac{1}{Rc \max} dz$$


Facciamo osservare che il tempo necessario ad un aereo a salire ad una quota stabilita può diventare un'importante considerazione di progetto. In particolare un aereo commerciale deve essere in grado di salire rapidamente ad alte quote per minimizzare il disagio e i rischi di un tempo inclemente, e per minimizzare i problemi di traffico aereo.

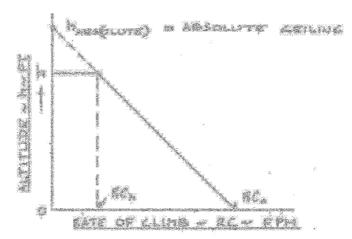



Riportiamo di seguito i grafici ottenuti in Excel:



(matlab)

Come si può vedere dal grafico del rateo massimo, esso si riduce all'aumentare della quota. Ci sono alcune quote abbastanza alte alle quali la curva della potenza disponibile IId diventa tangente alla curva della potenza necessaria IIno. La velocità a questo punto è l'unico valore al quale è possibile il volo regolare livellato; inoltre, in questo punto, la potenza in eccesso è nulla e pertanto è nulla la massima velocità ascensionale. La quota alla quale il massimo rateo di salita è nullo è definita come la quota di tangenza teorica dell'aereo. Del resto come si può vedere dall'espressione del t_{min}, il tempo per raggiungere tale quota sarebbe infinito. Questo è il motivo per il quale si definisce una quantità più utile detta quota di tangenza pratica definita come quella quota alla quale il massimo rateo di salita è pari a 0,5 m/s. Possiamo dire che la quota di tangenza pratica rappresenta il limite pratico superiore per il volo uniforme livellato.


Le quote di tangenza teorica e pratica possono essere determinate come segue:

- si determinano i valori del massimo rateo di salita per un certo numero di quote
- si rappresenta la massima velocità ascensionale in funzione della quota
- si può estrapolare la curva a 0,5 m/s e 0 m/s per trovare le quote di tangenza teorica e pratica.

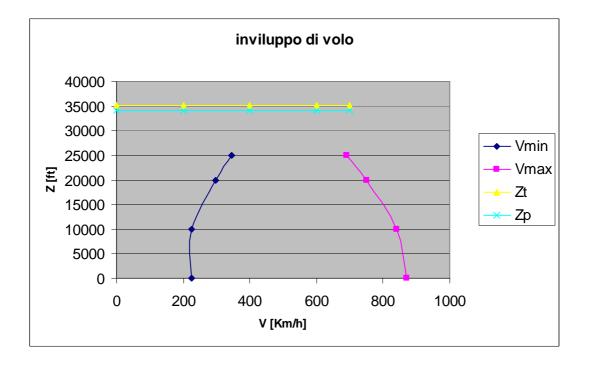
quota di tangenza teorica	35148 ft		
quota di tangenza pratica	34021.75 ft		

Riportiamo una tabella estratta dal Roskam in cui si riportano le quote di tangenza teorica per le varie categorie di aerei.

Please 1.74 Linearized Sate-of-olimb With Altitude

Table 1.7 Typical Values for the Absolute Calling, $\mathbf{h}_{\mathrm{absolute}}$

Parc I


	1 8 3 2 3 4 7 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Alsplanes with platon-propelles combinations: normally applicated normalisation	
Airplenes Wick Europjek or turborum engines: Commercial Bilitary Pighters Hillitary Tralacra	40-33 3-15 33-43
Alsolance with turbopropolitor or program one of the control of th	
Esperaonic Cosica Aisplance (jets)	

Chapter 1

120

Importante è anche la determinazione dell'inviluppo di volo. Sappiamo che ad ogni quota è possibile valutare la velocità minima e la velocità massima in corrispondenza dei punti nei quali la curva della potenza disponibile si interseca con la curva della potenza necessaria. La velocità minima risulta pari alla velocità di stallo se le curve non si intersecano sul lato sinistro ed è pari alla velocità di intersezione nell'altro caso.

Quindi ad ogni quota è possibile valutare la velocità minima e la velocità massima e pertanto si può ottenere quello che viene chiamato l'inviluppo di volo, cioè l'area che racchiude tutte le possibili condizioni di volo livellato in termini della velocità e della quota.

Estrapolando le curve si può vedere come ad una certa quota (che è proprio la quota di tangenza teorica) esse confluiscono in sol punto.

CAPITOLO 6

Prestazioni economiche

Le prestazioni economiche di un velivolo da trasporto sono graficamente riassunte in un gruppo di diagrammi che in questa sede ci si appresta a ricavare.

Il primo ed il più importante di essi è il diagramma Payload-Range, nel quale si riporta l'andamento del massimo carico pagante, espresso in chilogrammi, in funzione della distanza chilometrica massima percorribile. Tale grafico può essere ricavato attraverso una applicazione della formula di Breguet: $R = \frac{\eta}{c} \cdot \frac{C}{Cd} \cdot \ln \frac{Wo}{W1}$

- η = rendimento propulsivo
- c = consumo specifico
- Cl/Cd=E=efficienza
- Wo= gross weight, cioè peso de velivolo con pieno di combustibile e carico pagante a bordo
- W1 peso dell'aeroplano con carico pagante a bordoì

r	1 0
Dati	
velocità di crociera	444 km/h
efficienza massima (E)	16
rendimento (η)	0.80
consumo specifico (c)	0.55 lbs/hp/h
peso massimo carico pagante	8369 kg
peso massimo carburante	6831 kg

peso riserva carburante	1178 kg
peso a vuoto operativo	17501 kg
peso massimo al decollo	33072 kg

Osserviamo che il peso di un aereo può essere molto diverso a seconda se esso ha imbarcato il massimo numero di passeggeri (carico pagante) e di merci possibili per la sua capacità, e se ha riempito o meno i serbatoi di carburante. Questi due pesi, tipici per ogni aereo, influenzano la distanza che l'aeromobile può coprire in volo.

Il punto A rappresenta la maggior distanza che l'aereo può percorrere con il massimo carico pagante. In questo caso l'aeromobile decolla con il massimo peso al decollo per esso ammissibile e i serbatoi non sono completamente riempiti di carburante.

Il punto B rappresenta la massima distanza che l'aeromobile può percorrere con i serbatoi completamente pieni ma con un payload inferiore al precedente. Anche in questo caso l'aereo parte con il massimo peso ammissibile al decollo.

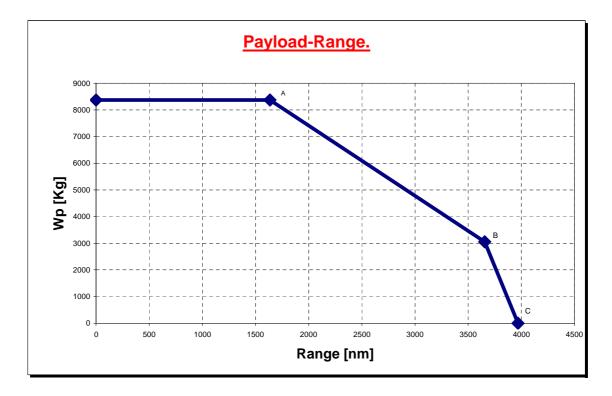
Il punto C rappresenta infine la distanza che l'aeromobile può percorrere senza alcun carico pagante. In questo caso il peso al decollo è inferiore del massimo ammissibile.

E' bene precisare che la distanza che può percorrere un aeromobile dipende comunque, oltre che dal peso del carico pagante e del carburante, da molteplici fattori quali le condizioni meteorologiche durante il volo, dalla quota di volo, dalla velocità e dal vento. Solitamente i diagrammi payload-range fanno riferimento ad una giornata standard in assenza di vento.

Notiamo anche che il massimo valore di carburante usabile rappresenta una voce notevole nell'ambito del peso dell'aeromobile: orientativamente il peso di un aeromobile commerciale è costituito per circa il 30% dal carburante e per circa il 20% dal carico pagante. La quantità di carburante da imbarcare viene quindi limitata al necessario (con i dovuti margini di sicurezza) e stabilita dal pilota prima delle operazioni di rifornimento.

Essa si calcola in base alla quantità necessaria a:

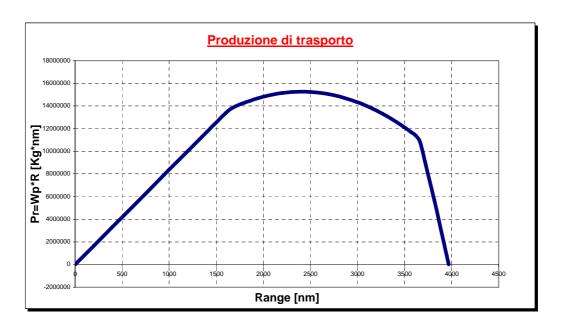
- volare fino all'aeroporto di destinazione ed eseguire un avvicinamento ed un avvicinamento mancato
- portarsi sull'aeroporto alternativo(da individuarsi prima di ogni partenza e da specificarsi nel piano di volo)
- volare per 30 minuti in circuito di attesa a quota determinata (15 minuti sull'aeroporto di destinazione e 15 minuti sull'aeroporto alternativo)
- eseguire un avvicinamento ed un atterraggio sull'aeroporto alternativo
- disporre in taluni casi, a discrezione del pilota, di un'ulteriore riserva di carburante che tenga conto di altre eventuali necessità (attese in pista, uso di impianti antighiaccio, condizioni meteorologiche avverse)

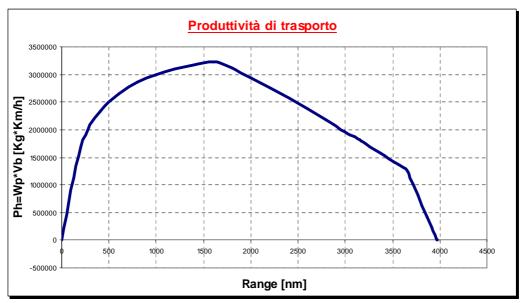

Ricordiamo infine la formula approssimata che ci consente di stimare il volume di combustibile che è possibile imbarcare in un'ala:

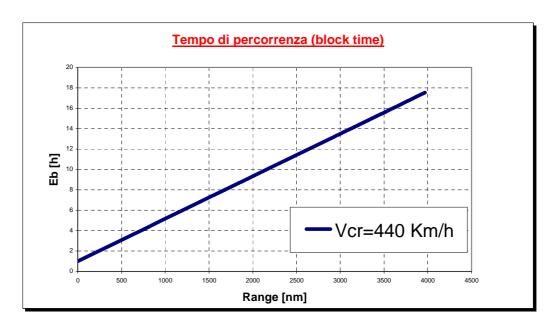
$$Vwf = 0.54 \cdot \frac{S^2}{b} \cdot \left(\frac{t}{c}\right)_r \cdot \left[\frac{1 + \lambda \cdot \sqrt{\lambda} \cdot \lambda^2 \cdot \tau}{1 + \lambda^2}\right] \qquad \text{in}[ft^3]$$

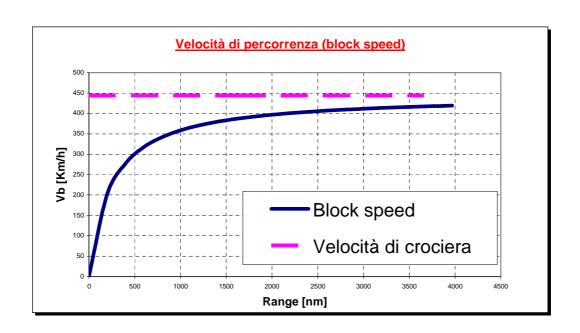
 λ = rapporto di rastremazione

 $(t/c)_r$ = spessore percentuale alla radice


 $tau = (t/c)_t/(t/c)_r = spessore percentuale estremità/spessore percentuale radice$




A partire dal diagramma Payload-Range è possibile determinare i diagrammi della produzione di trasporto, della produttività di trasporto, del tempo di percorrenza (block time) e della velocità di percorrenza (block speed), tutti in funzione della autonomia di distanza.


Se Wp è il carico pagante, R è l'autonomia di distanza, Vcr è la velocità di crociera ed infine Δt =1h è il tempo che tiene conto delle operazioni di decollo e di atterraggio, nonché della minore velocità di decollo per le fasi non di crociera, possiamo definire le seguenti quantità:

- tempo di percorrenza (block speed) $Eb = \frac{R}{Vcr} + \Delta t$
- velocità di percorrenza (block speed) $Vb = \frac{R}{Eb}$
- produzione di trasporto $Pr = Wp \cdot R$
- produttività di trasporto $Ph = Wp \cdot Vb$

CAPITOLO 7 Impennaggio orizzontale

Il piano orizzontale di coda ha il compito di garantire il *governo* e la *stabilità* del velivolo completo.

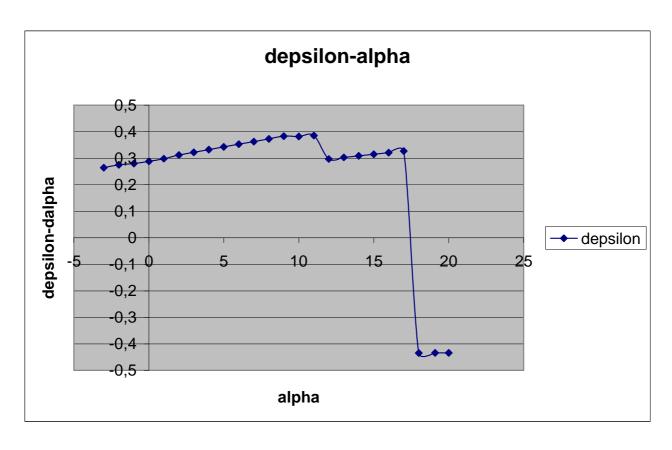
Per effettuare un buon dimensionamento del piano, occorre valutare il posizionamento geometrico dello stesso piano il quale è strettamente connesso al calcolo del *downwash* prodotto dall'ala ai vari angoli d'attacco.

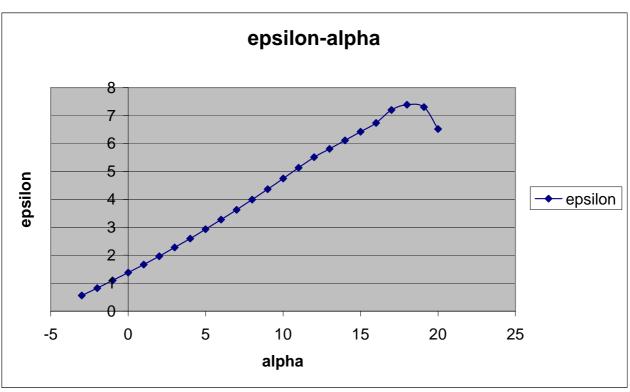
7.1 - Downwash

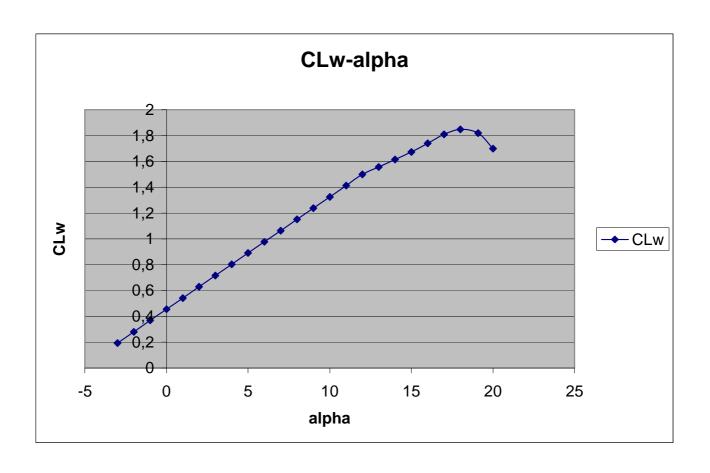
Il calcolo del downwash può essere effettuato tramite il programma DOWN che implementa una rielaborazione del report NACA 648 ove si assegnano i seguenti dati di input:

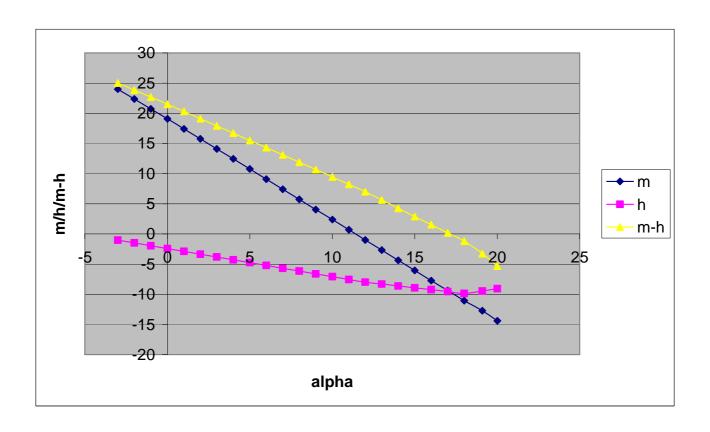
iw = -1	(angolo di calettamento);
cw=2.74 m	(corda alare alla radice);
$\lambda = 0.517$	(rapporto di rastremazione)
xlew=12.19 m	(posizione bordo d'attacco ala);
xleh=29.71 m	(posizione bordo d'attacco piano orizzontale);
dzwh=5.928 m	(distanza verticale fuoco ala-fuoco orizzontale);
bw=31.3 m	(apertura alare);
AR=11.4	(allungamento alare);
m' = -5.37	

Funzione Φ:


	m'=-5.37	
70% b/2	80% b/2	90% b/2
4.4	4.2	3.9
3.8	3.7	3.6
3.4	3.3	3.1
2.8	2.7	2.6


alfa	alfaw	CLw	eps	de/da	m	mw	m-h	FI	dFI/da	deda1	deda2	
-3	0	0,193	0,5586	0,2642	23,985	-1,0298	25,0148	2,894	0,0443	0,087	0,0086	0,2518
-2	1	0,28	0,8227	0,2749	22,352	-1,4939	23,8461	2,9384	0,0444	0,088	0,0124	0,2586
-1	2	0,368	1,0976	0,2799	20,713	-1,9635	22,676	2,9827	0,0449	0,087	0,0165	0,2595
0	3	0,455	1,3776	0,2878	19,067	-2,4277	21,4942	3,0276	0,0451	0,087	0,0205	0,2634
1	4	0,542	1,6654	0,2986	17,415	-2,8918	20,3066	3,0727	0,0498	0,087	0,027	0,2673
2	5	0,629	1,964	0,3124	15,758	-3,356	19,1137	3,1225	0,0569	0,087	0,0358	0,2717
3	6	0,716	2,2764	0,3224	14,096	-3,8202	17,916	3,1793	0,0571	0,087	0,0409	0,2766
4	7	0,803	2,5988	0,3325	12,43	-4,2844	16,714	3,2364	0,0573	0,087	0,046	0,2816
5	8	0,89	2,9314	0,3427	10,76	-4,7486	15,5082	3,2937	0,0574	0,087	0,0511	0,2866
6	9	0,977	3,274	0,3528	9,0863	-5,2128	14,2991	3,3511	0,0576	0,087	0,0562	0,2915
7	10	1,064	3,6268	0,3629	7,4103	-5,677	13,0873	3,4087	0,0577	0,087	0,0614	0,2966
8	11	1,151	3,9898	0,3731	5,732	-6,1412	11,8732	3,4664	0,0578	0,087	0,0665	0,3016
9	12	1,238	4,3629	0,3832	4,052	-6,6054	10,6574	3,5241	0,0578	0,087	0,0716	0,3066
10	13	1,325	4,7461	0,3821	2,3708	-7,0695	9,4403	3,582	0,0499	0,087	0,0661	0,3116
11	14	1,412	5,1282	0,3854	0,6888	-7,5337	8,2225	3,6319	0,0463	0,087	0,0654	0,316
12	15	1,499	5,5136	0,2969	-0,993	-7,9979	7,0045	3,6782	0,0532	0,0582	0,0798	0,2139
13	16	1,557	5,8104	0,303	-2,675	-8,3083	5,633	3,7314	0,0532	0,0582	0,0829	0,217
14	17	1,615	6,1134	0,3091	-4,356	-8,6186	4,2622	3,7846	0,0532	0,0582	0,0859	0,2201
15	18	1,674	6,4226	0,3152	-6,036	-8,929	2,8928	3,8378	0,0531	0,0582	0,0888	0,2232
16	19	1,74	6,7377	0,3212	-7,714	-9,2393	1,5253	3,8909	0,053	0,0582	0,0918	0,2263
17	20	1,81	7,2	0,3271	-9,39	-9,5497	0,1601	3,9439	0,0529	0,0582	0,0946	0,2294
18	21	1,848	7,386	-0,4344	-11,06	-9,86	-1,2023	3,9968	-0,078	-0,074	-0,1444	-0,296
19,1	22	1,82	7,3	-0,4336	-12,73	-9,4652	-3,2664	3,9186	-0,085	-0,074	-0,1498	-0,29
20	23	1,7	6,5181	-0,4336	-14,4	-9,0704	-5,3267	3,8342	-0,085	-0,074	-0,1436	-0,284


Tabella7.1 – Risultati del calcolo del Downwash


Dalla tabella 7.1 si nota che il valore m-h rappresentativo della distanza del piano di coda dalla scia, si annulla per un valore dell'angolo d'attacco dell'ala di 20° ;valore ben oltre lo stallo.

Di seguito sono riportati i grafici di output del programma DONW:

7.2 Coefficiente di momento focale del velivolo parziale

Con il termine velivolo parziale si intende tutto il velivolo escludendo i piani orizzontali di coda.

Il coefficiente di beccheggio del velivolo parziale è dato da quello dell'ala isolata sommato a un termine dovuto alla presenza della fusoliera e delle gondole motrici:

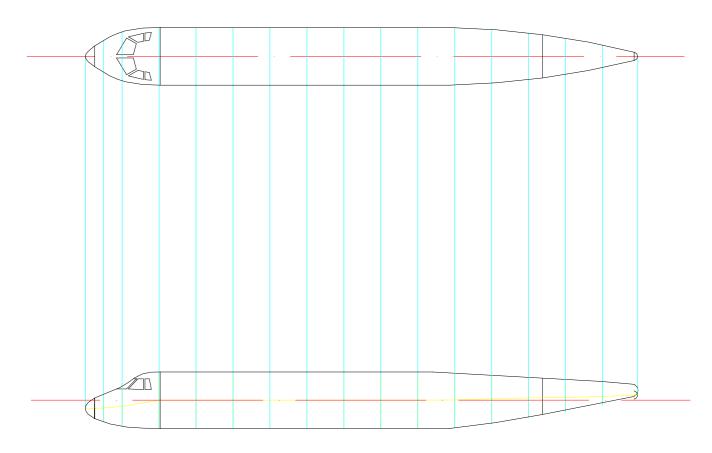
$$\Delta$$
Cm = Cmo + α * Cm α

7.2.1 Cmo Fusoliera

La parte costante della variazione del coefficiente di momento è calcolata non prima della determinazione della geometria della fusoliera con una opportuna discretizzazione in intervalli di ampiezza Δx .

Il Cmo della fusoliera è dato dalla sommatoria:

$$C_{mo} := \frac{K_2 - K_1}{36.5 \cdot S \cdot CMA} \quad \left[\sum_{n} \left[\left(\left(W_n \right) \right)^2 \cdot \alpha_{0ala} + \left(i_{CLn} \right) \right] \cdot \Delta X_n \right] \right]$$


dove:

 $K_2 - K_1$ sono costanti diagrammate in funzione della snellezza della fusoliera,con valore (8.915).

 α_{0ala} è l'incidenza di portanza nulla dell'ala rispetto al riferimento della fusoliera ed assume valore pari a (-0.94 deg).

Wn è la larghezza massima di fusoliera in mezzeria dell' n-esimo tratto

iCLn rappresenta la pendenza della linea media di fusoliera rispetto al riferimento fusoliera valutato per ogni intervallo

DISCRETIZZAZIONE FUSOLIERA

Nella tabella seguente viene riportato ciascun termine della sommatoria $Tabella\ 7.2-Cmofus$

Si calcola quindi : Cmofus = -0.0429

7.2.2 Cmα Fusoliera

La variazione di coefficiente di momento con l'incidenza è lineare. La pendenza della retta è data dall'integrale :

$$\left(C_{m\alpha f} \right) \rightarrow \ = \ \frac{_1}{_{36.5 \cdot S} \cdot CMA} \cdot \int_0^{l_{f1}} \left[\left(W_f \right)^2 \right] \left[\left(\frac{\delta \epsilon_{u1}}{\delta \alpha} \right) + _1 \right] dx_1 + \int_0^{l_{f2}} \left[\left(W_f \right)^2 \right] \left[\left(\frac{\delta \epsilon_{u2}}{\delta \alpha} \right) + _1 \right] dx_2$$

dove:

 $\frac{\delta \epsilon_{\rm u}}{\delta \alpha}$

è l' upwash che si calcola in modo diverso per il tratto di fusoliera anteriore all'ala (pedice 1) e quello posteriore (pedice 2).

Per la parte anteriore utilizziamo la seguente espressione dove compare il valor medio di upwash ricavato per ogni stazione in funzione del rapporto Xi/Cr (distanza del centro della i-esima stazione dal bordo d'attacco dell'ala / corda alla radice):

$$\frac{\delta \epsilon_{u1}}{\delta \alpha} = \left(\frac{\delta \epsilon_{medio}}{\delta \alpha}\right) \cdot \frac{\left(C_{La}\right)_{ala}}{{}^{0.0785}}$$

Per la parte posteriore considereremo la formula seguente dove compare il downwash ottenuto dai diagrammi in base alla posizione rispetto alla radice dell'ala del centro aerodinamico del piano orizzontale di coda :

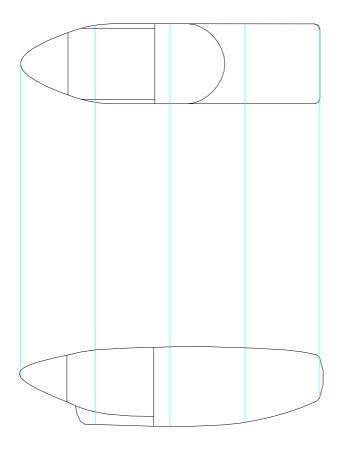
$$\frac{\delta \varepsilon_{u2}}{\delta \alpha} = \left(\frac{x_2}{l_{f2}}\right) \cdot \left(1 - \frac{\delta \varepsilon_{medio}}{\delta \alpha}\right) - 1$$

Si riportano di seguito le tabelle relative alla parte anteriore e posteriore della fusoliera :

n	deltax	x1[ft]	x1/cr	wf	wf^2	(de/da)m	(de/da)1	((de/da)1)+1	(wf^2)*(de/da1+1)*deltax
1	3,399	37,41	3,461	5,67	32,149	0,1	0,12568917	1,125689172	123,009
2	3,399	34,01	3,146	9,04	81,722	0,1	0,12568917	1,125689172	312,685
3	6,799	28,91	2,674	10,62	112,784	0,1	0,12568917	1,125689172	863,202
4	6,799	22,12	2,046	10,62	112,784	0,2	0,25137834	1,251378344	959,583
5	6,799	15,31	1,416	10,62	112,784	0,3	0,37706752	1,377067516	1055,964
6	6,799	8,51	0,787	10,62	112,784	0,35	0,4399121	1,439912102	1104,155
7	5,11	1,72	0,159	10,62	112,784	3	3,77067516	4,770675159	2749,475
									somma
									7168,073

Tabella 7.3 – Cmafus parte anteriore

n	deltax2	х2	x2/lf2	wf	wf^2	(de/da)m	(de/da)2	((de/da)2)+1	(wf^2)*(de/da2+1)*deltax2
8	4,47	2,24	0,043	10,57	111,725	0,3	-0,9697005	0,030299517	15,13189092
9	6,799	7,87	0,152	10,57	111,725	0,3	-0,8935459	0,106454106	80,8644122
10	6,799	14,67	0,283	10,57	111,725	0,3	-0,8015652	0,198434783	150,7345523
11	6,799	21,47	0,415	9,89	97,812	0,3	-0,7095845	0,290415459	193,133386
12	6,799	28,27	0,546	8,6	73,960	0,3	-0,6176039	0,382396135	192,2894415
13	6,799	35,07	0,678	6,7	44,890	0,3	-0,5256232	0,474376812	144,7831757
14	6,799	41,87	0,809	4,19	17,556	0,3	-0,4336425	0,566357488	67,60265209
15	6,799	48,51	0,937	1,54	2,372	0,3	-0,3438261	0,656173913	10,58048177
									somma
									855,1199926


Tabella 7.4 - Cmafus parte posteriare

Si può così calcolare : $Cm\alpha fus = 0.0239 deg^{-1}$

7.2.3 Cmo Gondole motori

Per quanto riguarda le gondole motori il procedimento e le formule sono analoghe a quella già esposta per la fusoliera.

$$C_{\underset{36.5 \cdot S \cdot CMA}{\text{mog}}} := \frac{K_2 - K_1}{{}_{36.5 \cdot S \cdot CMA}} \quad \left[\sum_n \left[\left(W_{ng} \right)^2 \cdot \left[\left(\alpha_{0ala} + i_{clg} \right) \cdot \Delta X \right] \right] \right] \cdot \blacksquare$$

n	deltax[ft]	w [ft]	w^2[ft^2]	iclfus[°]	alpha0L+iclfus [°]	w^2*(alpha0L+iclfus)*deltax
1	4,21	4,47	19,9809	5	4,051608	340,8195997
2	4,21	4,5	20,25	4	3,051608	260,157211
3	4,21	4,5	20,25	-1	-1,948392	-166,105289
4	4,21	4,5	20,25	-6	-6,948392	-592,367789
						Somma
						-157,4962672

alpha0L [°]	K2-K1	S[ft^2]	MAC[ft]	Cmog
-0,94839	0,79	946	9,72	-0,00074

Tabella 7.5 – Cmo gondola

7.2.4 Cma Gondole motori

L'integrale è identico a quello calcolato per la fusoliera

$$C_{m\alpha\,g} = \frac{1}{36.5 \cdot \mathbf{S} \cdot \mathbf{CMA}} \int_{0}^{l_{g1}} (\mathbf{W}_{g1})^{2} \left(\frac{\delta \epsilon_{u1}}{\delta \alpha} + 1\right) dx_{1} + \int_{0}^{l_{g2}} (\mathbf{W}_{g2})^{2} \cdot \left(1 + \frac{\delta \epsilon_{u2}}{\delta \alpha}\right) dx_{2}$$

Siccome la nostra gondola non fuoriesce dal bordo d'uscita dell'ala il secondo integrale è nullo.

	n	deltax	x 1	x1/cr	wf	wf^2	(de/da)m	(de/da)1	((de/da)1)+1	(wf^2)*(de/da1+1)*deltax
	1	5,12	6,85	0,634	3,89	15,132	0,4	0,502756688	1,50275669	116,428
	2	4,29	2,14	0,198	4,5	20,250	2,5	3,142229299	4,1422293	359,846
ĺ										
ı										somma
ĺ										476,274
	cr[ft]	CLa	phaw	lg1	[ft]	Cmalph	ia			
	10.81	1 0.09	8666	94	11	0.002838	158			

Tabella 7.6 – Cmα gondola

Si ottiene così il seguente valore : $Cm\alpha g = 0.0028 \text{ deg}^{-1}$

• Conclusioni

Il coefficiente di momento del velivolo parziale rispetto al centro aerodinamico è dato dalla seguente formula :

$$\left(C_{mac}\right)^{wb} = \\ \left(C_{mac}\right)^{w} + \left(C_{L\alpha}\right)^{w} \cdot \alpha \cdot \left[\left(X_{ac}\right)^{wb} - \left(X_{ac}\right)^{w}\right] + \left(C_{m0}\right)^{fus} \\ + \left(C_{m\alpha}\right)^{fus} \cdot \alpha \\ + \left(C_{m0}\right)^{gon} + \left(C_{m\alpha}\right)^{gon} \cdot \alpha \\ + \left(C_{mo}\right)^{gon} \cdot \alpha \\ + \left(C_{$$

La posizione del centro aerodinamico del velivolo parziale può essere determinata imponendo la condizione

$$\frac{\delta \left(C_{\text{mac}}\right)^{\text{wb}}}{\delta \alpha} = 0$$

Infatti da essa si ricava che

$$(X_{ac})^{wb} = (X_{ac})^w - \frac{C_{m\alpha}}{C_{L\alpha}}$$

$$(X_{ac})^{wb} = 0.0130$$

Il coefficiente di momento rispetto al centro aerodinamico del velivolo parziale è dato dalla somma :

$$\left(C_{mac}\right)^{wb} = \left(C_{mac}\right)^{w} + \left(C_{m0}\right)^{fus} + \left(C_{m0}\right)^{gon}$$

$$\left(C_{mac}\right)^{wb} = -0.252$$

CmacWB	Cmo	Cmalpha	CLalphaw	xacW
-0,20842	-0,04361	0,026744	0,098666	0,284096
xacWB	CmACWB			
0,013044	-0,25203			

Tabella 7.7 - Conclusioni

7.3 Dimensionamento dell'impennaggio orizzontale

Il dimensionamento del piano di coda orizzontale richiede l'analisi delle due condizioni critiche di funzionamento più significative.

7.3.1 Prima condizione

Minimo margine di stabilità statica longitudinale, a comandi liberi, con baricentro in posizione massima arretrata.

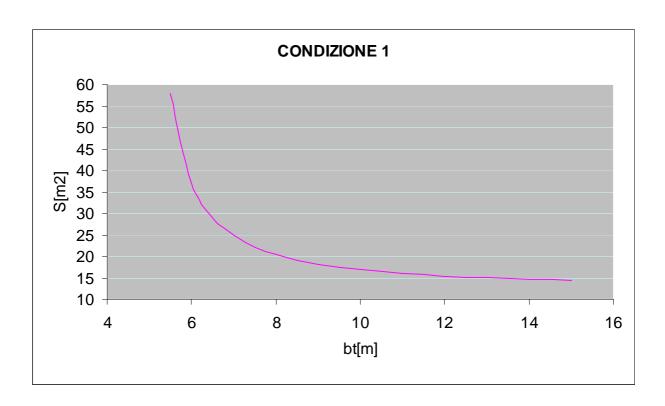
Considerando il baricentro del velivolo completo nella posizione massima arretrata e imponendo la seguente condizione:

$$\frac{\delta \left(C_{m}\right)^{cg}}{\delta C_{Lcl}} = X_{a} - \frac{a_{t}}{a} \left(1 - \frac{\delta \epsilon}{\delta \alpha}\right) \left(1 - \tau \cdot \frac{c_{h\alpha}}{c_{h\delta}}\right) \cdot \left(v_{t}\right)^{1} \leq -0.05$$

otterremo una funzione delle due variabili b_t ed S_t.

Prima di poter sfruttare la relazione appena citata bisogna definire alcune quantità che compaiono in essa.

- 1. $X_a = X_{c.g.} X_{A.C.}^{WB}$ distanza adimensionale del baricentro del velivolo completo dal centro aerodinamico del velivolo parziale.
- 2. $a_0 = 0.1 \ deg^{-1}$ coefficiente della retta di portanza del profilo medio dell'impennaggio orizzontale.
- 3. a_t coefficiente della retta di portanza dell'impennaggio orizzontale.
- 4. $a = 0.071 \text{ deg}^{-1}$ coefficiente della retta di portanza del velivolo completo
- 5. $d\epsilon/d\alpha=0.3$ effetto del downwash a cl di crociera.
- 6. $\tau = 0.47$ fattore di efficacia dell'equilibratore


Tale fattore è stato ricavato dà un apposito diagramma con τ funzione del rapporto S_e/S_t che nel nostro caso assume valore dimensionale pari a 0.27.

- 7. $C_{h\alpha}$ derivata del coefficiente di momento di cerniera dell'equilibratore rispetto all'angolo d'attacco
- 8. $C_{h\sigma}$ derivata del coefficiente di momento di cerniera dell' equilibratore rispetto all'angolo di deflessione

entrambi i coefficienti di cerniera sono stati ricavati da appositi diagrammi funzione della geometria e del profilo ipotizzato per il piano di coda.

9. $l=15.16\ m$ distanza lungo l'asse longitudinale del velivolo tra il fuoco del velivolo parziale ed il fuoco dell'impennaggio orizzontale

10. V_t rapporto volumetrico del piano orizzontale di coda : $V_t = S_t * l / S_w * cma_w$

7.3.2 Seconda condizione

Equilibrio in condizioni di atterraggio e con baricentro nella posizione massima avanzata.

Considerando il baricentro nella posizione massima avanzata bisogna imporre uguale a zero la seguente condizione:

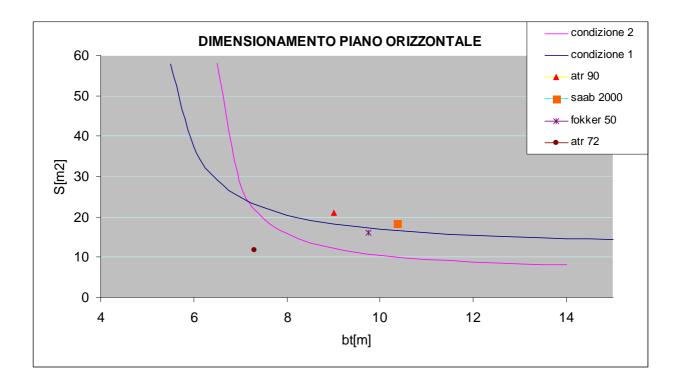
Definiamo le quantità che compaiono in essa:

 $1. \quad Cm_{a.c}^{\quad \ \ \, wb} \quad \text{coefficiente di momento focale del velivolo parziale in configurazione di atterraggio}$

- 2. $X_a = X_{c.g.} X_{A.C.}^{WB}$ distanza adimensionale del baricentro del velivolo completo dal centro aerodinamico del velivolo parziale.
- 3. at coefficiente della retta di portanza dell'impennaggio orizzontale.

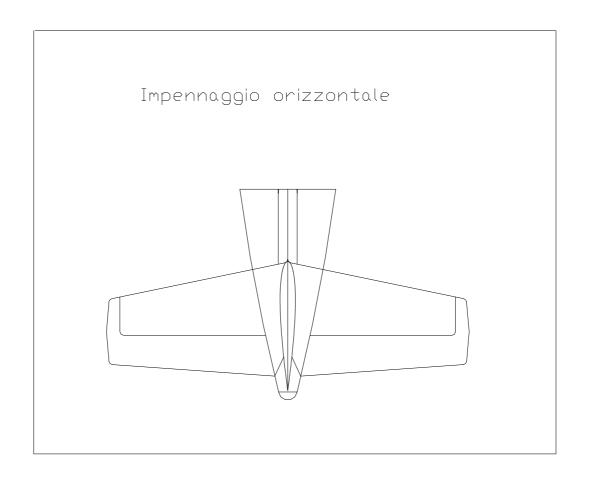
Il valore di a_t calcolato nella prima condizione deve essere moltiplicato per un fattore che tenga conto dell'effetto suolo. Tale fattore può essere ricavato attraverso il grafico proposto dal Perkins.

- 4. $a = 0.071 \text{ deg}^{-1}$ coefficiente della retta di portanza del velivolo completo Anche in questo caso vale il discorso fatto per il coefficiente della retta di portanza dell'impennaggio orizzontale.
- 5. $d\epsilon / d\alpha$ effetto del downwash in condizioni di atterraggio In condizioni di atterraggio il dawnwash si riduce del 10% rispetto al valore trovato nella prima condizione.


- 6. C_{Le} coefficiente di portanza di equilibrio del velivolo completo , in condizioni di atterraggio
- 7. δ_e angolo di deflessione dell'equilibratore Assumiamo la condizione più critica possibile $\delta_{emax} = -25^\circ$
- 8. $\alpha_0^{\rm w} =$ 6° angolo di portanza nulla dell'ala con flap deflessi in configurazione di atterraggio
- 9. i_{to} calettamento del piano di coda rispetto alla linea di riferimento

Il valore del calettamento si trova imponendo che l'angolo di deflessione dell'equilibratore in condizioni di crociera sia nullo, in modo garantire la minore resistenza di profilo.

$$\delta_{e} = \frac{\alpha_{0w} - i_{t0}}{\tau} - \frac{\left(Cm_{ac}\right)^{wb}}{Cm_{\delta}} - \frac{Cm_{cL}}{Cm_{\delta}} \cdot C_{Lcr} = 0$$


con

$$\boldsymbol{C}_{m\delta} = -\boldsymbol{a}_t \!\cdot\! \boldsymbol{V}_t \!\cdot\! \boldsymbol{k} \!\cdot\! \boldsymbol{\tau} \qquad \qquad \boldsymbol{C}_{mcL} \!= \boldsymbol{X}_a - \frac{\boldsymbol{a}_t}{\boldsymbol{a}} \!\cdot\! \left({}_{1} - \frac{d\epsilon}{d\alpha} \right) \!\cdot\! \boldsymbol{V}_t$$

Dall'imposizione delle due condizioni sopra enunciate abbiamo ricavato l'apertura e la superficie del piano orizzontale rispettivamente pari a

Ecco come si presenta la geometria del piano

CAPITOLO 8 IMPENNAGGIO VERTICALE

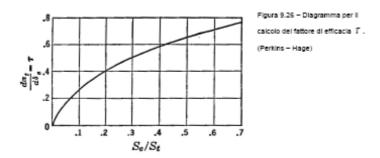
8.1- DIMENSIONAMENTO

La condizione più critica per il dimensionamento dell'impennaggio verticale coincide con la piantata di un motore in condizioni di decollo. Infatti al verificarsi di tale fenomeno si genera un grosso momento di imbardata che deve essere equilibrato dal nostro piano di coda verticale.

In una fase di dimensionamento preliminare come sempre prendiamo spunto dai velivoli di riferimento. In particolare, ci riferiamo ai velivoli ATR, non potendo prendere spunto dal SAAB 2000, per il quale essendo ad ala bassa, e beneficiando di un maggiore side-wash (effetto scudo dell'ala bassa che devia il flusso proprio sul piano verticale aumentandone l'efficacia) ha un piano verticale più piccolo. Abbiamo quindi scelto una superficie totale S_v maggiore di circa il 10% rispetto a quella ATR, perché disponendo di un motore con 5071 Cv , che eroga una spinta maggiore rispetto a quello ATR, il momento di imbardata da equilibrare nel nostro caso è maggiore.

$l_P = 4.33m$	distanza dell'asse dell'elica dal piano di simmetria del velivolo
$l_{v} = 16.50m$	distanza del baricentro del velivolo dal fuoco del piano verticale

$v_{sto} = 62.76 \frac{m}{s}$	velocità di stallo in configurazione di decollo
$\Pi_a = 5071Cv$	potenza di un solo motore a piena ammissione e a quota zero
$S_R = 7.695m^2$	superficie del timone di coda
$S_V = 20.58m^2$	superficie totale del piano verticale


Calcoliamo il momento di imbardata dato dalla piantata di un motore

$$M_T = \frac{\prod_a \cdot \eta_P \cdot l_P}{v} = \frac{(5071 \cdot 75) \cdot 0.8 \cdot 4.33}{v} = \frac{1317445.8}{v} [Kg*m]$$

L'efficacia del piano di coda è funzione del rapporto della superficie della parte mobile e la superficie totale del piano di coda :

$$\frac{S_R}{S_V} = 0.37 \xrightarrow{grafico} \tau = 0.58$$

Dato il suddetto rapporto, attraverso il grafico riportato abbiamo ricavato l'efficacia.

L'allungamento del nostro piano è dato da:

$$AR_V = \frac{b_v^2}{S_v} = \frac{5.5^2}{20.58} = 1.47 \longrightarrow AR_{veff} = 1.55 \cdot AR_V = 2.28$$

Mentre il fondo corsa del timone di coda si ha per una deflessione

$$\delta_v = 25^{\circ} = 0.44 rad$$

Per quanto concerne il profilo, utilizziamo un *NACA 0012*. Dal coefficiente angolare del profilo *NACA 0012*, risaliamo al coefficiente angolare del piano di coda.

$$NACA~0012 \longrightarrow a_{0v} = 0.118 \longrightarrow a_{v} = \frac{a_{0v}}{1 + \frac{a_{0v} \cdot 57.3}{\pi \cdot AR_{vaff}}} = 0.061 \frac{1}{\text{deg}}$$

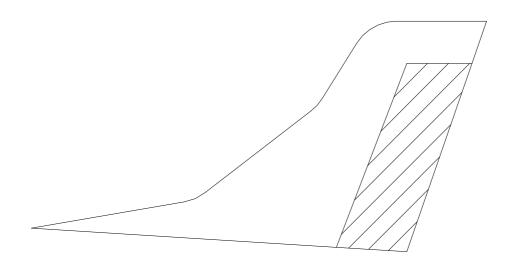
Abbiamo tutti i dati che ci occorrono per calcolare il momento di imbardata fornito dalla massima deflessione del piano di coda in configurazione di decollo.

$$\begin{split} &C_{y_{v}} = a_{v} \cdot \tau_{v} \cdot \delta_{v} = 0.061 \cdot 0.58 \cdot 0.44 = 0.0155 \\ &Y_{v} = C_{y_{v}} \cdot S_{v} \cdot q_{v} = C_{y_{v}} \cdot S_{v} \cdot \eta_{v} \cdot q = C_{y_{v}} \cdot S_{v} \cdot \eta_{v} \cdot \left(\frac{1}{2} \cdot \rho_{0} \cdot v^{2}\right) = 9.51 \cdot 10^{-3} \cdot v^{2} \cdot S_{v} [Kg] \\ &M_{v} = Y_{v} \cdot l_{v} = 0.00951 \cdot 16.5 \cdot v^{2} \cdot S_{v} = 0.16 \cdot v^{2} \cdot S_{v} [Kg * m] \end{split}$$

A questo punto poniamo l'equilibrio tra il momento di imbardata inversa dato dalla piantata del motore e quello correttivo dato dal piano verticale.

Equilibrio dei momenti

$$\frac{1317445.8}{v} = 0.16 \cdot v^2 \cdot S_v$$


ove v è la minima velocità di controllo in configurazione di decollo

$$v = v_{m.c.} = 1.2 \cdot v_{sto} = 1.2 \cdot 62.76 = 75.3 \frac{m}{s}$$

Ricavando la superficie del piano di coda necessaria per l'equilibrio laterodirezionale del nostro velivolo, otteniamo

$$S_v = \frac{1317445.8}{0.16 \cdot \left(75.3^3\right)} = 19.28m^2$$

La superficie ottenuta è più piccola di quella che avevamo scelto preventivamente. Notiamo che la superficie del piano di coda dell'ATR non sarebbe stata sufficiente ad equilibrare il velivolo, per cui abbiamo fatto bene a sceglierne una più grande.

8.2- STABILITA' STATICA DIREZIONALE A COMANDI BLOCCATI

La stabilità statica direzionale di un velivolo viene misurata attraverso il coefficiente $C_{n\beta}$, ovvero la derivata del coefficiente di imbardata rispetto all'angolo di derapata. Un velivolo viene considerato staticamente stabile da un punto di vista direzionale se in vista di una raffica laterale il velivolo tende a mettere la prua nella direzione della corrente. Il valore di $C_{n\beta}$ è dato dalla somma dei contributi delle parti principali del velivolo.

Calcoliamo i vari contributi

<u>ALA</u>

Il contributo dell'ala si ha solo in presenza di freccia per cui nel nostro caso è nullo

$$\left(C_{n\beta}\right)_{w} = -0.00006 \cdot \left(\Lambda \cdot \frac{c}{4}\right)^{\frac{1}{2}} = 0$$

FUSOLIERA

Il contributo della fusoliera tiene conto delle dimensioni di questa.

$$\left(C_{n\beta}\right)_{FUS} = \frac{\pi \cdot \left(K_2 - K_1\right)}{114.6 \cdot S_{vv} \cdot b_{vv}} \cdot \sum_{i=1}^n w_{fi}^2 \cdot \Delta x_i$$

$$K_2 - K_1 = 0.94$$

$$\sum_{i=1}^{n} w_{fi}^{2} \cdot \Delta x_{i} = 252.227 \rightarrow \text{da file Excel}$$

$$(C_{n\beta})_{FUS} = \frac{\pi \cdot 0.94}{114.6 \cdot 87.4 \cdot 31.5} \cdot 252.227 = 0.0024$$

 w_{fi} è l'altezza della fusoliera in corrispondenza della stazione *i-esima*.

INTERFERENZA ALA FUSOLIERA

Nel caso di ala alta il contributo è pari a

$$\left(C_{n\beta}\right)_{\text{int erf}} = -0.0002$$

TAIL

Il contributo del Tail, che è quello più consistente è dato dalla seguente formula

$$\left(C_{n\beta}\right)_{TAIL} = -a_V \, \eta_V \left(1 - \frac{d\sigma}{d\beta}\right) \cdot \frac{S_V \cdot l_V}{S_W \, l_W}$$

Il termine del side-wash lo si può stimare attraverso la seguente formula.

$$\eta_V \left(1 - \frac{d\sigma}{d\beta} \right) = 0.724 + 3.06. \frac{S_V / S_W}{1 + \cos \Lambda_{\frac{c}{4}}^{WING}} + 0.4. \frac{Z_W}{d} + 0.009. AR_W = 0.724 + 3.06.0.235 + 0.4.0.51 + 0.009.11.4 = 1.75$$

$$(C_{n\beta})_{TAIL} = -0.053.1.75. \frac{22.87.16.5}{87.4:31.5} = -0.0127$$

SOMMA DEI CONTRIBUTI

$$C_{n\beta} = \left(C_{n\beta}\right)_{W} + \left(C_{n\beta}\right)_{FUS} + \left(C_{n\beta}\right)_{\text{int erf.}} + \left(C_{n\beta}\right)_{TAIL} = -0.0002 + 0.0024 - 0.0127 = -0.0105$$

Il $C_{n\beta}$ è negativo, il velivolo è da considerarsi stabile dal punto di vista statico direzionale.

8.3 - STABILITA' STATICA DIREZIONALE A COMANDI LIBERI

La stabilità statica direzionale a comandi liberi è uguale a quella calcolata a comandi bloccati, tranne per il contributo apportato dal Tail

TAIL

$$(C_{n\beta})_{TAIL} = -a_V \, \eta_V \left(1 - \frac{d\sigma}{d\beta} \right) \cdot \frac{S_V \cdot l_V}{S_W \cdot l_W} \cdot \left(1 - \tau \cdot \frac{C_{h\alpha}}{C_{h\delta}} \right) =$$

$$= -0.0127 \cdot \left(1 - 0.6 \cdot \frac{0.00781}{0.014} \right) = -0.00845$$

SOMMA DEI CONTRIBUTI

$$C_{n\beta} = \left(C_{n\beta}\right)_{W} + \left(C_{n\beta}\right)_{FUS} + \left(C_{n\beta}\right)_{\text{int erf.}} + \left(C_{n\beta}\right)_{TAIL} = -0.0002 + 0.0024 - 0.00845 = -0.00625$$

Anche nel caso di comandi liberi il velivolo si dimostra stabile dal punto di vista statico direzionale

8.4- CONTROLLO DIREZIONALE

La potenza di controlla ci dà il coefficiente di imbardata per una deflessione unitaria del timone di coda. Essa è stimabile attraverso la seguente formula

$$\begin{split} C_{n\delta} &= -a_{v} \cdot \tau \cdot \frac{S_{v} \cdot l_{v}}{S_{w} \cdot l_{w}} \cdot \eta_{v} = \\ &= -0.061 \cdot 0.58 \cdot \frac{20.58 \cdot 16.5}{87.4 \cdot 31.5} \cdot 0.95 = -0.00415 \end{split}$$

8.5 - RAFFICA LATERALE

Vogliamo calcolare la deflessione del timone di coda in presenza di raffiche laterali. Partiamo dall'equilibrio dei momenti intorno all'asse di imbardata:

$$\left(\frac{1}{2} \cdot \rho_{\infty} v_{\infty}^{2} S_{w} b_{w}\right) \cdot C_{n\beta} \cdot \beta = \left[\left(\frac{1}{2} \cdot \rho_{v} v_{v}^{2} S_{v}\right) \cdot a_{v} \cdot \tau \cdot \delta_{v}\right] \cdot l_{v}$$

Da questa ricaviamo la deflessione del timone di coda

$$\delta_{V} = \frac{1}{\eta_{V}} \cdot \frac{S_{W} \cdot b_{W} \cdot C_{n\beta}}{S_{V} \cdot a_{V} \cdot \tau_{V}} \cdot \beta = \frac{1}{0.95} \cdot \frac{87.4 \cdot 31.5 \cdot (-0.00625)}{20.58 \cdot 0.061 \cdot 0.58 \cdot 16.5} \cdot \beta = -1.51 \cdot \beta$$

A questo punto, calcoliamo quanto deve essere la deflessione del timone di coda per raffiche che arrivano con angoli di $\beta=\pm 5^{\circ}$ $\beta=\pm 10^{\circ}$

$$\begin{split} \beta &= \pm 5^{\circ} \rightarrow \delta_{\scriptscriptstyle V} = \mp 7.5^{\circ} \\ \beta &= \pm 10^{\circ} \rightarrow \delta_{\scriptscriptstyle V} = \mp 15^{\circ} \end{split}$$

8.6 - EFFETTO DIEDRO

L'effetto diedro, è il momento di rollio risultante da un angolo di derapata β . Nel nostro caso, sicuramente non avremo un effetto diedro geometrico, in quanto il nostro velivolo non presenta un angolo diedro.

Calcoliamo i vari contributi

ALA

Il nostro rapporto di rastremazione è

$$\lambda = \frac{31.27}{90} = 0.353$$

$$\left(C_{l\beta}\right)_{W} = -\frac{1+2\cdot\lambda}{3\cdot(1+\lambda)} \cdot C_{L} \cdot tg\Lambda = 0$$

ANGOLO DIEDRO

$$(C_{l\beta})_{W\Gamma} = -0.00021 \cdot K_{\lambda} \cdot K_{A} \cdot K_{\Lambda} \cdot \Gamma = 0$$

INTERFERENZA ALA FUSOLIERA

$$\left(\Delta C_{l\beta}\right)_{\text{int }erf.1} = -0.0006$$

PIANO VERTICALE

$$(C_{l\beta})_{V} = -a_{V} \cdot \eta_{V} \cdot \frac{S_{V}}{S} \cdot \frac{z_{V}}{b} = -0.061 \cdot 0.95 \cdot \frac{20.58}{87.4} \cdot \frac{2.5}{31.5} = 0.00108$$

INTERFERENZA ALA PIANO VERTICALE

$$\left(\Delta C_{l\beta}\right)_{\text{int erf }.2} = -0.00016$$

SOMMA DEI CONTRIBUTI

$$C_{l\beta} = (C_{l\beta})_W + (C_{l\beta})_{W\Gamma} + (\Delta C_{l\beta})_{\text{int erf.}1} + (C_{l\beta})_W + (\Delta C_{l\beta})_{\text{int erf.}2} = 0 + 0 - 0.0006 - 0.00108 = -0.00184$$