

747-400 Airplane Characteristics for **Airport Planning**

BOEING®

Boeing Commercial Airplanes

D6-58326-1

THIS PAGE INTENTIONALLY LEFT BLANK

747-400 AIRPLANE CHARACTERISTICS LIST OF ACTIVE PAGES

ſ	Page	Date	
	Original	Preliminary	
	1 to 116	July 1986	
	REV A	April 1988	
	1 to 122	April 1988	
ſ	REV B	March 1990	
	1 to 156	March 1990	
ſ	REV C	October 1994	
	1 to 164	0010001 1994	
	REV D	December	
	1 to 218	2002	

Page	Date	Γ
		-

Date

TABLE OF CONTENTS

SECTION	TITLE	<u>PAGE</u>
1.0	SCOPE AND INTRODUCTION	1
1.1	Scope	2
1.2	Introduction	3
1.3	A Brief Description of the 747-400	4
2.0	AIRPLANE DESCRIPTION	7
2.1	General Characteristics	8
2.2	General Dimensions	21
2.3	Ground Clearances	24
2.4	Interior Arrangements	29
2.5	Cabin Cross-Sections	35
2.6	Lower Cargo Compartments	39
2.7	Door Clearances	42
3.0	AIRPLANE PERFORMANCE	53
3.1	General Information	54
3.2	Payload/Range for 0.85 Mach Cruise	55
3.3	F.A.R. Takeoff Runway Length Requirements	66
3.4	F.A.R. Landing Runway Length Requirements	88
4.0	GROUND MANEUVERING	93
4.1	General Information	94
4.2	Turning Radii	96
4.3	Clearance Radii	101
4.4	Visibility from Cockpit in Static Position	105
4.5	Runway and Taxiway Turn Paths	106
4.6	Runway Holding Bay	111
5.0	TERMINAL SERVICING	113
5.1	Airplane Servicing Arrangement - Typical Turnaround	115
5.2	Terminal Operations - Turnaround Station	118
5.3	Terminal Operations - En Route Station	124
5.4	Ground Servicing Connections	126
5.5	Engine Start Pneumatic Requirements - Sea Level	129
5.6	Ground Pneumatic Power Requirements - Heating/Cooling	134
5.7	Conditioned Air Flow Requirements	135
5.8	Ground Towing Requirements	136

TABLE OF CONTENTS (CONTINUED)

<u>SECTION</u>	TITLE	PAGE
6.0	JET ENGINE WAKE AND NOISE DATA	139
6.1	Jet Engine Exhaust Velocities and Temperatures	140
6.2	Airport and Community Noise	148
7.0	PAVEMENT DATA	151
7.1	General Information	152
7.2	Landing Gear Footprint	156
7.3	Maximum Pavement Loads	159
7.4	Landing Gear Loading on Pavement	160
7.5	Flexible Pavement Requirements - U.S. Army Corps of	
	Engineers Method (S-77-1) and FAA Design Method	164
7.6	Flexible Pavement Requirements - LCN Method	167
7.7	Rigid Pavement Requirements -	
	Portland Cement Association Design Method	170
7.8	Rigid Pavement Requirements - LCN Conversion	173
7.9	Rigid Pavement Requirements - FAA Design Method	177
7.10	ACN/PCN Reporting System: Flexible and Rigid Pavements	180
8.0	FUTURE 747-400 DERIVATIVE AIRPLANES	185
9.0	SCALED 747-400 DRAWINGS	187

THIS PAGE INTENTIONALLY LEFT BLANK

1.0 SCOPE AND INTRODUCTION

- 1.1 Scope
- 1.2 Introduction
- 1.3 A Brief Description of the 747-400

1.0 SCOPE AND INTRODUCTION

1.1 Scope

This document provides, in a standardized format, airplane characteristics data for general airport planning. Since operational practices vary among airlines, specific data should be coordinated with the using airlines prior to facility design. Boeing Commercial Airplanes should be contacted for any additional information required.

Content of the document reflects the results of a coordinated effort by representatives from the following organizations:

- Aerospace Industries Association
- Airport Operators Council International
- Air Transport Association of America
- International Air Transport Association

The airport planner may also want to consider the information presented in the "CTOL Transport Aircraft, Characteristics, Trends, and Growth Projections," available from the US AIA, 1250 Eye St., Washington DC 20005, for long-range planning needs. This document is updated periodically and represents the coordinated efforts of the following organizations regarding future aircraft growth trends:

- International Coordinating Council of Aerospace Industries Associations
- Airports Council International
- Air Transport Association of America
- International Air Transport Association

1.2 Introduction

This document conforms to NAS 3601. It provides characteristics of the Boeing Model 747-400 airplane for airport planners and operators, airlines, architectural and engineering consultant organizations, and other interested industry agencies. Airplane changes and available options may alter model characteristics. The data presented herein reflect typical airplanes in each model category.

For additional information contact:

Boeing Commercial Airplanes P.O. Box 3707 Seattle, Washington 98124-2207 U.S.A.

Attention: Manager, Airport Technology Mail Code 67-KR

1.3 A Brief Description of the 747-400

The 747-400 is the latest derivative of the 747 family of airplanes. The -400 is externally similar to the 747-300, with the additional wingtip extension with winglets and advanced high bypass ratio engines. Other characteristics unique to the 747-400 include:

- Two-crew cockpit with digital avionics
- Lightweight aluminum alloys
- Structural carbon brakes
- Optional 910,000-pound maximum takeoff weight
- Optional 3,300-gallon fuel tank in horizontal stabilizer
- Optional fuel tanks in forward cargo compartment
- Vacuum lavatories with single-point servicing
- Enhanced passenger appeal in cabin interior
- Optional crew rest compartment in aft cabin
- Fly-by-wire system

747-400

The basic 747-400 has a tri-class passenger interior arrangement. Optional arrangements include a two-class or a one-class configuration to suit traffic demands.

747-400 Domestic

The 747-400 Domestic is a high-capacity airplane designed for domestic short routes. It has a lighter maximum takeoff weight. The -400D airplane has the same wingspan planform as the -300 and has no winglets.

747-400 Combi

The 747-400 Combi airplane has a main deck cargo door installed on the left side aft of the wing. This door is used for loading pallets or containerized cargo up to 20 feet long. The main deck of the Combi airplane can be converted to either an all-passenger or a passenger/cargo configuration. In the latter configuration, cargo is in the aft fuselage. Several cargo configurations can be loaded compatible with size limits and operational procedures. The Combi can accommodate up to seven 10-foot pallets or containers.

747-400 Freighter

The 747-400 Freighter has a main deck nose door and a mechanized cargo handling system. The nose door swings up so that pallets or containers up to 40 ft (12 m) can be loaded straight in on motor-driven rollers. An optional main deck side cargo door (like the 747-400 Combi) allows loading of dimensionally taller cargo modules.

747-400ER

The 747-400ER is an increased gross weight derivative of the 747-400. The increased weight allows it carry additional fuel in order to fly over longer ranges. The 747-400ER can be equipped with up to two 3,060-gallon fuel tanks in the forward lower cargo compartment.

747-400ER Freighter

The 747-400ER Freighter is similar to the 747-400 Freighter, except for the increased gross weight capability which allows it to carry more cargo weight. This airplane is not fitted with the cargo compartment fuel tanks.

Engines

The 747-400 is equipped with four advanced high bypass ratio engines. The following table shows the available engines:

		RATED TAKEOFF
MANUFACTURER	MODEL NUMBER	THRUST (LB)
GENERAL ELECTRIC	CF6-80C2B1F	57,900
PRATT & WHITNEY	PW4056	56,750
ROLLS-ROYCE	RB211-524G2	58,000

The 747-400ER is equipped with four advanced high bypass ratio engines. The following table shows the available engines:

MANUFACTURER	MODEL NUMBER	RATED TAKEOFF THRUST (LB)
GENERAL ELECTRIC	CF6-80C2B5F	62,100
PRATT & WHITNEY	PW4062	63,300
ROLLS-ROYCE	RB211-524H8-T	59,500

Additional models of the above engines may be available through customer options.

Crew Rest Compartment

The 747-400 can be equipped with a cabin crew rest compartment. This is located in the aft cabin above the ceiling at Door No. 5. The compartment can be configured to a combination of bunks and seats for up to 10 crew members. Access to the compartment is through a ladder near Right Door No. 5. This is standard on the 747-400ER.

Another compartment is located in the upper deck, outside of the cockpit.

Document Applicability

This document (D6-58326-1) contains airplane characteristics data for the 747-400 and 747-400ER airplanes.

Document D6-58326-2, which contained preliminary airplane characteristics information for the 747-400ER airplanes is now cancelled and will not be revised and should be discarded.

The earlier airplane models (747-100, -200, -300, SP) are described in Document D6-58326, <u>747 Airplane Characteristics for Airport Planning.</u>

2.0 AIRPLANE DESCRIPTION

- 2.1 General Characteristics
- 2.2 General Dimensions
- 2.3 Ground Clearances
- 2.4 Interior Arrangements
- 2.5 Cabin Cross Sections
- 2.6 Lower Cargo Compartments
- 2.7 Door Clearances

2.0 AIRPLANE DESCRIPTION

2.1 General Characteristics

<u>Maximum Design Taxi Weight (MTW)</u>. Maximum weight for ground maneuver as limited by aircraft strength and airworthiness requirements. (It includes weight of taxi and run-up fuel.)

<u>Maximum Design Landing Weight (MLW)</u>. Maximum weight for landing as limited by aircraft strength and airworthiness requirements.

<u>Maximum Design Takeoff Weight (MTOW)</u>. Maximum weight for takeoff as limited by aircraft strength and airworthiness requirements. (This is the maximum weight at start of the takeoff run.)

<u>Operating Empty Weight (OEW)</u>. Weight of structure, powerplant, furnishing systems, unusable fuel and other unusable propulsion agents, and other items of equipment that are considered an integral part of a particular airplane configuration. Also included are certain standard items, personnel, equipment, and supplies necessary for full operations, excluding usable fuel and payload.

<u>Maximum Design Zero Fuel Weight (MZFW)</u>. Maximum weight allowed before usable fuel and other specified usable agents must be loaded in defined sections of the aircraft as limited by strength and airworthiness requirements.

Maximum Payload. Maximum design zero fuel weight minus operational empty weight.

<u>Maximum Seating Capacity</u>. The maximum number of passengers specifically certificated or anticipated for certification.

Maximum Cargo Volume. The maximum space available for cargo.

<u>Usable Fuel</u>. Fuel available for aircraft propulsion.

CHARACTERISTICS	UNITS	CF6-80C2B1 ENGINES					
MAX DESIGN	POUNDS	803,000	836,000	853,000	873,000	877,000	
TAXI WEIGHT	KILOGRAMS	364,235	379,204	386,915	395,987	397,801	
MAX DESIGN	POUNDS	800,000	833,000	850,000	870,000	875,000	
TAKEOFF WEIGHT	KILOGRAMS	362,874	377,843	385,554	394,626	396,894	
MAX DESIGN	POUNDS	574,000	574,000	630,000	630,000	630,000	
LANDING WEIGHT (1)	KILOGRAMS	260,362	260,362	285,764	285,764	285,764	
MAX DESIGN	POUNDS	535,000	535,000	535,000	542,500	542,500	
ZERO FUEL WEIGHT (2)	KILOGRAMS	242,672	242,672	242,672	246,074	246,074	
SPEC OPERATING	POUNDS	394,088	394,088	394,088	394,088	394,088	
EMPTY WEIGHT (3)	KILOGRAMS	178,756	178,756	178,756	178,756	178,756	
MAX STRUCTURAL	POUNDS	140,912	140,912	140,912	148,412	148,412	
PAYLOAD	KILOGRAMS	63,917	63,917	63,917	67,319	67,319	
TYPICAL SEATING CAPACITY	UPPER DECK	42 BUSINE	SS CLASS				
(INCLUDES UPPER DECK)	MAIN DECK	24 FIRST, 3	2 BUSINESS	, 302 ECONO	DMY		
MAX CARGO - LOWER DECK	CUBIC FEET	5,536	5,536	5,536	5,536	5,536	
CONTAINERS (LD-1)	CUBIC METERS	157	157	157	157	157	
MAX CARGO - LOWER DECK	CUBIC FEET	835	835	835	835	835	
BULK CARGO	CUBIC METERS	24	24	24	24	24	
USABLE FUEL CAPACITY (4)	U.S. GALLONS	53,765	53,763	53,765	57,065	57,065	
	LITERS	203,501	203,493	203,501	215,991	215,991	
	POUNDS	360,226	360,226	360,226	382,336	382,336	
	KILOGRAMS	163,396	163,396	163,396	173,425	173,425	

- 1. 630,000 LB LANDING WEIGHT IS OPTIONAL
- 2. 542,500 LB ZERO FUEL WEIGHT IS OPTIONAL
- 3. SPEC OPERATING EMPTY WEIGHT REFLECTS THREE-CLASS 400-PASSENGER ARRANGEMENT AND STANDARD ITEM ALLOWANCES. ACTUAL OEW WILL VARY WITH AIRPLANE CONFIGURATION. CONSULT USING AIRLINE FOR ACTUAL OEW.
- 4. OPTIONAL TAIL FUEL OF 3,300 US GAL IS REFLECTED IN THE HIGHER FUEL CAPACITY.

2.1.1 GENERAL CHARACTERISTICS

MODEL 747-400 (GENERAL ELECTRIC ENGINES)

CHARACTERISTICS	UNITS		PW 4056 ENGINES				
MAX DESIGN	POUNDS	803,000	836,000	853,000	873,000	877,000	
TAXI WEIGHT	KILOGRAMS	364,235	379,204	386,915	395,987	397,801	
MAX DESIGN	POUNDS	800,000	833,000	850,000	870,000	875,000	
TAKEOFF WEIGHT	KILOGRAMS	362,874	377,843	385,554	394,626	396,894	
MAX DESIGN	POUNDS	574,000	574,000	630,000	630,000	630,000	
LANDING WEIGHT (1)	KILOGRAMS	260,362	260,362	285,764	285,764	285,764	
MAX DESIGN	POUNDS	535,000	535,000	535,000	542,500	542,500	
ZERO FUEL WEIGHT (2)	KILOGRAMS	242,672	242,672	242,672	246,074	246,074	
SPEC OPERATING	POUNDS	394,660	394,660	394,660	394,660	394,660	
EMPTY WEIGHT (3)	KILOGRAMS	179,015	179,015	179,015	179,015	179,015	
MAX STRUCTURAL	POUNDS	140,340	140,340	140,340	147,840	147,840	
PAYLOAD	KILOGRAMS	63,657	63,657	63,657	67,059	67,059	
TYPICAL SEATING CAPACITY	UPPER DECK	42 BUSINE	SS CLASS				
(INCLUDES UPPER DECK)	MAIN DECK	24 FIRST, 3	2 BUSINESS	, 302 ECONO	DMY		
MAX CARGO - LOWER DECK	CUBIC FEET	5,536	5,536	5,536	5,536	5,536	
CONTAINERS (LD-1)	CUBIC METERS	157	157	157	157	157	
MAX CARGO - LOWER DECK	CUBIC FEET	835	835	835	835	835	
BULK CARGO	CUBIC METERS	24	24	24	24	24	
USABLE FUEL CAPACITY (4)	U.S. GALLONS	53,985	53,985	53,985	57,285	57,285	
	LITERS	204,333	204,333	204,333	216,824	216,824	
	POUNDS	361,700	361,700	361,700	383,810	383,810	
	KILOGRAMS	164,064	164,064	164,064	174,093	174,093	

- 1. 630,000 LB LANDING WEIGHT IS OPTIONAL
- 2. 542,500 LB ZERO FUEL WEIGHT IS OPTIONAL
- 3. SPEC OPERATING EMPTY WEIGHT REFLECTS THREE-CLASS 400-PASSENGER ARRANGEMENT AND STANDARD ITEM ALLOWANCES. ACTUAL OEW WILL VARY WITH AIRLINE CONFIGURATION AND OPTIONAL EQUIPMENT. CONSULT USING AIRLINE FOR ACTUAL OEW
- 4. OPTIONAL TAIL FUEL OF 3,300 US GAL IS REFLECTED IN THE HIGHER FUEL CAPACITY

2.1.2 GENERAL CHARACTERISTICS

MODEL 747-400 (PRATT & WHITNEY ENGINES)

CHARACTERISTICS	UNITS	RB211-524G2 ENGINES				
MAX DESIGN	POUNDS	803,000	836,000	853,000	873,000	877,000
TAXI WEIGHT	KILOGRAMS	364,235	379,204	386,915	395,987	397,801
MAX DESIGN	POUNDS	800,000	833,000	850,000	870,000	875,000
TAKEOFF WEIGHT	KILOGRAMS	362,874	377,843	385,554	394,626	396,894
MAX DESIGN	POUNDS	574,000	574,000	630,000	630,000	630,000
LANDING WEIGHT (1)	KILOGRAMS	260,362	260,362	285,764	285,764	285,764
MAX DESIGN	POUNDS	535,000	535,000	535,000	545,000	545,000
ZERO FUEL WEIGHT (2)	KILOGRAMS	242,672	242,672	242,672	247,208	247,208
SPEC OPERATING	POUNDS	396,284	396,284	396,284	396,284	396,284
EMPTY WEIGHT (3)	KILOGRAMS	179,752	179,752	179,752	179,752	179,752
MAX STRUCTURAL	POUNDS	138,716	138,716	138,716	148,716	148,716
PAYLOAD	KILOGRAMS	62,921	62,921	62,921	67,457	67,457
TYPICAL SEATING CAPACITY	UPPER DECK	42 BUSINE	SS CLASS			
(INCLUDES UPPER DECK)	MAIN DECK	24 FIRST, 3	2 BUSINESS	, 302 ECONC	DMY	
MAX CARGO - LOWER DECK	CUBIC FEET	5,536	5,536	5,536	5,536	5,536
CONTAINERS (LD-1)	CUBIC METERS	157	157	157	157	157
MAX CARGO - LOWER DECK	CUBIC FEET	835	835	835	835	835
BULK CARGO	CUBIC METERS	24	24	24	24	24
USABLE FUEL CAPACITY (4)	U.S. GALLONS	53,985	53,985	53,985	57,285	57,285
	LITERS	204,333	204,333	204,333	216,824	216,824
	POUNDS	361,700	361,700	361,700	383,810	383,810
	KILOGRAMS	164,064	164,064	164,064	174,093	174,093

- 1. 630,000 LB LANDING WEIGHT IS OPTIONAL
- 2. 545,000 LB ZERO FUEL WEIGHT IS OPTIONAL
- 3. SPEC OPERATING EMPTY WEIGHT REFLECTS THREE-CLASS 400-PASSENGER ARRANGEMENT AND STANDARD ITEM ALLOWANCES. ACTUAL OEW WILL VARY WITH AIRLINE CONFIGURATION AND OPTIONAL EQUIPMENT. CONSULT USING AIRLINE FOR ACTUAL OEW.
- 4. OPTIONAL TAIL FUEL OF 3,300 US GAL IS REFLECTED IN THE HIGHER FUEL CAPACITY.

2.1.3 GENERAL CHARACTERISTICS

MODEL 747-400 (ROLLS-ROYCE ENGINES)

		-				
CHARACTERISTICS	UNITS		CF6-	80C2B1 ENG	INES	
MAX DESIGN	POUNDS	803,000	836,000	853,000	873,000	877,000
TAXI WEIGHT	KILOGRAMS	364,235	379,204	386,915	395,987	397,801
MAX DESIGN	POUNDS	800,000	833,000	850,000	870,000	875,000
TAKEOFF WEIGHT	KILOGRAMS	362,874	377,843	385,554	394,626	396,894
MAX DESIGN	POUNDS	574,000	574,000	630,000	630,000	630,000
LANDING WEIGHT (1)	KILOGRAMS	260,362	260,362	285,764	285,764	285,764
MAX DESIGN	POUNDS	545,000	545,000	545,000	565,000	565,000
ZERO FUEL WEIGHT (2)	KILOGRAMS	247,208	247,208	247,208	256,280	256,280
SPEC OPERATING	POUNDS	407,107	407,107	407,107	402,900	402,900
EMPTY WEIGHT (3)	KILOGRAMS	184,661	184,661	184,661	182,753	182,753
MAX STRUCTURAL	POUNDS	137,893	137,893	137,893	162,100	162,100
PAYLOAD	KILOGRAMS	62,547	62,547	62,547	73,527	73,527
TYPICAL SEATING CAPACITY	PASSENGER	400: 24 FIF	RST, 74 BUSI	NESS, 302 E	CONOMY	
(INCLUDES UPPER DECK)	СОМВІ	345: 28 FIR	ST, 110 BUS	INESS, 207 E	CONOMY, 7	PALLETS
MAX CARGO - MAIN DECK	CUBIC FEET	4,290	4,290	4,290	4,290	4,290
PALLETS (4)	CUBIC METERS	122	122	122	122	122
MAX CARGO - LOWER DECK	CUBIC FEET	5,536	5,536	5,536	5,536	5,536
CONTAINERS (LD-1)	CUBIC METERS	157	157	157	157	157
MAX CARGO - LOWER DECK	CUBIC FEET	710	710	710	710	710
BULK CARGO	CUBIC METERS	20	20	20	20	20
USABLE FUEL CAPACITY (5)	U.S. GALLONS	53,765	53,763	53,765	57,065	57,065
	LITERS	203,501	203,493	203,501	215,991	215,991
	POUNDS	360,226	360,226	360,226	382,336	382,336
	KILOGRAMS	163,396	163,396	163,396	173,425	173,425

- 1. 630,000 LB LANDING WEIGHT IS OPTIONAL
- 2. 565,000 LB ZERO FUEL WEIGHT IS OPTIONAL
- 3. SPEC OPERATING EMPTY WEIGHT REFLECTS THREE-CLASS 400-PASSENGER ARRANGEMENT AND STANDARD ITEM ALLOWANCES. ACTUAL OEW WILL VARY WITH AIRLINE CONFIGURATION AND OPTIONAL EQUIPMENT. CONSULT USING AIRLINE FOR ACTUAL OEW. THE LOWER OEW VALUE REFLECTS PASSENGER/CARGO CONFIGURATION.
- 4. SEVEN PALLETS AT 613 CUBIC FEET EACH
- 5. OPTIONAL TAIL FUEL OF 3,300 US GAL IS REFLECTED IN THE HIGHER FUEL CAPACITY

2.1.4 GENERAL CHARACTERISTICS

MODEL 747-400 COMBI (GENERAL ELECTRIC ENGINES)

	- i					
CHARACTERISTICS	UNITS		PW	4056 ENGIN	IES	_
MAX DESIGN	POUNDS	803,000	836,000	853,000	873,000	877,000
TAXI WEIGHT	KILOGRAMS	364,235	379,204	386,915	395,987	397,801
MAX DESIGN	POUNDS	800,000	833,000	850,000	870,000	875,000
TAKEOFF WEIGHT	KILOGRAMS	362,874	377,843	385,554	394,626	396,894
MAX DESIGN	POUNDS	574,000	574,000	630,000	630,000	630,000
LANDING WEIGHT (1)	KILOGRAMS	260,362	260,362	285,764	285,764	285,764
MAX DESIGN	POUNDS	545,000	545,000	545,000	565,000	565,000
ZERO FUEL WEIGHT (2)	KILOGRAMS	247,208	247,208	247,208	256,280	256,280
SPEC OPERATING	POUNDS	407,479	407,479	407,479	403,400	403,400
EMPTY WEIGHT (3)	KILOGRAMS	184,830	184,830	184,830	182,979	182,979
MAX STRUCTURAL	POUNDS	137,521	137,521	137,521	161,600	161,600
PAYLOAD	KILOGRAMS	62,379	62,379	62,379	73,301	73,301
TYPICAL SEATING CAPACITY	PASSENGER	400: 24 FIF	RST, 74 BUSI	NESS, 302 E	CONOMY	
(INCLUDES UPPER DECK)	СОМВІ	345: 28 FIR	ST, 110 BUS	INESS, 207 E	CONOMY, 7	PALLETS
MAX CARGO - MAIN DECK	CUBIC FEET	4,290	4,290	4,290	4,290	4,290
PALLETS (4)	CUBIC METERS	122	122	122	122	122
MAX CARGO - LOWER DECK	CUBIC FEET	5,536	5,536	5,536	5,536	5,536
CONTAINERS (LD-1)	CUBIC METERS	157	157	157	157	157
MAX CARGO - LOWER DECK	CUBIC FEET	710	710	710	710	710
BULK CARGO	CUBIC METERS	20	20	20	20	20
USABLE FUEL CAPACITY (5)	U.S. GALLONS	53,985	53,985	53,985	57,285	57,285
	LITERS	204,333	204,333	204,333	216,824	216,824
	POUNDS	361,700	361,700	361,700	383,810	383,810
	KILOGRAMS	164,064	164,064	164,064	174,093	174,093

- 1. 630,000 LB LANDING WEIGHT IS OPTIONAL
- 2. 565,000 LB ZERO FUEL WEIGHT IS OPTIONAL
- 3. SPEC OPERATING EMPTY WEIGHT REFLECTS THREE-CLASS 400-PASSENGER ARRANGEMENT AND STANDARD ITEM ALLOWANCES. ACTUAL OEW WILL VARY WITH AIRLINE CONFIGURATION AND OPTIONAL EQUIPMENT. CONSULT USING AIRLINE FOR ACTUAL OEW. THE LOWER OEW VALUE REFLECTS PASSENGER/CARGO CONFIGURATION.
- 4. SEVEN PALLETS AT 613 CUBIC FEET EACH
- 5. OPTIONAL TAIL FUEL OF 3,300 US GAL IS REFLECTED IN THE HIGHER FUEL CAPACITY.

2.1.5 GENERAL CHARACTERISTICS

MODEL 747-400 COMBI (PRATT & WHITNEY ENGINES)

		-1				
CHARACTERISTICS	UNITS		RB21	1-534G2 ENG	GINES	
MAX DESIGN	POUNDS	803,000	836,000	853,000	873,000	877,000
TAXI WEIGHT	KILOGRAMS	364,235	379,204	386,915	395,987	397,801
MAX DESIGN	POUNDS	800,000	833,000	850,000	870,000	875,000
TAKEOFF WEIGHT	KILOGRAMS	362,874	377,843	385,554	394,626	396,894
MAX DESIGN	POUNDS	574,000	574,000	630,000	630,000	630,000
LANDING WEIGHT (1)	KILOGRAMS	260,362	260,362	285,764	285,764	285,764
MAX DESIGN	POUNDS	545,000	545,000	545,000	565,000	565,000
ZERO FUEL WEIGHT (2)	KILOGRAMS	247,208	247,208	247,208	256,280	256,280
SPEC OPERATING	POUNDS	410,103	410,103	410,103	405,900	405,900
EMPTY WEIGHT (3)	KILOGRAMS	186,020	186,020	186,020	184,113	184,113
MAX STRUCTURAL	POUNDS	134,897	134,897	134,897	159,100	159,100
PAYLOAD	KILOGRAMS	61,188	61,188	61,188	72,167	72,167
TYPICAL SEATING CAPACITY	PASSENGER	400: 24 FIF	RST, 74 BUSI	NESS, 302 E	CONOMY	
(INCLUDES UPPER DECK)	СОМВІ	345: 28 FIR	ST, 110 BUS	INESS, 207 E	CONOMY, 7	PALLETS
MAX CARGO - MAIN DECK	CUBIC FEET	4,290	4,290	4,290	4,290	4,290
PALLETS (4)	CUBIC METERS	122	122	122	122	122
MAX CARGO - LOWER DECK	CUBIC FEET	5,536	5,536	5,536	5,536	5,536
CONTAINERS (LD-1)	CUBIC METERS	157	157	157	157	157
MAX CARGO - LOWER DECK	CUBIC FEET	710	710	710	710	710
BULK CARGO	CUBIC METERS	20	20	20	20	20
USABLE FUEL CAPACITY (5)	U.S. GALLONS	53,985	53,985	53,985	57,285	57,285
	LITERS	204,333	204,333	204,333	216,824	216,824
	POUNDS	361,700	361,700	361,700	383,810	383,810
	KILOGRAMS	164,064	164,064	164,064	174,093	174,093
			•			•

- 1. 630,000 LB LANDING WEIGHT IS OPTIONAL
- 2. 565,000 LB ZERO FUEL WEIGHT IS OPTIONAL
- 3. SPEC OPERATING EMPTY WEIGHT REFLECTS THREE-CLASS 400-PASSENGER ARRANGEMENT AND STANDARD ITEM ALLOWANCES. ACTUAL OEW WILL VARY WITH AIRLINE CONFIGURATION AND OPTIONAL EQUIPMENT. CONSULT USING AIRLINE FOR ACTUAL OEW THE LOWER OEW VALUE REFLECTS PASSENGER/CARGO CONFIGURATION
- 4. SEVEN PALLETS AT 613 CUBIC FEET EACH
- 5. OPTIONAL TAIL FUEL OF 3,300 US GAL IS REFLECTED IN THE HIGHER FUEL CAPACITY

2.1.6 GENERAL CHARACTERISTICS

MODEL 747-400 COMBI (ROLLS-ROYCE ENGINES)

CHARACTERISTICS	UNITS		CF6-80C2B1 ENGINES			
MAX DESIGN	POUNDS	803,000	836,000	853,000	873,000	877,000
TAXI WEIGHT	KILOGRAMS	364,235	379,204	386,915	395,987	397,801
MAX DESIGN	POUNDS	800,000	833,000	850,000	870,000	875,000
TAKEOFF WEIGHT	KILOGRAMS	362,874	377,843	385,554	394,626	396,894
MAX DESIGN	POUNDS	652,000	652,000	652,000	666,000	666,000
LANDING WEIGHT (1)	KILOGRAMS	295,743	295,743	295,743	302,093	302,093
MAX DESIGN	POUNDS	610,000	610,000	610,000	635,000	635,000
ZERO FUEL WEIGHT (2)	KILOGRAMS	276,692	276,692	276,692	288,031	288,031
SPEC OPERATING	POUNDS	363,954	363,954	363,954	363,954	363,954
EMPTY WEIGHT (3)	KILOGRAMS	165,087	165,087	165,087	165,087	165,087
MAX STRUCTURAL	POUNDS	246,046	246,046	246,046	271,046	271,046
PAYLOAD	KILOGRAMS	111,605	111,605	111,605	122,945	122,945
TYPICAL CARGO - MAIN DECK	CUBIC FEET	18,720	18,720	18,720	18,720	18,720
CONTAINERS (4)	CUBIC METERS	530	530	530	530	530
MAX CARGO - LOWER DECK	CUBIC FEET	5,536	5,536	5,536	5,536	5,536
CONTAINERS (LD-1)	CUBIC METERS	157	157	157	157	157
MAX CARGO - LOWER DECK	CUBIC FEET	520	520	520	520	520
BULK CARGO	CUBIC METERS	15	15	15	15	15
USABLE FUEL CAPACITY (5)	U.S. GALLONS	53,765	53,763	53,765	57,065	57,065
	LITERS	203,501	203,493	203,501	215,991	215,991
	POUNDS	360,226	360,226	360,226	382,336	382,336
	KILOGRAMS	163,396	163,396	163,396	173,425	173,425

- 1. 666,000 LB LANDING WEIGHT IS OPTIONAL
- 2. 635,000 LB ZERO FUEL WEIGHT IS OPTIONAL
- 3. SPEC OPERATING EMPTY WEIGHT REFLECTS STANDARD ITEM ALLOWANCES. ACTUAL OEW WILL VARY WITH AIRPLANE CONFIGURATION. CONSULT WITH USING AIRLINE FOR ACTUAL OEW
- 4. TWENTY-NINE 10-FT CONTAINERS. ACTUAL VOLUME WILL DEPEND ON AIRPLANE CONFIGURATION
- 5. OPTIONAL TAIL FUEL OF 3,300 US GAL IS REFLECTED IN THE HIGHER FUEL CAPACITY.

2.1.7 GENERAL CHARACTERISTICS

MODEL 747-400 FREIGHTER (GENERAL ELECTRIC ENGINES)

CHARACTERISTICS	UNITS		PW 4056 ENGINES				
MAX DESIGN	POUNDS	803,000	836,000	853,000	873,000	877,000	
TAXI WEIGHT	KILOGRAMS	364,235	379,204	386,915	395,987	397,801	
MAX DESIGN	POUNDS	800,000	833,000	850,000	870,000	875,000	
TAKEOFF WEIGHT	KILOGRAMS	362,874	377,843	385,554	394,626	396,894	
MAX DESIGN	POUNDS	652,000	652,000	652,000	666,000	666,000	
LANDING WEIGHT (1)	KILOGRAMS	295,743	295,743	295,743	302,093	302,093	
MAX DESIGN	POUNDS	610,000	610,000	610,000	635,000	635,000	
ZERO FUEL WEIGHT (2)	KILOGRAMS	276,692	276,692	276,692	288,031	288,031	
SPEC OPERATING	POUNDS	364,526	364,526	364,526	364,526	364,526	
EMPTY WEIGHT (3)	KILOGRAMS	165,346	165,346	165,346	165,346	165,346	
MAX STRUCTURAL	POUNDS	245,474	245,474	245,474	270,474	270,474	
PAYLOAD	KILOGRAMS	111,345	111,345	111,345	122,685	122,685	
TYPICAL CARGO - MAIN DECK	CUBIC FEET	18,720	18,720	18,720	18,720	18,720	
CONTAINERS (4)	CUBIC METERS	530	530	530	530	530	
MAX CARGO - LOWER DECK	CUBIC FEET	5,536	5,536	5,536	5,536	5,536	
CONTAINERS (LD-1)	CUBIC METERS	157	157	157	157	157	
MAX CARGO - LOWER DECK	CUBIC FEET	520	520	520	520	520	
BULK CARGO	CUBIC METERS	15	15	15	15	15	
USABLE FUEL CAPACITY (5)	U.S. GALLONS	53,985	53,985	53,985	57,285	57,285	
	LITERS	204,333	204,333	204,333	216,824	216,824	
	POUNDS	361,700	361,700	361,700	383,810	383,810	
	KILOGRAMS	164,064	164,064	164,064	174,093	174,093	

- 1. 666,000 LB LANDING WEIGHT IS OPTIONAL
- 2. 635,000 LB ZERO FUEL WEIGHT IS OPTIONAL
- 3. SPEC OPERATING EMPTY WEIGHT REFLECTS STANDARD ITEM ALLOWANCES. ACTUAL OEW WILL VARY WITH AIRPLANE CONFIGURATION. CONSULT WITH USING AIRLINE FOR ACTUAL OEW.
- 4. TWENTY-NINE 10-FT CONTAINERS. ACTUAL VOLUME WILL DEPEND ON AIRPLANE CONFIGURATION.
- 5. OPTIONAL TAIL FUEL OF 3,300 US GAL IS REFLECTED IN THE HIGHER FUEL CAPACITY.

2.1.8 GENERAL CHARACTERISTICS

MODEL 747-400 FREIGHTER (PRATT & WHITNEY ENGINES)

CHARACTERISTICS	UNITS		RB211-524G2 ENGINES			
MAX DESIGN	POUNDS	803,000	836,000	853,000	873,000	877,000
TAXI WEIGHT	KILOGRAMS	364,235	379,204	386,915	395,987	397,801
MAX DESIGN	POUNDS	800,000	833,000	850,000	870,000	875,000
TAKEOFF WEIGHT	KILOGRAMS	362,874	377,843	385,554	394,626	396,894
MAX DESIGN	POUNDS	652,000	652,000	652,000	666,000	666,000
LANDING WEIGHT (1)	KILOGRAMS	295,743	295,743	295,743	302,093	302,093
MAX DESIGN	POUNDS	610,000	610,000	610,000	635,000	635,000
ZERO FUEL WEIGHT (2)	KILOGRAMS	276,692	276,692	276,692	288,031	288,031
SPEC OPERATING	POUNDS	366,082	366,082	366,082	366,082	366,082
EMPTY WEIGHT (3)	KILOGRAMS	166,052	166,052	166,052	166,052	166,052
MAX STRUCTURAL	POUNDS	243,850	243,850	243,850	268,850	268,850
PAYLOAD	KILOGRAMS	110,609	110,609	110,609	121,948	121,948
TYPICAL CARGO - MAIN DECK	CUBIC FEET	18,720	18,720	18,720	18,720	18,720
CONTAINERS (4)	CUBIC METERS	530	530	530	530	530
MAX CARGO - LOWER DECK	CUBIC FEET	5,536	5,536	5,536	5,536	5,536
CONTAINERS (LD-1)	CUBIC METERS	157	157	157	157	157
MAX CARGO - LOWER DECK	CUBIC FEET	520	520	520	520	520
BULK CARGO	CUBIC METERS	15	15	15	15	15
USABLE FUEL CAPACITY (5)	U.S. GALLONS	53,985	53,985	53,985	57,285	57,285
	LITERS	204,333	204,333	204,333	216,824	216,824
	POUNDS	361,700	361,700	361,700	383,810	383,810
	KILOGRAMS	164,064	164,064	164,064	174,093	174,093

- 1. 666,000 LB LANDING WEIGHT IS OPTIONAL
- 2. 635,000 LB ZERO FUEL WEIGHT IS OPTIONAL
- 3. SPEC OPERATING EMPTY WEIGHT REFLECTS STANDARD ITEM ALLOWANCES. ACTUAL OEW WILL VARY WITH AIRPLANE CONFIGURATION. CONSULT WITH USING AIRLINE FOR ACTUAL OEW.
- 4. TWENTY-NINE 10-FT CONTAINERS. ACTUAL VOLUME WILL DEPEND ON AIRPLANE CONFIGURATION.
- 5. OPTIONAL TAIL FUEL OF 3,300 US GAL IS REFLECTED IN THE HIGHER FUEL CAPACITY.

2.1.9 GENERAL CHARACTERISTICS

MODEL 747-400 FREIGHTER (ROLLS ROYCE ENGINES)

		1	I	
CHARACTERISTICS	UNITS	GE ENGINES CF6-80C2B5-F	PW ENGINES PW4062	RR ENGINES RB211-524H8-T
MAX DESIGN	POUNDS	913,000	913,000	913,000
TAXI WEIGHT	KILOGRAMS	414,130	414,130	414,130
MAX DESIGN	POUNDS	910,000	910,000	910,000
TAKEOFF WEIGHT	KILOGRAMS	412,770	412,770	412,770
MAX DESIGN	POUNDS	652,000	652,000	652,000
LANDING WEIGHT	KILOGRAMS	295,743	295,743	295,743
MAX DESIGN	POUNDS	555,000	555,000	555,000
ZERO FUEL WEIGHT	KILOGRAMS	251,744	251,744	251,744
SPEC OPERATING	POUNDS	406,900	406,900	406,900
EMPTY WEIGHT (1)	KILOGRAMS	184,567	184,567	184,567
MAX STRUCTURAL	POUNDS	148,100	148,100	148,100
PAYLOAD	KILOGRAMS	67,177	67,177	67,177
TYPICAL SEATING CAPACITY	TWO-CLASS	500: 42 FIRST CLASS, 4	58 ECONOMY CLASS	
(INCLUDES UPPER DECK)	THREE-CLASS	416: 23 FIRST CLASSS,	78 BUSINESS CLASS, 3	15 ECONOMY CLASS
MAX CARGO - LOWER DECK	CUBIC FEET	4,550	4,550	4,550
LD-2 CONTAINERS (2)	CUBIC METERS	129	129	129
MAX CARGO - LOWER DECK	CUBIC FEET	789	789	789
BULK CARGO	CUBIC METERS	22	22	22
USABLE FUEL CAPACITY (3)	U.S. GALLONS	63,240	63,460	63,460
	LITERS	239,363	240,196	240,196
	POUNDS	423,708	425,182	425,182
	KILOGRAMS	192,191	192,860	192,860

1. SPEC OPERATING EMPTY WEIGHT REFLECTS THREE-CLASS 416-PASSENGER ARRANGEMENT AND STANDARD ITEM ALLOWANCES. ACTUAL OEW WILL VARY WITH AIRPLANE CONFIGURATION. CONSULT USING AIRLINE FOR ACTUAL OEW.

- 2. REFLECTS TWO BODY FUEL TANKS IN THE FORWARD CARGO COMPARTMENT.
- 3. INCLUDES TWO BODY FUEL TANKS OF 3,060 U.S. GALLONS EACH.

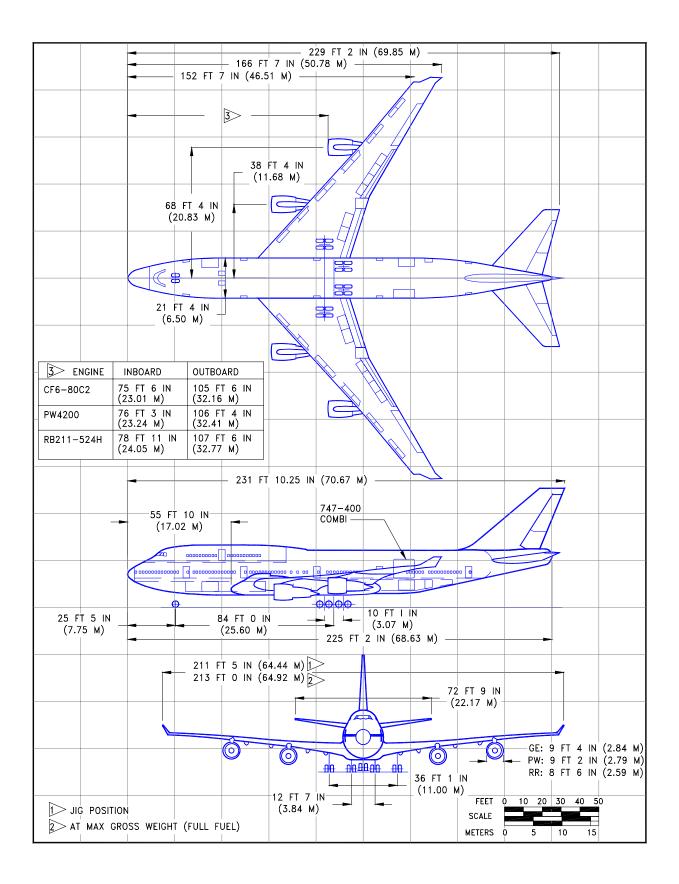
2.1.10 GENERAL CHARACTERISTICS MODEL 747-400ER

CHARACTERISTICS	UNITS	GE ENGINES CF6-80C2B5-F	PW ENGINES PW4062	RR ENGINES RB211-524H8-T
MAX DESIGN	POUNDS	913,000	913,000	913,000
TAXI WEIGHT	KILOGRAMS	414,130	414,130	414,130
MAX DESIGN	POUNDS	910,000	910,000	910,000
TAKEOFF WEIGHT	KILOGRAMS	412,770	412,770	412,770
MAX DESIGN	POUNDS	666,000	666,000	666,000
LANDING WEIGHT	KILOGRAMS	302,093	302,093	302,093
MAX DESIGN	POUNDS	611,000	611,000	611,000
ZERO FUEL WEIGHT	KILOGRAMS	277,145	277,145	277,145
SPEC OPERATING	POUNDS	362,400	362,400	362,400
EMPTY WEIGHT (1)	KILOGRAMS	164,382	164,382	164,382
MAX STRUCTURAL	POUNDS	248,600	248,600	248,600
PAYLOAD	KILOGRAMS	112,763	112,763	112,763
TYPICAL CARGO – MAIN DECK	CUBIC FEET	18,720	18,720	18,720
CONTAINERS (2)	CUBIC METERS	530	530	530
MAX CARGO - LOWER DECK	CUBIC FEET	5,600	5,600	5,600
CONTAINERS (LD-2)	CUBIC METERS	159	159	159
MAX CARGO - LOWER DECK	CUBIC FEET	520	520	520
BULK CARGO	CUBIC METERS	15	15	15
USABLE FUEL CAPACITY	U.S. GALLONS	53,765	53,985	53,985
	LITERS	203,501	204,333	204,333
	POUNDS	360,226	361,700	361,700
	KILOGRAMS	163,396	164,064	164,064

1. SPEC OPERATING EMPTY WEIGHT REFLECTS STANDARD ITEM ALLOWANCES.

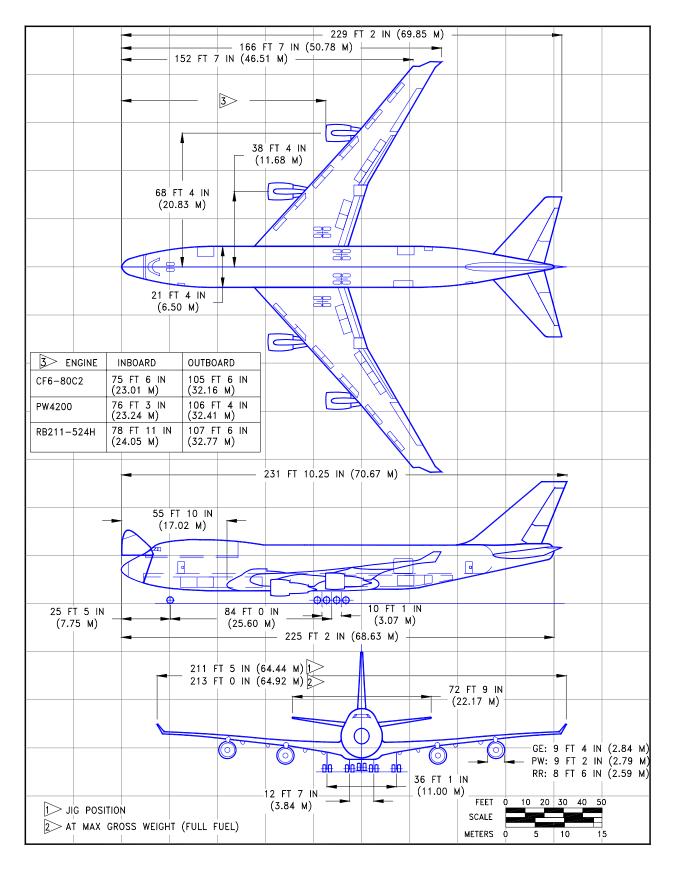
ACTUAL OEW WILL VARY WITH AIRLINE CONFIGURATION AND OPTIONAL EQUIPMENT. CONSULT USING AIRLINE FOR ACTUAL OEW.

2. TWENTY-NINE 10-FOOT CONTAINERS. ACTUAL VOLUME WILL DEPEND ON AIRPRLANE CONFIGURATION.

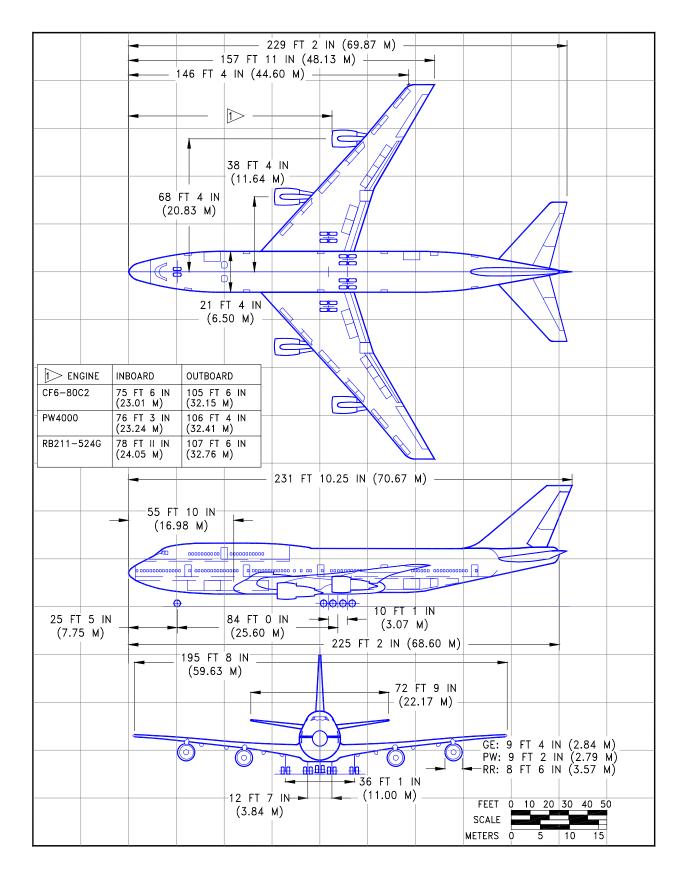

2.1.11 GENERAL CHARACTERISTICS MODEL 747-400ER FREIGHTER

CHARACTERISTICS	UNITS	CF6-80C2B	1 ENGINES
MAX DESIGN	POUNDS	603,000	613,500
TAXI WEIGHT	KILOGRAMS	273,517	278,279
MAX DESIGN	POUNDS	600,000	610,000
TAKEOFF WEIGHT	KILOGRAMS	272,156	276,692
MAX DESIGN	POUNDS	574,000	574,000
LANDING WEIGHT	KILOGRAMS	260,362	260,362
MAX DESIGN	POUNDS	535,000	535,000
ZERO FUEL WEIGHT	KILOGRAMS	242,672	242,672
SPEC OPERATING	POUNDS	400,630	400,630
EMPTY WEIGHT (1)	KILOGRAMS	181,723	181,723
MAX STRUCTURAL	POUNDS	134,370	134,370
PAYLOAD	KILOGRAMS	60,949	60,949
TYPICAL SEATING CAPACITY	UPPER DECK	89 ECC	NOMY
(INCLUDES UPPER DECK)	MAIN DECK	539 ECC	DNOMY
MAX CARGO - LOWER DECK	CUBIC FEET	5,600	5,600
CONTAINERS (LD-1)	CUBIC METERS	159	159
MAX CARGO - LOWER DECK	CUBIC FEET	835	835
BULK CARGO	CUBIC METERS	24	24
USABLE FUEL CAPACITY	U.S. GALLONS	53,765	53,763
	LITERS	203,501	203,493
	POUNDS	360,226	360,226
	KILOGRAMS	163,396	163,396

1. SPEC OPERATING EMPTY WEIGHT REFLECTS ALL-ECONOMY 624-PASSENGER ARRANGEMENT AND STANDARD ITEM ALLOWANCES. ACTUAL OEW WILL VARY WITH AIRLINE CONFIGURATION AND OPTIONAL EQUIPMENT. CONSULT USING AIRLINE FOR ACTUAL OEW.


2.1.12 GENERAL CHARACTERISTICS

MODEL 747-400 DOMESTIC (GENERAL ELECTRIC ENGINES)


2.2.1 GENERAL DIMENSIONS

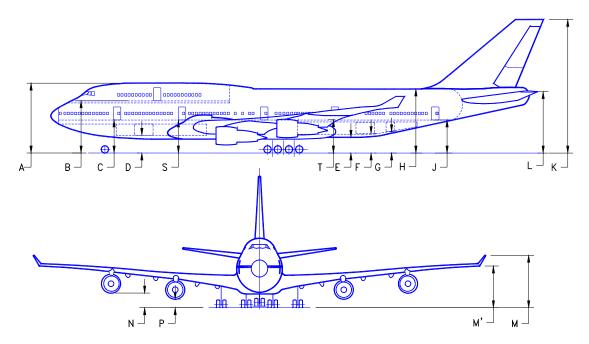
MODEL 747-400, -400 COMBI, -400ER

2.2.2 GENERAL DIMENSIONS

MODEL 747-400 FREIGHTER, -400ER FREIGHTER

2.2.3 GENERAL DIMENSIONS

MODEL 747-400 DOMESTIC

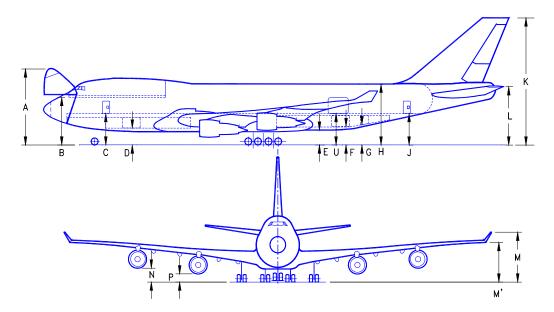

			47-400 COMBI			K
		ÎN ÎP MINII	MUM	MAX	м' IMUM	
		FT - IN	М	FT - IN	М	
	A	32 - 1	9.80	33 - 6	10.23	
	В	24 - 8	7.53	25 - 11	7.91	
	С	15 - 6	4.74	16 - 11	5.18	
	D	8 - 10	2.71	10 - 2	3.11	
	E	6 - 10	2.09	7 - 11	2.42	
	F	9 - 3	2.82	10 - 5	3.18	
	G	9 - 10	3.00	11 - 2	3.41	
	Н	29 - 7	9.02	31 - 4	9.56	
	J	15 - 9	4.82	17 - 5	5.33	
	К	61 - 7	18.80	64 - 0	19.51	
	L	27 - 6	8.39	29 - 9	9.09	
	М	22 - 0	6.71	24 - 0	7.32	
	Μ'	16 - 9	5.11	18 - 9	5.71	
	N	4 - 4	1.32	5 - 10	1.80	
	Р	2 - 3	0.71	3 - 0	0.93	
	S	15 - 9	4.80	16 - 10	5.15	
	Т	16 - 0	4.88	17 - 0	5.19	
	U	16 - 0	4.88	17 - 3	5.28	
	V	15 - 11	4.87	16 - 9	5.11	
NOT		ARANCES SHOWN (

NOTES: VERTICAL CLEARANCES SHOWN OCCUR DURING MAXIMUM VARIATIONS OF AIRPLANE ATTITUDE. COMBINATIONS OF AIRPLANE LOADING AND UNLOADING ACTIVITIES THAT PRODUCE THE GREATEST POSSIBLE VARIATIONS IN ATTITUDE WERE USED TO ESTABLISH THE VARIATIONS SHOWN.

DURING ROUTINE SERVICING, THE AIRPLANE REMAINS RELATIVELY STABLE, PITCH AND ELEVATION CHANGES OCCURRING SLOWLY.

2.3.1 GROUND CLEARANCES

MODEL 747-400, -400 COMBI

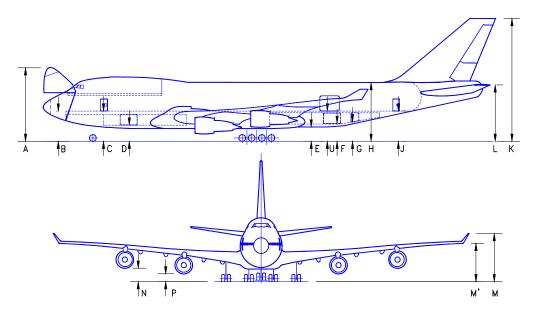


	MINIMUM		MAX	IMUM
	FT - IN	М	FT - IN	М
A	32 - 3	9.82	33 – 7	10.25
В	24 – 9	7.55	26 – 1	7.94
С	15 – 7	4.75	17 – 1	5.20
D	8 – 11	2.73	10 – 3	3.13
E	7 – 1	2.16	8 – 1	2.47
F	9 – 6	2.9	10 – 7	3.23
G	10 – 2	3.11	11 – 5	3.47
Н	27 – 9	8.46	31 – 7	9.63
J	16 – 4	4.99	17 – 8	5.40
K	62 - 6	19.06	64 – 3	19.59
L	28 – 4	8.64	30 – 1	9.17
М	22 - 0	6.71	24 - 0	7.32
Μ'	16 - 9	5.11	18 - 9	5.71
N (PW)	4 – 7	1.40	5 – 10	1.78
N (GE)	4 - 7	1.40	5 – 11	1.80
N (RR)	4 – 4	1.32	5 – 7	1.71
P (PW)	2 – 4	0.71	3 – 0	0.91
P (GE)	2 – 5	0.72	3 – 0	0.91
P (RR)	2 - 4	0.71	3 – 0	0.91
S	15 – 10	4.82	16 – 11	5.16
Т	16 - 3	4.95	17 - 2	5.25

 NOTES: 1. VERTICAL CLEARANCES SHOWN OCCUR DURING MAXIMUM VARIATIONS OF AIRPLANE ATTITUDE.
 COMBINATIONS OF AIRPLANE LOADING AND UNLOADING ACTIVITIES THAT PRODUCE THE GREATEST POSSIBLE VARIATIONS IN ATTITUDE WERE USED TO ESTABLISH THE VARIATIONS SHOWN.
 2. DURING ROUTINE SERVICING, THE AIRPLANE REMAINS RELATIVELY STABLE, PITCH AND ELEVATION CHANGES OCCURRING SLOWLY.

2.3.2 GROUND CLEARANCES

MODEL 747-400ER

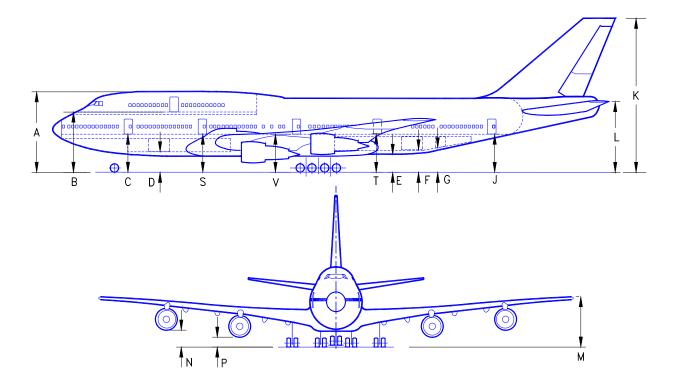

	MINI	MUM	MAXI	MAXIMUM		
	FT - IN	М	FT - IN	М		
А	38 - 1	11.63	40 - 1	12.24		
В	15 - 6	4.72	17 - 0	5.18		
С	24 - 9	7.57	25 - 2	7.67		
D	8 - 10	2.71	10 - 3	3.14		
E	6 - 10	2.09	7 - 11	2.42		
F	9 - 1	2.79	10 - 6	3.21		
G	9 - 9	2.98	11 - 3	3.44		
Н	29 - 6	9.00	31 - 4	9.57		
J	15 - 8	4.80	17 - 7	5.37		
К	61 - 7	18.78	64 - 1	19.54		
L	27 - 5	8.37	29 - 11	9.13		
М	22 - 0	6.71	24 - 0	7.32		
Μ'	16 - 9	5.11	18 - 9	5.71		
Ν	4 - 4	1.32	5 - 10	1.80		
Р	2 - 3	0.71	3 - 0	0.93		
S	15 - 9	4.80	16 - 10	5.15		
Т	16 - 0	4.88	17 - 0	5.19		
U	16 - 0	4.88	17 - 3	5.28		

NOTES: VERTICAL CLEARANCES SHOWN OCCUR DURING MAXIMUM VARIATIONS OF AIRPLANE ATTITUDE. COMBINATIONS OF AIRPLANE LOADING/UNLOADING ACTIVITIES THAT PRODUCE THE GREATEST POSSIBLE VARIATIONS OF ATTITUDE WERE USED TO ESTABLISH THE VARIATIONS SHOWN. DURING ROUTINE SERVICING, THE AIRPLANE REMAINS RELATIVELY STABLE; PITCH AND ELEVATION CHANGES OCCUR SLOWLY.

AT MAJOR TERMINALS, A GSE TETHERING DEVICE MAY BE USED TO MAINTAIN STABILITY BETWEEN THE MAIN DECK DOOR SILL AND THE LOADING DOCK. CARGO BRIDGE ATTACHMENT FITTINGS LOCATED ON THE NOSE DOOR SILL AT THE FORWARD EDGE OF THE MAIN CARGO DOOR DECK MAY BE USED FOR NOSE DOOR SILL STABILIZATION.

2.3.3 GROUND CLEARANCES

MODEL 747-400 FREIGHTER

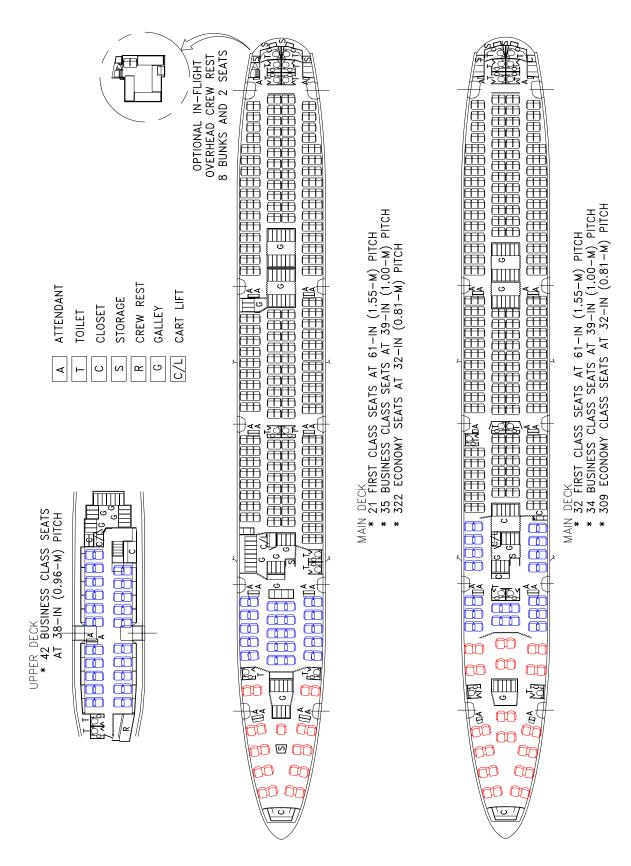

	MINIMUM		MAXI	MUM
	FT - IN	М	FT-IN	М
А	38 - 2	11.79	40 - 2	12.24
В	15 – 6	4.72	17 – 2	5.23
С	15 - 7	4.74	17 - 8	5.37
D	9 - 0	2.75	10 - 9	3.28
E	7 – 1	2.16	8 – 1	2.47
F	9 – 6	2.89	10 – 7	3.23
G	10 – 2	3.10	11 – 4	3.46
Н	27 – 9	8.46	31 – 7	9.63
J	16 - 3	4.97	17 - 8	5.38
K	61 - 11	18.87	64 - 1	19.54
L	27 - 9	8.47	29 - 11	9.12
М	22 - 0	6.71	24 - 0	7.32
Μ'	16 - 9	5.11	18 - 9	5.71
N (PW)	4 – 7	1.40	5 – 10	1.78
N (GE)	4 - 7	1.40	5 – 11	1.80
N (RR)	4 – 4	1.32	5 – 7	1.71
P (PW)	2 – 4	0.71	3 – 0	0.91
P (GE)	2 – 5	0.72	3 – 0	0.91
P (RR)	2 - 4	0.71	3 – 0	0.91
U	16 - 3	4.97	17 - 5	5.31

NOTES: (1) VERTICAL CLEARANCES SHOWN OCCUR DURING MAXIMUM VARIATIONS OF AIRPLANE ATTITUDE. COMBINATIONS OF AIRPLANE LOADING/UNLOADING ACTIVITIES THAT PRODUCE THE GREATEST POSSIBLE VARIATIONS OF ATTITUDE WERE USED TO ESTABLISH THE VARIATIONS SHOWN. DURING ROUTINE SERVICING, THE AIRPLANE REMAINS RELATIVELY STABLE; PITCH AND ELEVATION CHANGES OCCUR SLOWLY.

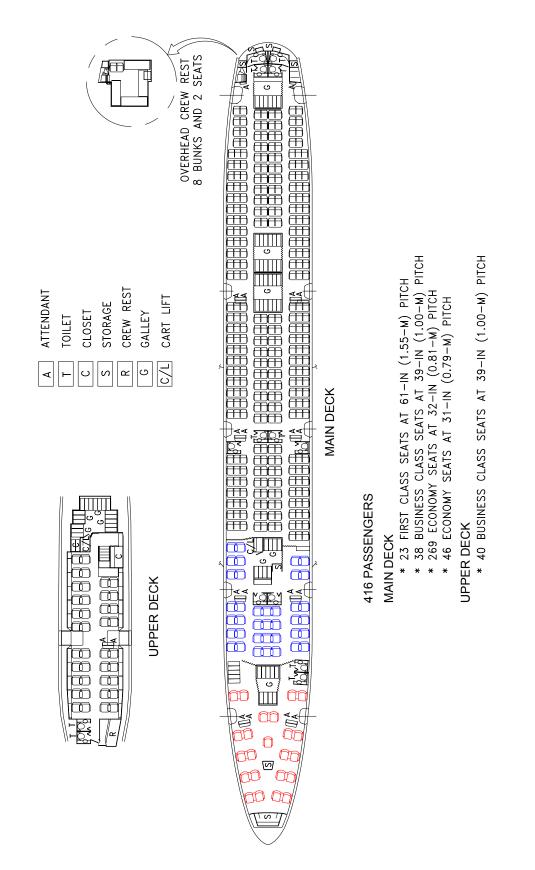
(2) AT MAJOR TERMINALS, A GSE TETHERING DEVICE JULY BE USED TO MAINTAIN STABILITY BETWEEN THE MAIN DECK DOOR SILL AND THE LOADING DOCK. CARGO BRIDGE ATTACHMENT FITTINGS LOCATED ON THE NOSE DOOR SILL AT THE FORWARD EDGE OF THE MAIN CARGO DOOR DECK JULY BE USED FOR NOSE DOOR SILL STABILIZATION.

2.3.4 GROUND CLEARANCES

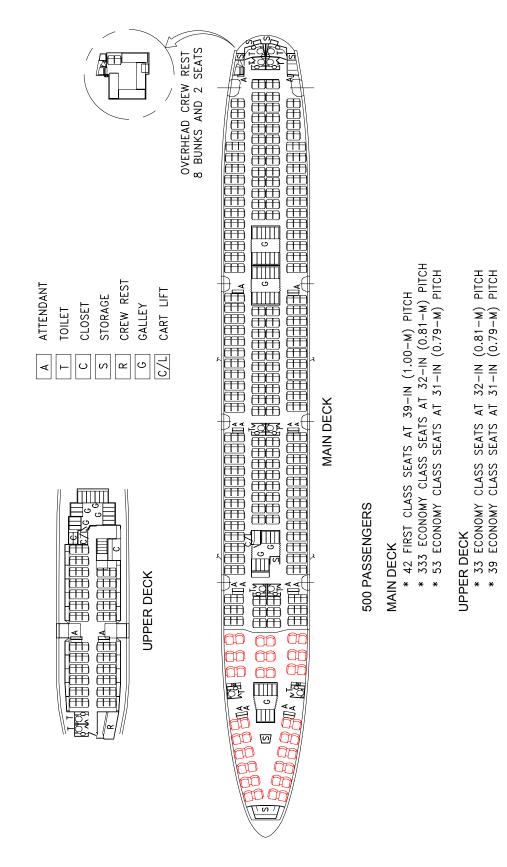
MODEL 747-400ER FREIGHTER

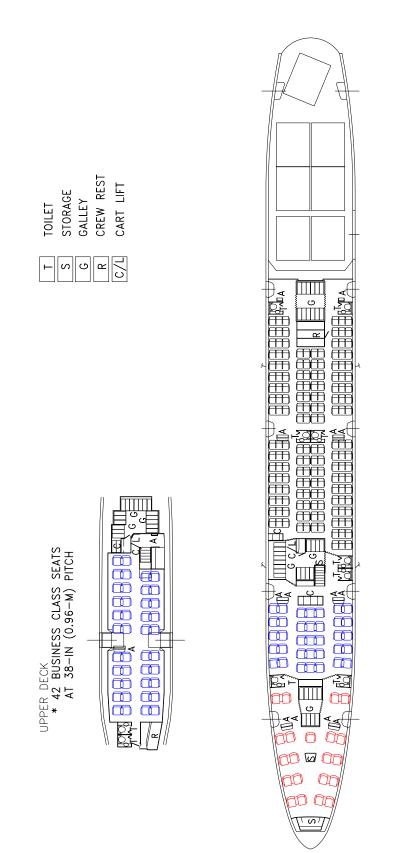

	MINI	MUM	MAXIMUM		
	FT - IN	М	FT - IN	М	
A	31 - 10	9.70	34 - 1	10.39	
В	24 - 10	7.57	27 - 5	8.36	
С	15 - 3	4.65	17 - 7	5.36	
D	8 - 8	2.64	10 - 8	3.25	
E	6 - 3	1.91	6 - 9	2.06	
F	8 - 10	2.69	10 - 4	3.15	
G	9 - 6	2.90	11 - 4	3.45	
Н	28 - 6	8.69	31 - 0	9.45	
J	15 - 0	4.57	17 - 6	5.33	
К	60 - 2	18.34	64 - 3	19.58	
L	27 - 0	8.23	30 - 8	9.35	
М	17 - 7	5.36	19 - 2	5.84	
N	6 - 0	1.83	7 - 0	2.13	
Р	3 - 9	1.14	4 - 6	1.37	
S	15 - 8	4.78	17 - 2	5.23	
Т	15 - 8	4.78	16 - 7	5.05	

NOTES: VERTICAL CLEARANCES SHOWN OCCUR DURING MAXIMUM VARIATIONS OF AIRPLANE ATTITUDE. COMBINATIONS OF AIRPLANE LOADING AND UNLOADING ACTIVITIES THAT PRODUCE THE GREATEST POSSIBLE VARIATIONS IN ATTITUDE WERE USED TO ESTABLISH THE VARIATIONS SHOWN.


DURING ROUTINE SERVICING, THE AIRPLANE REMAINS RELATIVELY STABLE, PITCH AND ELEVATION CHANGES OCCURRING SLOWLY.

2.3.5 GROUND CLEARANCES

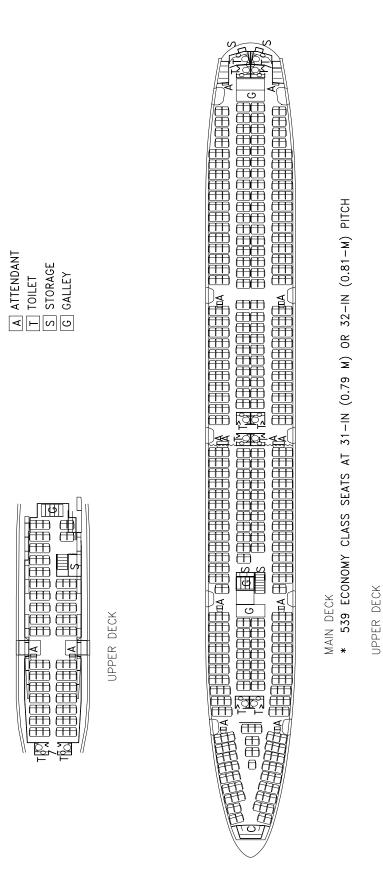

MODEL 747-400 DOMESTIC


2.4.1 INTERIOR ARRANGEMENTS - TRI-CLASS CONFIGURATION MODEL 747-400

2.4.2 INTERIOR ARRANGEMENTS - TRI-CLASS CONFIGURATION MODEL 747-400ER

2.4.3 INTERIOR ARRANGEMENTS – DUAL CLASS CONFIGURATION MODEL 747-400ER

21 FIRST CLASS SEATS AT 61-IN (1.55-M) PITCH 35 BUSINESS CLASS SEATS AT 38-IN (0.96-M) PITCH 168 ECONOMY CLASS SEATS AT 32-IN (0.81-M) PITCH 7 PALLETS


* * *

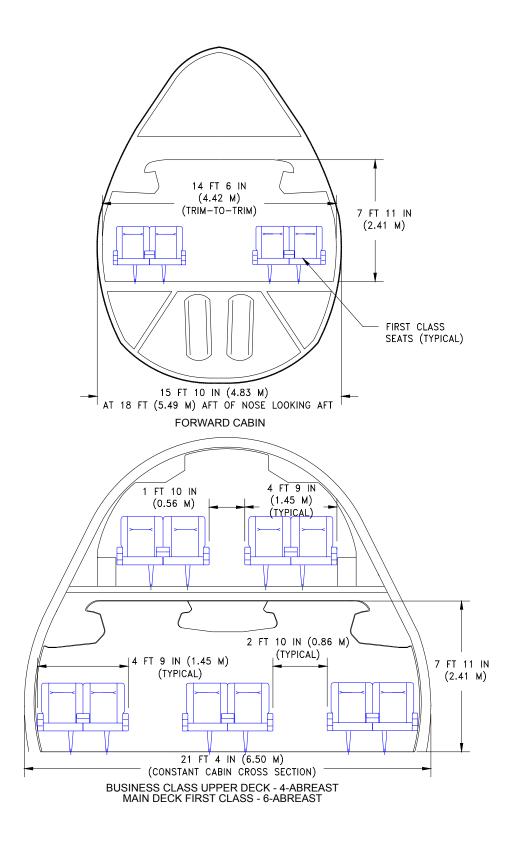
MAIN DECK - COMBI LOAD

2.4.4 INTERIOR ARRANGEMENTS - PASSENGER/CARGO CONFIGURATION MODEL 747-400 COMBI

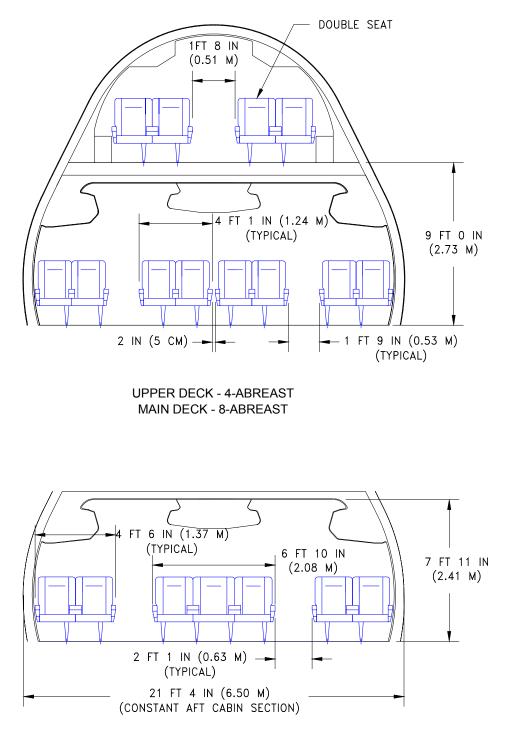
 * 29 10-FT (3-M) CONTAINERS 		* 13 20-FT (6-M) CONTAINERS * 5 10-FT (3-M) CONTAINERS		* RANDOM MIX OF CARGO PALLETS AND CONTAINERS UP TO 40 FT (12 M)
---	--	---	--	--

2.4.5 INTERIOR ARRANGEMENTS - MAIN DECK CARGO MODEL 747-400 FREIGHTER, -400ER FREIGHTER

32-IN (0.81-M) PITCH

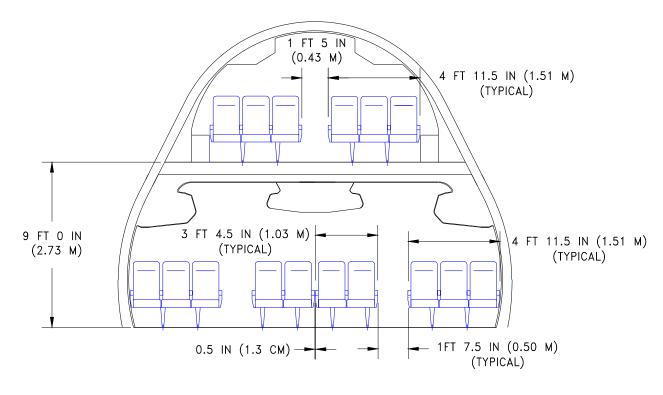

31-IN (0.79-M) OF

AT

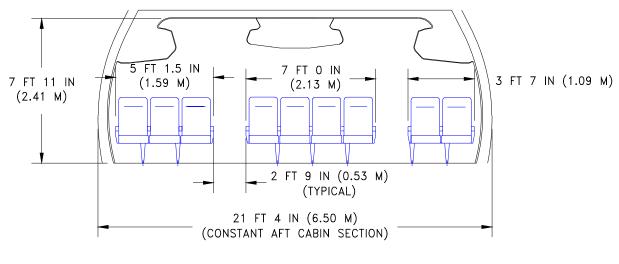

85 ECONOMY CLASS SEATS

×

2.4.6 INTERIOR ARRANGEMENTS - HIGH-DENSITY SEATING CONFIGURATION MODEL 747-400 DOMESTIC

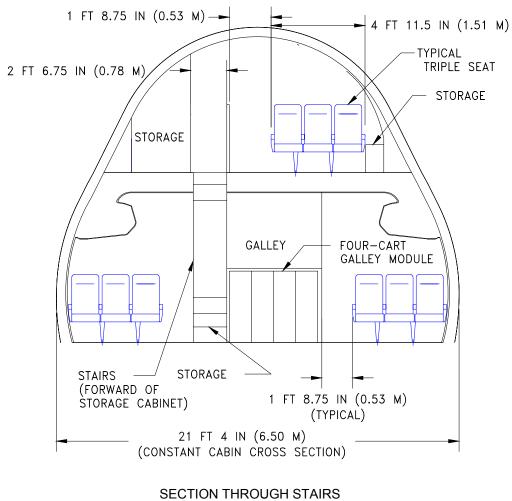


2.5.1 CABIN CROSS-SECTIONS - FIRST AND BUSINESS CLASS SEATS MODEL 747-400

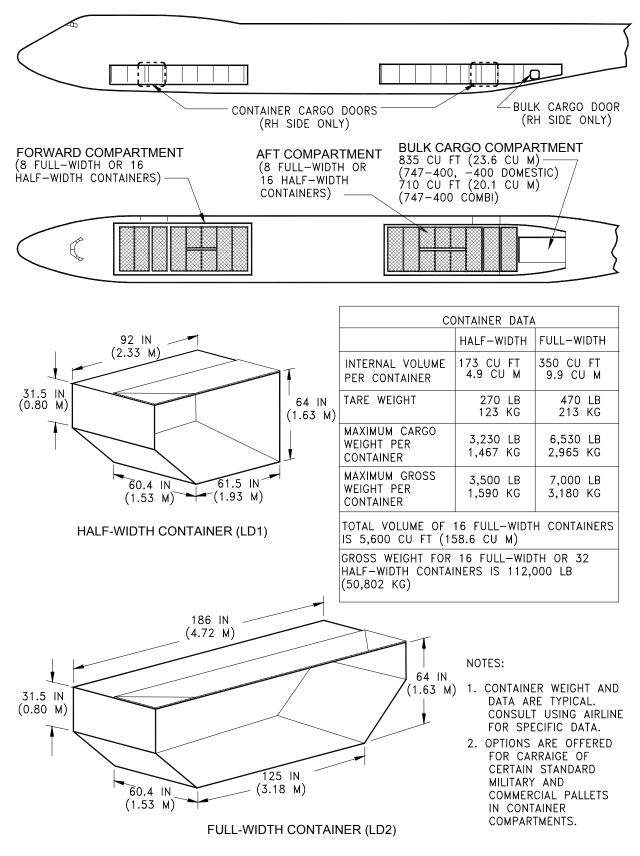


MAIN DECK - 7-ABREAST

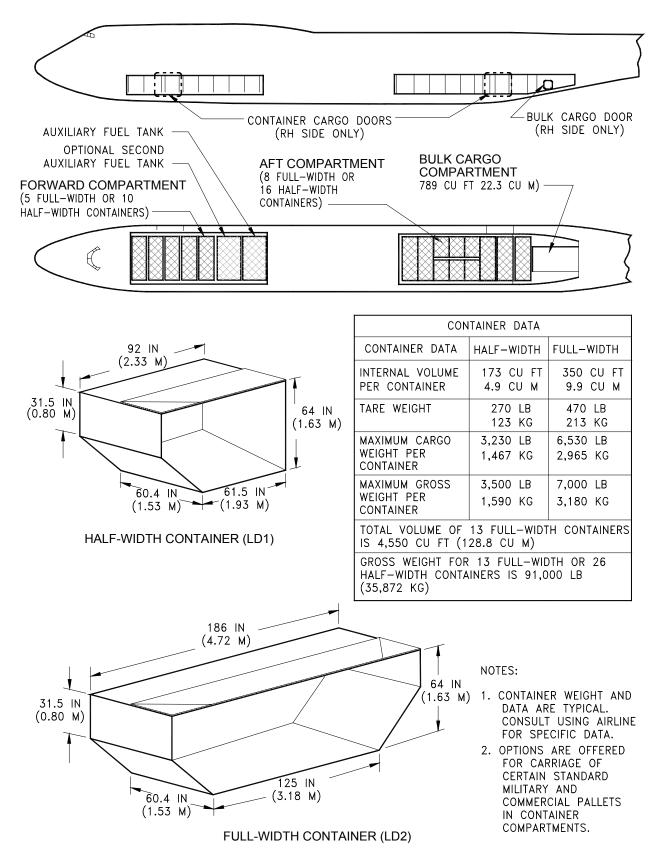
2.5.2 CABIN CROSS-SECTIONS - BUSINESS CLASS SEATS MODEL 747-400



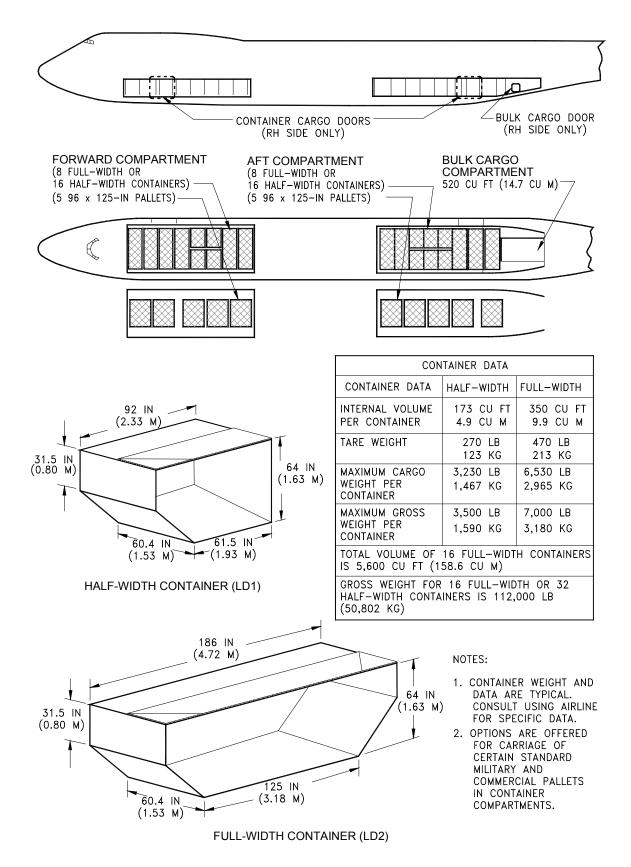
UPPER DECK - 6-ABREAST MAIN DECK - 10-ABREAST

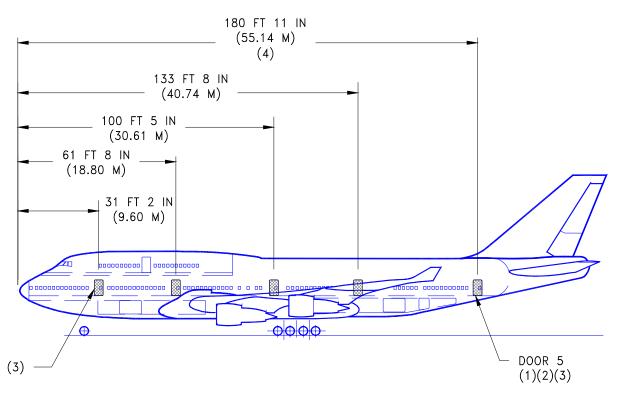

MAIN DECK - 9-ABREAST

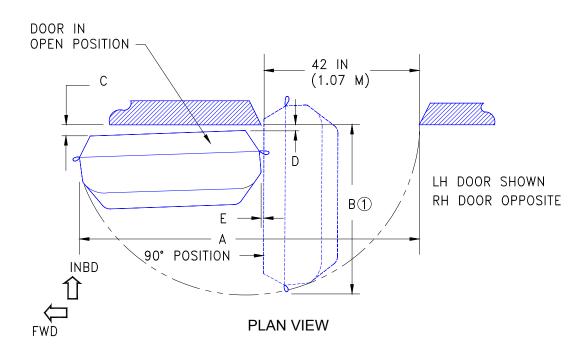
2.5.3 CABIN CROSS-SECTIONS - ECONOMY CLASS SEATS MODEL 747-400



(VIEW LOOKING FORWARD)

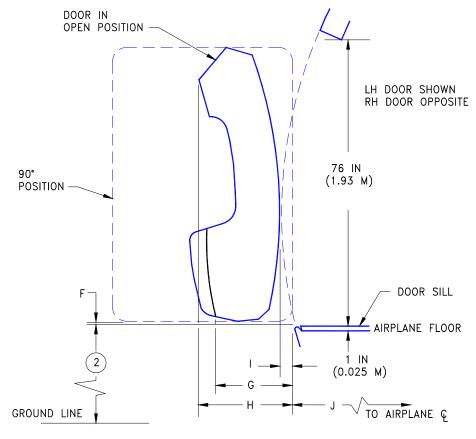

2.5.4 CABIN CROSS-SECTIONS - GALLEY AND STAIRS MODEL 747-400


^{2.6.1} LOWER CARGO COMPARTMENTS - CONTAINERS AND BULK CARGO MODEL 747-400, -400 COMBI, -400 DOMESTIC


2.6.3 LOWER CARGO COMPARTMENTS - CONTAINERS AND BULK CARGO MODEL 747-400 FREIGHTER, -400ER FREIGHTER

NOTES:

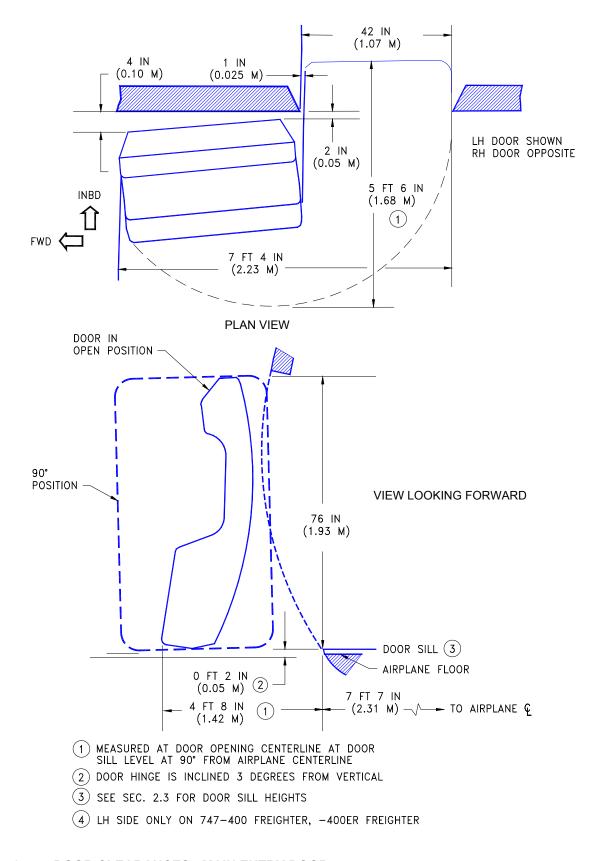
- (1) 10 PASSENGER DOORS 5 EACH SIDE DOOR OPENING SIZE = 42 BY 76 IN (1.07 BY 1.93 M) OVERALL DOOR SIZE = 47 BY 76 IN (1.19 BY 1.93 M)
- (2) SEE SECTION 2.3 FOR DOOR SILL HEIGHTS
- (3) LH DOOR NO. 1 AND NO. 5 ON 747-400 FREIGHTER, -400ER FREIGHTER
- (4) 180 FT 5 IN (55.00 M) ON 747-400 FREIGHTER, -400ER FREIGHTER


2.7.1 DOOR CLEARANCES - MAIN ENTRY DOOR LOCATIONS MODEL 747-400

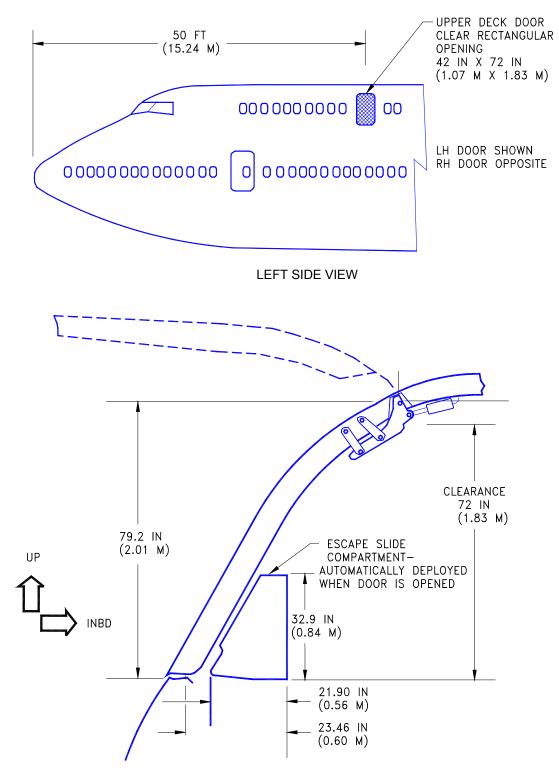
	DOOR NUMBER			
	1 ②	2	3	4
Α	7 FT 6 IN	7 FT 6 IN	7 FT 6 IN	7 FT 6 IN
A	2.29 M	2.29 M	2.29 M	2.29 M
B (1)	3 FT 9 IN	3 FT 10 IN	3 FT 10 IN	3 FT 10 IN
	1.14 M	1.17 M	1.17 M	1.17 M
	4 IN	3 IN	3 IN	3 IN
С	0.102 M	0.076 M	0.076 M	0.076 M
D	1 IN	1 IN	1 IN	1 IN
	0.025 M	0.025 M	0.025 M	0.025 M
E	1 IN	1 IN	1 IN	1 IN
	0.025 M	0.025 M	0.025 M	0.025 M

- MEASURED AT DOOR OPENING CENTERLINE AT DOOR SILL LEVEL AT 90° FROM AIRPLANE CENTERLINE.
- ② LH SIDE ONLY ON 747-400 FREIGHTER, -400ER FREIGHTER.

2.7.2 DOOR CLEARANCES - MAIN ENTRY DOORS 1-4 (PLAN VIEW) MODEL 747-400

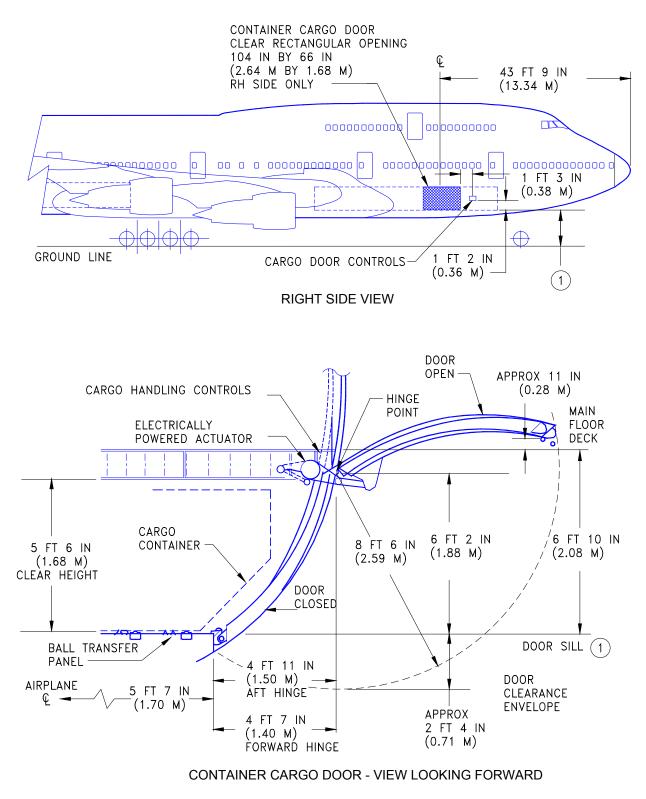


VIEW LOOKING FORWARD

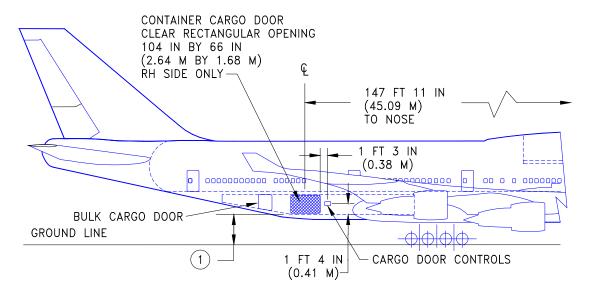

	DOOR NUMBER			
	1 (3)	2	3	4
F	2 IN (0.05 M)			
G (1)	1 FT 7 IN (0.48 M)	1 FT 10 IN (0.56 M)		
н (1)	1 FT 11 IN (0.58 M)	2 FT (0.61 M)	1 FT 9 IN (0.53 M)	2 FT (0.61 M)
I (1)	1 IN (0.025 M)	3 IN (0.076 M)	0	3 IN (0.076 M)
J (1)	9 FT 6 IN (2.90 M)	10 FT 5 IN (3.18 M)	10 FT 8 IN (3.25 M)	10 FT 5 IN (3.18 M)

- 1 MEASURED AT DOOR OPENING CENTERLINE AT DOOR SILL LEVEL AT 90° FROM AIRPLANE CENTERLINE
- 2) SEE SEC. 2.3 FOR DOOR SILL HEIGHTS
- (3) LH SIDE ONLY ON 747-400 FREIGHTER, -400ER FREIGHTER

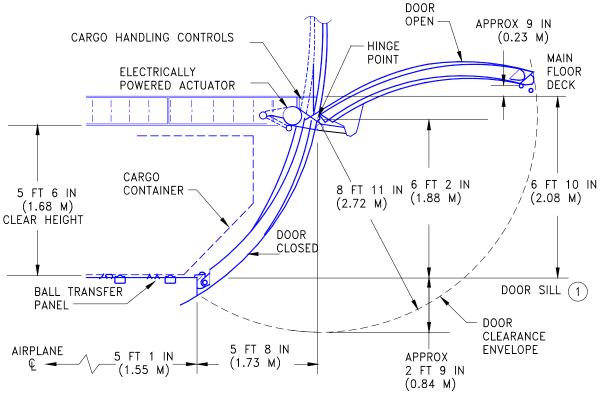
2.7.3 DOOR CLEARANCES - MAIN ENTRY DOORS 1-4 (SIDE VIEW) MODEL 747-400



2.7.4 DOOR CLEARANCES - MAIN ENTRY DOOR 5 MODEL 747-400

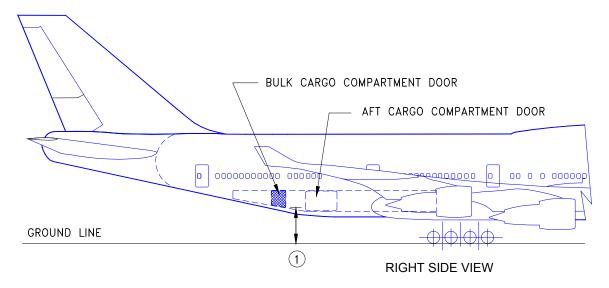

VIEW LOOKING FORWARD

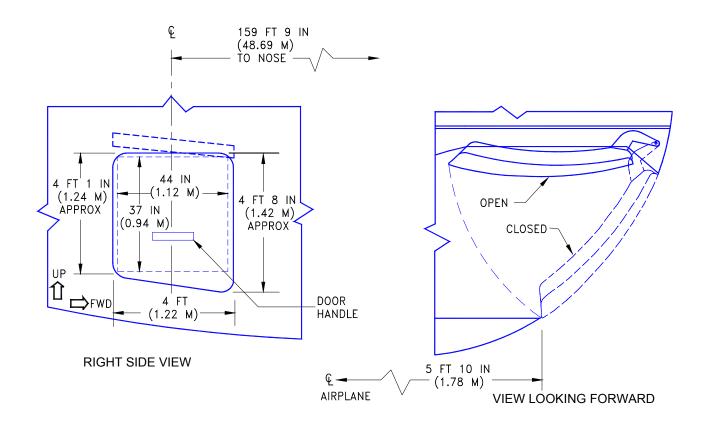
2.7.5 DOOR CLEARANCES - UPPER DECK EMERGENCY EXIT DOOR MODEL 747-400



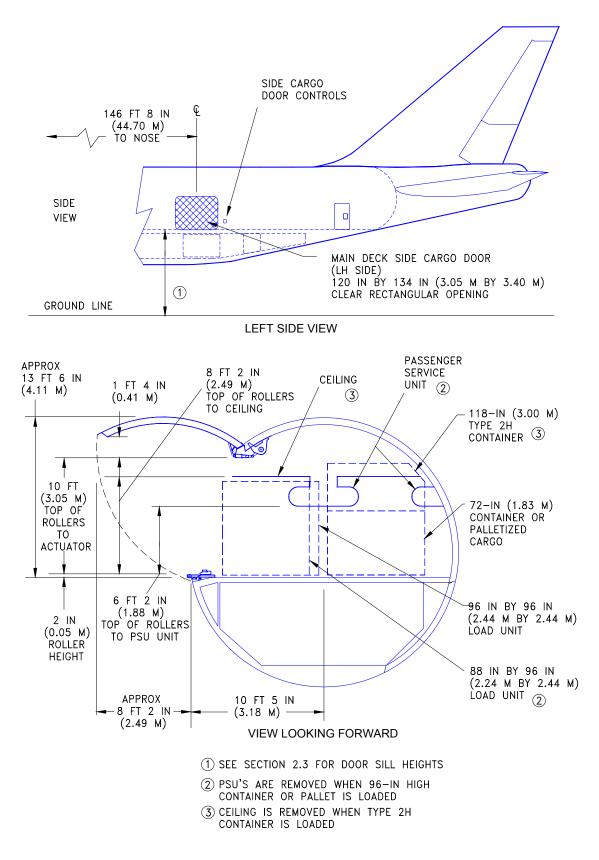
(1) SEE SECTION 2.3 FOR DOOR SILL HEIGHTS

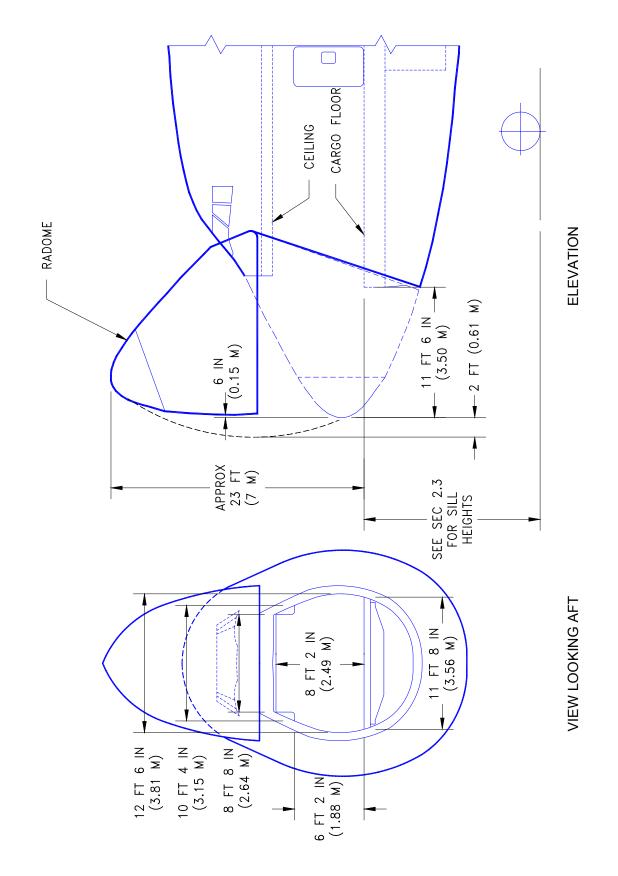
2.7.6 DOOR CLEARANCES - LOWER FORWARD CARGO COMPARTMENT MODEL 747-400


RIGHT SIDE VIEW


CONTAINER CARGO DOOR - VIEW LOOKING FORWARD

SEE SECTION 2.3 FOR DOOR SILL HEIGHTS (1)


2.7.7 DOOR CLEARANCES - LOWER AFT CARGO COMPARTMENT MODEL 747-400


(1) SEE SECTION 2.3 FOR DOOR SILL HEIGHTS

2.7.8 DOOR CLEARANCES - BULK CARGO COMPARTMENT MODEL 747-400

2.7.9 DOOR CLEARANCES - MAIN DECK CARGO DOOR MODEL 747-400 COMBI, -400 FREIGHTER, -400ER FREIGHTER

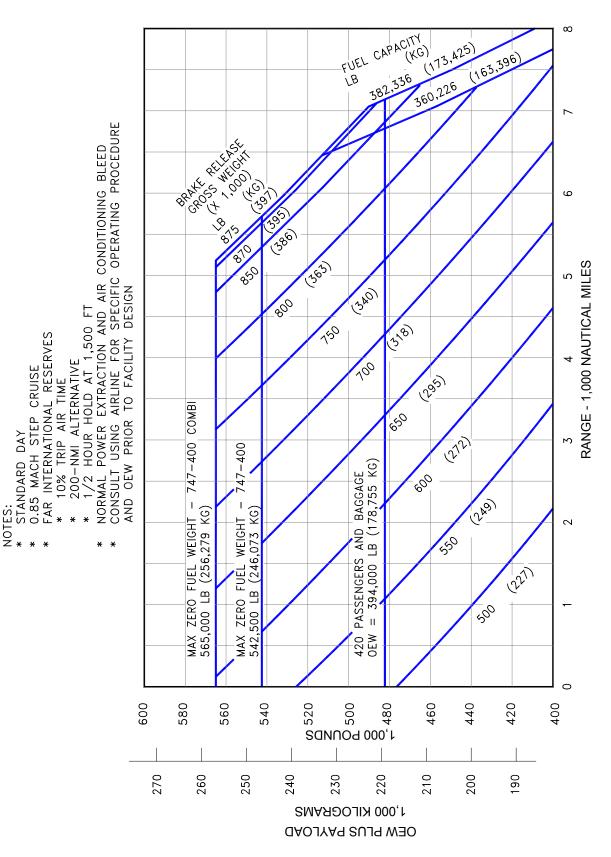
2.7.10 DOOR CLEARANCES - NOSE CARGO DOOR MODEL 747-400 FREIGHTER, -400ER FREIGHTER

THIS PAGE INTENTIONALLY LEFT BLANK

3.0 AIRPLANE PERFORMANCE

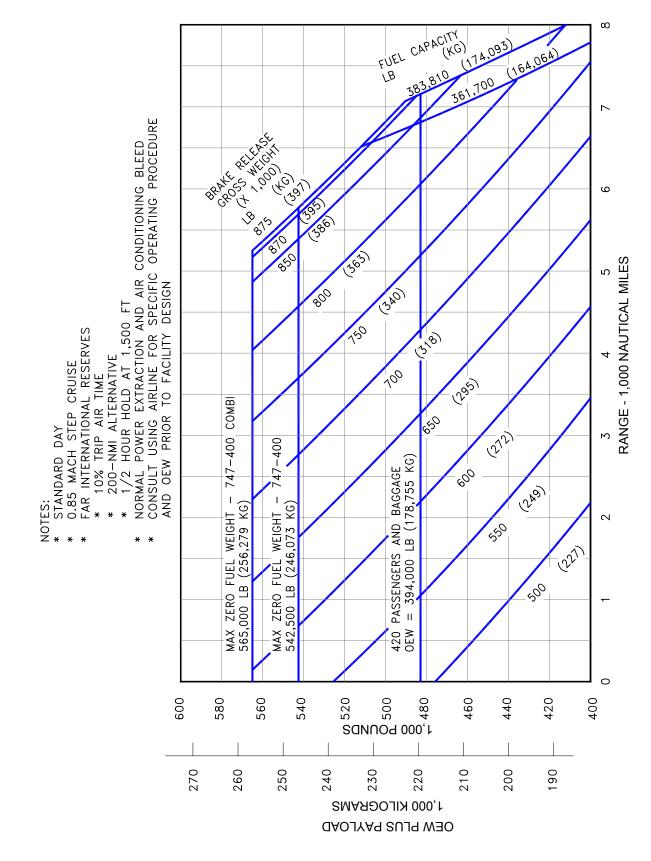
- **3.1** General Information
- 3.2 Payload/Range for 0.85 Mach Cruise
- 3.3 F.A.R. Takeoff Runway Length Requirements
- 3.4 F.A.R. Landing Runway Length Requirements

3.0 AIRPLANE PERFORMANCE

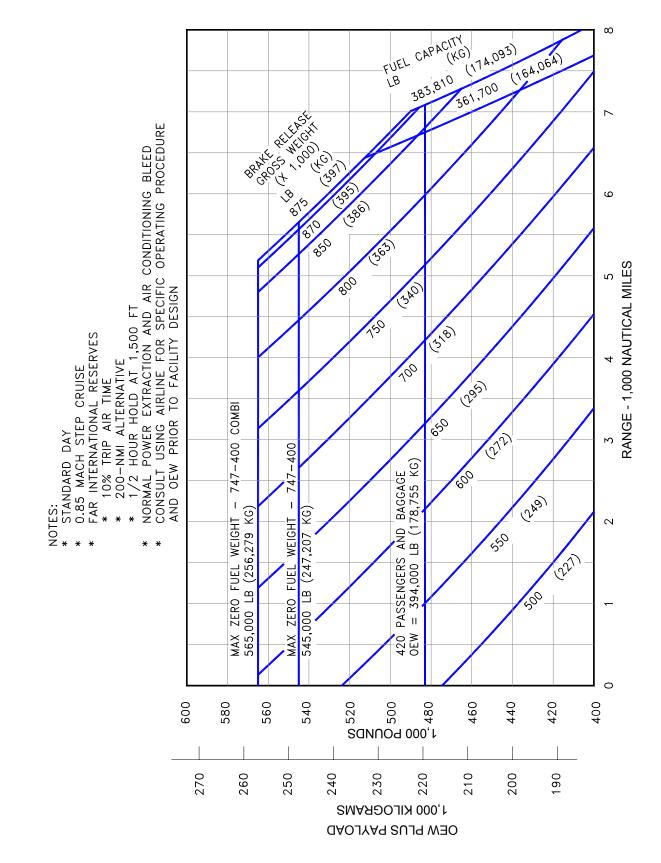

3.1 General Information

The graphs in Section 3.2 provide information on operational empty weight (OEW) and payload, trip range, brake release gross weight, and fuel limits for airplane models with the different engine options. To use these graphs, if the trip range and zero fuel weight (OEW + payload) are known, the approximate brake release weight can be found, limited by fuel quantity. Examples of loading conditions under certain OEW's are illustrated in each graph.

The graphs in Section 3.3 provide information on F.A.R. takeoff runway length requirements with the different engines at different pressure altitudes. Maximum takeoff weights shown on the graphs are the heaviest for the particular airplane models with the corresponding engines. Standard day temperatures for pressure altitudes shown on the F.A.R. takeoff graphs are given below:

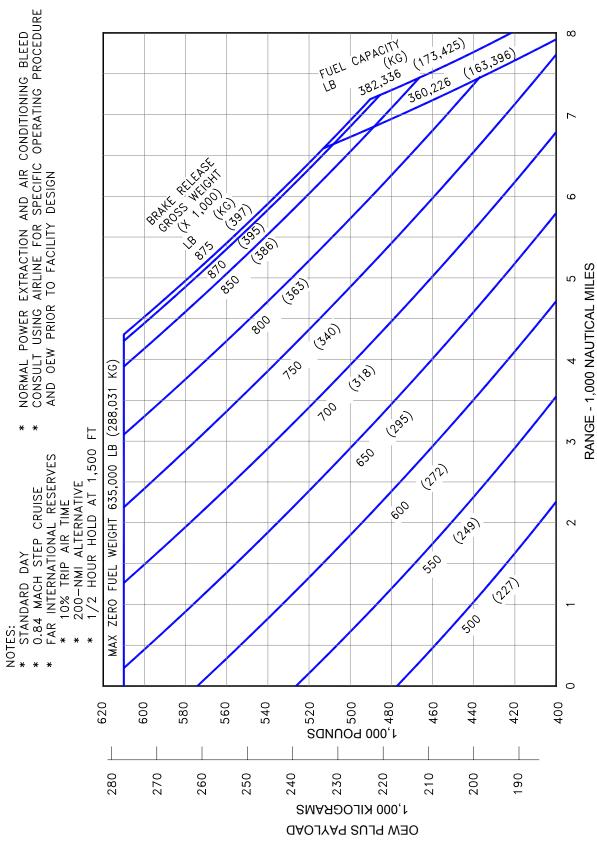

PRESSURE ALTITUDE		STANDARD DAY TEMP		
FEET	METERS	٩F	°C	
0	0	59.0	15.00	
2,000	610	51.9	11.04	
4,000	1,219	44.7	7.06	
6,000	1,829	37.6	3.11	
8,000	2,438	30.5	-0.85	
10,000	3,048	23.3	-4.81	

The graphs in Section 3.4 provide information on landing runway length requirements for different airplane weights and airport altitudes. The maximum landing weights shown are the heaviest for the particular airplane model.

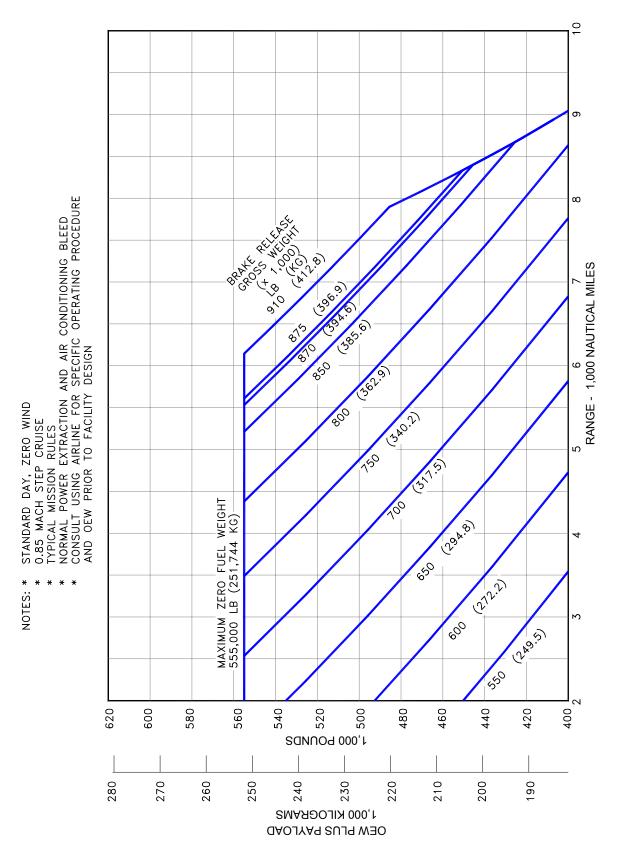


3.2.1 PAYLOAD/RANGE FOR 0.85 MACH CRUISE

MODEL 747-400, -400 COMBI (CF6-80C2B1F ENGINES)

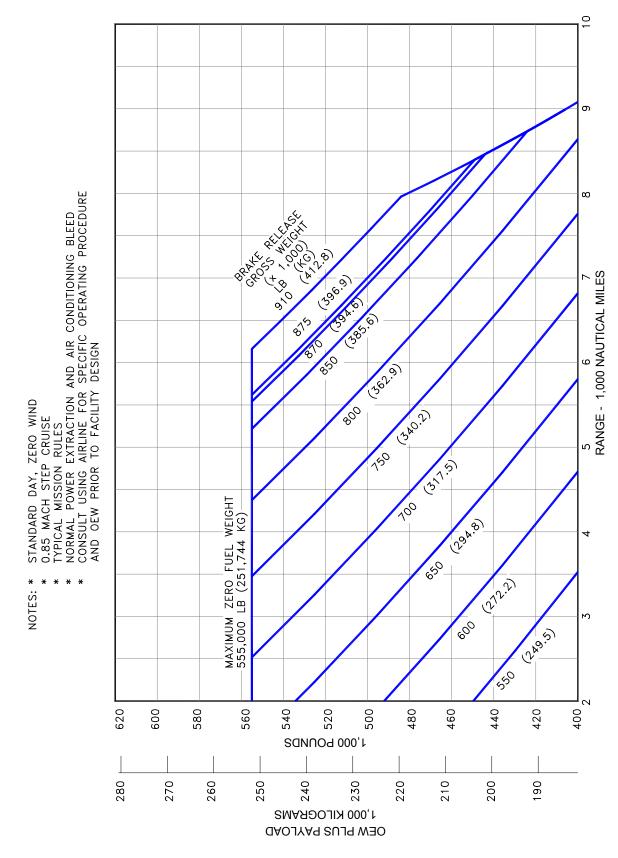


3.2.2 PAYLOAD/RANGE FOR 0.85 MACH CRUISE MODEL 747-400, -400 COMBI (PW 4056ENGINES)

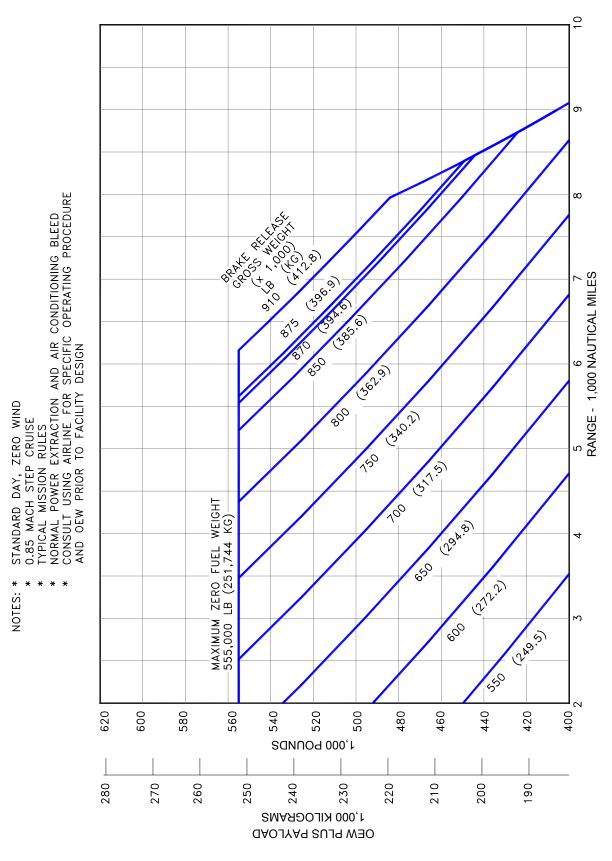


3.2.3 PAYLOAD/RANGE FOR 0.85 MACH CRUISE MODEL 747-400, -400 COMBI (RB211-524G ENGINES)

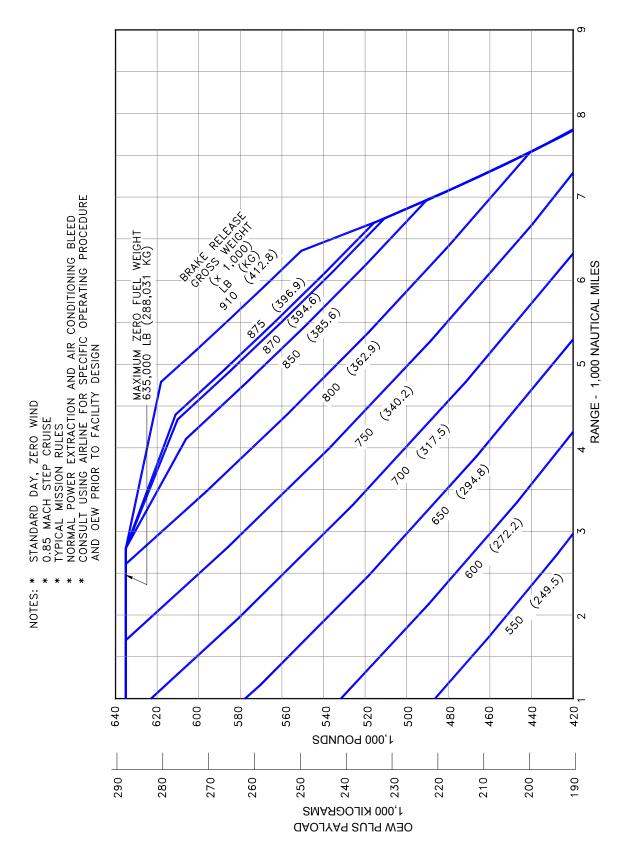
NORMAL POWER EXTRACTION AND AIR CONDITIONING BLEED CONSULT USING AIRLINE FOR SPECIFIC OPERATING PROCEDURE AND OEW PRIOR TO FACILITY DESIGN * *



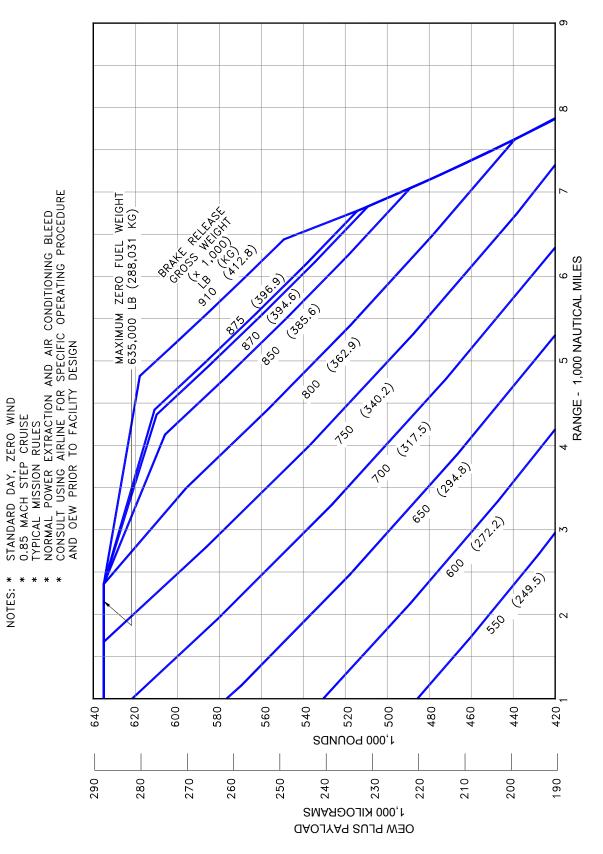
3.2.4 PAYLOAD/RANGE FOR 0.85 MACH CRUISE MODEL 747-400 FREIGHTER (CF6-80C2B1F ENGINES)

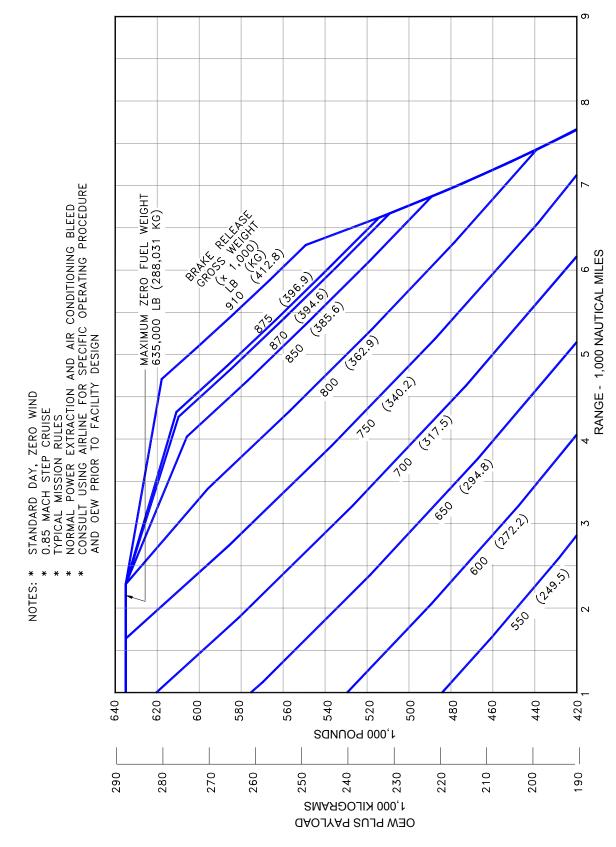

3.2.5 PAYLOAD/RANGE FOR 0.85 MACH CRUISE

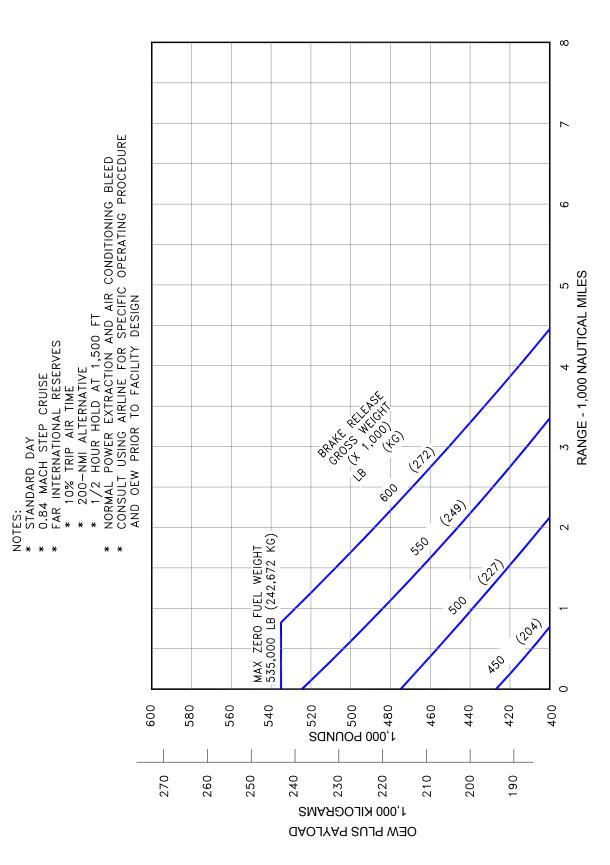
MODEL 747-400ER (CF6-80C2B5F ENGINES)

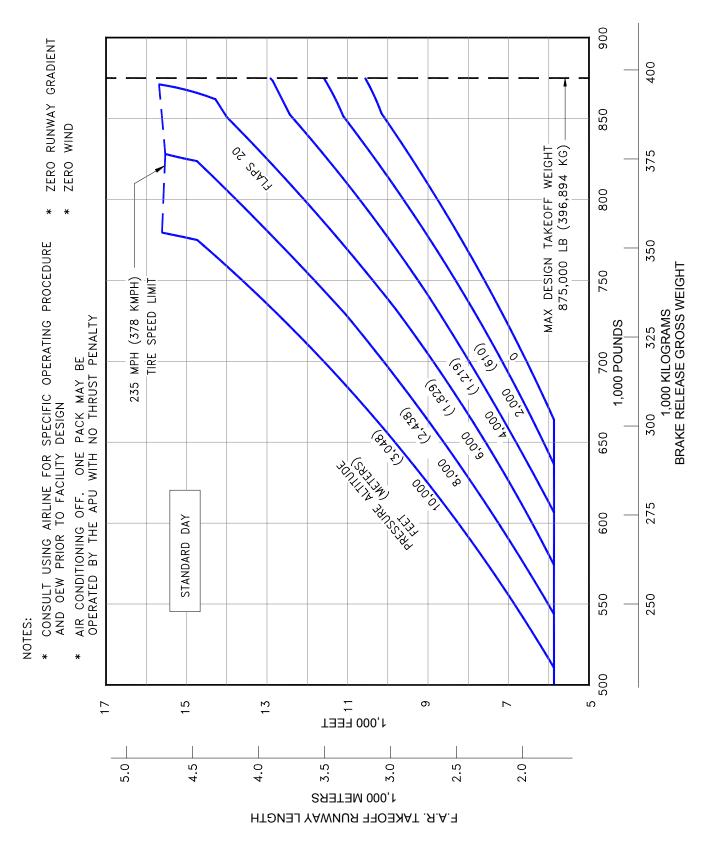


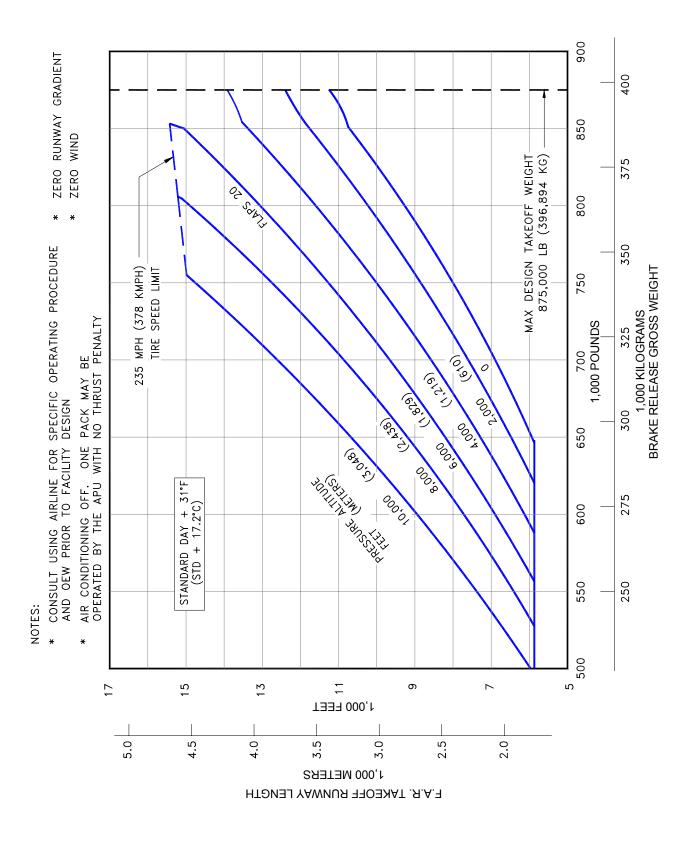
3.2.6 PAYLOAD/RANGE FOR 0.85 MACH CRUISE

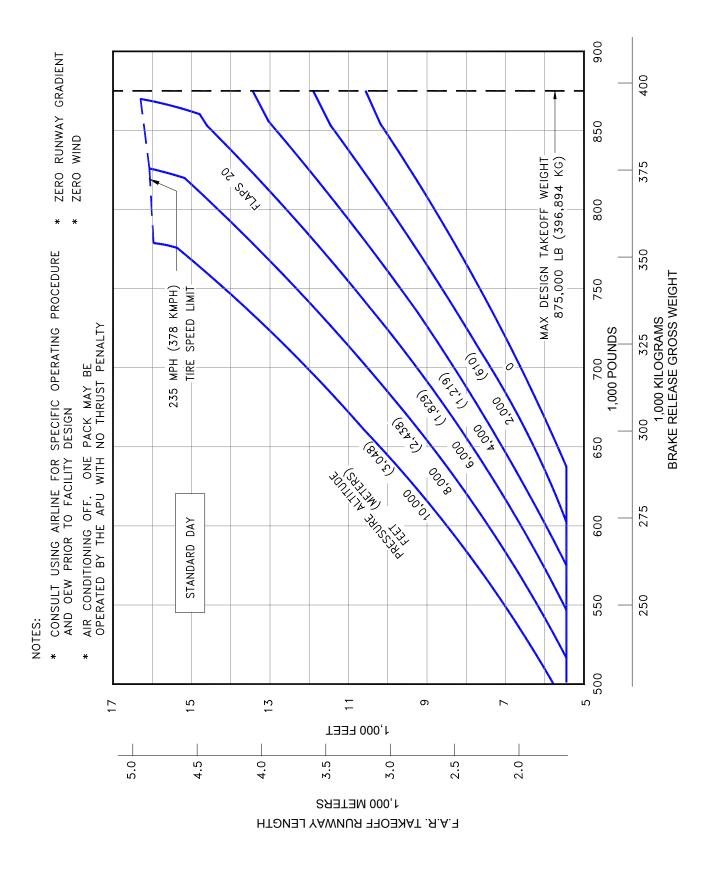

MODEL 747-400ER (PW 4062 ENGINES)

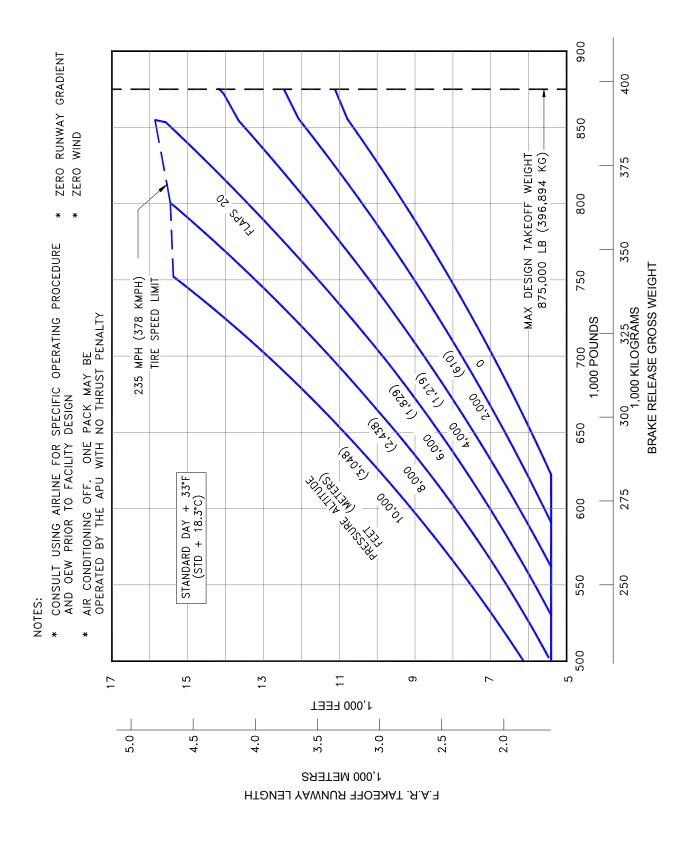

3.2.7 PAYLOAD/RANGE FOR 0.85 MACH CRUISE MODEL 747-400ER (RB211-524H8-T ENGINES)

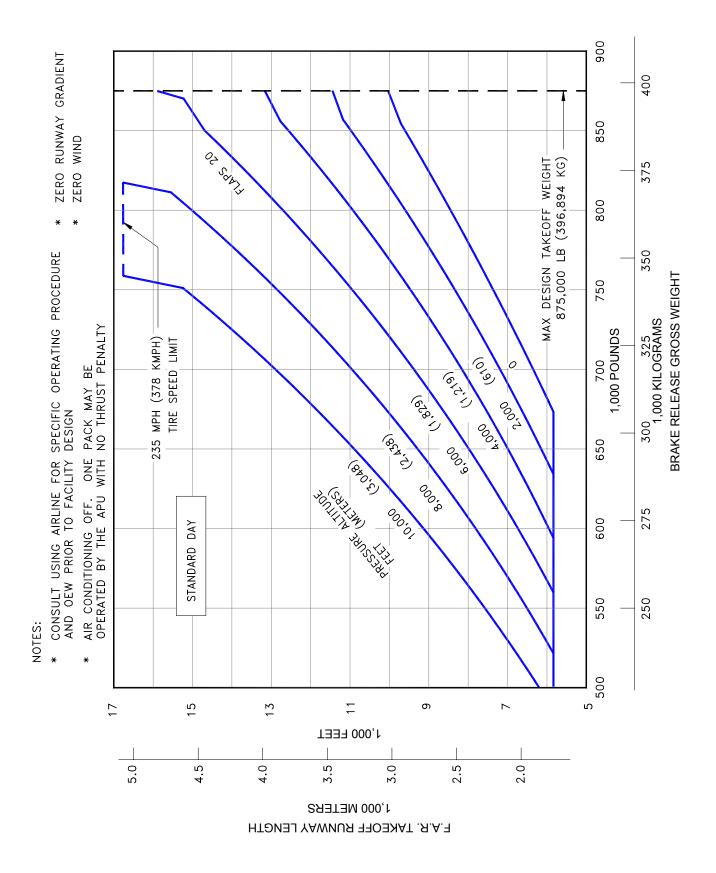

3.2.8 PAYLOAD/RANGE FOR 0.85 MACH CRUISE MODEL 747-400ER FREIGHTER (CF6-80C2B5F ENGINES)

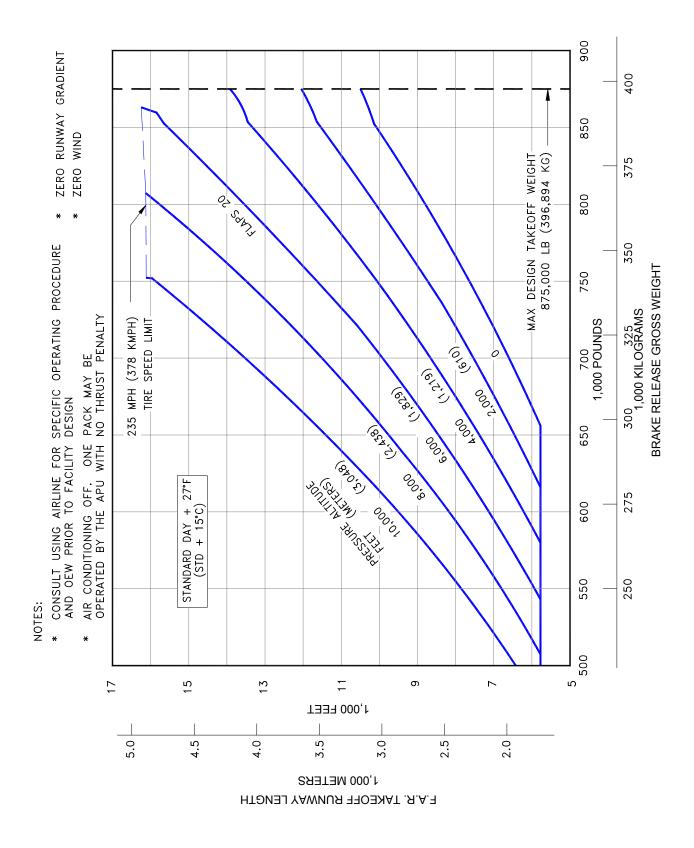

3.2.9 PAYLOAD/RANGE FOR 0.85 MACH CRUISE MODEL 747-400ER FREIGHTER (PW4062 ENGINES)

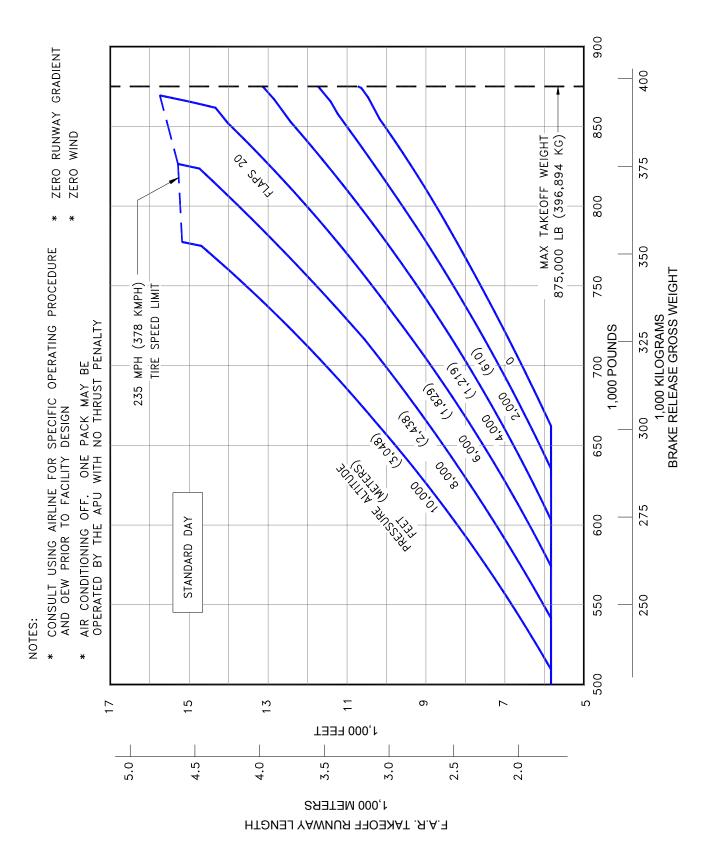

3.2.10 PAYLOAD/RANGE FOR 0.85 MACH CRUISE MODEL 747-400ER FREIGHTER (RB211-524H8-T ENGINES)

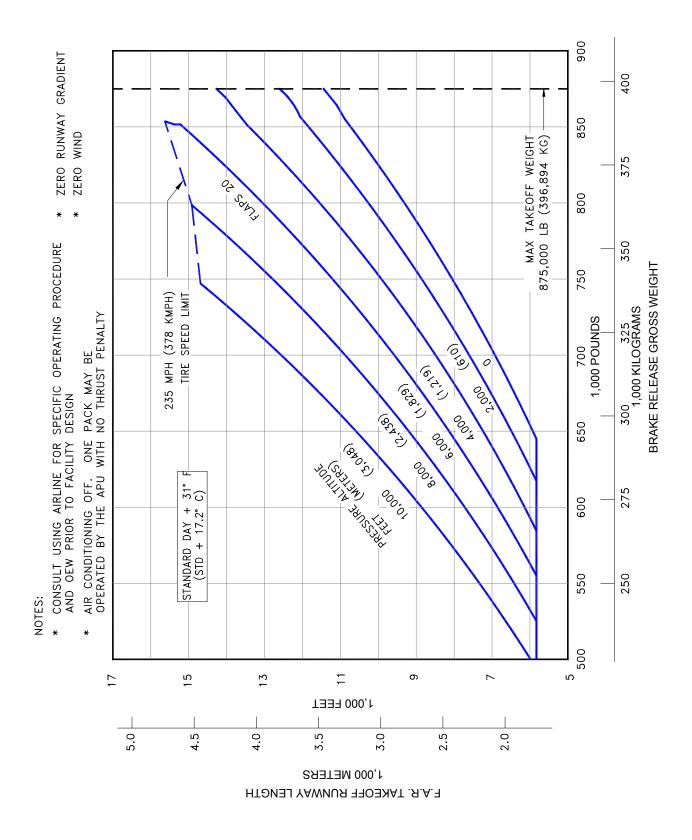

3.2.11 PAYLOAD/RANGE FOR 0.84 MACH CRUISE MODEL 747-400 DOMESTIC (CF6-80C2B1F ENGINES)

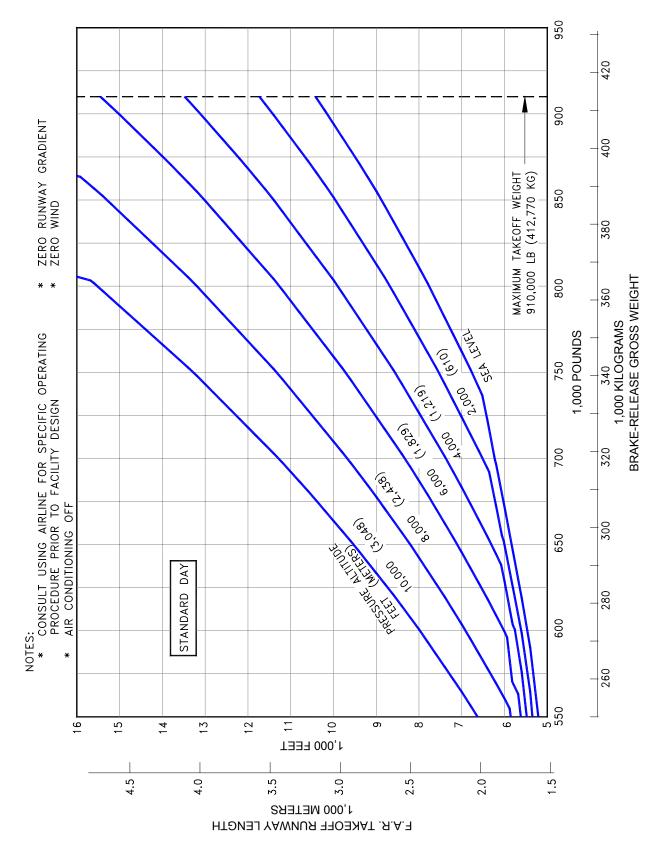

3.3.1 F.A.R. TAKEOFF RUNWAY LENGTH REQUIREMENTS - STANDARD DAY MODEL 747-400 (CF6-80C2B1 ENGINES)

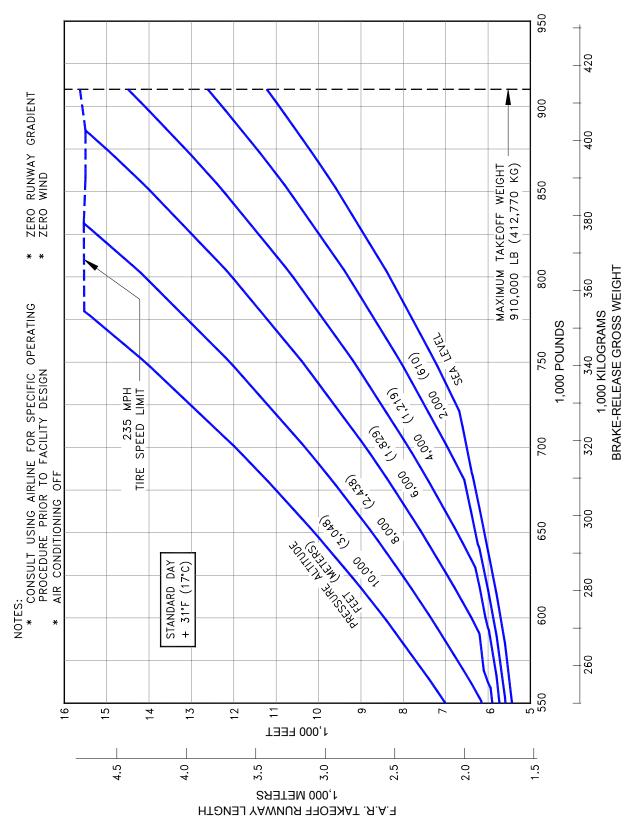


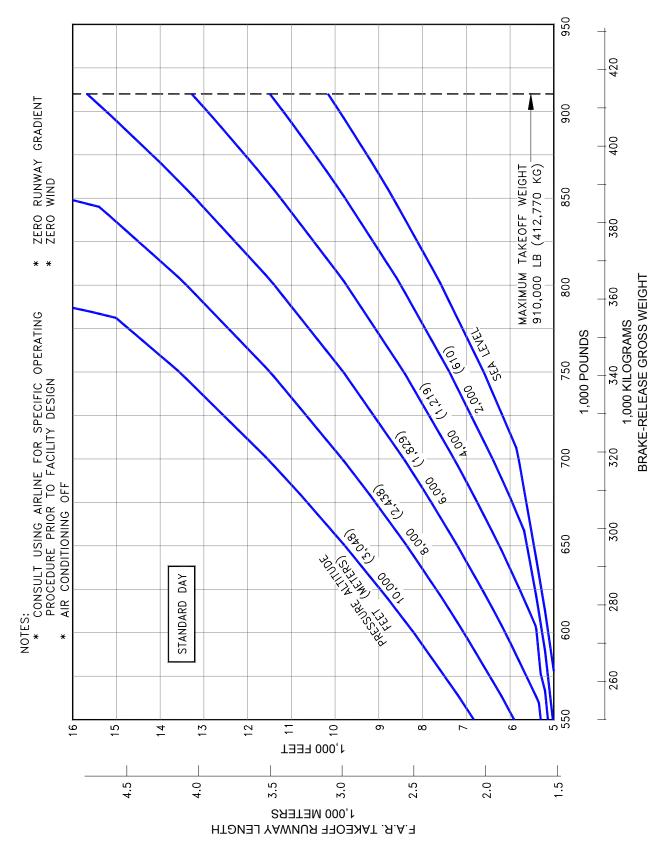

3.3.3 F.A.R. TAKEOFF RUNWAY LENGTH REQUIREMENTS - STANDARD DAY MODEL 747-400 (PW-4056 ENGINES)

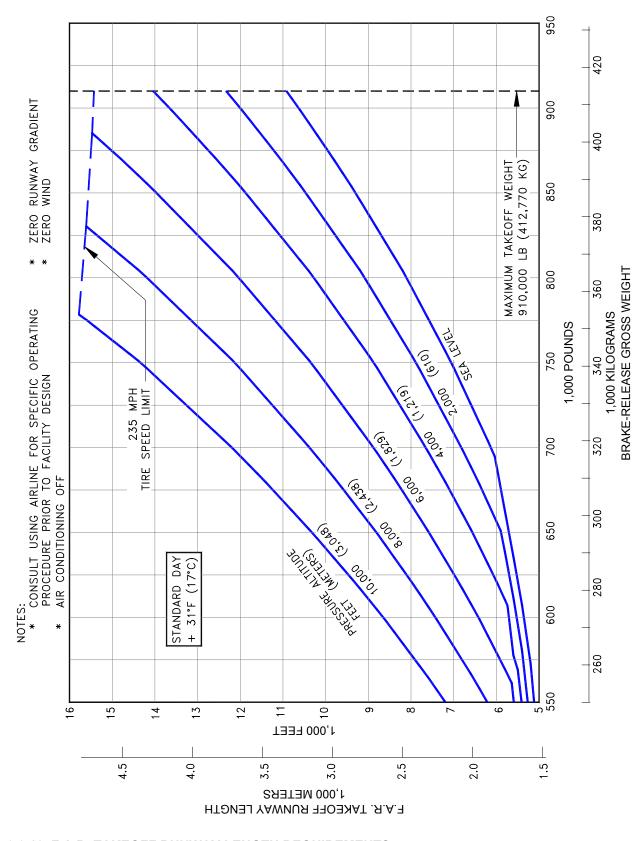


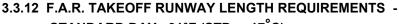

3.3.5 F.A.R. TAKEOFF RUNWAY LENGTH REQUIREMENTS - STANDARD DAY MODEL 747-400 (RB211-524G2 ENGINES)

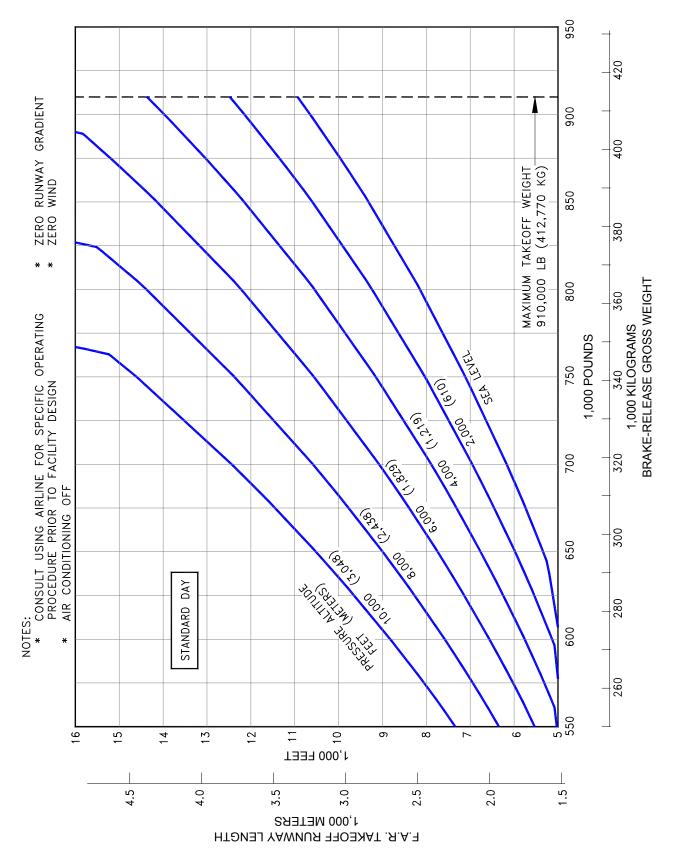



3.3.7 F.A.R. TAKEOFF RUNWAY LENGTH REQUIREMENTS - STANDARD DAY MODEL 747-400 FREIGHTER (CF6-80C2B1 ENGINES)

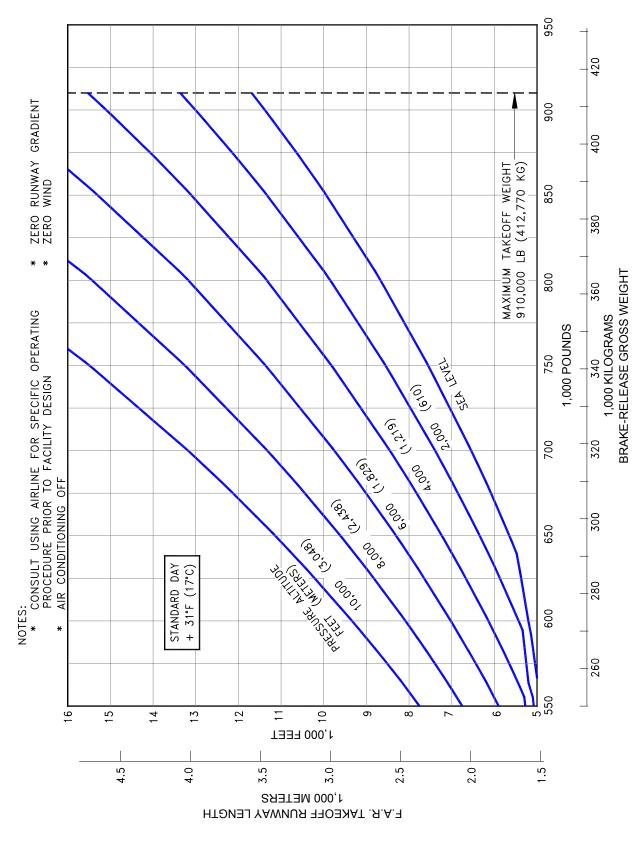

3.3.8 F.A.R. TAKEOFF RUNWAY LENGTH REQUIREMENTS -STANDARD DAY +31°F (STD + 17.2°C) MODEL 747-400 FREIGHTER (CF6-80C2B1 ENGINES)

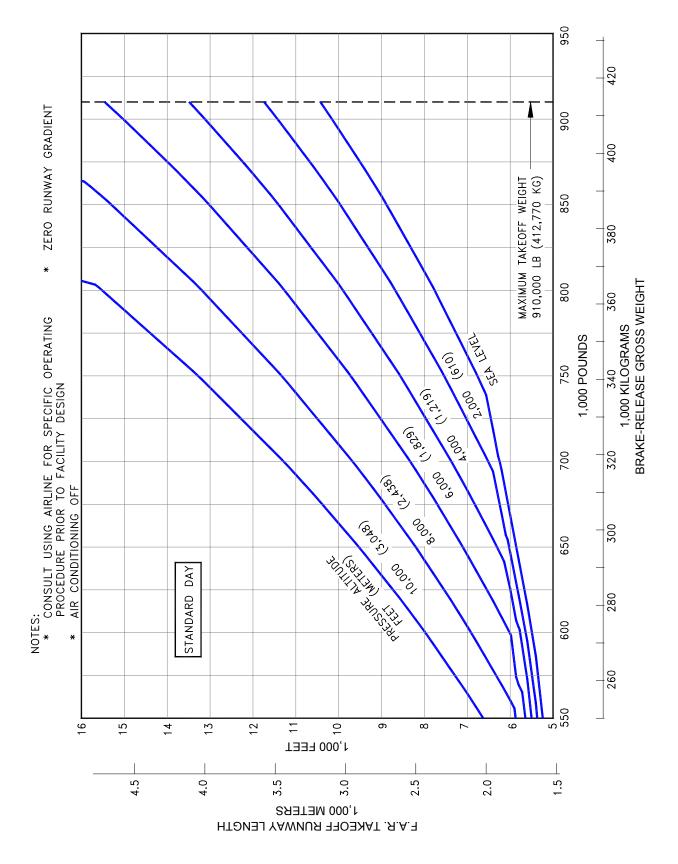

3.3.9 F.A.R. TAKEOFF RUNWAY LENGTH REQUIREMENTS - STANDARD DAY MODEL 747-400ER (CF6-80C2B5F ENGINES)

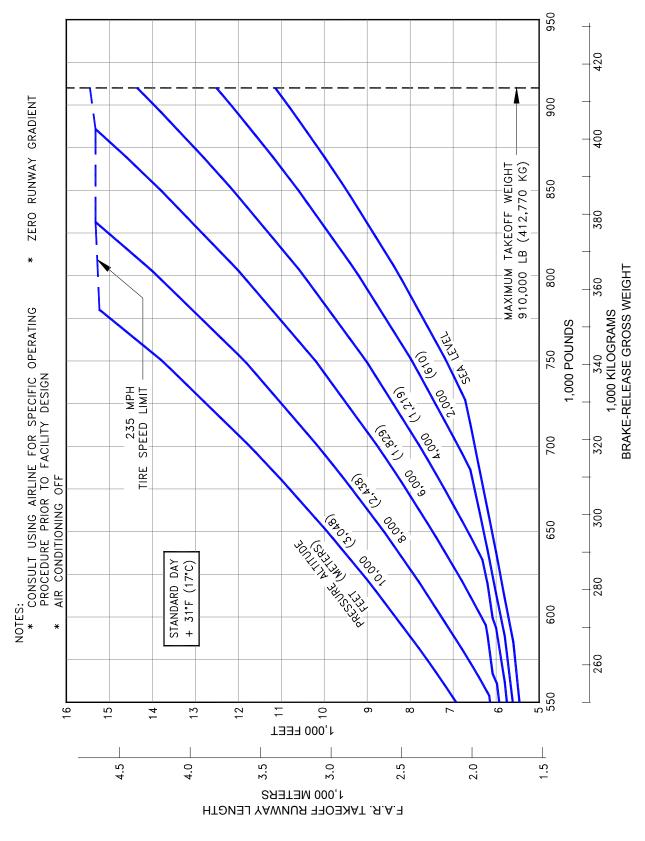


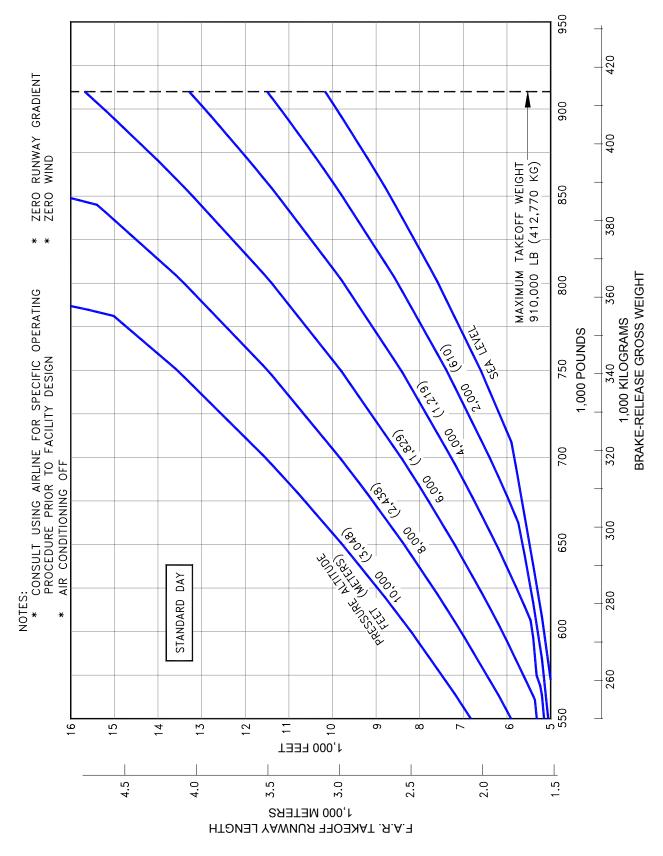


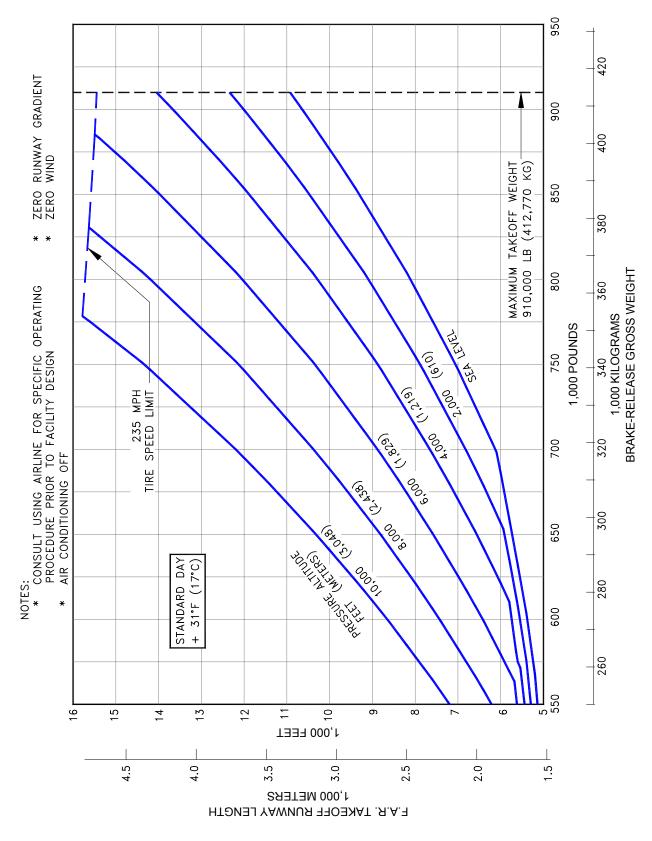
3.3.11 F.A.R. TAKEOFF RUNWAY LENGTH REQUIREMENTS - STANDARD DAY MODEL 747-400ER (PW-4062 ENGINES)

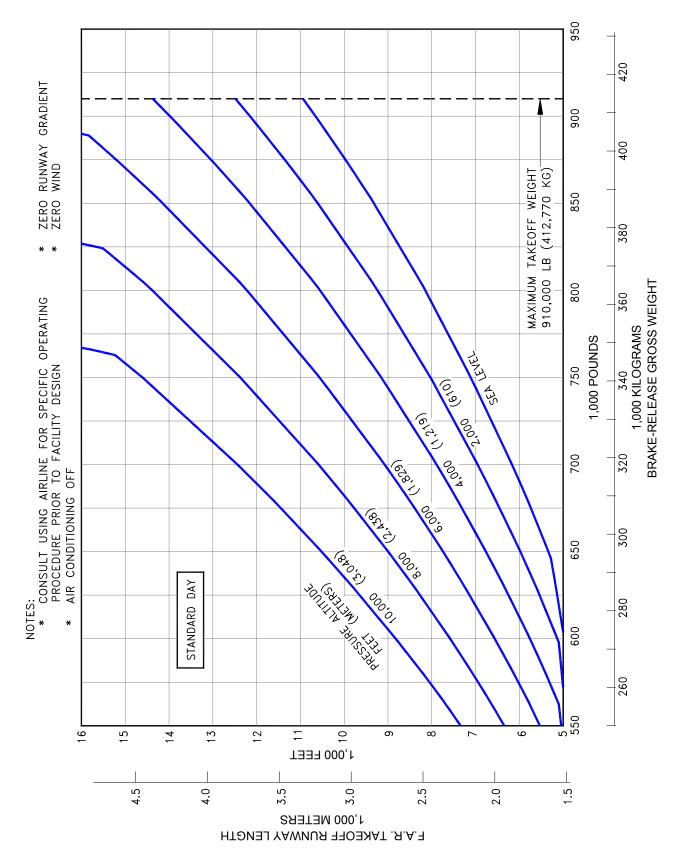


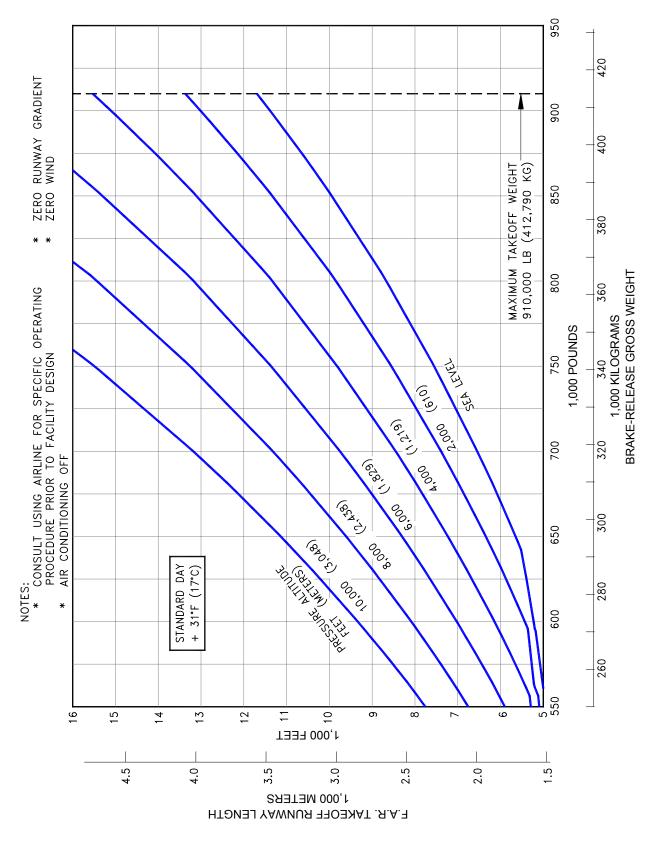

STANDARD DAY +31°F (STD + 17°C) MODEL 747-400ER (PW4062 ENGINES)

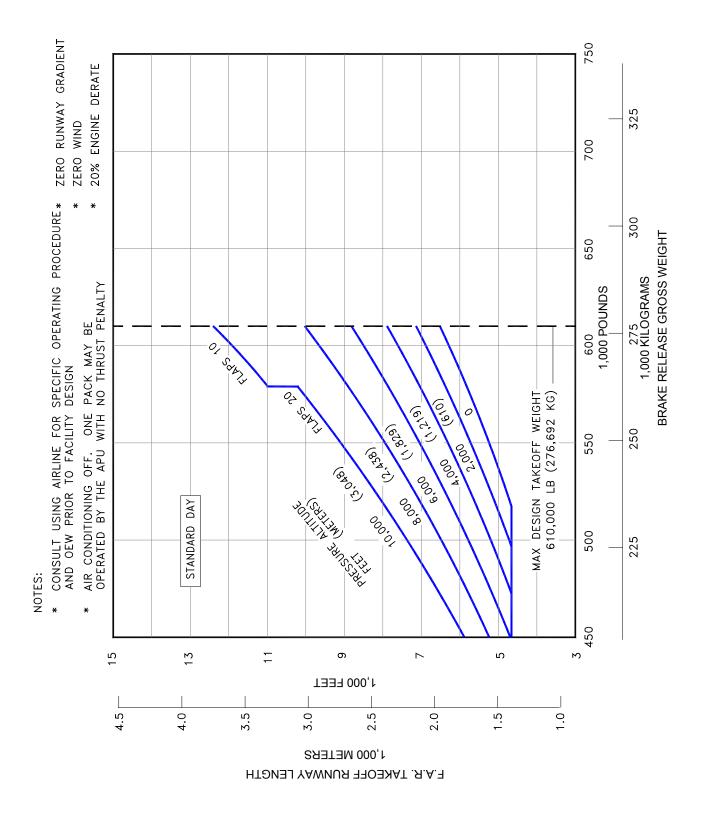

3.3.13 F.A.R. TAKEOFF RUNWAY LENGTH REQUIREMENTS - STANDARD DAY MODEL 747-400ER (RB211-524H8-T ENGINES)

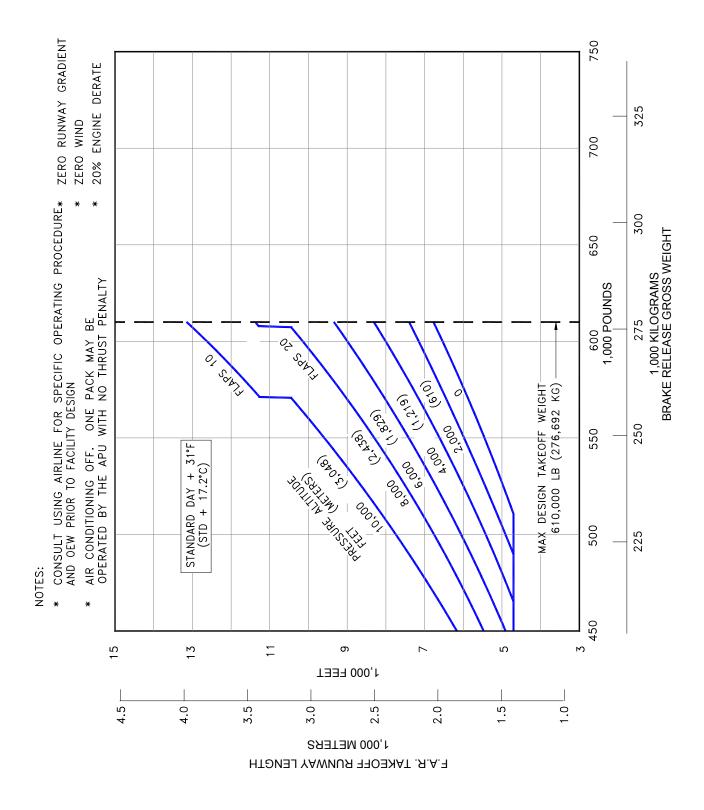


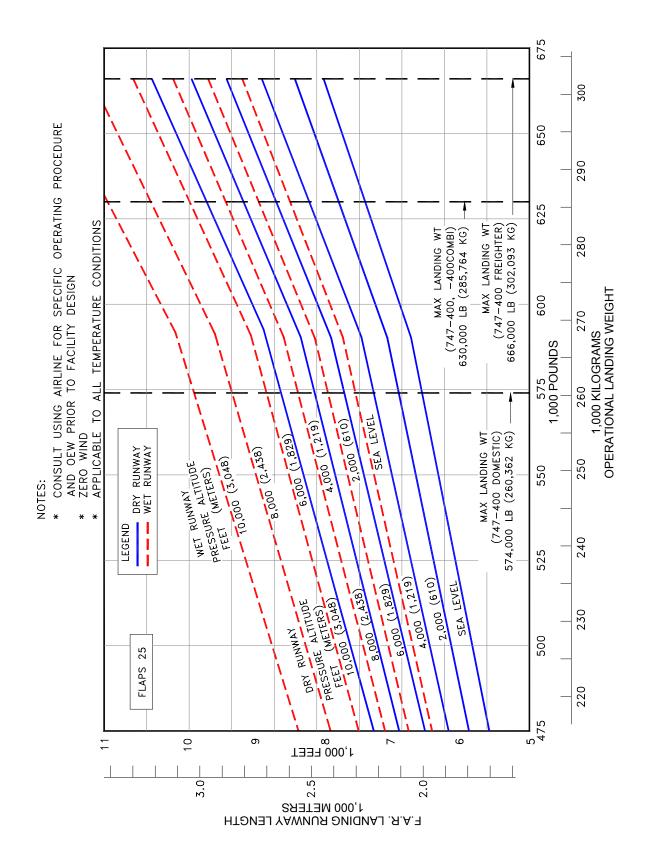

3.3.15 F.A.R. TAKEOFF RUNWAY LENGTH REQUIREMENTS - STANDARD DAY MODEL 747-400ER FREIGHTER (CF6-80C2B5F ENGINES)





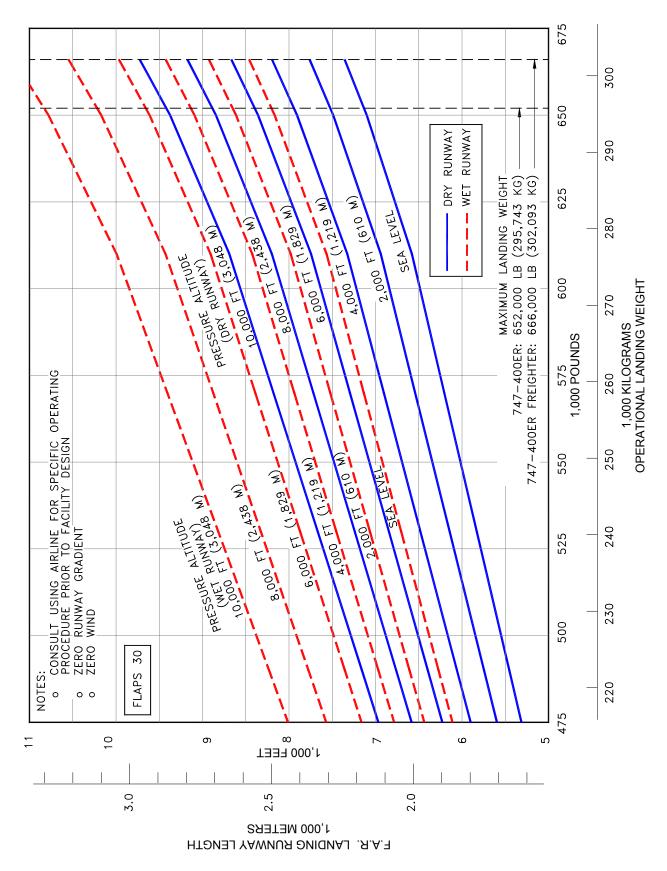

STANDARD DAY + 31°F (STD + 17°C) MODEL 747-400ER FREIGHTER (PW4062 ENGINES)


3.3.19 F.A.R. TAKEOFF RUNWAY LENGTH REQUIREMENTS - STANDARD DAY MODEL 747-400ER FREIGHTER (RB211-524H8-T ENGINES)



3.3.21 F.A.R. TAKEOFF RUNWAY LENGTH REQUIREMENTS - STANDARD DAY MODEL 747-400 DOMESTIC (CF6-80C2B1 ENGINES)

3.3.22 F.A.R. TAKEOFF RUNWAY LENGTH REQUIREMENTS -STANDARD DAY +31°F (STD + 17.2°C) MODEL 747-400 DOMESTIC (CF6-80C2B1 ENGINES)


3.4.1 F.A.R. LANDING RUNWAY LENGTH REQUIREMENTS - FLAPS 25 MODEL 747-400, -400 COMBI, -400 DOMESTIC, -400 FREIGHTER D6-58326-1

3.4.2 F.A.R. LANDING RUNWAY LENGTH REQUIREMENTS - FLAPS 30 MODEL 747-400, -400 COMBI, -400 DOMESTIC, -400 FREIGHTER

3.4.4 F.A.R. LANDING RUNWAY LENGTH REQUIREMENTS - FLAPS 30 MODEL 747-400ER, -400ER FREIGHTER

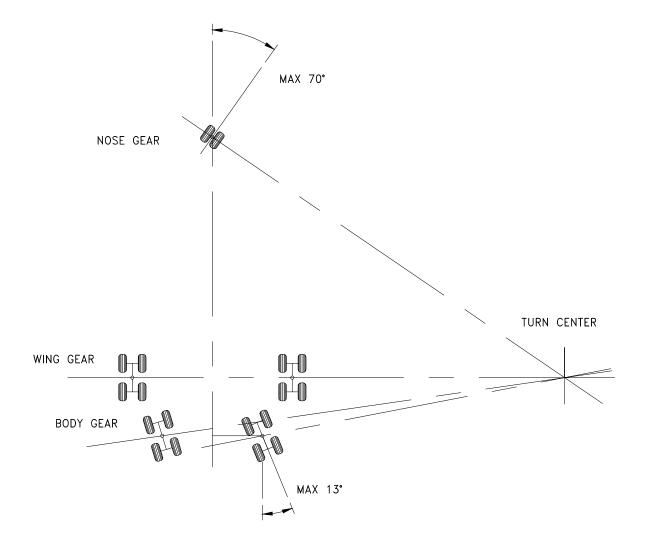
THIS PAGE INTENTIONALLY LEFT BLANK

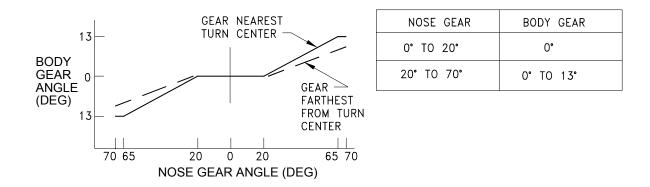
4.0 GROUND MANEUVERING

- 4.1 General Information
- 4.2 Turning Radii
- 4.3 Clearance Radii
- 4.4 Visibility From Cockpit in Static Position
- 4.5 Runway and Taxiway Turn Paths
- 4.6 Runway Holding Bay

4.0 GROUND MANEUVERING

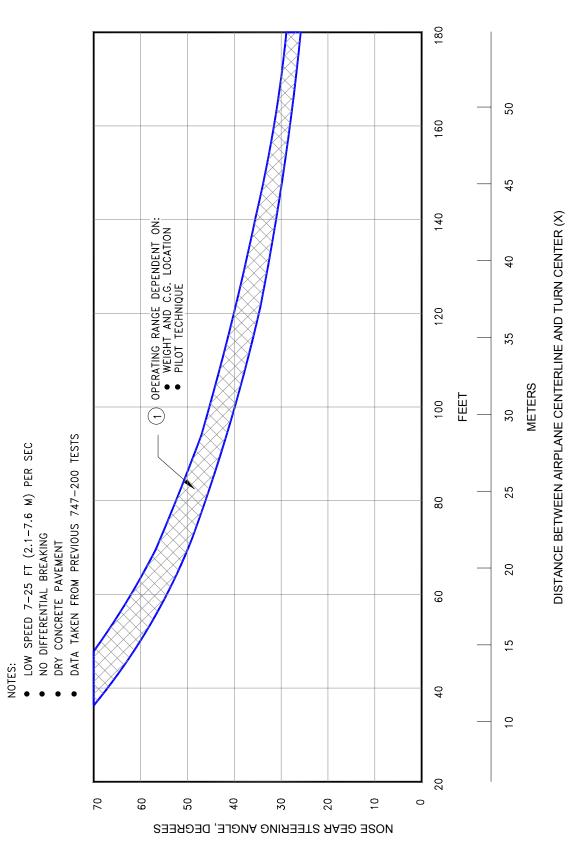
4.1 General Information

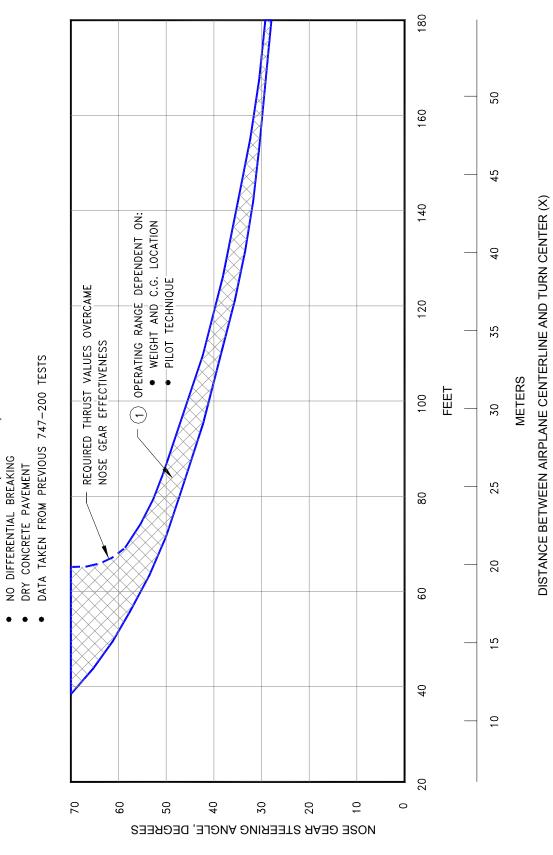

The 747 main landing gear consists of four main struts, each strut with four wheels. This geometric arrangement of the four main gears results in somewhat different ground maneuvering characteristics from those experienced with typical landing gear aircraft.


Basic factors that influence the geometry of the turn include:

- 1. Nose wheel steering angle
- 2. Engine power settings
- 3. Center of gravity location
- 4. Airplane weight
- 4. Pavement surface conditions
- 6. Amount of differential braking
- 7. Ground speed
- 8. Main landing gear steering

The steering system of the 747 incorporates steering of the main body landing gear in addition to the nose gear steering. This body gear steering system is hydraulically actuated and is programmed electrically to provide steering ratios proportionate to the nose gear steering angles. During takeoff and landing, the body gear steering system is centered, mechanically locked, and depressurized.

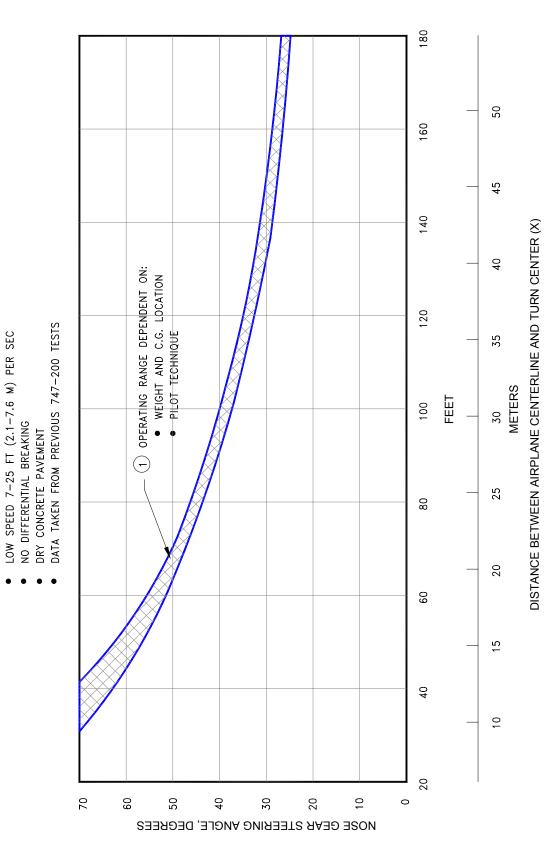

Steering of the main body gear has the following advantages over ground maneuvering without this steering feature; overall improved maneuverability, including improved nose gear tracking; elimination of the need for differential braking during ground turns, with subsequent reduced brake wear; reduced thrust requirements; lower main gear stress levels; and reduced tire scrubbing. The turning radii shown in Section 4.2 are derived from a previous test involving a 747-200. The 747-400 is expected to follow the same maneuvering characteristics.



NOSEGEAR/BODY GEAR TURN RATIOS

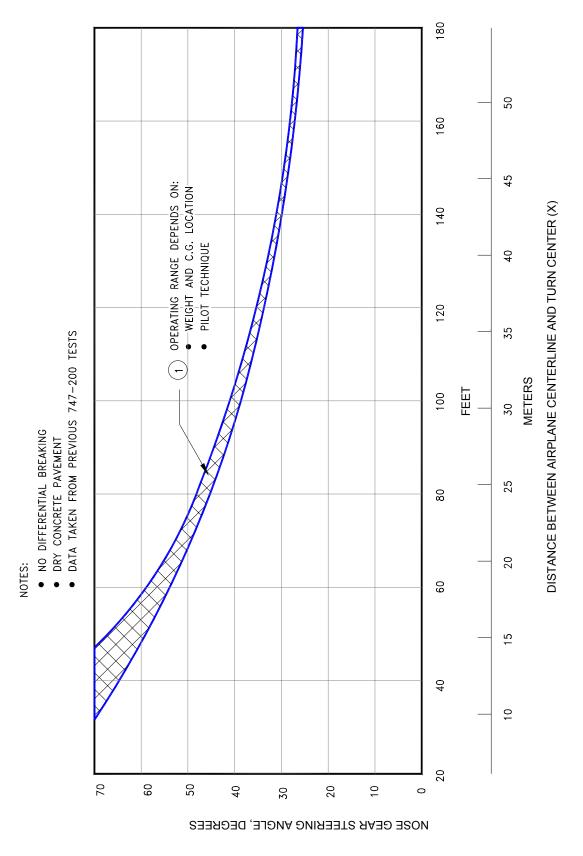
4.1.1 GENERAL INFORMATION MODEL 747

4.2.1 TURNING RADII - WITH BODY GEAR STEERING - SYMMETRICAL THRUST MODEL 747

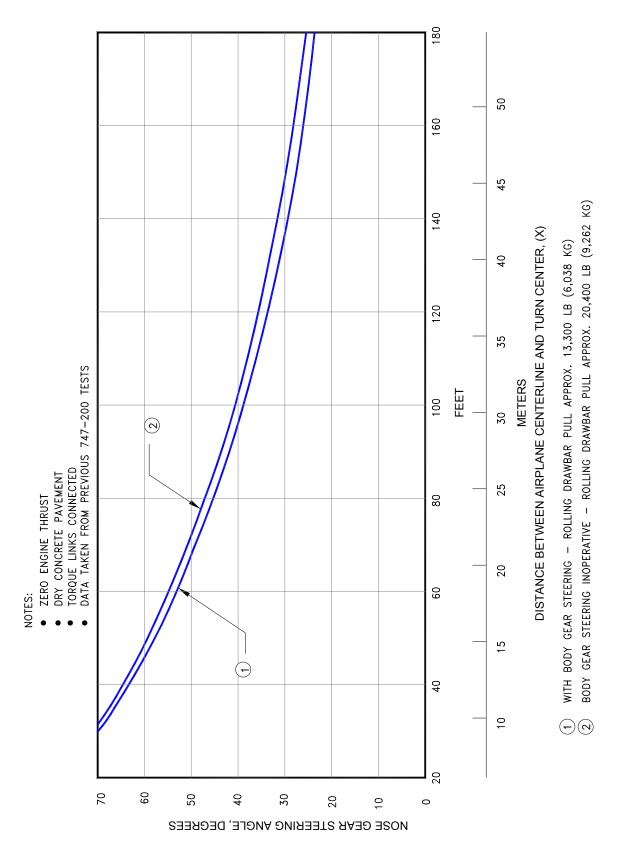


LOW SPEED 7-25 FT (2.1-7.6 M) PER SEC

NOTES:


•

4.2.2 TURNING RADII - BODY GEAR STEERING INOPERATIVE - SYMMETRICAL THRUST MODEL 747



4.2.3 TURNING RADII - WITH BODY GEAR STEERING - UNSYMMETRICAL THRUST MODEL 747

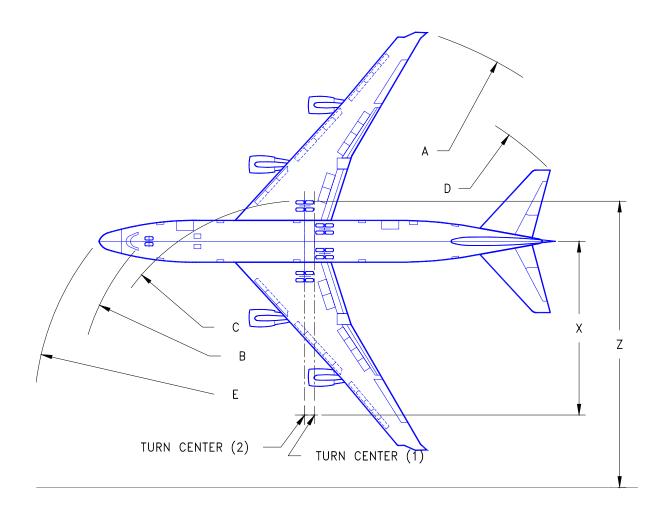
NOTES:

4.2.4 TURNING RADII - BODY GEAR STEERING INOPERATIVE- SYMMETRICAL THRUST MODEL 747

^{4.2.5} TURNING RADII - TOWED MODEL 747

2. VALUES ARE ROUNDED TO THE NEAREST FOOT												
	RADIUS (FEET)										Z (3)	
Χ*	A (4) WING TIP T)		B (3)		C (3)		D		E		MINIMUM	
			NOSE GEAR		WING GEAR		TAIL TIP		NOSE		WIDTH FOR	
(FEET)											180°TURN	
	(1)	(2)	(1)	(2)	(1)	(2)	(1)	(2)	(1)	(2)	(1)	(2)
40	157	159	96	91	61	61	142	146	117	112	156	152
60	176	177	106	102	81	81	154	158	125	120	187	183
80	195	196	119	115	101	101	167	171	136	132	219	216
100	214	215	133	130	121	121	182	185	148	145	254	251
120	233	234	149	146	141	141	197	200	162	159	290	287
140	253	254	166	163	161	161	213	216	178	175	327	324
160	272	273	183	181	181	181	230	233	194	191	364	362

NOTES: 1. CONSULT AIRLINE FOR OPERATING PROCEDURES 2 VALUES ARE ROUNDED TO THE NEAREST FOOT


* X = DISTANCE BETWEEN AIRPLANE CENTERLINE AND TURN CENTER

(1) BODY GEAR STEERING INOPERATIVE

(2) WITH BODY GEAR STEERING

(3) MEASURED TO OUTSIDE TIRE FACES

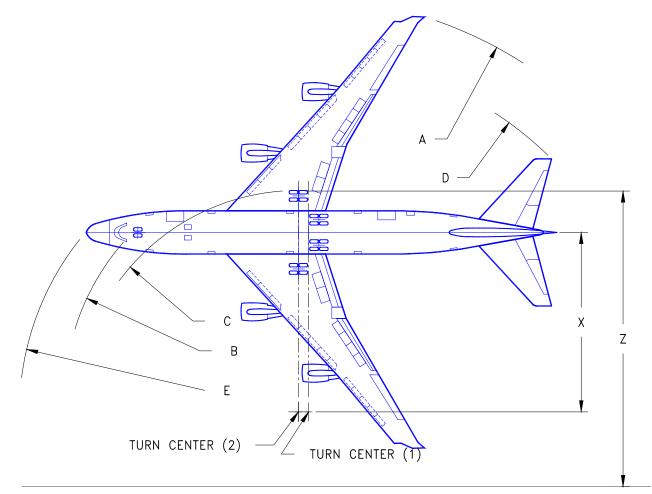
(4) WINGSPAN AT 213 FEET

4.3.1 CLEARANCE RADII - ENGLISH UNITS

MODEL 747-400, -400 COMBI, -400 FREIGHTER, -400ER, -400ER FREIGHTER

2. VALUES ARE ROUNDED TO THE NEAREST 0.1 METER												
	RADIUS (METERS)										Z (3)	
X *	A (4)		B (3)		C (3)		D		E		MINIMUM	
	WING TIP		NOSE GEAR		WING GEAR		TAIL TIP		NOSE		WIDTH FOR	
											180°TURN	
(METERS)											(METERS)	
	(1)	(2)	(1)	(2)	(1)	(2)	(1)	(2)	(1)	(2)	(1)	(2)
15	50.4	50.9	30.5	29.2	21.3	21.3	44.9	46.1	36.6	35.2	51.8	50.5
20	55.1	55.6	33.3	32.1	26.3	26.3	48.0	49.1	38.9	37.6	59.6	58.4
25	59.9	60.3	36.6	35.5	31.3	31.3	51.3	52.4	41.7	40.5	67.9	66.8
30	64.7	65.1	40.2	39.3	36.3	36.3	55.0	56.0	44.9	43.7	76.5	75.6
35	69.5	69.9	44.2	43.3	41.3	41.3	58.8	59.8	48.3	47.3	85.5	84.6
40	74.4	74.8	48.3	47.5	46.3	46.3	62.8	63.7	52.1	51.1	94.6	93.8
45	79.3	79.6	52.6	51.8	51.3	51.3	66.9	67.8	56.0	55.1	103.9	103.1

NOTES: 1. CONSULT AIRLINE FOR OPERATING PROCEDURES 2. VALUES ARE ROUNDED TO THE NEAREST 0.1 METER


* X = DISTANCE BETWEEN AIRPLANE CENTERLINE AND TURN CENTER

(1) BODY GEAR STEERING INOPERATIVE

(2) WITH BODY GEAR STEERING

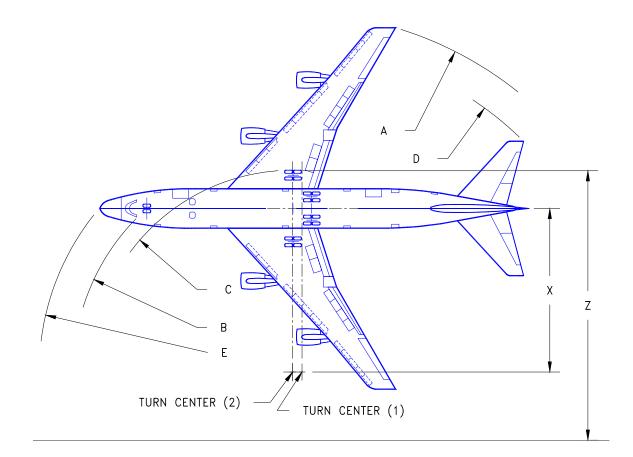
(3) MEASURED TO OUTSIDE TIRE FACES

(4) WINGSPAN AT 64.9 METERS

4.3.2 CLEARANCE RADII - METRIC UNITS

MODEL 747-400, -400 COMBI, -400 FREIGHTER, -400ER, -400ER FREIGHTER

					RADIUS		01120				7	(3)
X * (FEET)		A G TIP		(3) GEAR	С	(3) GEAR] TAIL) . TIP	e NO	E ISE	MINI WIDTI	MUM H FOR TURN
	(1)	(2) (1 151 96		(2)	(1)	(2)	(1)	(2)	(1)	(2)	(1)	(2)
40	148	151	96	91	61	61	142	146	117	112	156	152
60	168	170	106	102	81	81	154	158	125	120	187	183
80	187	188	119	115	101	101	167	171	136	132	219	216
100	206	207	133	130	121	121	182	185	148	145	254	251
120	225	226	149	146	141	141	197	200	162	159	290	287
140	245	246	166	163	161	161	213	216	178	175	327	324
160	264	265	183	181	181	181	230	233	194	191	364	362


NOTE: CONSULT AIRLINE FOR OPERATING PROCEDURES

* X = DISTANCE BETWEEN AIRPLANE CENTERLINE AND TURN CENTER

(1) BODY GEAR STEERING INOPERATIVE

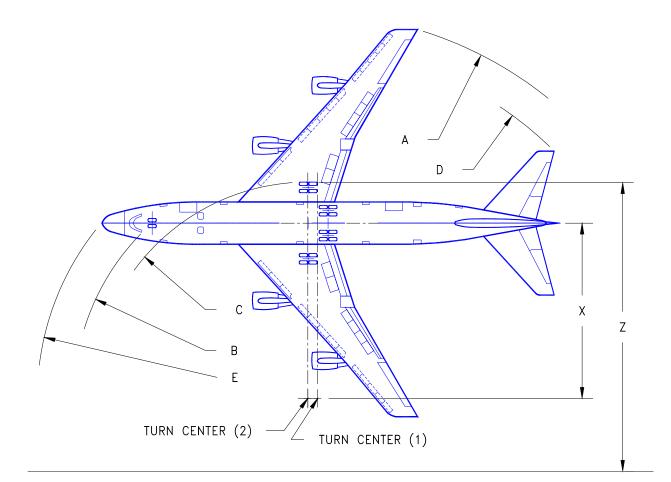
(2) WITH BODY GEAR STEERING

(3) MEASURED TO OUTSIDE TIRE FACES

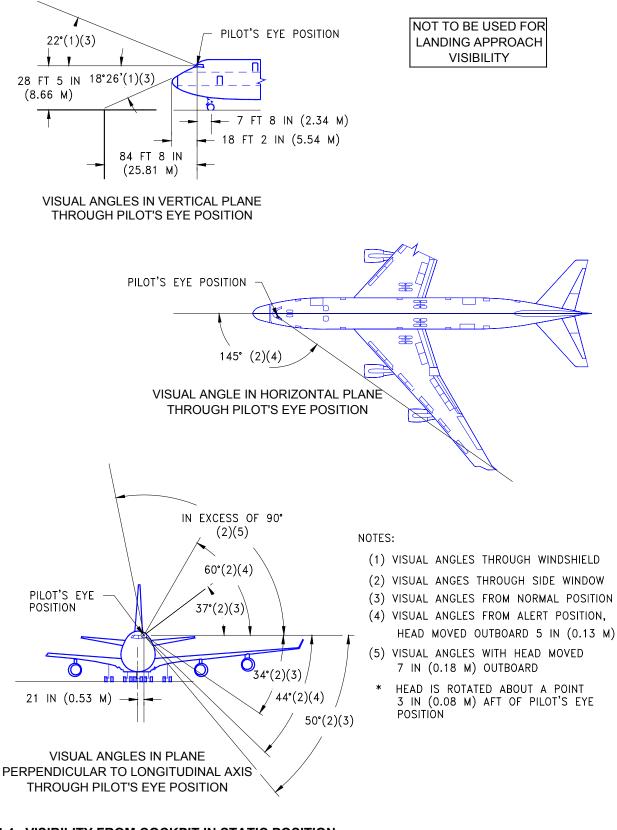
4.3.3 CLEARANCE RADII - ENGLISH UNITS

MODEL 747-400 DOMESTIC

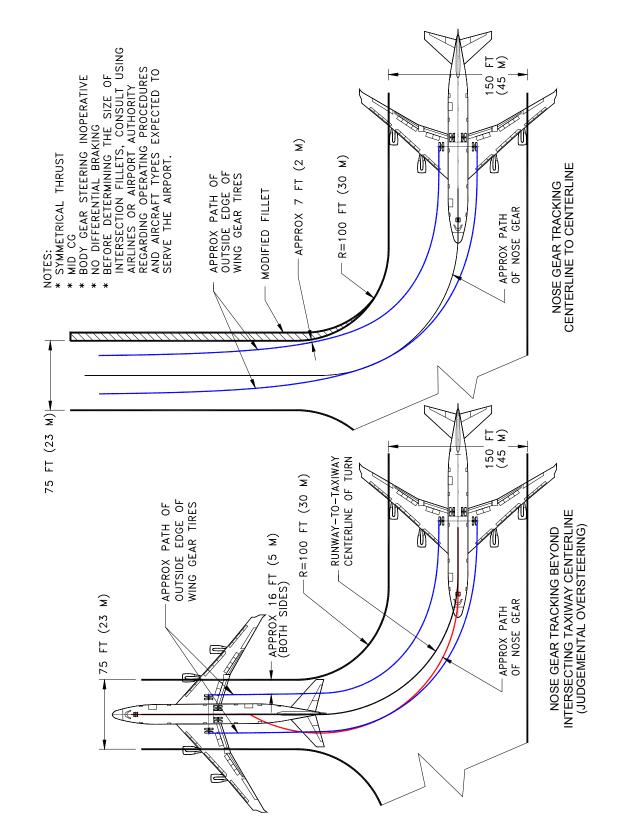
				F	RADIUS (METERS)				Z	(3)
X *		4		(3)		(3)]		E		MINI	-
(METERS)	WING	3 TIP	NOSE	GEAR	WING	GEAR	TAIL	. TIP	NO	SE	180°	H FOR FURN ERS)
	(1)	(2)	(1)	(2)	(1)	(2)	(1)	(2)	(1)	(2)	(1)	(2)
15	48.2	48.8	30.5	29.2	21.3	21.3	44.9	46.1	36.6	35.2	51.8	50.5
20	52.7	53.3	33.3	32.1	26.3	26.3	48.0	49.1	38.9	37.6	59.6	58.4
25	57.6	59.7	36.6	35.5	31.3	31.3	51.3	52.4	41.7	40.5	67.9	66.8
30	62.2	62.8	40.2	39.3	36.3	36.3	55.0	56.0	44.9	43.7	76.5	75.6
35	67.1	67.7	44.2	43.3	41.3	41.3	58.8	59.8	48.3	47.3	85.5	84.6
40	71.9	72.2	48.3	47.5	46.3	46.3	62.8	63.7	52.1	51.1	94.6	93.8
45	76.8	77.1	52.6	51.8	51.3	51.3	66.9	67.8	56.0	55.1	103.9	103.1

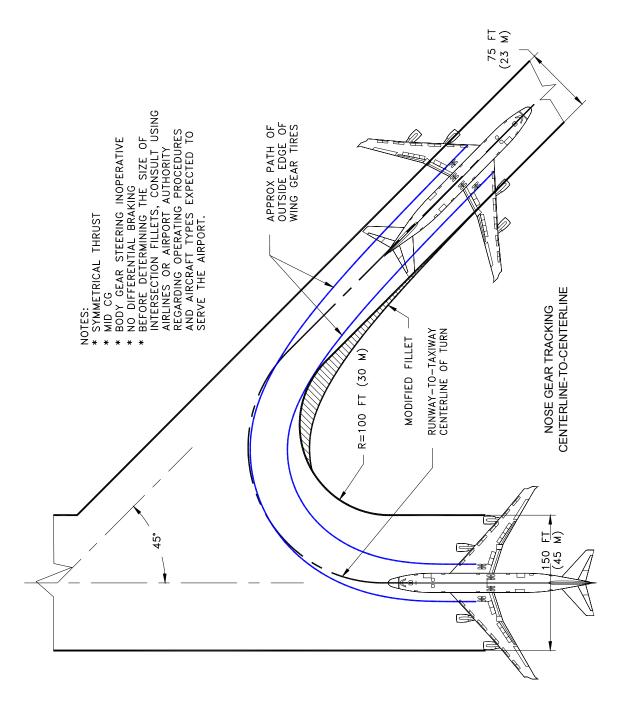

NOTE: CONSULT AIRLINE FOR OPERATING PROCEDURES

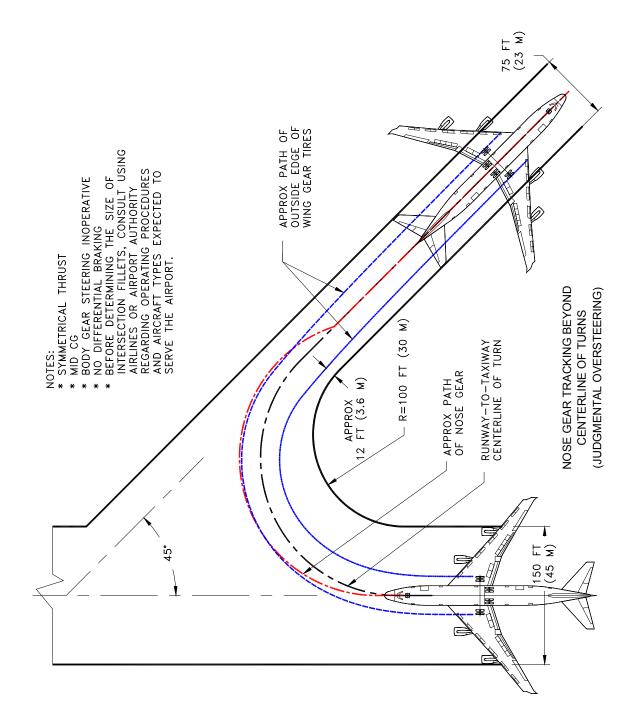
* X = DISTANCE BETWEEN AIRPLANE CENTERLINE AND TURN CENTER

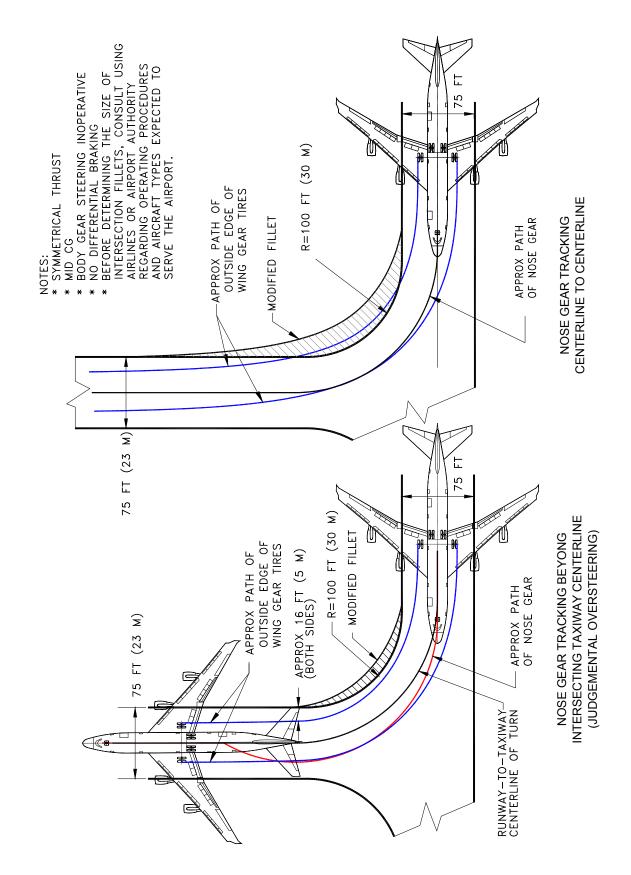

(1) BODY GEAR STEERING INOPERATIVE

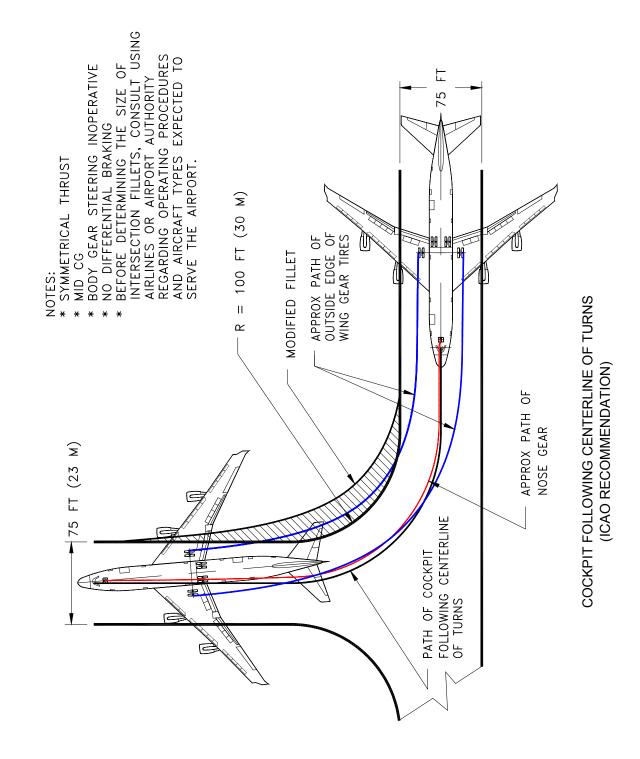
(2) WITH BODY GEAR STEERING

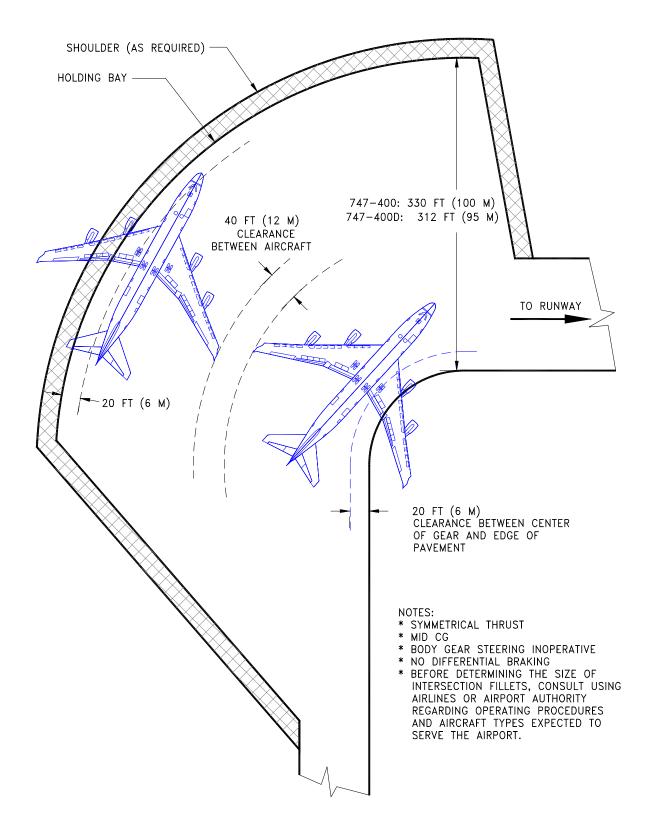

(3) MEASURED TO OUTSIDE TIRE FACES


4.3.4 CLEARANCE RADII - METRIC UNITS MODEL 747-400 DOMESTIC




4.5.1 RUNWAY AND TAXIWAY TURN PATHS - RUNWAY-TO-TAXIWAY, 90 DEGREES MODEL 747-400


4.5.2 RUNWAY AND TAXIWAY TURN PATHS - RUNWAY-TO-TAXIWAY, MORE THAN 90 DEGREES, NOSE GEAR TRACKS CENTERLINE MODEL 747-400


4.5.3 RUNWAY AND TAXIWAY TURN PATHS - RUNWAY-TO-TAXIWAY, MORE THAN 90 DEGREES, JUDGMENTAL OVERSTEERING MODEL 747-400

4.5.4 RUNWAY AND TAXIWAY TURN PATHS - TAXIWAY-TO-TAXIWAY, 90 DEGREES MODEL 747-400

4.5.5 RUNWAY AND TAXIWAY TURN PATHS - TAXIWAY-TO-TAXIWAY, 90 DEGREES, ICAO RECOMMENDATION MODEL 747-400

4.6 RUNWAY HOLDING BAY MODEL 747-400

THIS PAGE INTENTIONALLY LEFT BLANK

5.0 TERMINAL SERVICING

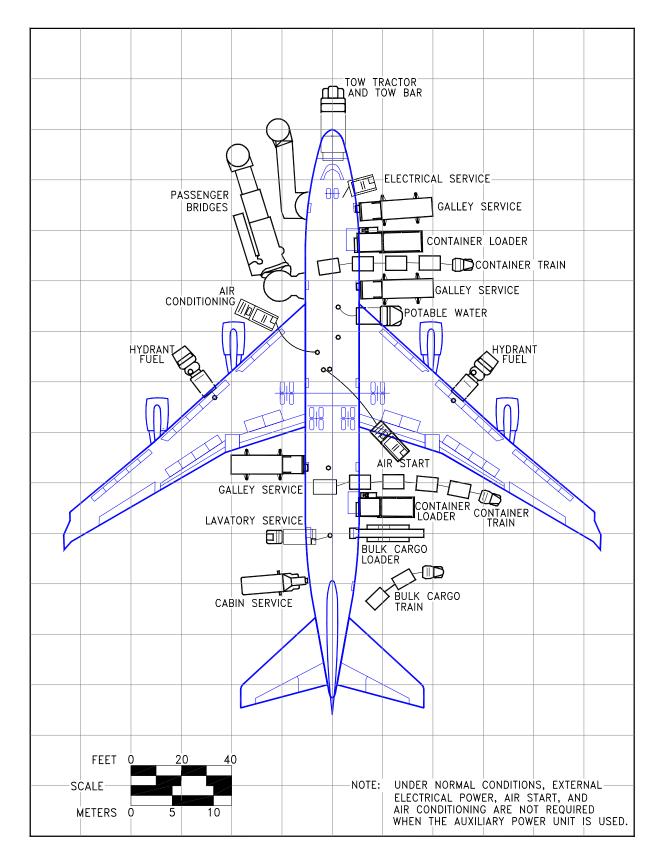
- 5.1 Airplane Servicing Arrangement Typical Turnaround
- 5.2 Terminal Operations Turnaround Station
- 5.3 Terminal Operations En Route Station
- 5.4 Ground Servicing Connections
- 5.5 Engine Starting Pneumatic Requirements
- 5.6 Ground Pneumatic Power Requirements
- 5.7 Conditioned Air Requirements
- 5.8 Ground Towing Requirements

5.0 TERMINAL SERVICING

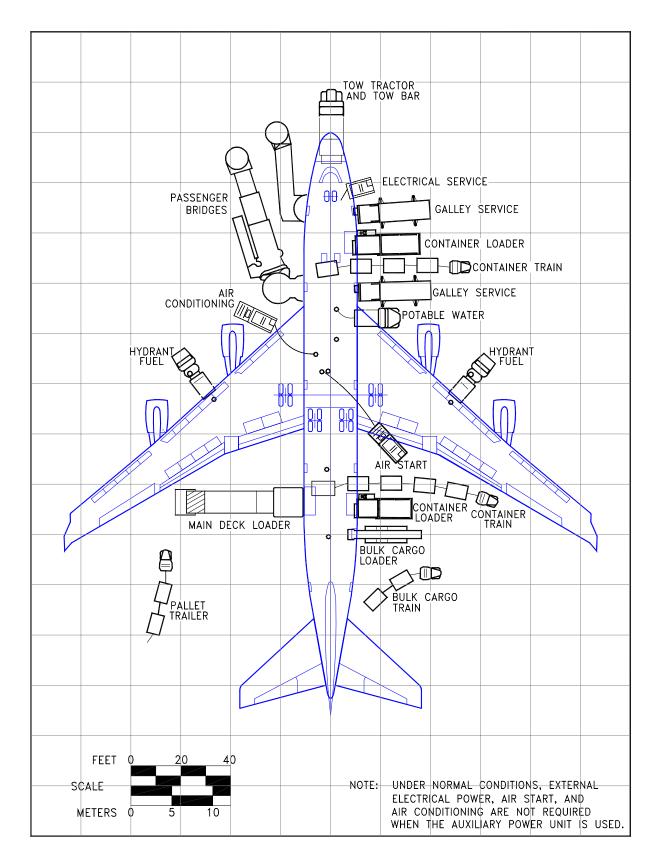
During turnaround at the terminal, certain services must be performed on the aircraft, usually within a given time, to meet flight schedules. This section shows service vehicle arrangements, schedules, locations of service points, and typical service requirements. The data presented in this section reflect ideal conditions for a single airplane. Service requirements may very according to airplane condition and airline procedure.

Section 5.1 shows typical arrangements of ground support equipment during turnaround. As noted, if the auxiliary power unit (APU) is used, the electrical, air start, and air-conditioning service vehicles would not be required. Passenger loading bridges or portable passenger stairs could be used to load or unload passengers.

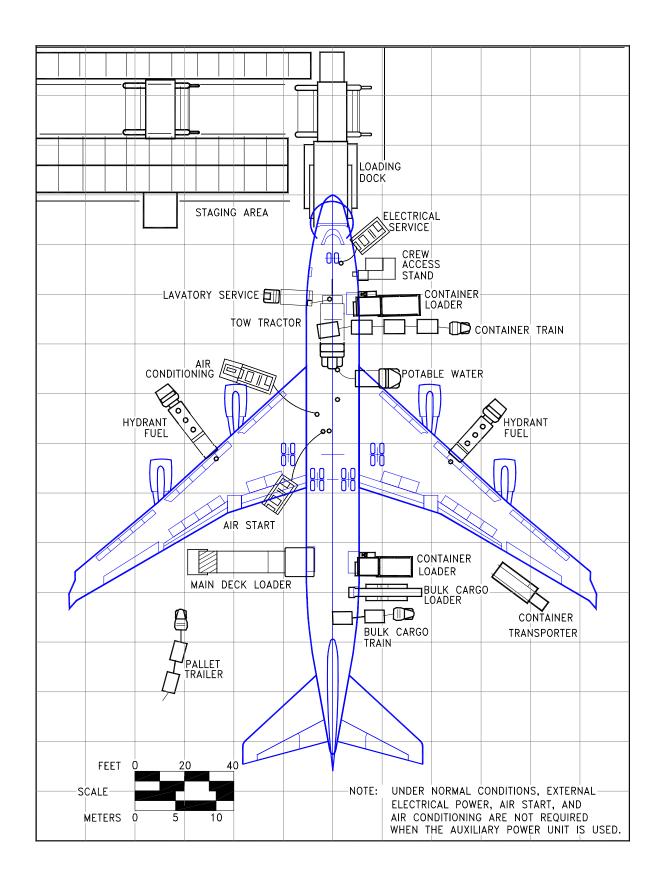
Sections 5.2 and 5.3 show typical service times at the terminal. These charts give typical schedules for performing service on the airplane within a given time. Service times could be rearranged to suit availability of personnel, airplane configuration, and degree of service required.


Section 5.4 shows the locations of ground service connections in graphic and in tabular forms. Typical capacities and service requirements are shown in the tables. Services with requirements that vary with conditions are described in subsequent sections.

Section 5.5 shows typical sea level air pressure and flow requirements for starting different engines. The curves are based on an engine start time of 90 seconds.


Section 5.6 shows pneumatic requirements for heating and cooling (air conditioning) using high pressure air to run the air cycle machine. The curves show airflow requirements to heat or cool the airplane within a given time and ambient conditions. Maximum allowable pressure and temperature for air cycle machine operation are 60 psia and 450° F, respectively.

Section 5.7 shows pneumatic requirements for heating and cooling the airplane, using low pressure conditioned air. This conditioned air is supplied through an 8-in ground air connection (GAC) directly to the passenger cabin, bypassing the air cycle machines.

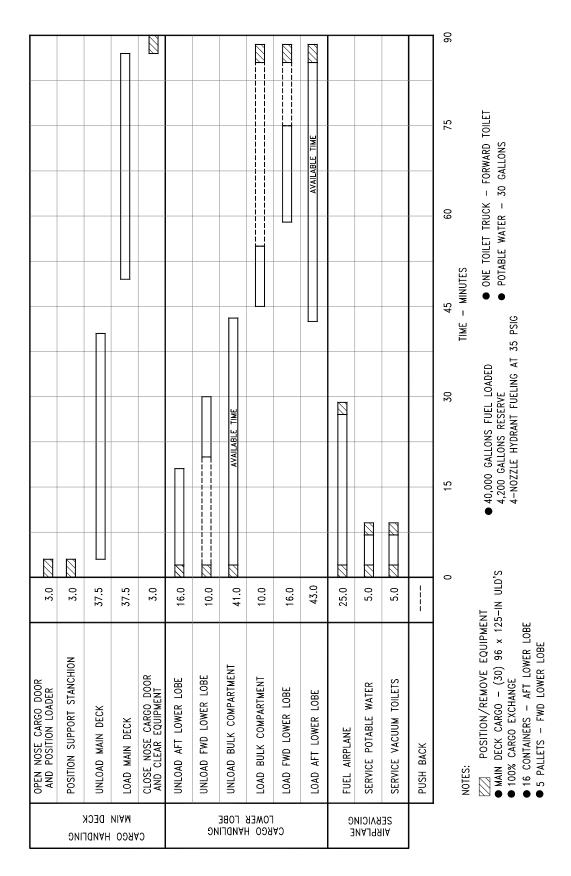

Section 5.8 shows ground towing requirements for various ground surface conditions.

5.1.1 AIRPLANE SERVICING ARRANGEMENT - TYPICAL TURNAROUND MODEL 747-400, -400 DOMESTIC, -400ER

5.1.2 AIRPLANE SERVICING ARRANGEMENT - TYPICAL TURNAROUND MODEL 747-400 COMBI

5.1.3 AIRPLANE SERVICING ARRANGEMENT - TYPICAL TURNAROUND MODEL 747-400 FREIGHTER, -400ER FREIGHTER

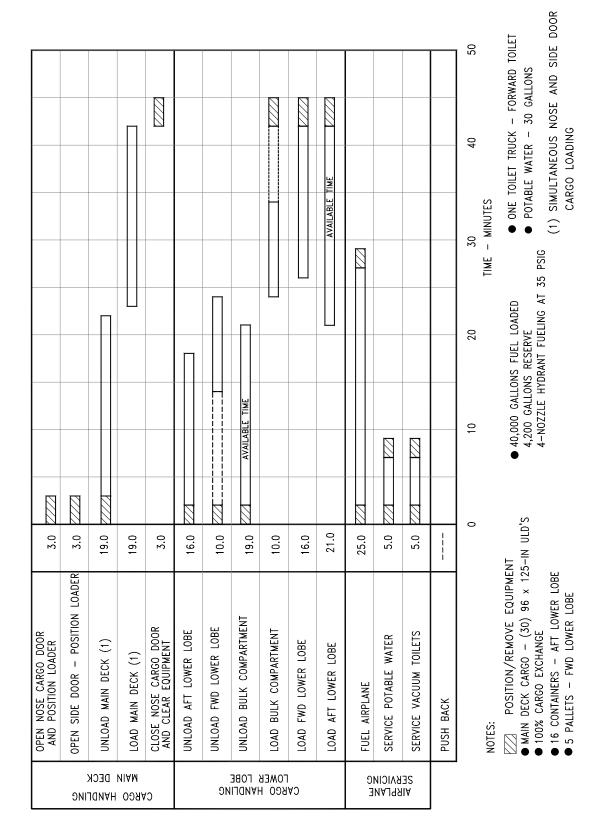
																60	
																55	35 PSIG
																50	NS DED LLING AT
																45	UCK 35 GALLO 25 PSIG FUEL LOAE ESERVE DRANT FUE
																40	ONE LAVATORY TRUCK POTABLE WATER 435 GALLONS AT 30 GPM AND 25 PSIG 43.300 GALLONS FUEL LOADED 4,200 GALLONS RESERVE FOUR-NOZZLE HYDRANT FUELING AT 35 PSIG
																35 TES	ONE LAV POTABLE AT 30 G 43,300 (4,200 G FOUR-NO
							Π									30 E – MINUTES	•••
																25 TIME	PASSENGER LOADING RATES: UNLOADING - 40 PER MINUTE LOADING - 25 PER MINUTE CARGO IN BULK CARGO COMPARTMENT AT 75% VOLUME UTILIZATION AND 8.5 POLINDS PER CIDIC FOOT
																20	PASSENGER LOADING RATES: UNLOADING - 40 PER MINUTE LOADING - 25 PER MINUTE CARGO IN BULK CARGO COMPAR AT 75% VOLUME UTILIZATION AN B.5 POLINDS PER CURIC FOOT
																15	ier Loadii Jing - 40 G - 25 F N BULK C Volume 1 NDS PFR
		KZ														10	
																ى ت	• •
_17																0	ENT AND CAR BETWEEN
1.0	11.0	30.0	29.0	18.0	1.0	14.0	10.0	25.0	28.0	10.0	14.0	28.0	14.5	21.0			EQUIPMENT ENGERS AND E DOOR RUCKS VAILABLE BET
ц					1.1		Ē	4									POSITION/REMOVE EQUIPMENT 100% EXCHANGE OF PASSENGERS AND CARGO 442 PASSENGERS - ONE DOOR THREE GALLEY SERVICE TRUCKS CABIN SERVICE IS TIME AVAILABLE BETWEEN DCABIN SERVICE FYCHANGE
SER BRIDO	SERS			SS	ER BRIDG	PARTMENT	IPARTMEN	BULK COMPARTMENT	ARTMENT	RTMENT	RTMENT		WATER	TOILETS			POSITION/RI 100% EXCHANGE 0 442 PASSENGERS THRE GALLEY SER CABIN SERVICE IS DASSENGED EXCLUDE
POSITION PASSENGER BRIDGE	PASSENGERS	SERVICE GALLEYS	CABIN	BOARD PASSENGERS	REMOVE PASSENGER BRIDGE	UNLOAD AFT COMPARTMENT	UNLOAD FWD COMPARTMENT	BULK CO	BULK COMPARTMENT	LOAD FWD COMPARTMENT	LOAD AFT COMPARTMENT	PLANE	SERVICE POTABLE WATER	SERVICE VACUUM TOILETS	CK	NOTES:	● 100% E ● 100% E ● 442 PA ● THREE ● CABIN \$
POSITION	DEPLANE	SERVICE	SERVICE CABIN	BOARD F	REMOVE	UNLOAD	UNLOAD	UNLOAD	LOAD BU	LOAD FW	LOAD AF	FUEL AIRPLANE	SERVICE	SERVICE	PUSH BACK		
	AICES	в зев	SENGE	SAq) רומפ פעפפע	неис Неис	∀)	1	9	RVICIN	an B		L	


5.2.1 TERMINAL OPERATIONS - TURNAROUND STATION - ALL PASSENGER MODEL 747-400, -400 COMBI, -400 DOMESTIC

				П							N	_				60		
																55		35 PSIG
																50		S D LING AT
																45		:K Callon PSIG EL LOADE ERVE ANT FUEL
																40		ONE LAVATORY TRUCK POTABLE WATER 440 GALLONS AT 10 GPM AND 60 PSIG 55,800 GALLONS FUEL LOADED 4,200 GALLONS RESERVE FOUR-NOZZLE HYDRANT FUELING AT 35 PSIG
																35		E LAVATC TABLE W/ 10 GPM 800 GAL 3R-NOZZ
																	MINUTES	0 N 0 N 0 N 0 0 N 0 0 0 0 0 0 0 0 0 0 0
																30	TIME – MINUTES	IENT
																25		PASSENGER LOADING RATES: UNLOADING - 40 PER MINUTE LOADING - 25 PER MINUTE CARGO IN BULK CARGO COMPARTMENT AT 75% VOLUME UTILIZATION AND 8.5 POUNDS PER CUBIC FOOT.
																20		PASSENGER LOADING RATES: UNLOADING - 40 PER MINUTE LOADING - 25 PER MINUTE CARGO IN BULK CARGO COMPAR AT 75% VOLUME UTILIZATION AN 8.5 POUNDS PER CUBIC FOOT.
																15		SER LOAD JING - 2 G - 25 N BULK VOLUME NDS PER
																10		PASSENG UNLOAI LOADIN CARGO 1 AT 75% 8.5 POU
																5		• •
																		IT D CARGO :TWEEN
1.0	11.0	30.0	29.0	18.0	1.0	14.0	10.0	25.0	28.0	10.0	14.0	53.0	47.0	21.0		0		Position/remove equipment 100% exchange of passengers and cargo 442 passengers – one door Three Galley service trucks CABIN Service I the avallable between Passenger exchange
																		EMOVE EQUIF F PASSENGERS - ONE DOOR EVICE TRUCKS TIME AVAILABL NGE
r bridge	SS				BRIDGE	RTMENT	ARTMENT	ARTMENT	TMENT	MENT	AENT		ATER	OILETS				POSITION/REMOVE 100% EXCHANGE OF PASSE 442 PASSENGERS – ONE THREE GALLEY SERVICE TRI CABIN SERVICE IS TIME AV PASSENGER EXCHANCE
ASSENGE	ASSENGER	TLEYS	CABIN	PASSENGERS	SSENGER	T COMPA	FWD COMPARTMENT	BULK COMPARTMENT	BULK COMPARTMENT	COMPART	COMPARTN	ANE	TABLE W	CUUM TC			NOTES:	POSITION/F 100% EXCHANGE (442 PASSENGERS THRE GALLEY SEF CABIN SERVICE IS PASSENGER EXCHA
POSITION PASSENGER BRIDGE	DEPLANE PASSENGERS	SERVICE GALLEYS	SERVICE CA	BOARD PAS	REMOVE PASSENGER BRIDGE	UNLOAD AFT COMPARTMENT	UNLOAD FW	UNLOAD BU	LOAD BULK	LOAD FWD COMPARTMENT	LOAD AFT COMPARTMENT	FUEL AIRPLANE	SERVICE POTABLE WATER	SERVICE VACUUM TOILETS	PUSH BACK		NO	
			SENGE					DEING DEING				 ຍ	RVICIN RVICIN	I SE		l		

5.2.2 TERMINAL OPERATIONS - TURNAROUND STATION – ALL PASSENGER MODEL 747-400ER

															F 3						60	
																					55	ONE LAVATORY TRUCK 43,300 GALLONS FUEL LOADED 4,200 GALLONS RESERVE FOUR-NOZZLE HYDRANT FUELING AT 35 PSIG
																					50	OADED FUELING A
																					45	TRUCK 4S FUEL L 5 RESERVE HYDRANT
															ļ						40	ONE LAVATORY TRUCK 43,300 GALLONS FUEL LOADED 4,200 GALLONS RESERVE FOUR-NOZZLE HYDRANT FUELIN
		AFT																			35 JTES	● 0NE ● 43,3(4,20(FOUR
										П											30 TIME – MINUTES	r lobe Jbe
		MID AND UPPER																			25 TIN	AFT LOWE LOWER LO ONS
		FWD																			20	 MAIN DECK INTAINERS - / FORWARD ER 330 GALLG ND 25 PSIG
																					15	SIX PALLETS - MAIN DECK FOURTEEN CONTAINERS - AFT LOWER LOBE FIVE PALLETS - FORWARD LOWER LOBE POTABLE WATER 330 GALLONS AT 30 GPM AND 25 PSIG
		22																			0	 SIX PA FOURTI FOURTI FIVE P POTABI AT 30
																					ъ	CARGO
1.0	7.0	31.0 26.0	40.0	11.0	1.0	3.0	3.0	8.5	14.0	10.0	25.0	10.0	8.5	14.0	28.0	3.0	28.0	13.0	21.0		0	EQUIPMENT ENGERS AND DOOR CKS
POSITION PASSENGER BRIDGE	DEPLANE PASSENGERS	SERVICE GALLEYS	SERVICE CABIN	BOARD PASSENGERS	REMOVE PASSENGER BRIDGE	OPEN SIDE CARGO DOOR POSITION MAIN DECK LOADER	POSITION SUPPORT STANCHION	UNLOAD MAIN DECK	UNLOAD AFT LOWER LOBE (BAGGAGE)	UNLOAD FWD LOWER LOBE (CARGO)	UNLOAD BULK COMPARTMENT	LOAD FWD LOWER LOBE (CARGO)	LOAD MAIN DECK	LOAD AFT LOWER LOBE (BAGGAGE)	LOAD BULK COMPARTMENT	CLOSE SIDE CARGO DOOR REMOVE MAIN DECK LOADER	FUEL AIRPLANE	SERVICE POTABLE WATER	SERVICE VACUUM TOILETS	PUSH BACK	NDTFS.	POSITION/REMOVE EXCHANGE OF PASSI PASSENGERS – ONE GALLEY SERVICE TRUC
s	SVICE	er sei	SENG	22A9						10 10 10	NDFIN Bøgg	оряа: АН	0				nc 1e	RVICII	IA IA			

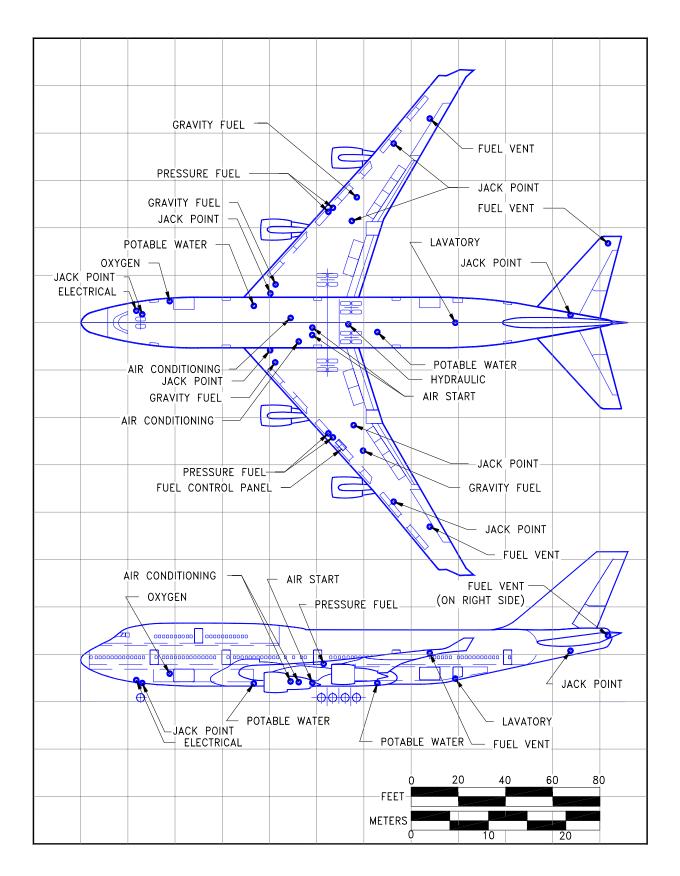

5.2.3 TERMINAL OPERATIONS - TURNAROUND STATION - PASSENGER/CARGO MODEL 747-400 COMBI

5.2.4 TERMINAL OPERATIONS - TURNAROUND STATION – ALL CARGO, NOSE DOOR LOADING MODEL 747-400 FREIGHTER, -400ER FREIGHTER

															06	
										AVAILABLE TIME					60 75) ONE TOILET TRUCK – FORWARD TOILET POTABLE WATER – 30 GALLONS
															45 TIME – MINUTES	• •
							AVAILABLE TIME								15 30	 40,000 GALLONS FUEL LOADED 4,200 GALLONS RESERVE 4-NOZZLE HYDRANT FUELING AT 35 PSIG
3.0	3.0	40.5	40.5	3.0	16.0 24	10.0	41.0 Z	10.0	16.0	43.0	25.0 ZA	5.0 71 12	5.0 Z		0	NI-IN ULD'S
OPEN SIDE CARGO DOOR AND POSITION LOADER	POSITION SUPPORT STANCHION	UNLOAD MAIN DECK	LOAD MAIN DECK	CLOSE NOSE CARGO DOOR AND CLEAR EQUIPMENT	UNLOAD AFT LOWER LOBE	UNLOAD FWD LOWER LOBE	UNLOAD BULK COMPARTMENT	LOAD BULK COMPARTMENT	LOAD FWD LOWER LOBE	LOAD AFT LOWER LOBE	FUEL AIRPLANE	SERVICE POTABLE WATER	SERVICE VACUUM TOILETS	PUSH BACK	NOTES:	POSITION/REMOVE EQUIPMENT MAIN DECK CARGO - (30) 96 x 125-IN ULD'S 100% CARGO EXCHANGE 16 CONTAINERS - AFT LOWER LOBE 5 DAILIETS _ EWD LOWER LOBE
		 DECK Н¥ИDГ		10		ÐN	LOBE IANDLI	гомев Вео н	I CAI	I	e E	куісій Клісій	IA IJS		l	

5.2.5 TERMINAL OPERATIONS - TURNAROUND STATION – ALL CARGO, SIDE DOOR LOADING MODEL 747-400 FREIGHTER, -400ER FREIGHTER

5.2.6 TERMINAL OPERATIONS - TURNAROUND STATION – ALL CARGO, NOSE AND SIDE CARGO DOOR LOADING MODEL 747-400 FREIGHTER, -400ER FREIGHTER


																5 10 15 20 25 30 TIME – MINUTES	EXCHANGE - THREE PALLETS FWD, CABIN CLEANING - TOUCH UP ONLY EIGHT LD3'S AFT ONE LAVATORY TRUCK - TANKS ASSUMED HALF-FULL 40% BULK CARGO EXCHANCE AT POTABLE WATER - 330 GALLONS AT 00 GPM AND 35 PSIG AT 000 GALLONS FUEL LOADED A 000 GALLONS FUEL LOADED
																	• •
1.0	7.0	10.0	10.0	11.0	1.0	8.0	6.0	10.0	13.0	6.0	8.0	19.0	11.0	15.0		0	ENT E OF CARGO % EXCHANGE
POSITION PASSENGER BRIDGE	DEPLANE PASSENGERS	SERVICE GALLEYS	SERVICE CABIN	BOARD PASSENGERS	REMOVE PASSENGER BRIDGE	UNLOAD AFT COMPARTMENT	UNLOAD FWD COMPARTMENT	UNLOAD BULK COMPARTMENT	LOAD BULK COMPARTMENT	LOAD FWD COMPARTMENT	LOAD AFT COMPARTMENT	FUEL AIRPLANE	SERVICE POTABLE WATER	SERVICE VACUUM TOILETS	PUSH BACK	NOTES:	 POSITION/REMOVE EQUIPMENT 100% LOAD FACTOR, 50% EXCHANCE OF CARGO 442 PASSENGERS - ONE DOOR, 60% EXCHANCE PASSENGER LOADING RATES:
	AICES	в зев	SENGE	SA¶			EE)רואפ שעפפעפ	гооя ИАН	CA	1	e E	иаляя Киісіи	IS IIA IIA		I	•

5.3.1 TERMINAL OPERATIONS - EN ROUTE STATION - ALL PASSENGER

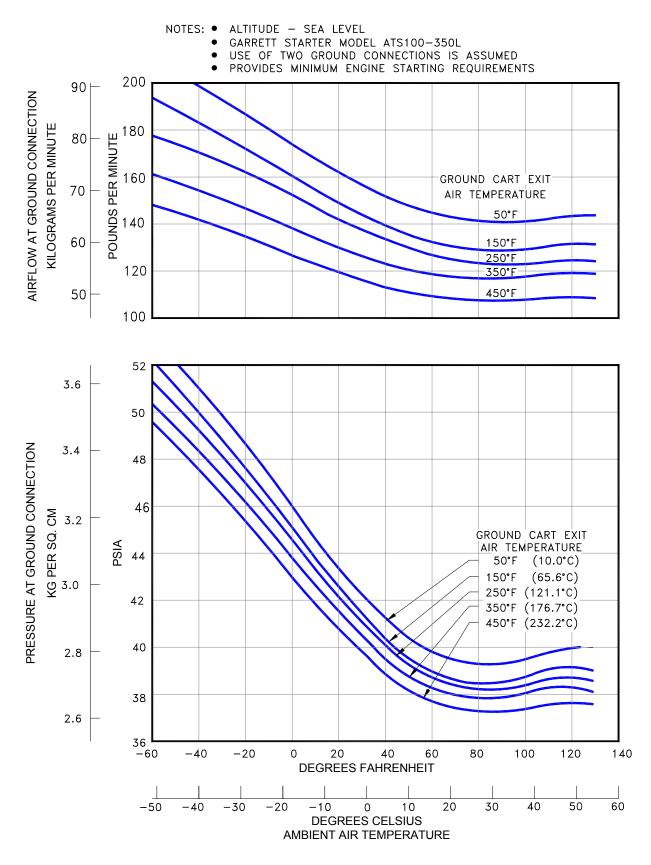
MODEL 747-400, -400 COMBI, -400 DOMESTIC

																5 10	TIME – MINUTES	• •
																£		• •
 -0 -1	7.0	10.0	10.0	11.0	1.0	8.0	6.0	10.0	13.0	6.0	8.0	19.0	24.0	15.0		0		IENT SE OF CARGO 0% EXCHANG
POSITION PASSENGER BRIDGE	DEPLANE PASSENGERS	SERVICE GALLEYS	SERVICE CABIN	BOARD PASSENGERS	REMOVE PASSENGER BRIDGE	UNLOAD AFT COMPARTMENT	UNLOAD FWD COMPARTMENT	UNLOAD BULK COMPARTMENT	LOAD BULK COMPARTMENT	LOAD FWD COMPARTMENT	LOAD AFT COMPARTMENT	FUEL AIRPLANE	SERVICE POTABLE WATER	SERVICE VACUUM TOILETS	PUSH BACK		NOTES:	POSITION/REMOVE EQUIPMENT • 100% LOAD FACTOR, 50% EXCHANGE OF CARGO • 442 PASSENGERS - ONE DOOR, 60% EXCHANGE • PASSENGEP LOADING PATES.
			1		1			רואפ פאפפע(שעפפע	-				РLAN RVICIN			I		

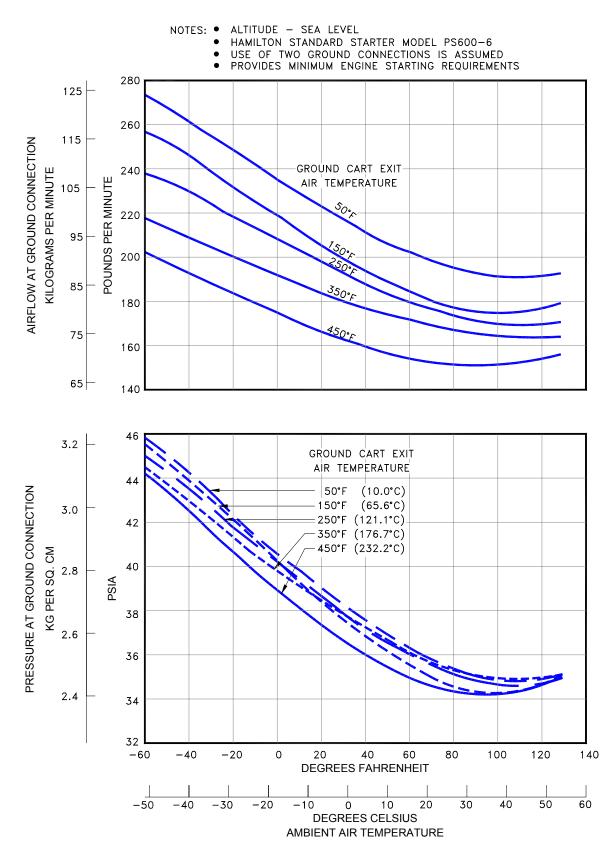
5.3.2 TERMINAL OPERATIONS - EN ROUTE STATION - ALL PASSENGER MODEL 747-400ER

5.4.1 GROUND SERVICE CONNECTIONS MODEL 747-400

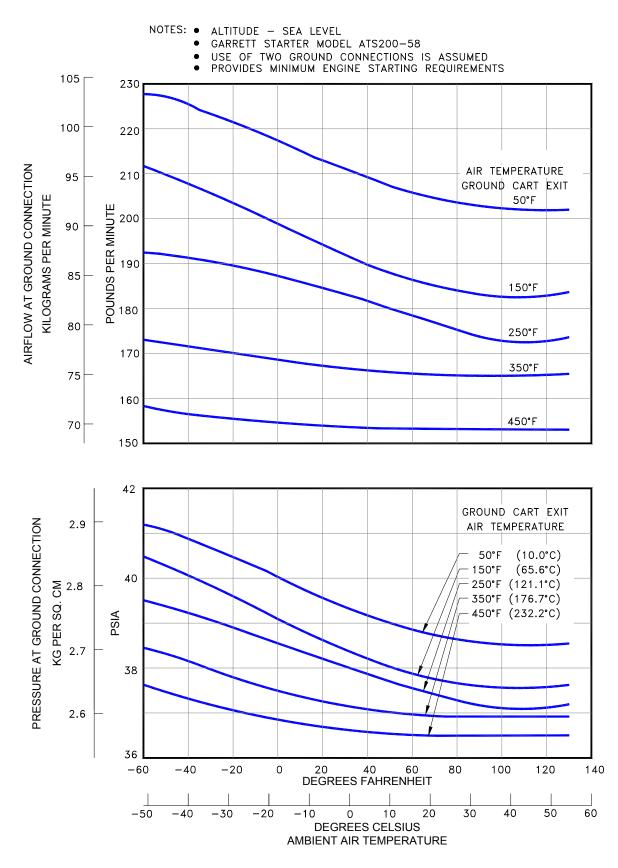
	DISTAN		DIS			OM AIRPLA	NE		HE		VE GROUI	חו
SYSTEM	NO	-	LH S			RH S	SIDE				MAXI	
	FT-IN	M	FT-IN	N	Л	FT-IN	М	FT-I	1	М	FT-IN	М
ELECTRICAL TWO COLLOCATED CONNECTORS 90 KVA , 200/115 V AC 400 HZ, 3-PHASE EACH	26 - 9	8.15	-		-	3 - 4	1.02	7 -	10	2.39	9 - 4	2.85
FUEL FOUR UNDERWING PRESSURE CONNECTORS (2 ON EACH WING) MAX FUELING RATE 500 US GPM (1890 LPM) PER NOZZLE OR 2000 US GPM (7570 LPM) TOTAL MAX FUEL PRESSURE 50 PSIG (3.52 KG/CM ²) OVERWING GRAVITY FUEL	104 - 7 105 - 7 82 - 10 116 - 7	31.89 32.18 25.25 35.53	45 - 8 46 - 9 16 - 7 53 - 9	1.	3.91 4.26 5.06 6.39	45 - 8 46 - 9 16 - 7 53 - 9	13.91 14.26 5.06 16.39			4.50 4.50 4.65 5.14	15 - 10 15 - 10 16 - 3 18 - 2	4.84 4.84 4.96 5.54
CONNECTIONS WING FUEL VENT	146 - 9	44.73	89 - 4	2	7.23	89 - 4	27.23	16 -	10	5.12	19 - 3	5.86
TAIL FUEL VENT	221 - 3	67.44	-	-	-	29 - 10	9.09	27 -	1	8.24	28 - 9	8.75
TANK CAPACITIES:												
		VOLUM			R	PW 4058	6, RB211-52 8, PW 4062	24H		CF6-80 CF6-800	C2B5F	
RESERVE		U.S. GA					BEACH			1,322 E		_
NO 2 & 3 MAIN		LITERS U.S. GA					BEACH BEACH			5,004 E 4,372 E		_
NO 1 & 2	·	LITERS					5 EACH			16,548		_
MAIN		U.S. GA					6 EACH			12,546		_
NO 2 & 3		LITERS					6 EACH			47,486		
CENTER WING		U.S. GA					.164			17,1		
		LITERS					,960			64,9		
HORIZONTAL		U.S. GA	LLONS			3.	300			3,30)0	
STABILIZER		LITERS					,490			12,4		
BODY FUEL TANK	S	U.S. GA			1) EACH			3,060 E		1
(747-400ER ONL	ł	LITERS					2 EACH			11,582		1
MANIFOLD,		U.S. GA					176 (-400E	R)	12		76 (-400ER)	1
LINES, & MISC		LITERS				· · · ·	666 (–400E				6 (-400ER)	1
TOTAL USABLE		U.S. GA				· · · ·	,340			57,1	()	1
(747-400 ONLY)		LITERS				217	7,032			216,1]
TOTAL USABLE		U.S. GA			_		,460			63,2		
(747-400ER ONL	Y)	LITERS				240	0,196			239,3	363	

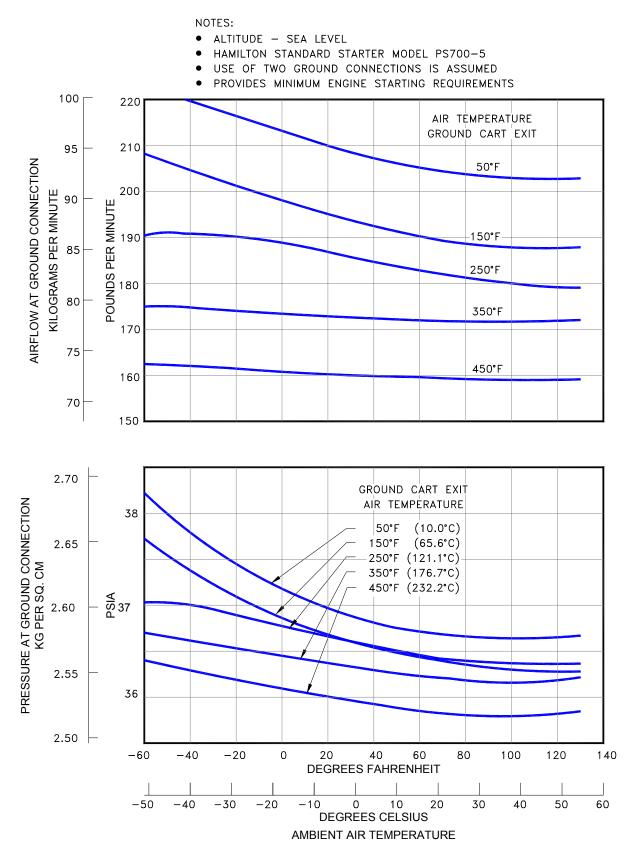

5.4.2 GROUND SERVICE CONNECTIONS

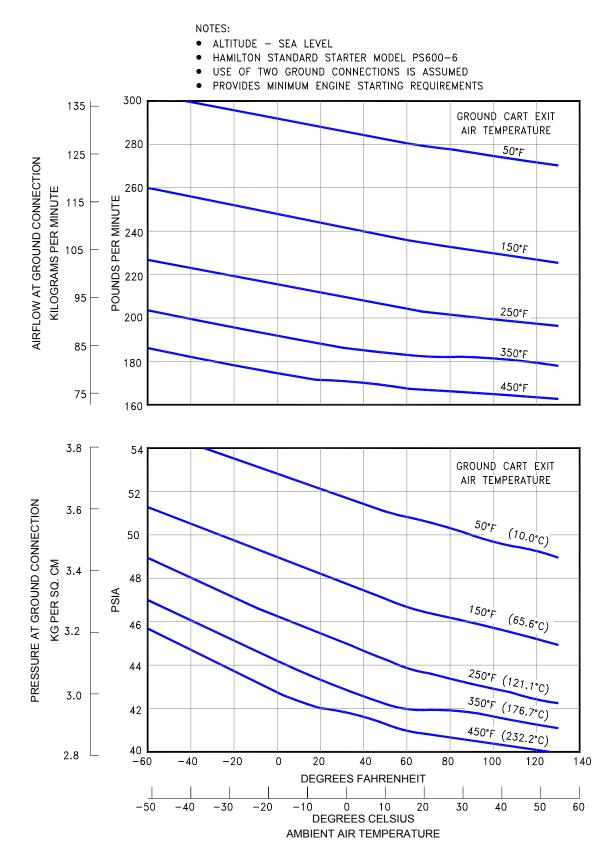
MODEL 747-400

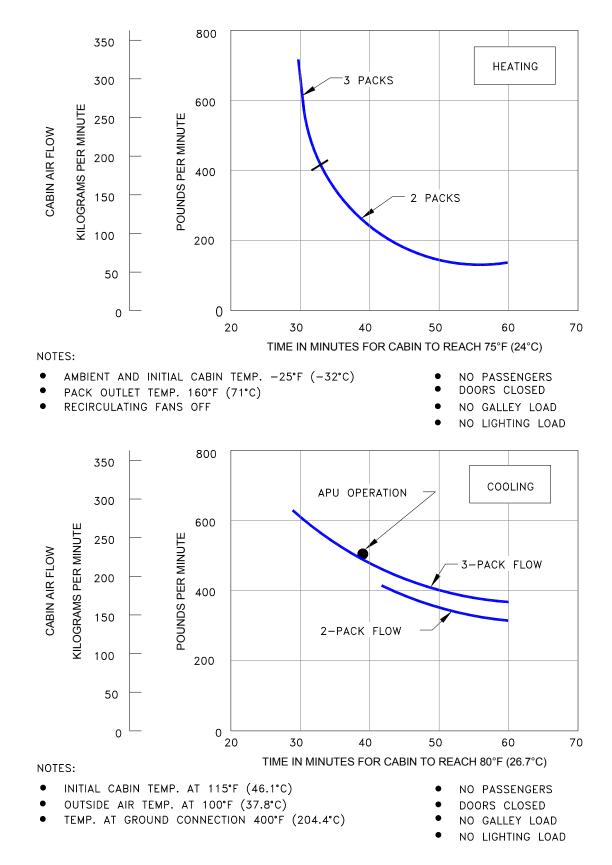

	DISTAN		DIS		OM AIRPL	ANE	HE	IGHT ABC	OVE GROU	ND
SYSTEM	NO	SE	LH S	SIDE	RH S	SIDE	MINI	MUM	MAX	MUM
	FT-IN	М	FT-IN	М	FT-IN	М	FT-IN	М	FT-IN	М
LAVATORY ONE SERVICE PANEL THREE SERVICE CONNECTIONS DRAIN: ONE 4-IN (10.2 CM) FLUSH: TWO 1-IN (2.5 CM)	160 - 0	48.77	0	0	0	0	8 - 9	2.67	9 - 11	3.03
FLUSH REQUIREMENTS FLOW: 10 GPM (38 LPM) PRESSURE: 30 PSIG (2.11 KG/CM ²) TOTAL CAPACITY, 4 TANKS 300 US GAL (1140 L)										
	96 - 6	20 42	2 0	0.01			6 7	0.01	7.5	0.07
TWO 3-IN(7.6CM) HIGH- PRESSURE PORTS	96 - 6 96 - 6	29.42 29.42	2 - 0 3 - 0	0.61 0.91	-	-	6 - 7 6 - 7	2.01 2.01	7 - 5 7 - 5	2.27 2.27
TWO 8-IN (0.20 M) GROUND CONDITIONED AIR CONNECTIONS	89 - 0 93 - 4	27.13 28.45	- 7 - 11	- 2.40	1 - 10 -	0.55 -	7 - 4 7 - 0	2.24 2.13	8 - 3 7 - 11	2.52 2.40
POTABLE WATER ONE SERVICE CONNECTION CONNECTOR SIZE 3/4 IN (1.95 CM) TANK CAPACITY - 330 U.S	74 - 4	22.66	-	-	1 - 5	0.6	7 - 2	2.18	8 - 3	2.50
GAL (1,250 L) FILL PRESSURE - 30 PSIG (2.11 KG/SQ CM) FILL RATE - 30 GPM (113.5 LPM) DRAIN SIZE 1 IN (2.54 CM)	127 - 2	38.76	2 - 10	0.87			7 - 3	2.20	8 - 2	2.48
SECOND CONNECTION (ON 747-400ER ONLY)	121 - 2	50.70	2 - 10	0.07	-	-	7-3	2.20	0-2	2.40
HYDRAULIC ONE SERVICE PANEL 4 RESERVOIRS ENG 1 - 9.5 U.S. GAL (35.9 L) ENG 2 - 5,5 U.S. GAL (20.8 L)	114 - 0	34.75	0 - 10	0.25	-	-	7 - 0	2.13	7 - 0	2.13
ENG 3 - 5.5 U.S. GAL (20.8 L) ENG 4 - 9.5 U.S. GAL (35.9 L) 150 PSI (10.6 KG/CM ²) MAX										
OXYGEN ONE SERVICE CONNECTION - SIZE 3/16 IN (0.48 CM) 1850 PSIG (130 KG/CM ²) MAX	39 - 2	11.94	-	-	8 - 5	2.55	13 - 5	4.09	14 - 10	4.51

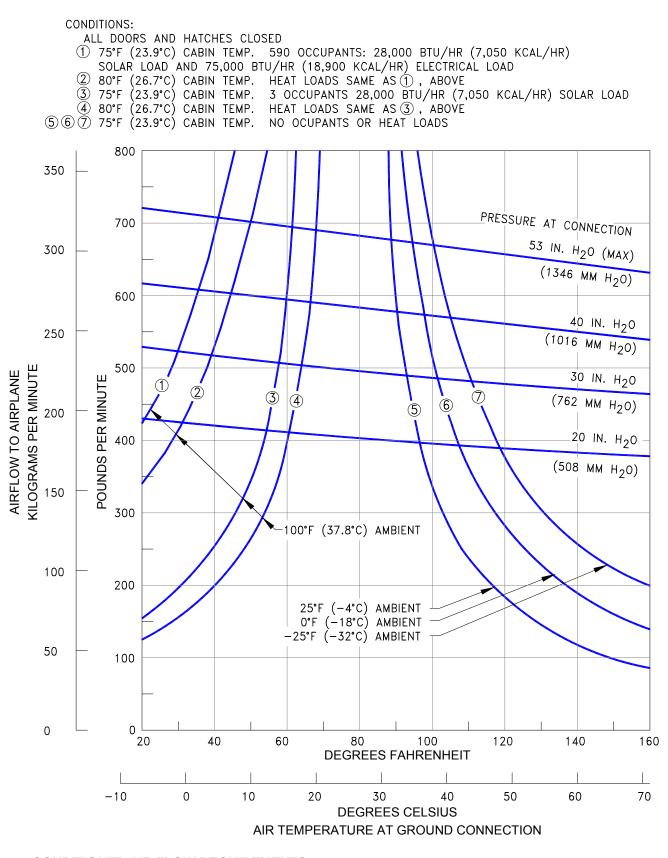
5.4.3 GROUND SERVICE CONNECTIONS

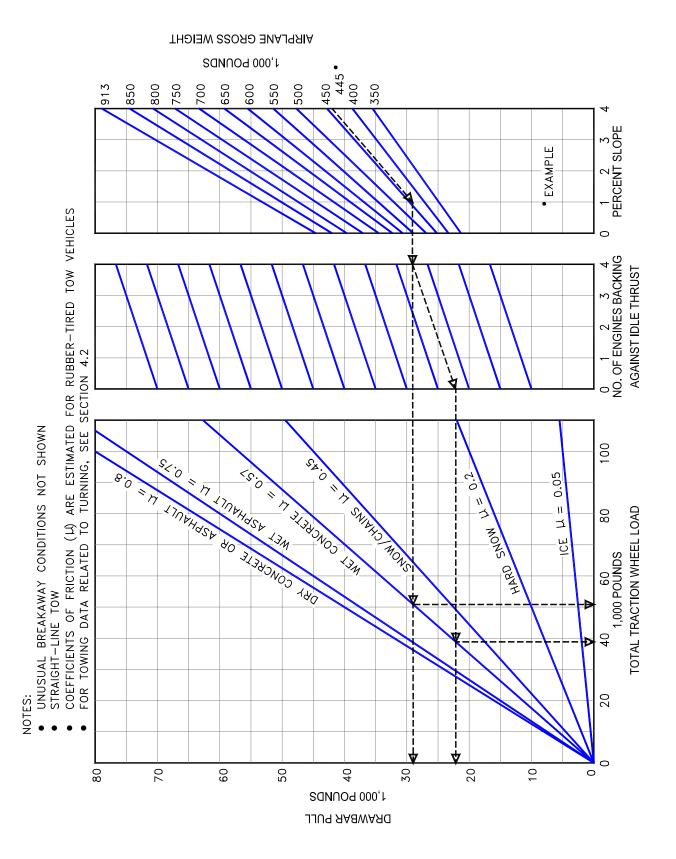

MODEL 747-400

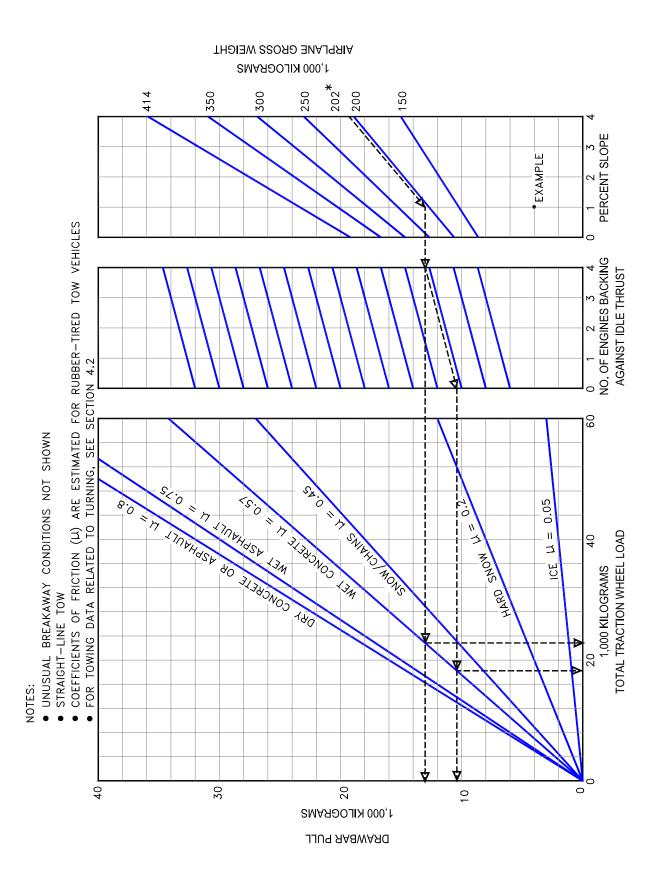

5.5.1 ENGINE START PNEUMATIC REQUIREMENTS - SEA LEVEL MODEL 747-400 (CF6-80C2B1 ENGINES, GARRETT STARTER)


5.5.2 ENGINE START PNEUMATIC REQUIREMENTS - SEA LEVEL MODEL 747-400 (CF6-80C2B1 ENGINES, HAMILTON STANDARD STARTER)


5.5.3 ENGINE START PNEUMATIC REQUIREMENTS - SEA LEVEL MODEL 747-400 (PW 4056 ENGINES, GARRETT STARTER)




5.5.5 ENGINE START PNEUMATIC REQUIREMENTS - SEA LEVEL MODEL 747-400 (RB211-524G ENGINES)


5.6 GROUND PNEUMATIC POWER REQUIREMENTS - HEATING/COOLING MODEL 747-400

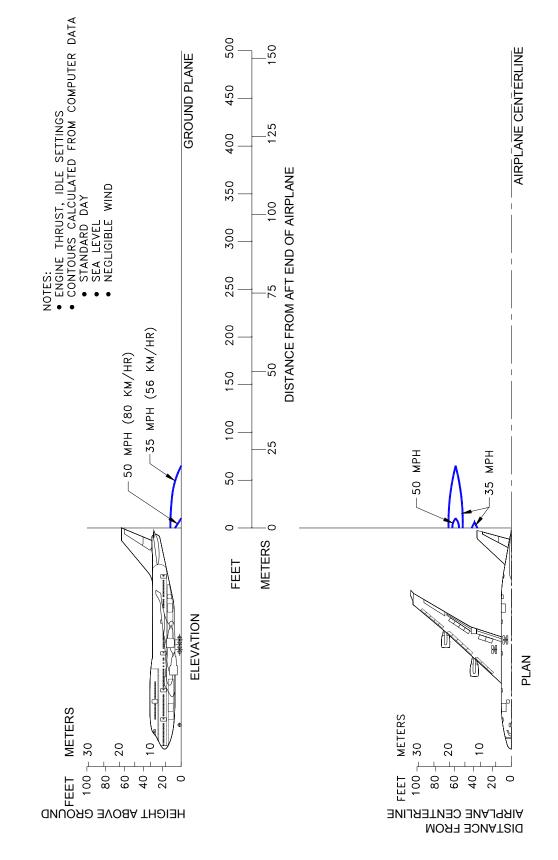
5.7 CONDITIONED AIR FLOW REQUIREMENTS MODEL 747-400

5.8.1 GROUND TOWING REQUIREMENTS - ENGLISH UNITS MODEL 747-400

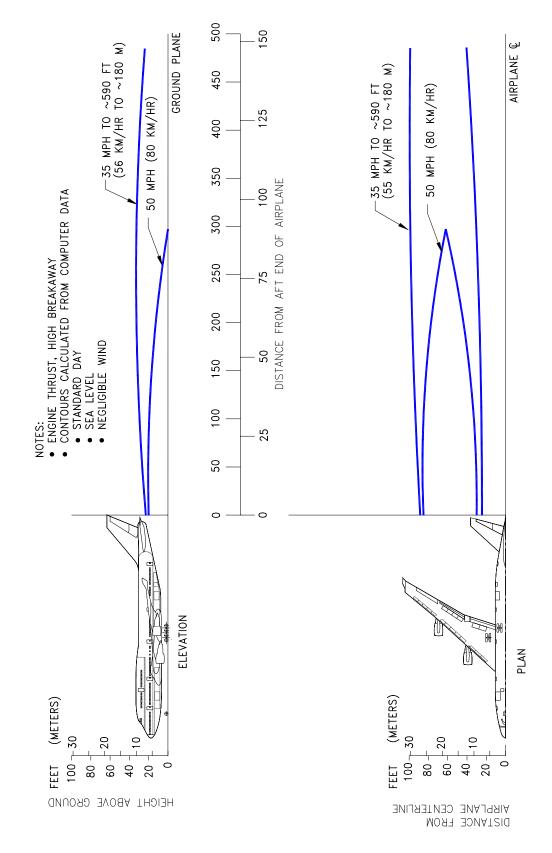
5.8.2 GROUND TOWING REQUIREMENTS - METRIC UNITS MODEL 747-400

THIS PAGE INTENTIONNALY LEFT BLANK

6.0 JET ENGINE WAKE AND NOISE DATA

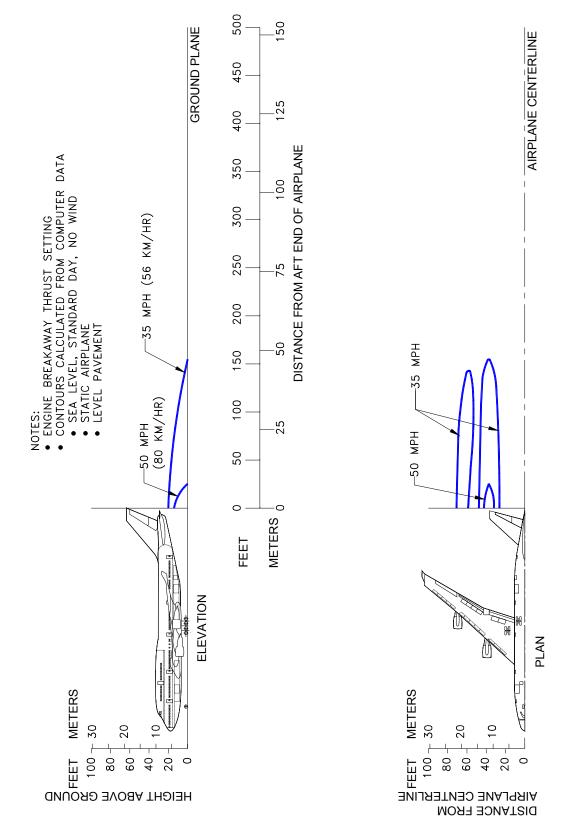

- 6.1 Jet Engine Exhaust Velocities and Temperatures
- 6.2 Airport and Community Noise

6.0 JET ENGINE WAKE AND NOISE DATA

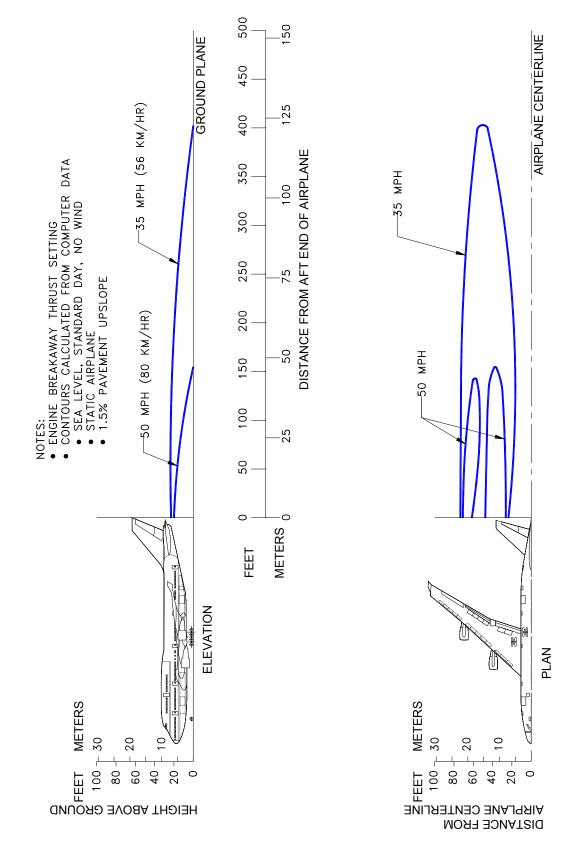

6.1 Jet Engine Exhaust Velocities and Temperatures

This section shows exhaust velocity and temperature contours aft of the 747-400 airplane. The contours were calculated from a standard computer analysis using three-dimensional viscous flow equations with mixing of primary, fan, and free-stream flow. The presence of the ground plane is included in the calculations as well as engine tilt and toe-in. Mixing of flows from the engines is also calculated. The analysis does not include thermal buoyancy effects which tend to elevate the jet wake above the ground plane. The buoyancy effects are considered to be small relative to the exhaust velocity and therefore are not included.

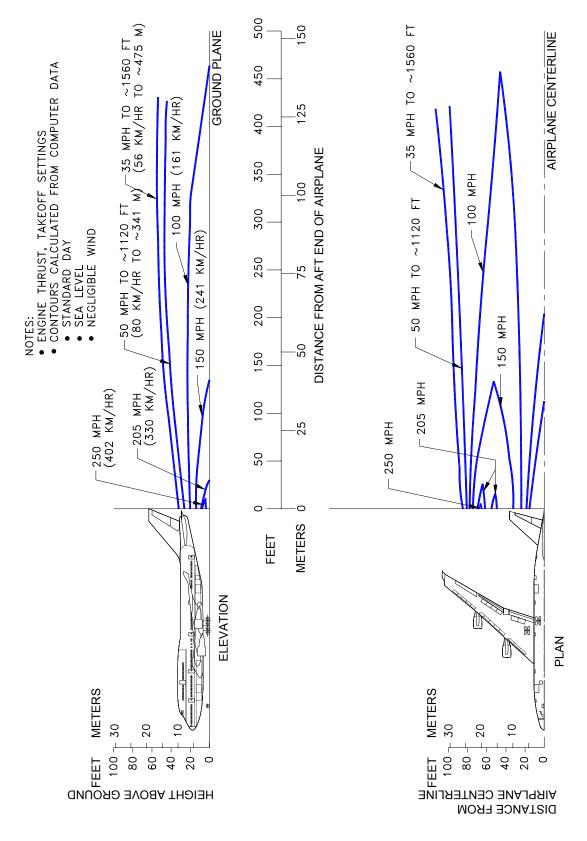
The graphs show jet wake velocity and temperature contours for a representative engine. The results are valid for sea level, static, standard day conditions. The effect of wind on jet wakes was not included. There is evidence to show that a downwind or an upwind component does not simply add or subtract from the jet wake velocity, but rather carries the whole envelope in the direction of the wind. Crosswinds may carry the jet wake contour far to the side at large distances behind the airplane.



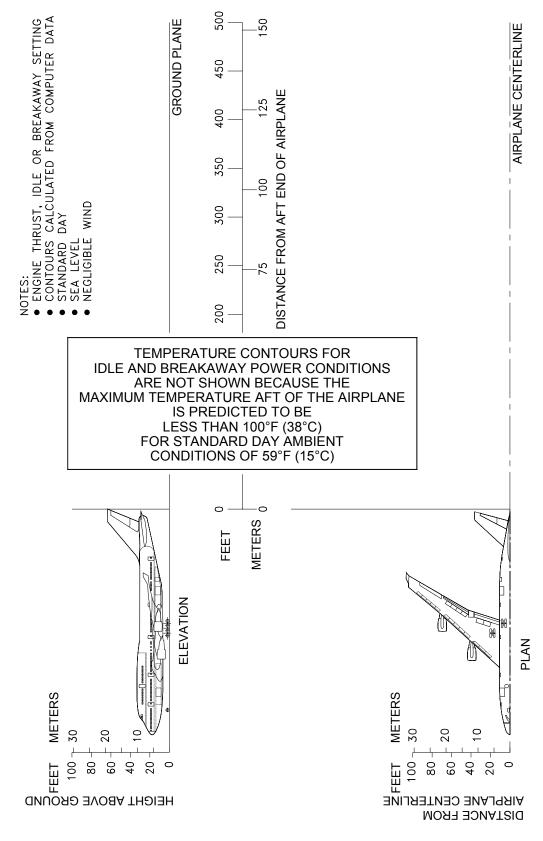
6.1.1 JET ENGINE EXHAUST VELOCITY CONTOURS - IDLE THRUST MODEL 747-400


6.1.2 JET ENGINE EXHAUST VELOCITY CONTOURS - BREAKAWAY THRUST – LEVEL PAVEMENT

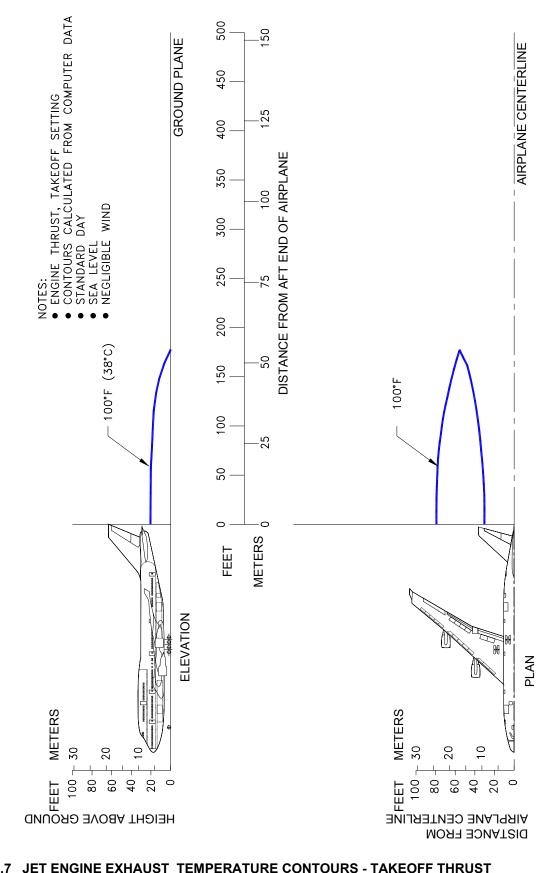
MODEL 747-400, -400 COMBI, -400 DOMESTIC, - 400 FREIGHTER


6.1.3 JET ENGINE EXHAUST VELOCITY CONTOURS - BREAKAWAY THRUST -LEVEL PAVEMENT

MODEL 747-400ER, -400ER FREIGHTER



6.1.4 JET ENGINE EXHAUST VELOCITY CONTOURS - BREAKAWAY THRUST -1.5% PAVEMENT UPSLOPE


MODEL 747-400ER, -400ER FREIGHTER

6.1.5 JET ENGINE EXHAUST VELOCITY CONTOURS - TAKEOFF THRUST MODEL 747-400

6.1.6 JET ENGINE EXHAUST TEMPERATURE CONTOURS – IDLE AND BREAKAWAY THRUSTS MODEL 747-400

6.1.7 JET ENGINE EXHAUST TEMPERATURE CONTOURS - TAKEOFF THRUST MODEL 747-400

6.2 Airport and Community Noise

Airport noise is of major concern to the airport and community planner. The airport is a major element in the community's transportation system and, as such, is vital to its growth. However, the airport must also be a good neighbor, and this can be accomplished only with proper planning. Since aircraft noise extends beyond the boundaries of the airport, it is vital to consider the impact on surrounding communities. Many means have been devised to provide the planner with a tool to estimate the impact of airport operations. Too often they oversimplify noise to the point where the results become erroneous. Noise is not a simple subject; therefore, there are no simple answers.

The cumulative noise contour is an effective tool. However, care must be exercised to ensure that the contours, used correctly, estimate the noise resulting from aircraft operations conducted at an airport.

The size and shape of the single-event contours, which are inputs into the cumulative noise contours, are dependent upon numerous factors. They include the following:

1. Operational Factors

(a) <u>Aircraft Weight</u>-Aircraft weight is dependent on distance to be traveled, en route winds, payload, and anticipated aircraft delay upon reaching the destination.

(b) <u>Engine Power Settings</u>-The rates of ascent and descent and the noise levels emitted at the source are influenced by the power setting used.

(c) <u>Airport Altitude</u>-Higher airport altitude will affect engine performance and thus can influence noise.

2. Atmospheric Conditions-Sound Propagation

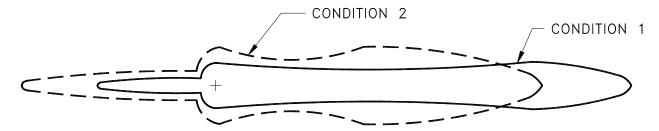
(a) <u>Wind</u>-With stronger headwinds, the aircraft can take off and climb more rapidly relative to the ground. Also, winds can influence the distribution of noise in surrounding communities.

(b) <u>Temperature and Relative Humidity</u>-The absorption of noise in the atmosphere along the transmission path between the aircraft and the ground observer varies with both temperature and relative humidity.

3. Surface Condition-Shielding, Extra Ground Attenuation (EGA)

> Terrain-If the ground slopes down after takeoff or up before landing, noise (a) will be reduced since the aircraft will be at a higher altitude above ground. Additionally, hills, shrubs, trees, and large buildings can act as sound buffers.

All these factors can alter the shape and size of the contours appreciable. To demonstrate the effect of some of these factors, estimated noise level contours for two different operating conditions are shown below. These contours reflect a given noise level upon a ground level plane at runway elevation.


Condition 1

Landing

Takeoff

Maximum Structural Landing Maximum Gross Takeoff Weight Weight 10-knot Headwind 30 Approach 84 °F Humidity 15%

Zero Wind 84 °F Humidity 15%

Condition 2

Landing:

Takeoff:

85% of Maximum Structural	80% of Maximum Gross Takeoff
Landing Weight	Weight
10-knot Headwind	10-knot Headwind
3 ⁰ Approach	59 °F
59 °F	Humidity 70%
Humidity 70%	

As indicated from these data, the contour size varies substantially with operating and atmospheric conditions. Most aircraft operations are, of course, conducted at less than maximum gross weights because average flight distances are much shorter than maximum aircraft range capability and average load factors are less than 100%. Therefore, in developing cumulative contours for planning purposes, it is recommended that the airlines serving a particular city be contacted to provide operational information.

In addition, there are no universally accepted methods for developing aircraft noise contours or for relating the acceptability of specific zones to specific land uses. It is therefore expected that noise contour data for particular aircraft and the impact assessment methodology will be changing. To ensure that the best currently available information of this type is used in any planning study, it is recommended that it be obtained directly from the Office of Environmental Quality in the Federal Aviation Administration in Washington, D.C.

It should be noted that the contours shown herein are only for illustrating the impact of operating and atmospheric conditions and do not represent the single-event contour of the family of aircraft described in this document. It is expected that the cumulative contours will be developed as required by planners using the data and methodology applicable to their specific study.

7.0 PAVEMENT DATA

- 7.1 General Information
- 7.2 Landing Gear Footprint
- 7.3 Maximum Pavement Loads
- 7.4 Landing Gear Loading on Pavement
- 7.5 Flexible Pavement Requirements U.S. Army Corps of Engineers Method S-77-1 and FAA Design Method
- 7.6 Flexible Pavement Requirements LCN Conversion
- 7.7 Rigid Pavement Requirements Portland Cement Association Design Method
- 7.8 Rigid Pavement Requirements LCN Conversion
- 7.9 Rigid Pavement Requirements FAA Design Method
- 7.10 ACN/PCN Reporting System Flexible and Rigid Pavements

7.0 PAVEMENT DATA

7.1 General Information

A brief description of the pavement charts that follow will help in their use for airport planning. Each airplane configuration is depicted with a minimum range of six loads imposed on the main landing gear to aid in interpolation between the discrete values shown. All curves for any single chart represent data based on rated loads and tire pressures considered normal and acceptable by current aircraft tire manufacturer's standards. Tire pressures, where specifically designated on tables and charts, are at values obtained under loaded conditions as certificated for commercial use.

Section 7.2 presents basic data on the landing gear footprint configuration, maximum design taxi loads, and tire sizes and pressures.

Maximum pavement loads for certain critical conditions at the tire-to-ground interface are shown in Section 7.3, with the tires having equal loads on the struts.

Pavement requirements for commercial airplanes are customarily derived from the static analysis of loads imposed on the main landing gear struts. The chart in Section 7.4 is provided in order to determine these loads throughout the stability limits of the airplane at rest on the pavement. These main landing gear loads are used as the point of entry to the pavement design charts, interpolating load values where necessary.

The flexible pavement design curves (Section 7.5) are based on procedures set forth in Instruction Report No. S-77-1, "Procedures for Development of CBR Design Curves," dated June 1977, and as modified according to the methods described in FAA Advisory Circular AC 150/5320-6C Change 2, "Airport Pavement Design and Evaluation," dated September 14, 1988. Instruction Report No. S-77-1 was prepared by the U.S. Army Corps of Engineers Waterways Experiment Station, Soils and Pavements Laboratory, Vicksburg, Mississippi. The line showing 10,000 coverages is used to calculate Aircraft Classification Number (ACN).

The following procedure is used to develop the curves, such as shown in Section 7.5:

- 1. Having established the scale for pavement depth at the bottom and the scale for CBR at the top, an arbitrary line is drawn representing 6,000 annual departures.
- 2. Values of the aircraft gross weight are then plotted.
- 3. Additional annual departure lines are drawn based on the load lines of the aircraft gross weights already established.
- 4. An additional line representing 10,000 coverages (used to calculate the flexible pavement Aircraft Classification Number) is also placed.

All Load Classification Number (LCN) curves (Sections 7.6 and 7.8) have been developed from a computer program based on data provided in International Civil Aviation Organization (ICAO) document 9157-AN/901, Aerodrome Design Manual,

Part 3, "Pavements," First Edition, 1977. LCN values are shown directly for parameters of weight on main landing gear, tire pressure, and radius of relative stiffness (l) for rigid pavement or pavement thickness or depth factor (h) for flexible pavement.

Rigid pavement design curves (Section 7.7) have been prepared with the Westergaard equation in general accordance with the procedures outlined in the <u>Design of Concrete Airport Pavement</u> (1955 edition) by Robert G. Packard, published by the Portland Cement Association, 5420 Old Orchard Road, Skokie, Illinois 60077-1083. These curves are modified to the format described in the Portland Cement Association publication XP6705-2, <u>Computer Program for Airport Pavement</u> <u>Design (Program PDILB)</u>, 1968, by Robert G. Packard.

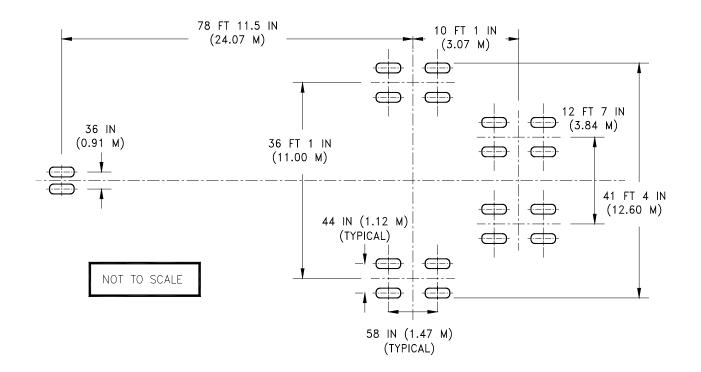
The following procedure is used to develop the rigid pavement design curves shown in Section 7.7:

- 1. Having established the scale for pavement thickness to the left and the scale for allowable working stress to the right, an arbitrary load line is drawn representing the main landing gear maximum weight to be shown.
- 2. Values of the subgrade modulus (k) are then plotted.
- 3. Additional load lines for the incremental values of weight on the main landing gear are drawn on the basis of the curve for k = 300, already established.

The rigid pavement design curves (Section 7.9) have been developed based on methods used in the <u>FAA Advisory Circular AC 150/5320-6C</u>, September 14, 1988. The following procedure is used to develop the curves, such as shown in Section 7.9:

- 1. Having established the scale for pavement flexure strength on the left and temporary scale for pavement thickness on the right, an arbitrary load line is drawn representing the main landing gear maximum weight to be shown at 5,000 coverages.
- 2. Values of the subgrade modulus (k) are then plotted.
- 3. Additional load lines for the incremental values of weight are then drawn on the basis of the subgrade modulus curves already established.
- 4. The permanent scale for the rigid-pavement thickness is then placed. Lines for other than 5,000 coverages are established based on the aircraft pass-to-coverage ratio.

The ACN/PCN system (Section 7.10) as referenced in ICAO document 9157-AN/901, Aerodrome Design Manual, Part 3, Pavements, Second Edition 1983, provides a standardized international airplane/pavement rating system replacing the various S, T, TT, LCN, AUW, ISWL, etc., rating systems used throughout the world. ACN is the Aircraft Classification Number and PCN is the Pavement Classification Number. An aircraft having an ACN equal to or less than the PCN can operate on the pavement subject to any limitation on the tire pressure. Numerically, the ACN is two times the derived single-wheel load expressed in thousands of kilograms, where the derived single wheel load is defined as the load on a single tire inflated to 181 psi (1.25 MPa) that would have the same pavement requirements as the aircraft. Computationally, the ACN/PCN system uses the PCA program PDILB for rigid pavements and S-77-1 for flexible pavements to calculate ACN values. The method of pavement evaluation is left up to the airport with the results of their evaluation presented as follows:

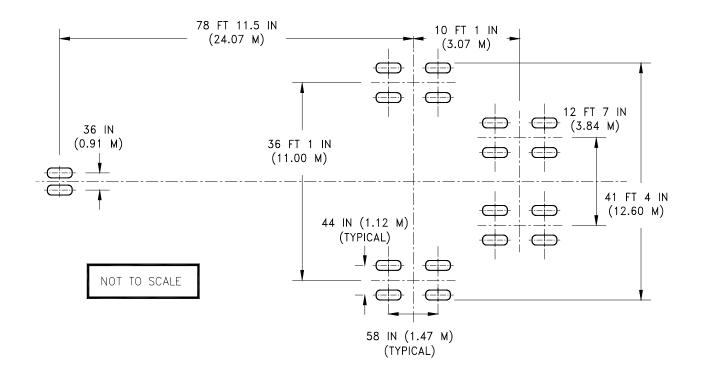

PCN	PAVEMENT	SUBGRADE	TIRE PRESSURE	EVALUATION
	TYPE	CATEGORY	CATEGORY	METHOD
	R = Rigid	A = High	W = No Limit	T = Technical
	F = Flexible	B = Medium	X = To 217 psi (1.5 MPa)	U = Using Aircraft
		C = Low	Y = To 145 psi (1.0 MPa)	
		D = Ultra Low	Z = To 73 psi (0.5 MPa)	

Section 7.10.1 shows the aircraft ACN values for flexible pavements. The four subgrade categories are:

Code A - High Strength - CBR 15 Code B - Medium Strength - CBR 10 Code C - Low Strength - CBR 6 Code D - Ultra Low Strength - CBR 3

Section 7.10.2 shows the aircraft ACN values for rigid pavements. The four subgrade categories are:

Code A - High Strength, $k = 550 \text{ pci } (150 \text{ MN/m}^3)$ Code B - Medium Strength, $k = 300 \text{ pci } (80 \text{ MN/m}^3)$ Code C - Low Strength, $k = 150 \text{ pci } (40 \text{ MN/m}^3)$ Code D - Ultra Low Strength, $k = 75 \text{ pci } (20 \text{ MN/m}^3)$

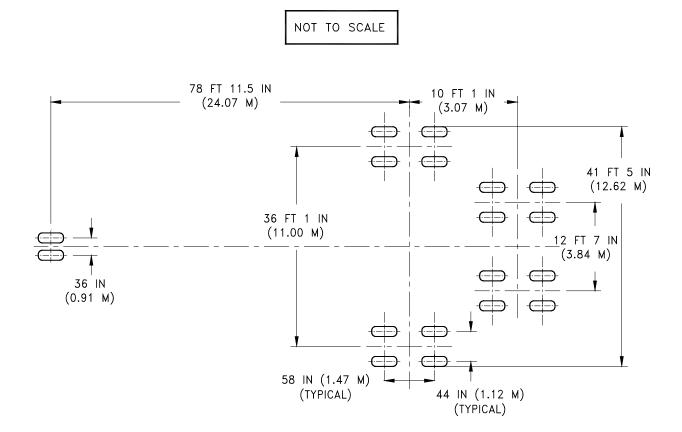

	UNITS	747-400D	747-400, 747-400COMBI				
MAXIMUM DESIGN TAXI	LB	603,000 TO 613,500	803,000 836,000 TO 853,000 873,000 TO 877,				
WEIGHT	KG	273,517 TO 278,279	364,235	379,204 TO 386,915	395,987 TO 397,801		
PERCENT OF WEIGHT ON MAIN GEAR	%	SEE SECTION 7.4					
NOSE GEAR TIRE SIZE	IN.	49X17, 32 PR (1)		49X17, 32 PR	(2)		
NOSE GEAR TIRE	PSI	150	150 200				
PRESSURE	KG/CM ²	10.55 (1)		14.06 (2)			
MAIN GEAR	IN.	H49 X 19.0 - 22,	H49 X 19.0 - 22,				
TIRE SIZE	IIN.	24 PR	32 PR				
MAIN GEAR TIRE	PSI	150	190 195 200		200		
PRESSURE (3)	KG/CM ²	10.55	13.36 13.71 14.06				

(1) OPTION: 49X19.0-20 32PR OR 34PR AT 150 PSI (10.55 KG/CM²) OR H49X19.0-22, 24PR AT 150 PSI (10.55 KG/CM²).

- (2) OPTION: 49X19.0-20, 32PR OR 34PR AT 185 PSI (13.01 KG/CM2) OR H49X19.0-22, 32PR AT 175 PSI (12.30 KG/CM²)
- (3) COLD, LOADED PRESSURES SHOWN. TOLERANCE = +5/-0 PSI.

7.2.1 LANDING GEAR FOOTPRINT

MODEL 747-400, -400 COMBI, -400 DOMESTIC



	UNITS	747-400F						
MAXIMUM DESIGN TAXI	LB	803,000 836,000 TO 853,000 873,000 TO 877,000						
WEIGHT	KG	364,235 379,204 TO 386,915 375,987 TO 397,8						
PERCENT OF WEIGHT ON MAIN GEAR	%		SEE SECTION 7.4					
NOSE GEAR TIRE SIZE	IN.	H49 X 19.0 - 22 32PR						
NOSE GEAR TIRE	PSI	175						
PRESSURE	KG/CM ²		12.30					
MAIN GEAR	IN.		H49 X 19.0 - 2	2,				
TIRE SIZE	IIN.	32 PR						
MAIN GEAR TIRE	PSI	190 195 200				SI 190 195		200
PRESSURE (1)	KG/CM ²	13.36 13.71 14.06						

(1) COLD, LOADED PRESSURES SHOWN. TOLERANCE = +5/-0 PSI.

7.2.2 LANDING GEAR FOOTPRINT

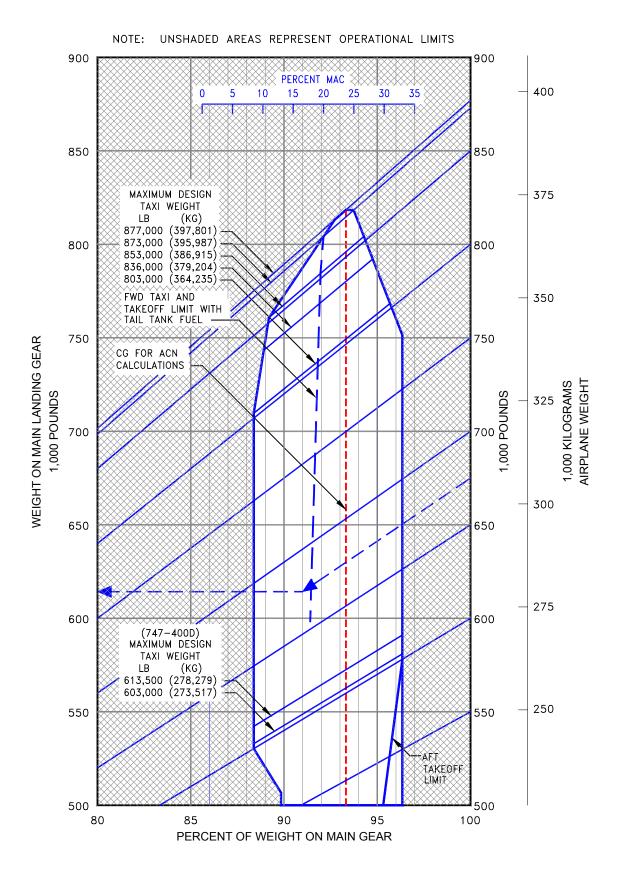
MODEL 747-400 FREIGHTER

	UNITS	747-400ER	747-400ER FREIGHTER
MAXIMUM DESIGN TAXI	LB	913,000	913,000
WEIGHT	KG	414,130	414,130
PERCENT OF WEIGHT ON MAIN GEAR	%	SEE SEC	TION 7.4
NOSE GEAR TIRE SIZE	IN.	50 X 20.0 R 22, 34 PR	50 X 20.0 R22, 34 PR
NOSE GEAR TIRE PRESSURE	PSI KG/CM ²	190 13.36	190 13.36
MAIN GEAR TIRE SIZE	IN.	50 X 20.0 R 22, 34 PR	50 X 20.0 R, 34 PR
MAIN GEAR TIRE PRESSURE	PSI KG/CM ²	230 16.17	230 16.17

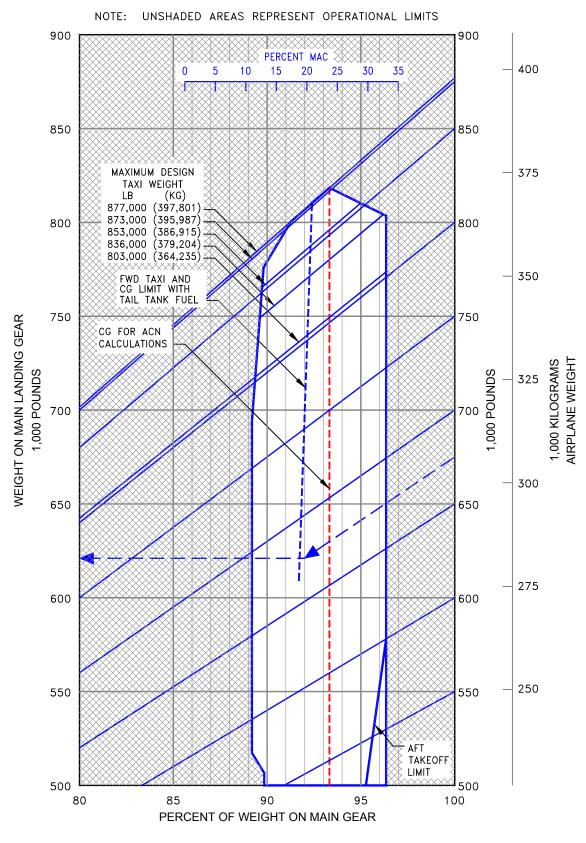
7.2.3 LANDING GEAR FOOTPRINT

MODEL 747-400ER, -400ER FREIGHTER

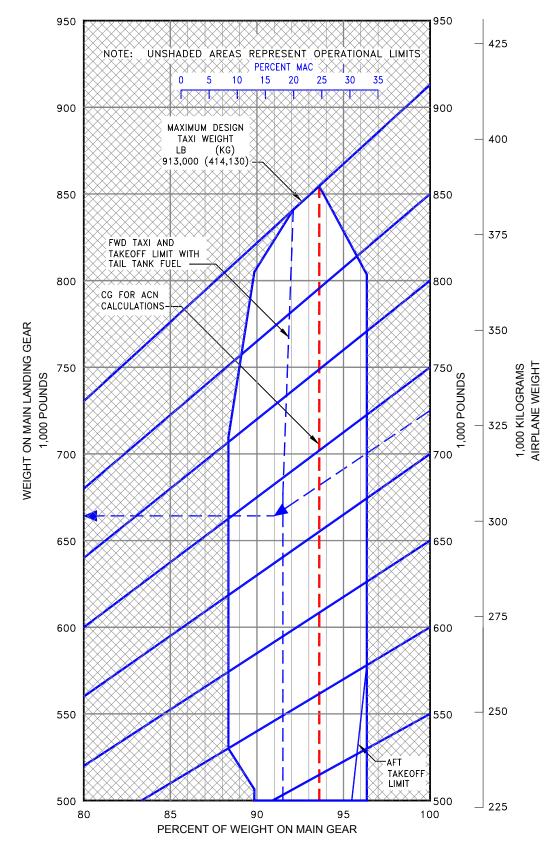
- V NG = MAXIMUM VERTICAL NOSE GEAR GROUND LOAD AT MOST FORWARD CENTER OF GRAVITY
- V_{MG} = MAXIMUM VERTICAL MAIN GEAR GROUND LOAD AT MOST AFT CENTER OF GRAVITY
- H = MAXIMUM HORIZONTAL GROUND LOAD FROM BRAKING
- NOTES: 1. ALL LOADS CALCULATED USING AIRPLANE MAXIMUM DESIGN TAXI WEIGHT 2. ALL CALCULATED VALUES AND CONVERSIONS ROUNDED TO NEAREST 100 LB AND 50 KG.

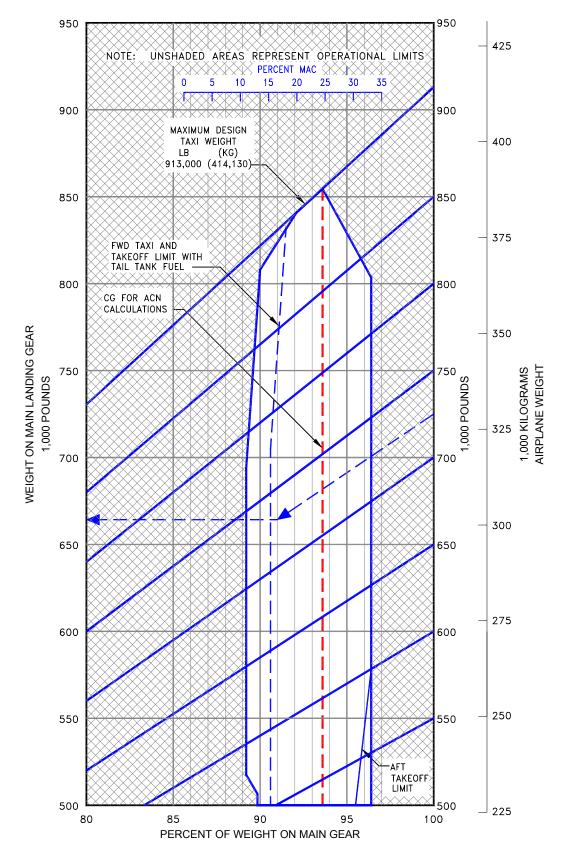

$^{\prime}H$

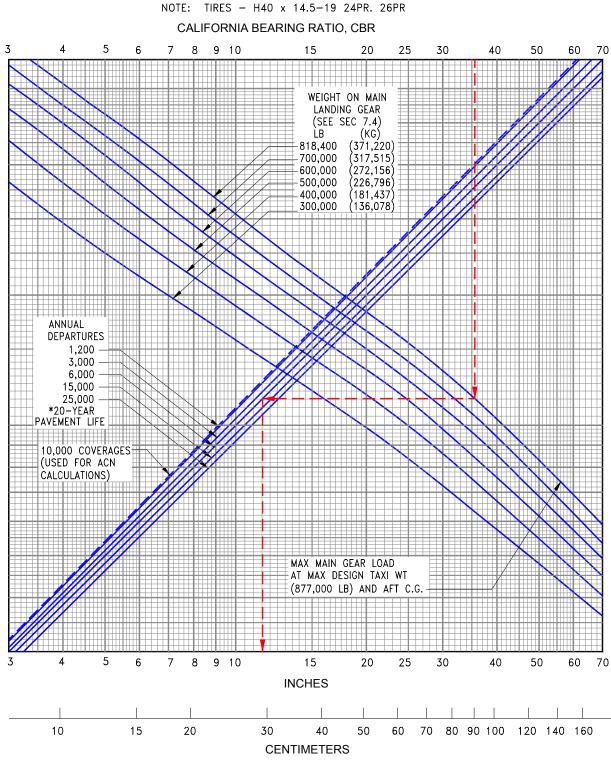
					V _{MG} PER			
			V _{NG}		STRUT (4)	H PER STRUT (4)		
		MAX	STATIC	STATIC +	MAX	STEADY	AT	
		BRAKING	LOAD AT	BRAKING	INSTANTANEOUS			
MODEL		TAXI	MOST	10 FT/SEC ²	STATIC	10 FT/SEC ²	BRAKING	
		WEIGHT	FWD C.G.	DECEL	AFT C.G.	DECEL	(<i>µ</i> = 0.8)	
747-400	LB	803,000	93,300	138,200	191,500	62,300	153,200	
	KG	364,250	42,350	62,700	86,850	28,300	69,500	
747-400*	LB	803,000	65,900	110,800	191,500	62,300	153,200	
	KG	364,250	29,900	50,250	86,850	28,300	69,500	
747-400	LB	836,000	93,000	139,900	197,300	64,900	157,800	
	KG	379,200	42,200	63,450	89,500	29,450	71,600	
747-400*	LB	836,000	68,100	114,800	197,300	64,900	157,800	
	KG	379,200	30,850	52,100	89,500	29,450	71,600	
747-400	LB	853,000	92,200	139,900	200,300	66,200	160,200	
	KG	386,900	41,800	63,450	90,850	30,050	72,650	
747-400*	LB	853,000	68,600	116,300	200,300	66,200	160,200	
	KG	386,900	31,100	52,750	90,850	30,050	72,650	
747-400	LB	873,000	68,800	117,700	204,500	67,800	163,600	
	KG	396,000	31,200	53,400	92,750	30,750	74,200	
747-400	747-400 LB 877,000 64		64,000	114,000	204,600	68,100	163,700	
	KG	397,800	29,000	51,700	92,800	30,900	74,250	
747-400F	LB	873,000	80,100	116,200	204,500	67,800	163,600	
	KG	396,000	36,350	52,700	92,750	30,750	74,200	
747-400F*	LB	873,000	67,400	116,200	204,500	67,800	163,600	
	KG	396,000	30,550	52,700	92,750	30,750	74,200	
747-400F	LB	877,000	76,500	127,900	204,600	68,100	163,700	
	KG	397,800	34,700	58,000	92,800	30,900	74,250	
747-400F*	LB	877,000	67,400	118,800	204,600	68,100	163,700	
	KG	397,800	30,550	53,900	92,800	30,900	74,250	
747-400D	LB	603,000	70,100	103,800	145,200	46,800	116,200	
	KG	273,500	31,800	47,100	65,900	21,250	52,700	
747-400D	LB	613,500	71,300	105,600	147,800	47,600	118,200	
	KG	278,300	32,350	47,900	67,050	21,600	53,600	
747-400ER	LB	913,000	71,950	122,400	213,600	70,900	170,900	
	KG	414,150	32,650	55,550	96,900	32,150	77,500	
747-400ER	LB	913,000	77,300	130,950	213,600	70,900	170,900	
FREIGHTER	KG	414,150	35,050	59,400	96,900	32,150	77,500	


* AIRPLANE WITH TAIL TANK FUEL

7.3. MAXIMUM PAVEMENT LOADS


MODEL 747-400

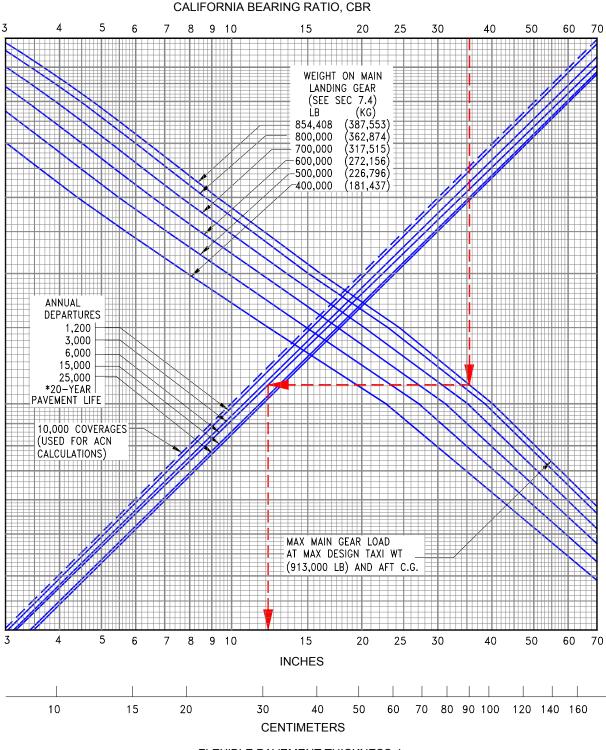



7.5 Flexible Pavement Requirements - U.S. Army Corps of Engineers Method (S-77-1) and FAA Design Method

The following flexible-pavement design chart presents the data of six incremental main-gear loads at the minimum tire pressure required at the maximum design taxi weight.

In the example shown in Section 7.5.1, for a CBR of 35.5 and an annual departure level of 6,000, the required flexible pavement thickness for a 747-400 airplane with a main gear loading of 818,400 pounds is 13.1 inches. In Section 7.5.2, for the same CBR and departure levels, the required flexible pavement thickness for a 747-400ER airplane with a main gear loading of 854,408 pounds is 14.2 inches.

The line showing 10,000 coverages is used for ACN calculations (see Section 7.10).


The FAA design method uses a similar procedure using total airplane weight instead of weight on the main landing gears. The equivalent main gear loads for a given airplane weight could be calculated from Section 7.4.

FLEXIBLE PAVEMENT THICKNESS, h

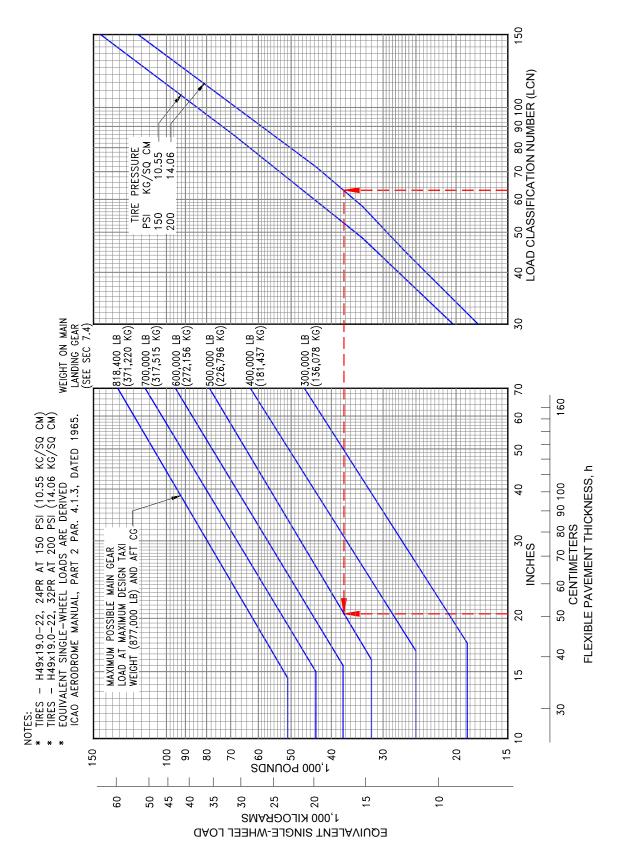
7.5.1 FLEXIBLE PAVEMENT REQUIREMENTS - U.S. ARMY CORPS OF ENGINEERS DESIGN METHOD (S-77-1) AND FAA DESIGN METHOD MODEL 747 400 - 400 COMPL 400 DOMESTIC - 400 EDELCHTED

MODEL 747-400, -400 COMBI, -400 DOMESTIC, - 400 FREIGHTER

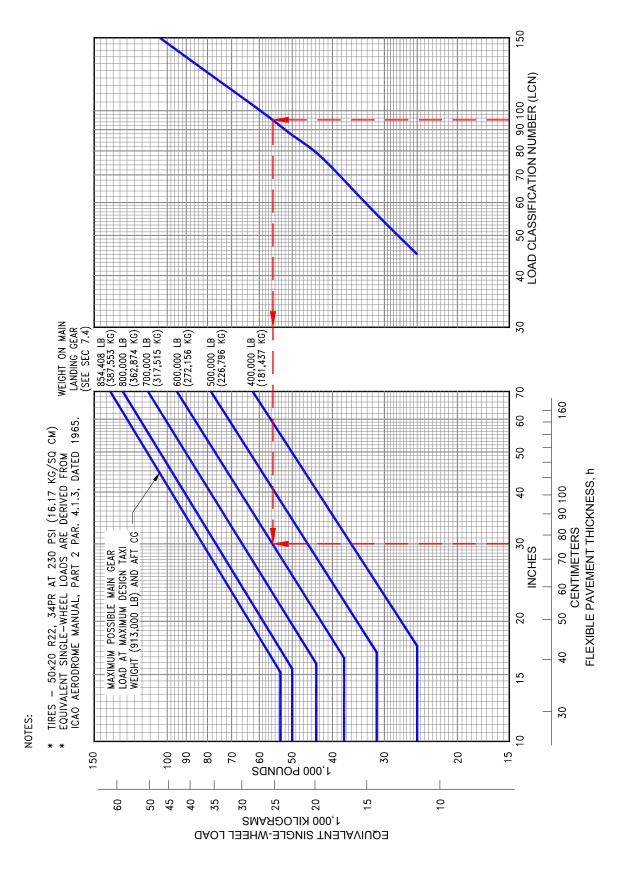
NOTE: TIRES - 50 x 20 R22, 34PR AT 230 PSI (16.17 KG/CM SQ) CALIFORNIA BEARING RATIO, CBR

FLEXIBLE PAVEMENT THICKNESS, h

7.5.2 FLEXIBLE PAVEMENT REQUIREMENTS - U.S. ARMY CORPS OF ENGINEERS DESIGN METHOD (S-77-1) MODEL 747 400ED - 400ED EDELCHTED


MODEL 747-400ER, -400ER FREIGHTER

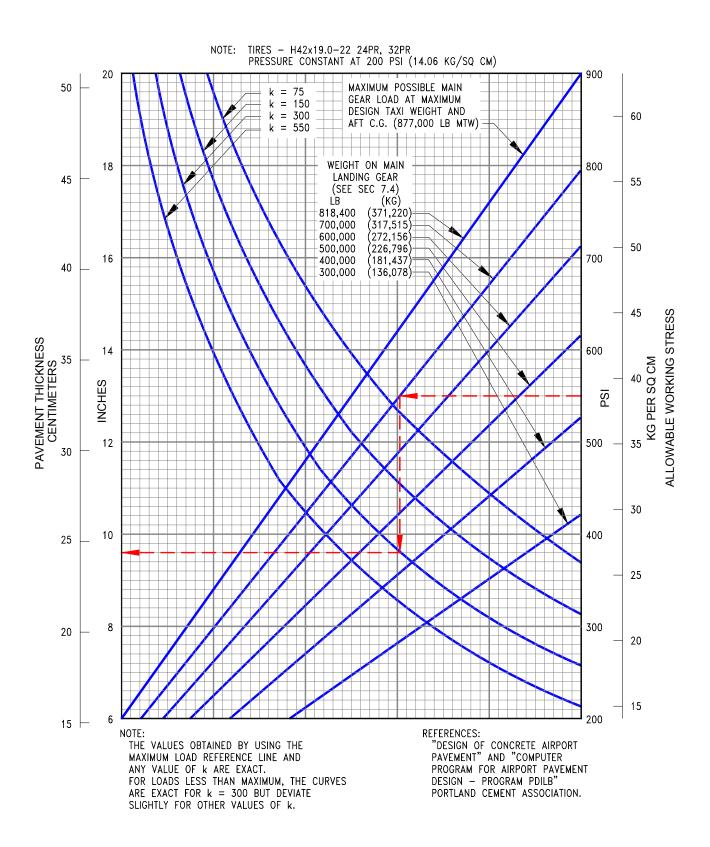
7.6 Flexible Pavement Requirements - LCN Method


To determine the airplane weight that can be accommodated on a particular flexible pavement, both the Load Classification Number (LCN) of the pavement and the thickness must be known.

In the example shown in Section 7.6.1, flexible pavement thickness is shown at 21 inches with an LCN of 63. For these conditions, the apparent maximum allowable weight permissible on the main landing gear is 500,000 pounds for a 747-400 airplane with 200-psi main gear tires. In Section 7.6.2, for a flexible pavement thickness of 30 inches with an LCN of 95, the apparent maximum allowable weight permissible on the main landing gear is 600,000 pounds for a 747-400ER airplane with 230-psi main gear tires.

Note: If the resultant aircraft LCN is not more that 10% above the published pavement LCN, the bearing strength of the pavement can be considered sufficient for unlimited use by the airplane. The figure 10% has been chosen as representing the lowest degree of variation in LCN that is significant (reference: ICAO Aerodrome Design Manual, Part 3, "Pavements,", First Edition dated 1977.)

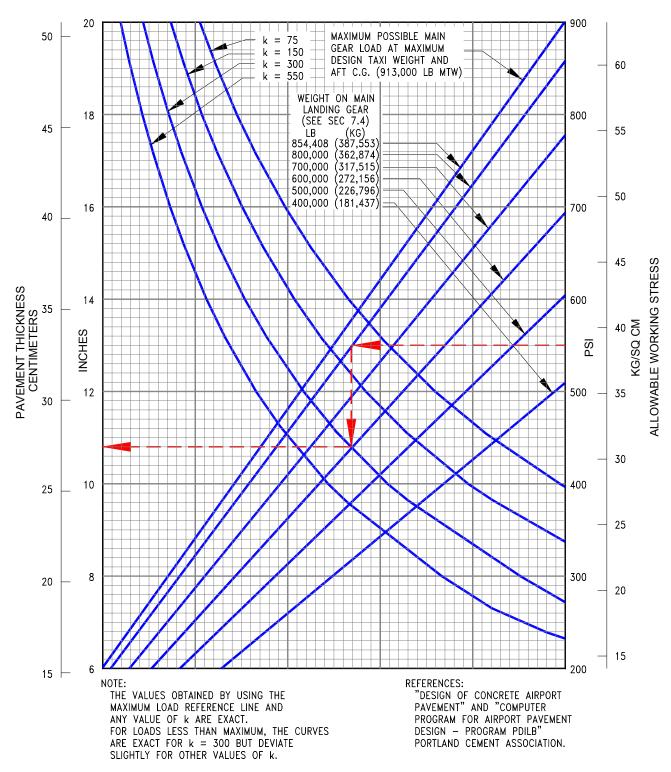
7.6.1 FLEXIBLE PAVEMENT REQUIREMENTS - LCN METHOD MODEL 747-400, -400 COMBI, -400 DOMESTIC, - 400 FREIGHTER


7.6.2 FLEXIBLE PAVEMENT REQUIREMENTS - LCN METHOD MODEL 747-400ER, -400ER FREIGHTER

7.7 Rigid Pavement Requirements - Portland Cement Association Design Method

The Portland Cement Association method of calculating rigid pavement requirements is based on the computerized version of "Design of Concrete Airport Pavement" (Portland Cement Association, 1965) as described in XP6705-2, "Computer Program for Airport Pavement Design" by Robert G. Packard, Portland Cement Association, 1968.

The rigid pavement design charts in Section 7.7.1 and Section 7.7.2 present data for six incremental main gear loads at the minimum tire pressure required at the maximum design taxi weight.


In the example shown in Section 7.7.1, for an allowable working stress of 550 psi, a main gear load on a 747-400 airplane of 700,000 pounds, and a subgrade strength (k) of 300, the required rigid pavement thickness is 9.6 inches. In Section 7.7.2, for an allowable working stress of 550 psi, a main gear load on a 747-400ER airplane of 800,000 pounds, and a subgrade strength (k) of 300, the required rigid pavement thickness is 10.8 inches.

7.7.1 RIGID PAVEMENT REQUIREMENTS - PORTLAND CEMENT ASSOCIATION DESIGN METHOD

MODEL 747-400, -400 COMBI, -400 DOMESTIC, - 400 FREIGHTER

7.7.2 RIGID PAVEMENT REQUIREMENTS - PORTLAND CEMENT ASSOCIATION DESIGN METHOD

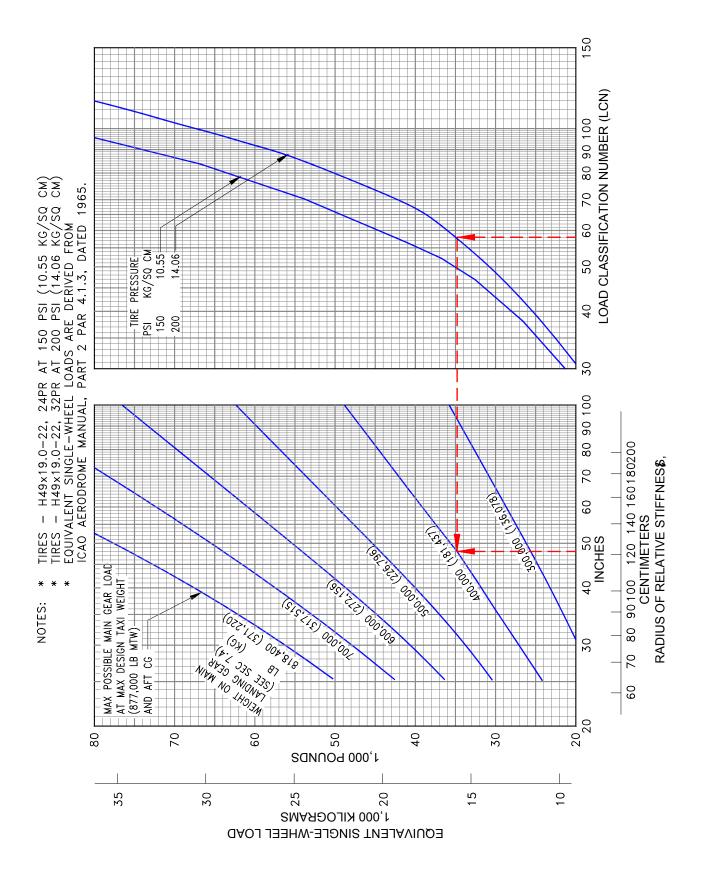
MODEL 747-400ER, -400ER FREIGHTER

7.8 Rigid Pavement Requirements - LCN Conversion

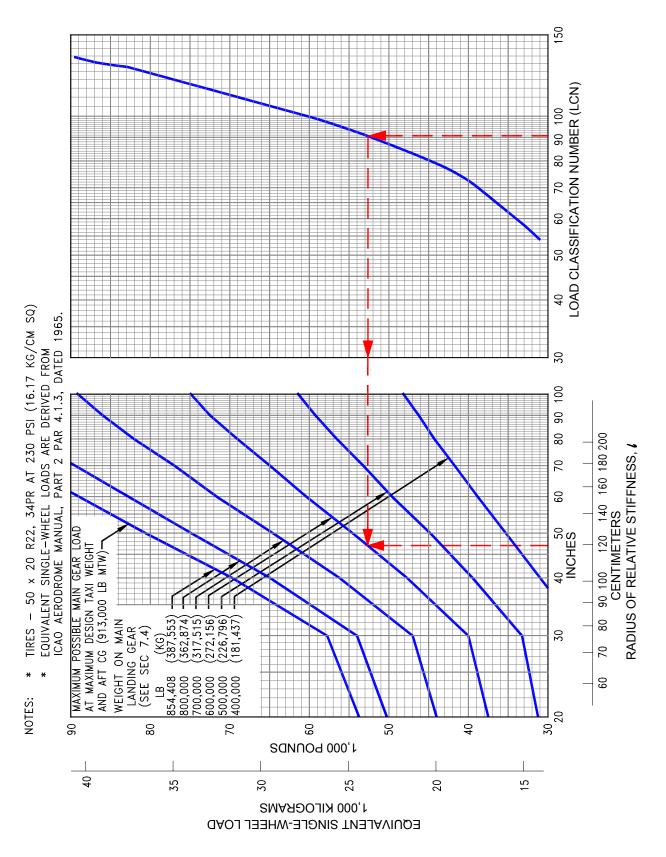
To determine the airplane weight that can be accommodated on a particular rigid pavement, both the LCN of the pavement and the radius of relative stiffness (l) of the pavement must be known.

In the example shown in Section 7.8.2, for a rigid pavement with a radius of relative stiffness of 48 with an LCN of 58, the apparent maximum allowable weight permissible on the main landing gear is 400,000 pounds for a 747-400 airplane with 200-psi main tires. In Section 7.8.3, for a rigid pavement with a radius of relative stiffness of 47 with an LCN of 91, the apparent maximum allowable weight permissible on the main landing gear is 600,000 pounds for a 747-400ER airplane with 230-psi main tires.

Note: If the resultant aircraft LCN is not more that 10% above the published pavement LCN, the bearing strength of the pavement can be considered sufficient for unlimited use by the airplane. The figure 10% has been chosen as representing the lowest degree of variation in LCN that is significant (reference: <u>ICAO Aerodrome Design Manual</u>, Part 3, "Pavements," First Edition dated 1977).


RADIUS OF RELATIVE STIFFNESS (*l*) VALUES IN INCHES

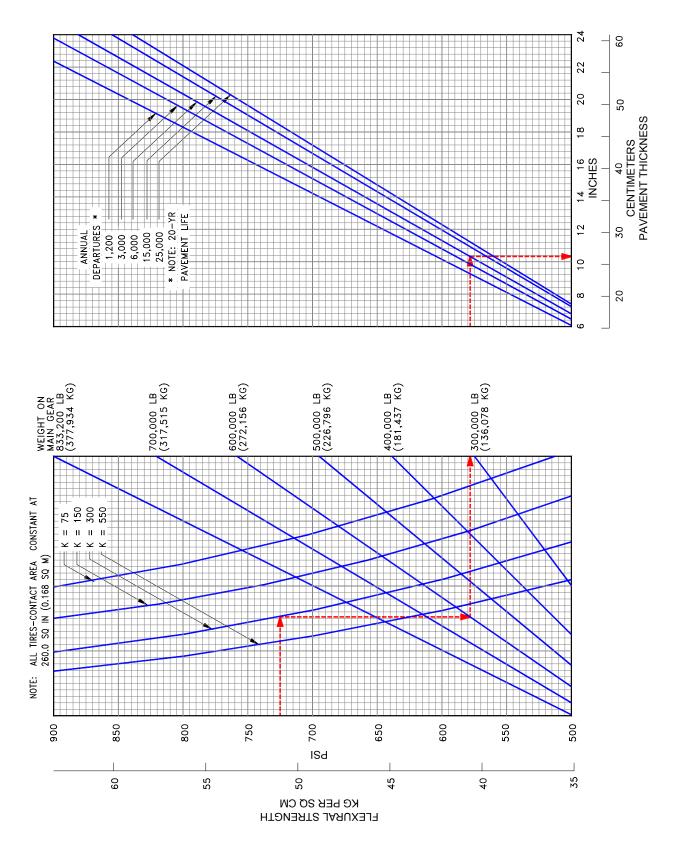
$$l = \sqrt[4]{\frac{\text{Ed}^3}{12(1-\mu^2)k}} = 24.1652\sqrt[4]{\frac{\text{d}^3}{k}}$$


WHERE: E = YOUNG'S MODULUS OF ELASTICITY = 4 x 10^6 psi k = SUBGRADE MODULUS, LB PER CU IN d = RIGID PAVEMENT THICKNESS, IN μ = POISSON'S RATIO = 0.15

	k =	k =	k =	k =	k =	k =	k =	k =	k =	k =
d	75	100	150	200	250	300	350	400	500	550
6.0	31.48	29.29	26.47	24.63	23.30	22.26	21.42	20.71	19.59	19.13
6.5	33.42	31.10	28.11	26.16	24.74	23.63	22.74	21.99	20.80	20.31
7.0	35.33	32.88	29.71	27.65	26.15	24.99	24.04	23.25	21.99	21.47
7.5	37.21	34.63	31.29	29.12	27.54	26.31	25.32	24.49	23.16	22.61
8.0	39.06	36.35	32.84	30.56	28.91	27.62	26.57	25.70	24.31	23.73
8.5	40.87	38.04	34.37	31.99	30.25	28.90	27.81	26.90	25.44	24.84
9.0	42.66	39.70	35.88	33.39	31.57	30.17	29.03	28.07	26.55	25.93
9.5	44.43	41.35	37.36	34.77	32.88	31.42	30.23	29.24	27.65	27.00
10.0	46.17	42.97	38.83	36.13	34.17	32.65	31.41	30.38	28.73	28.06
10.5	47.89	44.57	40.27	37.48	35.44	33.87	32.58	31.52	29.81	29.10
11.0	49.59	46.15	41.70	38.81	36.70	35.07	33.74	32.63	30.86	30.14
11.5	51.27	47.72	43.12	40.12	37.95	36.26	34.89	33.74	31.91	31.16
12.0	52.94	49.26	44.51	41.43	39.18	37.43	36.02	34.83	32.94	32.17
12.5	54.58	50.80	45.90	42.71	40.40	38.60	37.14	35.92	33.97	33.17
13.0	56.21	52.31	47.27	43.99	41.60	39.75	38.25	36.99	34.98	34.16
13.5	57.83	53.81	48.63	45.25	42.80	40.89	39.34	38.05	35.99	35.14
14.0	59.43	55.30	49.97	46.50	43.98	42.02	40.43	39.10	36.98	36.11
14.5	61.01	56.78	51.30	47.74	45.15	43.14	41.51	40.15	37.97	37.07
15.0	62.58	58.24	52.62	48.97	46.32	44.25	42.58	41.18	38.95	38.03
15.5	64.14	59.69	53.93	50.19	47.47	45.35	43.64	42.21	39.92	38.98
16.0	65.69	61.13	55.23	51.40	48.61	46.45	44.69	43.22	40.88	39.92
16.5	67.22	62.55	56.52	52.60	49.75	47.53	45.73	44.23	41.83	40.85
17.0	68.74	63.97	57.80	53.79	50.87	48.61	46.77	45.23	42.78	41.77
17.5	70.25	65.38	59.07	54.97	51.99	49.68	47.80	46.23	43.72	42.69
18.0	71.75	66.77	60.34	56.15	53.10	50.74	48.82	47.22	44.65	43.60
19.0	74.72	69.54	62.83	58.47	55.30	52.84	50.84	49.17	46.50	45.41
20.0	77.65	72.26	65.30	60.77	57.47	54.91	52.83	51.10	48.33	47.19
21.0	80.55	74.96	67.73	63.03	59.61	56.95	54.80	53.00	50.13	48.95
22.0	83.41	77.62	70.14	65.27	61.73	58.98	56.75	54.88	51.91	50.68
23.0	86.23	80.25	72.51	67.48	63.82	60.98	58.67	56.74	53.67	52.40
24.0	89.03	82.85	74.86	69.67	65.89	62.95	60.57	58.58	55.41	54.10
25.0	91.80	85.43	77.19	71.84	67.94	64.91	62.46	60.41	57.13	55.78

7.8.1 RADIUS OF RELATIVE STIFFNESS (REFERENCE: PORTLAND CEMENT ASSOCIATION)

7.8.2 RIGID PAVEMENT REQUIREMENTS - LCN CONVERSION MODEL 747-400, -400 COMBI, -400 DOMESTIC, - 400 FREIGHTER



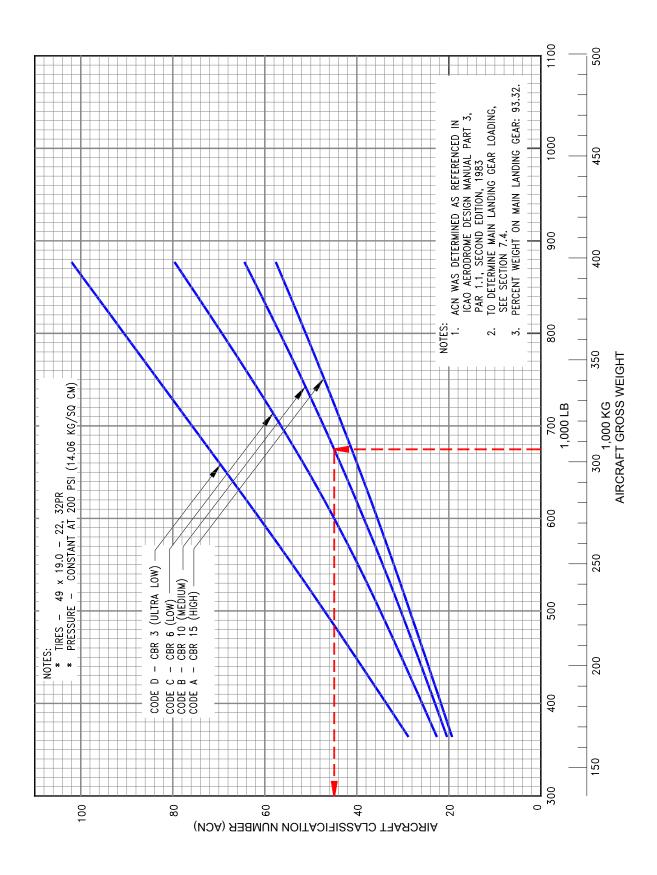
7.9 Rigid Pavement Requirements - FAA Design Method

The rigid pavement design charts shown in Section 7.9.1 and Section 7.9.2 present data on six incremental main gear loads at the minimum tire pressure required at the maximum design taxi weight.

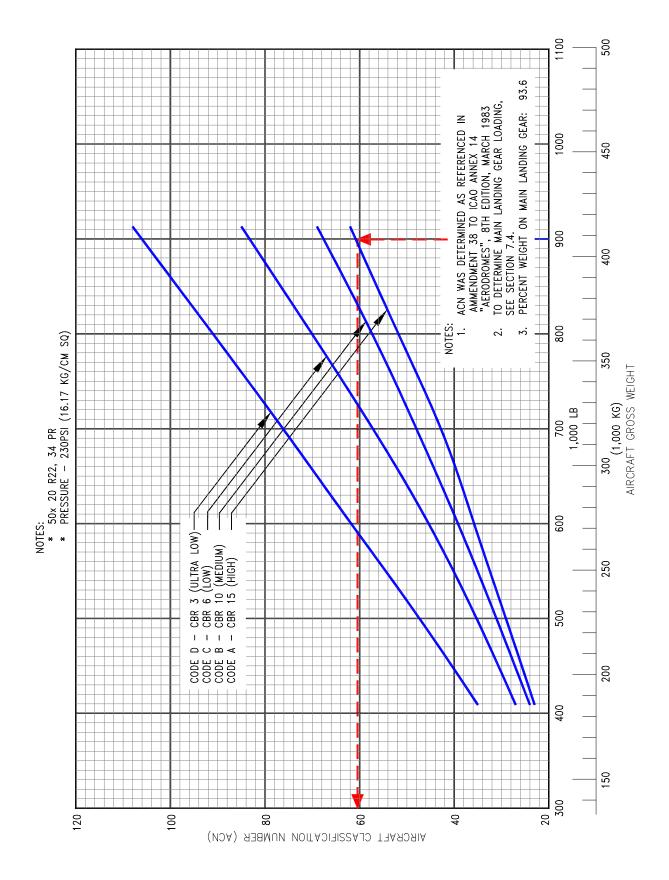
In the example shown in Section 7.9.1, for a pavement flexure strength of 725 psi, a subgrade strength of k = 300, and an annual departure level of 6,000, the required rigid pavement thickness for a 747-400 airplane with a main gear load of 600,000 pounds is 10.4 inches. In Section 7.9.2, for a pavement flexure strength of 700 psi, a subgrade strength of k = 300, and an annual departure level of 3,000, the required rigid pavement thickness for a 747-40ER airplane with a main gear load of 600,000 pounds is 10.4 inches.

7.9.1 RIGID PAVEMENT REQUIREMENTS - FAA DESIGN METHOD MODEL 747-400, -400 COMBI, -400 DOMESTIC, - 400 FREIGHTER

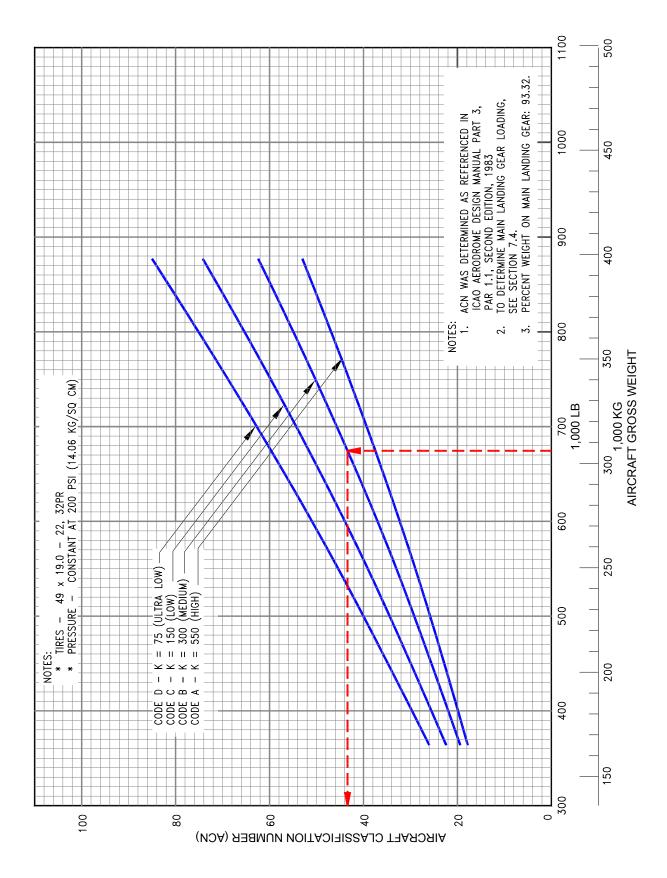
7.9.2 RIGID PAVEMENT REQUIREMENTS - FAA DESIGN METHOD MODEL 747-400ER, -400ER FREIGHTER

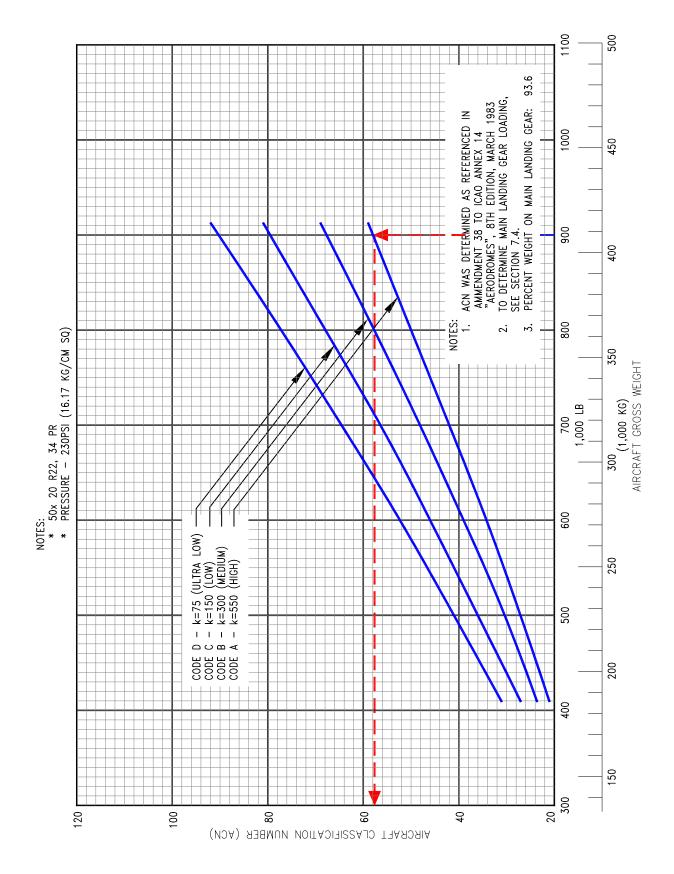

7.10 ACN/PCN Reporting System: Flexible and Rigid Pavements

To determine the ACN of an aircraft on flexible or rigid pavement, both the aircraft gross weight and the subgrade strength category must be known. In the example in Section 7.10.1, for a 747-400 aircraft with a gross weight of 675,000 pounds and medium subgrade strength, the flexible pavement ACN is 45. In Section 7.10.3, for the same aircraft and subgrade strength, the rigid pavement ACN is 43.8. In Section 7.10.2, for a 747-400ER aircraft with a gross weight of 900,000 pounds and medium subgrade strength, the flexible pavement ACN is 60.5. In Section 7.10.4, for the same aircraft and subgrade strength, the rigid pavement ACN is 57.8.


- Notes: 1. An aircraft with an ACN equal to or less that the reported PCN can operate on that pavement subject to any limitations on the tire pressure. (Ref: ICAO Annex 14 Aerodromes, First Edition, July 1990.)
 - 2. The ACN values on the Flexible Pavement charts were calculated using alpha factors proposed by the ICAO ACN Study Group.

The following table provides ACN data in tabular format similar to the one used by ICAO in the "Aerodrome Design Manual Part 3, Pavements." If the ACN for an intermediate weight between taxi weight and empty fuel weight of the aircraft is required, Figures 7.10.1 through 7.10.4 should be consulted.


				ACN FOR RIGID PAVEMENT SUBGRADES – MN/m ³				ACN FOR FLEXIBLE PAVEMENT SUBGRADES – CBR			
AIRCRAFT TYPE	ALL-UP MASS/ OPERATING MASS EMPTY LB (KG)	LOAD ON ONE MAIN GEAR LEG (%)	TIRE PRESSURE PSI (MPa)	HIGH 150	MEDIUM 80	LOW 40	ULTRA LOW 20	HIGH 15	MEDIUM 10	LOW 6	ULTRA LOW 3
747-400,	877,000(397,800)	23.33	200(1.38)	53	62	74	85	58	64	80	102
-400F	364,000(165,107)			18	19	22	26	19	20	23	29
747-400ER,	913,000(414,130)	23.40	230 (1.58)	59	69	81	92	62	69	85	108
-400 ER	409,000(185,520)			21	24	27	31	23	24	27	35
FREIGHTER											


7.10.1 AIRCRAFT CLASSIFICATION NUMBER - FLEXIBLE PAVEMENT MODEL 747-400, -400 COMBI, -400 DOMESTIC, - 400 FREIGHTER

7.10.2 AIRCRAFT CLASSIFICATION NUMBER - FLEXIBLE PAVEMENT MODEL 747-400ER, -400ER FREIGHTER

7.10.3 AIRCRAFT CLASSIFICATION NUMBER - RIGID PAVEMENT MODEL 747-400, -400 COMBI, -400 DOMESTIC, - 400 FREIGHTER

7.10.4 AIRCRAFT CLASSIFICATION NUMBER - RIGID PAVEMENT MODEL 747-400ER, -400ER FREIGHTER

8.0 FUTURE 747 DERIVATIVE AIRPLANES

8.0 FUTURE 747 DERIVATIVE AIRPLANES

Several derivatives are being studied to provide additional capabilities of the 747 family of airplanes.

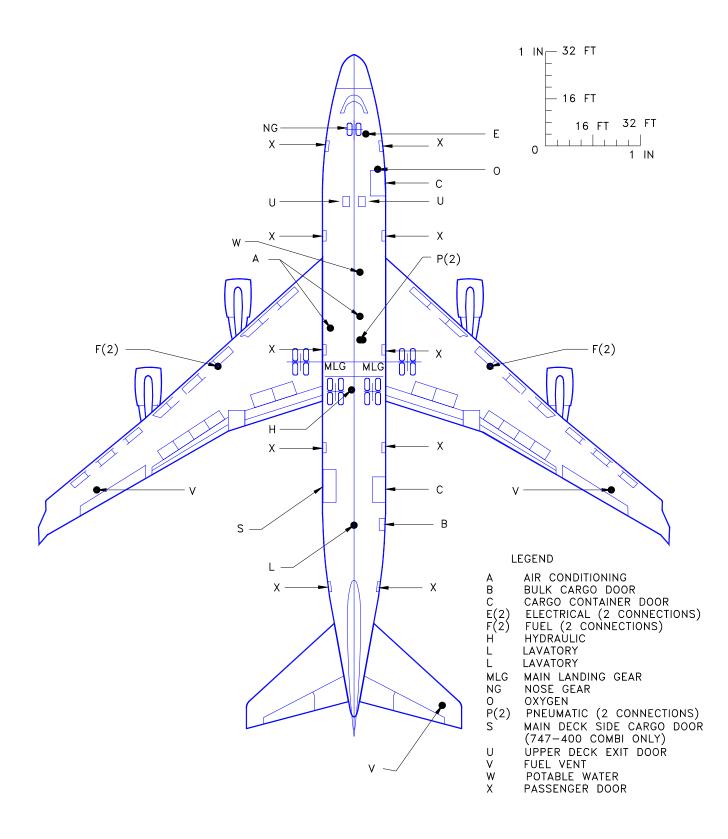
Additional seating capacity could be obtained by conventional body extensions or by upper deck extensions. A 31-foot body stretch with a partial stretched upper deck could provide an increase of 150 passengers over the 747-400. Studies have verified that body length increases up to 50 feet are technically feasible. Landing gear wheel base would be modified accordingly. Full-length extension of the upper deck is an alternate method of increasing seating capacity. This could provide 650 total seats without increasing overall body length. Double deck configurations with moderate body extensions could provide mixed-class seating capacities in excess of 700.

Where current range capability can be traded for increased payloads, existing maximum gross weight will suffice and no wing dimensional changes are necessary. Where range must be maintained with substantial payload increases, gross weights close to 1,000,000 pounds are possible with new-generation wings, with potential increases in wingspan. As airplane weight and size increase, planned thrust growth of current engines will provide takeoff performance equal to or greater than that of current models, and the required pavement thickness can be controlled by landing gear configurations.

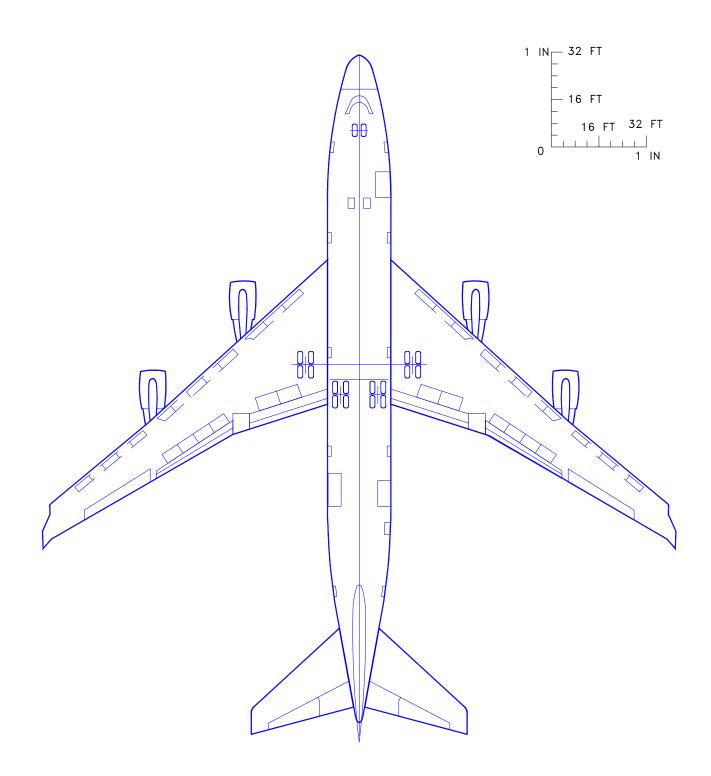
Future growth versions could also require increased tail heights depending on body length, engine size, and more outboard engine placement resulting from the increased wingspan.

The above discussion covers 747 growth possibilities. Whether and/or when these or other possibilities are actually built is entirely dependent on future airline requirements. In any event, the impact on airport facilities will be a consideration in configuration and design.

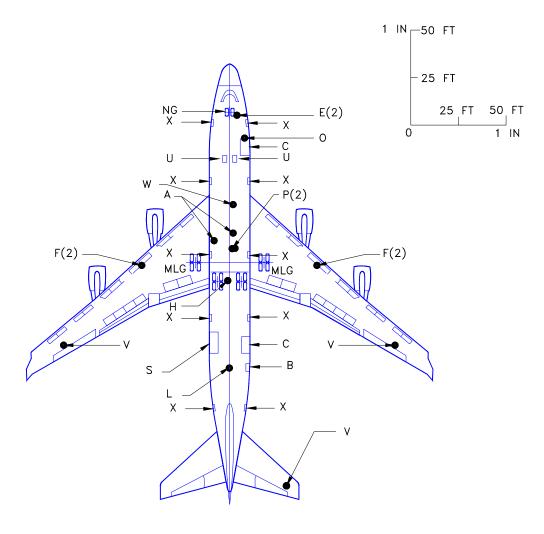
9.0 SCALED 747-400 DRAWINGS


9.1 – 9.5 747-400, -400 Combi, -400ER 9.6 – 9.10 747-400 Freighter, -400ER Freighter

9.11 – 9.15 747-400 Domestic

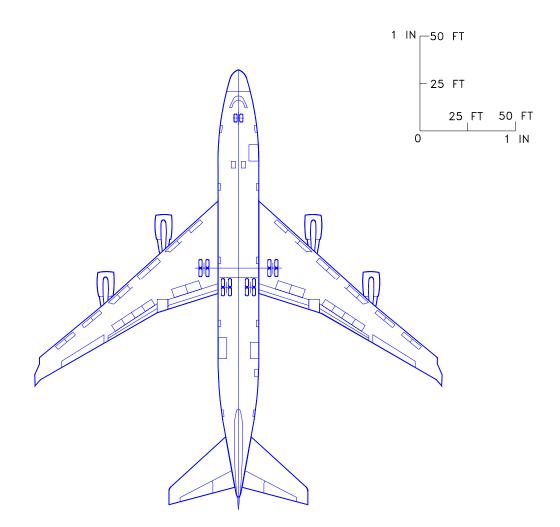

9.0 SCALED DRAWINGS

The drawings in the following pages show airplane plan view drawings, drawn to approximate scale as noted. The drawings may not come out to exact scale when printed or copied from this document. Printing scale should be adjusted when attempting to reproduce these drawings. Three-view drawing files of the 747-400, along with other Boeing airplane models, can be downloaded from the following website:

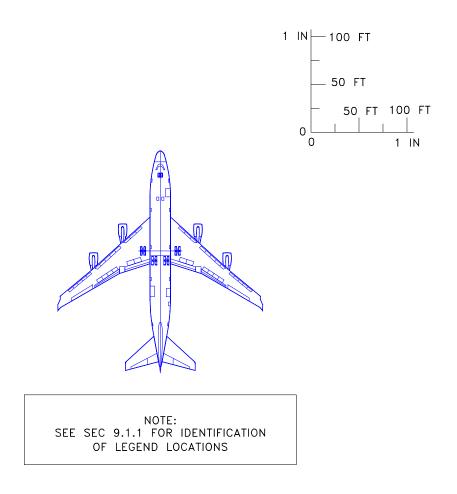

http://www.boeing.com/airports

9.1.1 SCALED DRAWING - 1 IN. = 32 FT MODEL 747-400, -400 COMBI, -400ER

9.1.2 SCALED DRAWING - 1 IN. = 32 FT MODEL 747-400, -400 COMBI, -400ER


LEGEND

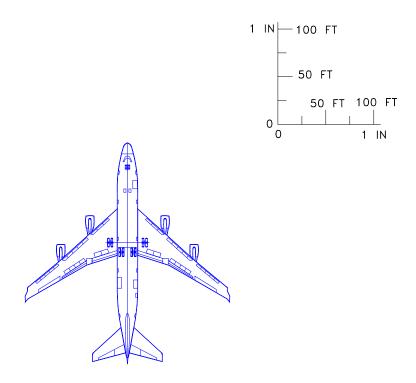
- AIR CONDITIONING А
- В
- BULK CARGO DOOR CARGO CONTAINER DOOR C
- ELECTRICAL (2 CONNECTIONS) FUEL (2 CONNECTIONS) HYDRAULIC Ē(2) F(2)
- Η
- LAVATORY L
- MLG MAIN LANDING GEAR NOSE GEAR NG
- OXYGEN 0
- P(2) PNEUMATIC (2 CONNECTIONS)
- S MAIN DECK SIDE CARGO DOOR
 - (747-400 COMBI ONLY)
- U UPPER DECK EXIT DOOR
- V FUEL VENT
- POTABLE WATER PASSENGER DOOR W
- Х


NOTE: ADJUST FOR PROPER SCALING WHEN PRINTING THIS PAGE

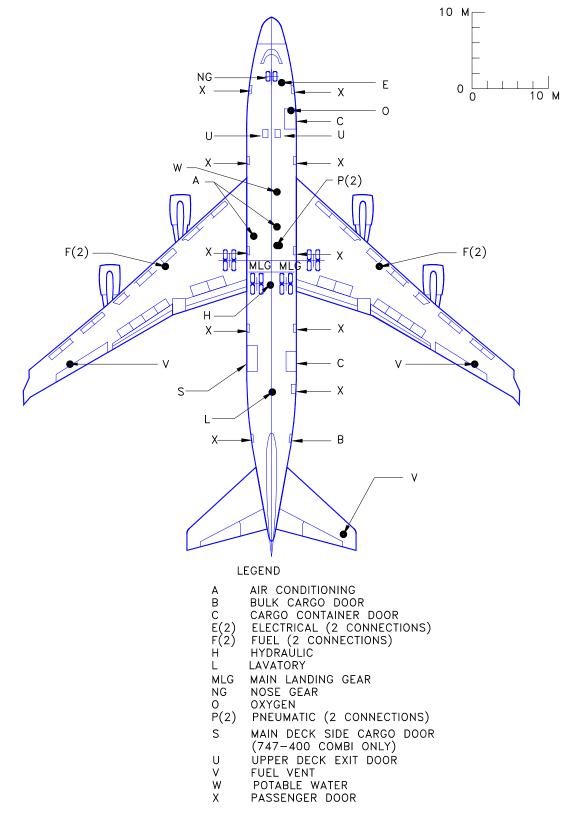
9.2.1 SCALED DRAWING - 1 IN. = 50 FT

MODEL 747-400, -400 COMBI, -400ER

9.2.2 SCALED DRAWING - 1 IN. = 50 FT MODEL 747-400, -400 COMBI, -400ER

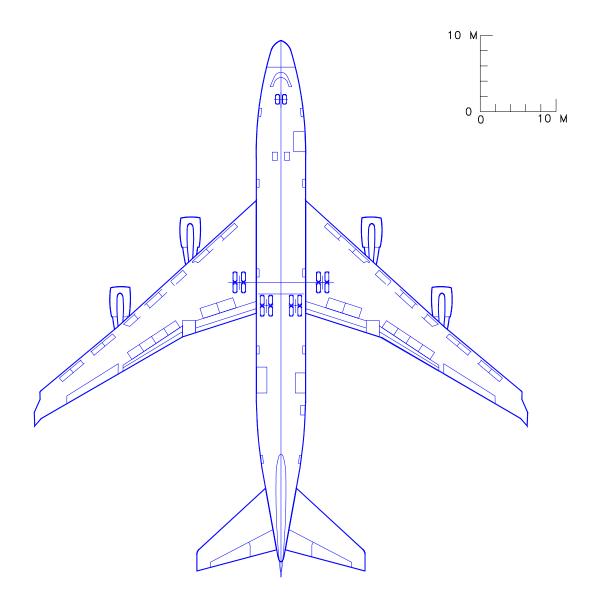

LEGEND

- AIR CONDITIONING А
- В
- BULK CARGO DOOR CARGO CONTAINER DOOR С
- Ĕ(2) F(2) ELECTRICAL (2 CONNECTIONS)
 - FUEL (2 CONNECTIONS) HYDRAULIC
- Η
- L LAVATORY
- MAIN LANDING GEAR NOSE GEAR MLG
- NG
- 0 OXYGEN
- P(2) PNEUMATIC (2 CONNECTIONS) S MAIN DECK SIDE CARGO DOOR
- (747-400 COMBI ONLY) U UPPER DECK EXIT DOOR
- V FUEL VENT
- POTABLE WATER W
- PASSENGER DOOR Х

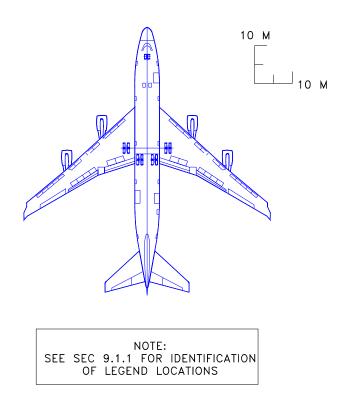

NOTE: ADJUST FOR PROPER SCALING WHEN PRINTING THIS PAGE

9.3.1 SCALED DRAWING - 1 IN = 100 FT

MODEL 747-400, -400 COMBI, -400ER



9.3.2 SCALED DRAWING - 1 IN. = 100 FT MODEL 747-400, -400 COMBI, -400ER

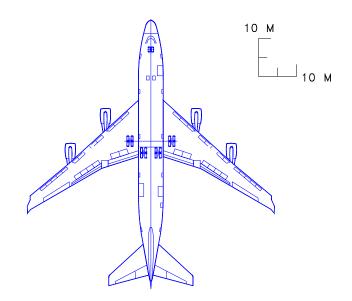


9.4.1 SCALED DRAWING - 1:500

MODEL 747-400, -400 COMBI, -400ER

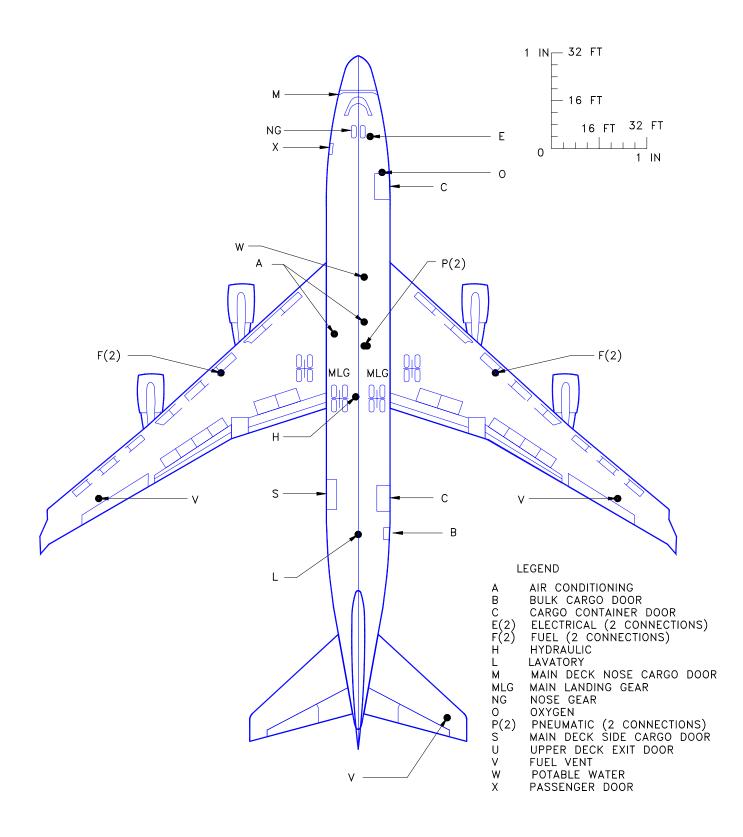
9.4.2 SCALED DRAWING - 1:500 MODEL 747-400, -400 COMBI, -400ER

LEGEND

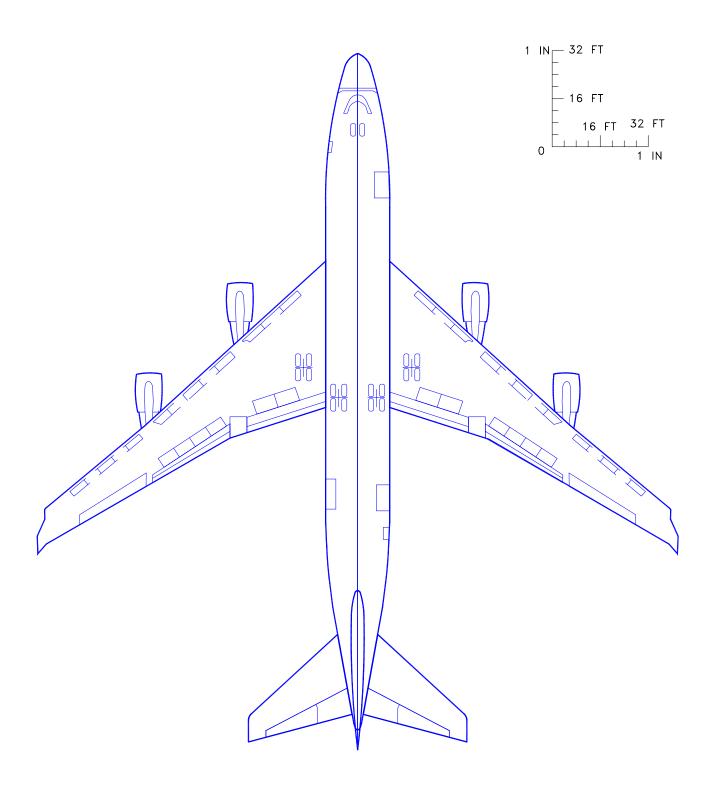

А

- AIR CONDITIONING
- BULK CARGO DOOR В
- С
- CARGO CONTAINER DOOR ELECTRICAL (2 CONNECTIONS) FUEL (2 CONNECTIONS) HYDRAULIC Ĕ(2) F(2)
- Н L LAVATORY
- MLG
- MAIN LANDING GEAR NOSE GEAR
- NG OXYGEN 0
- P(2) PNEUMATIC (2 CONNECTIONS)
- MAIN DECK SIDE CARGO DOOR (747-400 COMBI ONLY) S
- UPPER DECK EXIT DOOR U
- ٧ FUEL VENT
- W
- POTABLE WATER PASSENGER DOOR Х

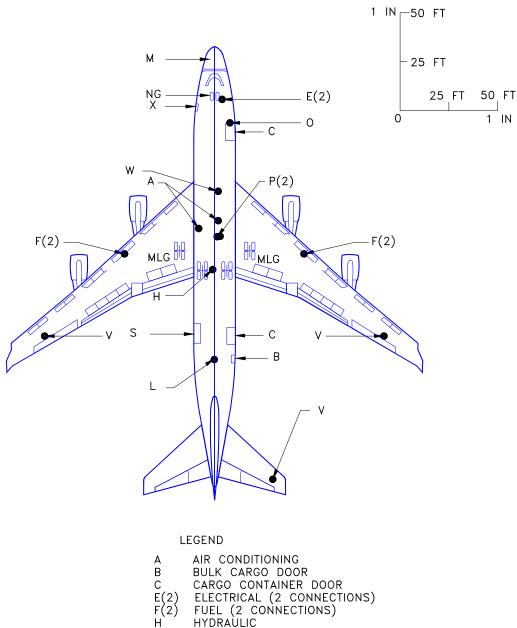
NOTE: ADJUST FOR PROPER SCALING WHEN PRINTING THIS PAGE


9.5.1 SCALED DRAWING - 1:1000

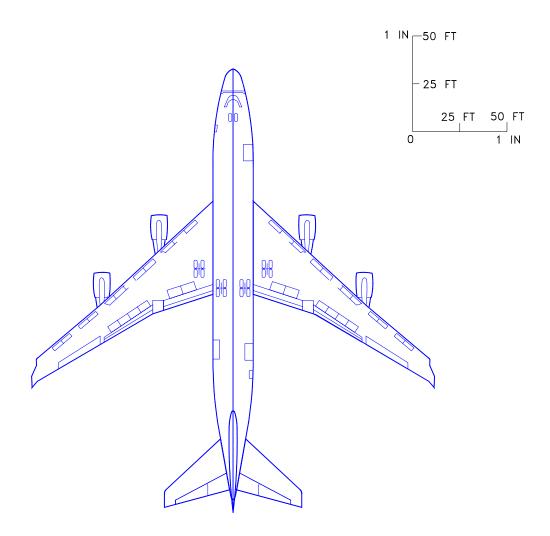
MODEL 747-400, -400 COMBI, -400ER


9.5.2 SCALED DRAWING - 1:1000

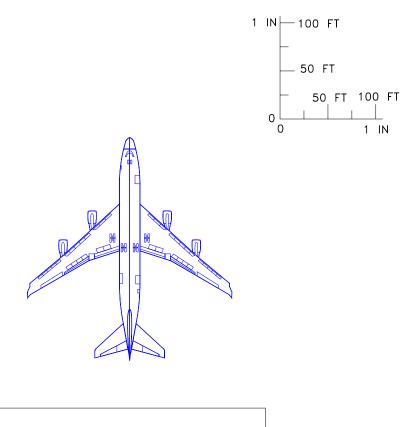
MODEL 747-400, -400 COMBI, -400ER


9.6.1 SCALED DRAWING - 1 IN. = 32 FT

MODEL 747-400 FREIGHTER, -400ER FREIGHTER


9.6.2 SCALED DRAWING - 1 IN. = 32 FT

MODEL 747-400 FREIGHTER, -400ER FREIGHTER



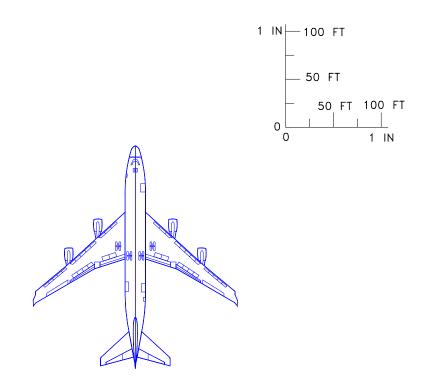
- LAVATORY L
- MAIN DECK NOSE CARGO DOOR М
- MLG
 - MAIN LANDING GEAR NOSE GEAR
- NG 0 OXYGEN
- PNEUMATIC (2 CONNECTIONS) MAIN DECK SIDE CARGO DOOR P(2)
- S
- U UPPER DECK EXIT DOOR
- ٧ FUEL VENT
- POTABLE WATER W
- PASSENGER DOOR Х

9.7.1 SCALED DRAWING - 1 IN. = 50 FT

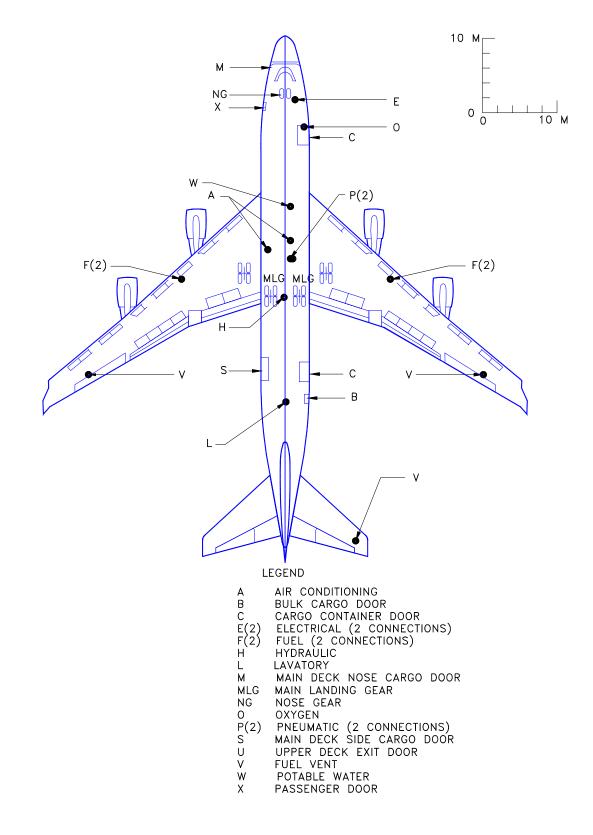
9.7.2 SCALED DRAWING - 1 IN. = 50 FT MODEL 747-400 FREIGHTER, -400ER FREIGHTER

NOTE: SEE SEC 9.6.1 FOR IDENTIFICATION OF LEGEND LOCATIONS

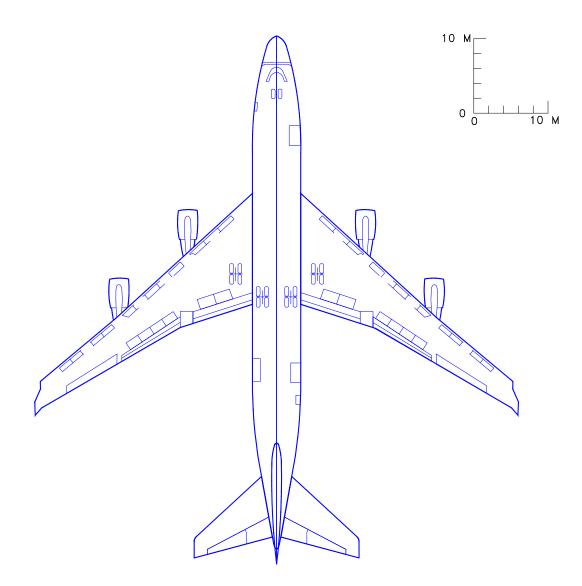
LEGEND

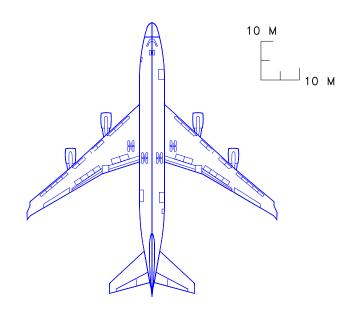

А

- AIR CONDITIONING
- BULK CARGO DOOR В
- С CARGO CONTAINER DOOR
- Ē(2) F(2) ELECTRICAL (2 CONNECTIONS)
- FUEL (2 CONNECTIONS) HYDRAÙLIC
- Н L LAVATORY
- MAIN DECK NOSE CARGO DOOR М
- MAIN LANDING GEAR NOSE GEAR MLG
- NG
- OXYGEN 0
- P(2)
- PNEUMATIC (2 CONNECTIONS) MAIN DECK SIDE CARGO DOOR S
- UPPER DECK EXIT DOOR U
- ۷ FUEL VENT
- W POTABLE WATER
- Х PASSENGER DOOR


NOTE: ADJUST FOR PROPER SCALING WHEN PRINTING THIS PAGE

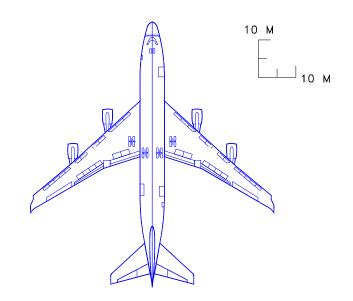
9.8.1 SCALED DRAWING - 1 IN = 100 FT


MODEL 747-400 FREIGHTER, -400ER FREIGHTER

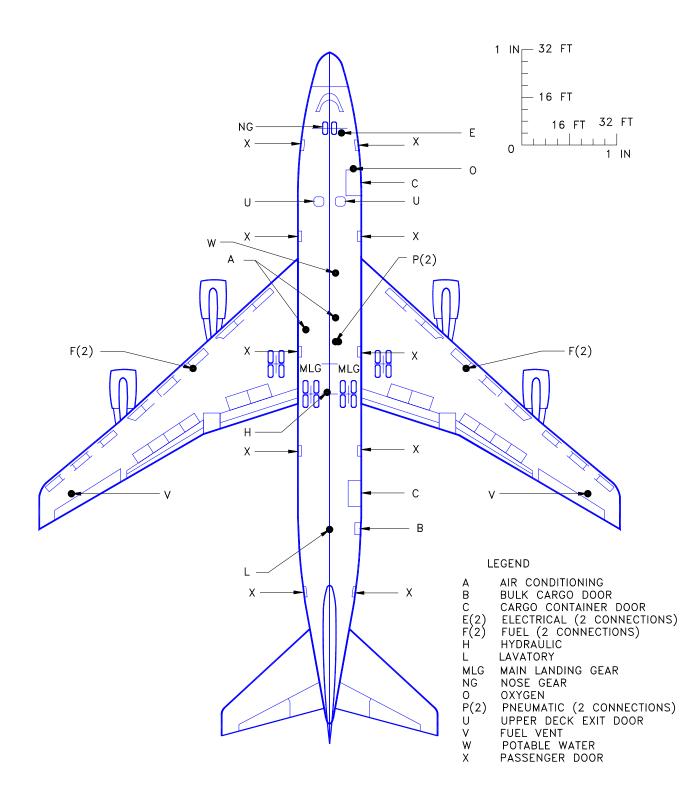

9.8.2 SCALED DRAWING - 1 IN = 100 FT MODEL 747-400 FREIGHTER, -400ER FREIGHTER

9.9.1 SCALED DRAWING - 1:500

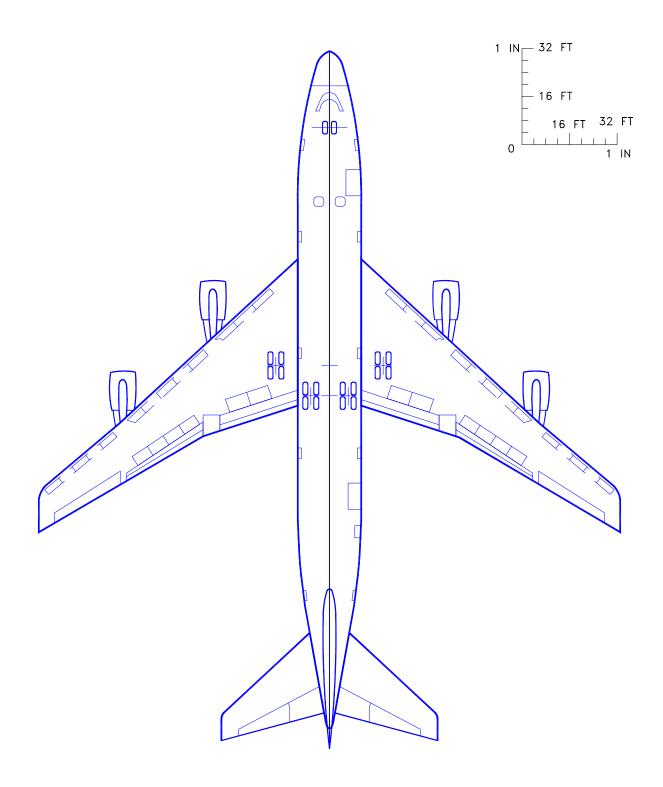
9.9.2 SCALED DRAWING - 1:500

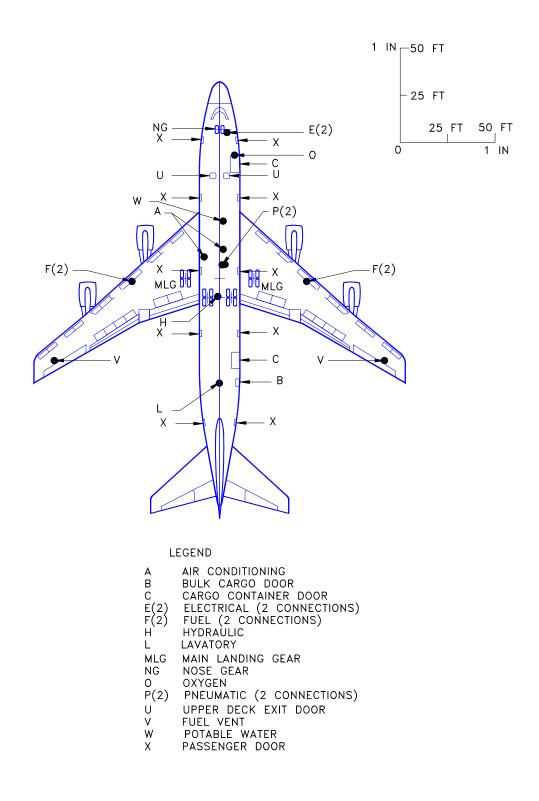

NOTE: SEE SEC 9.6.1 FOR IDENTIFICATION OF LEGEND LOCATIONS

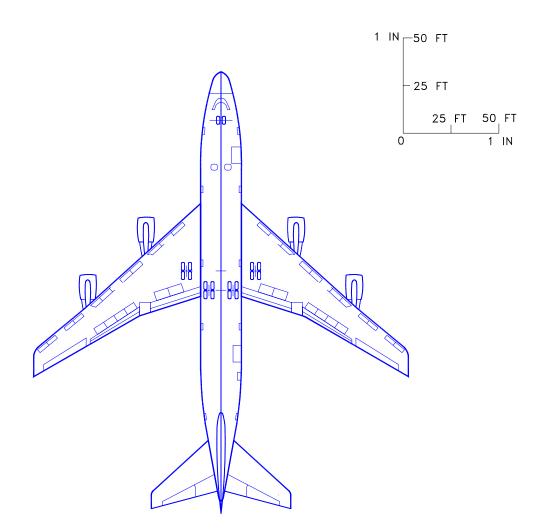
LEGEND

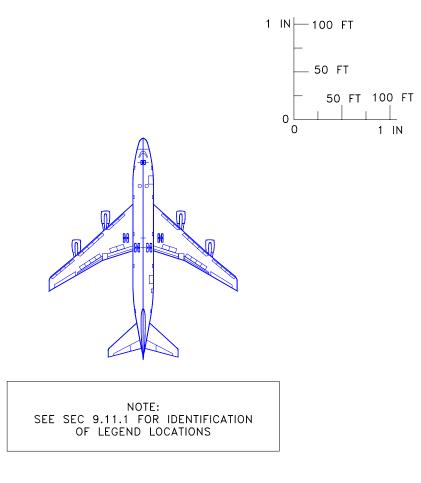

- AIR CONDITIONING А
- В BULK CARGO DOOR
- Ĉ CARGO CONTAINER DOOR
- Ĕ(2) F(2) ELECTRICAL (2 CONNECTIONS)
- FUEL (2 CONNECTIONS)
- HYDRAÙLIC Н
- LAVATORY L
- MAIN DECK NOSE CARGO DOOR М
- MLG MAIN LANDING GEAR
- NG NOSE GEAR
- 0 OXYGEN
- PNEUMATIC (2 CONNECTIONS) MAIN DECK SIDE CARGO DOOR UPPER DECK EXIT DOOR P(2) S
- Ū
- FUEL VENT
- ٧ W
- POTABLE WATER PASSENGER DOOR Х

NOTE: ADJUST FOR PROPER SCALING WHEN PRINTING THIS PAGE


9.10.1 SCALED DRAWING - 1:1000

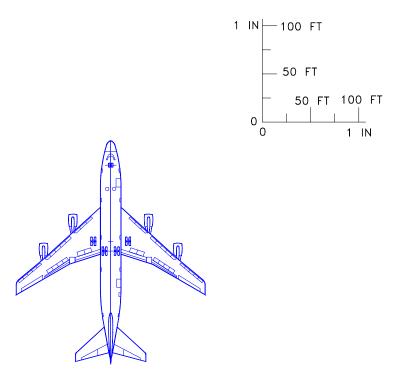

9.10.2 SCALED DRAWING - 1:1000 MODEL 747-400 FREIGHTER, -400ER FREIGHTER


9.11.1 SCALED DRAWING – 1 IN = 32 FT MODEL 747-400 DOMESTIC

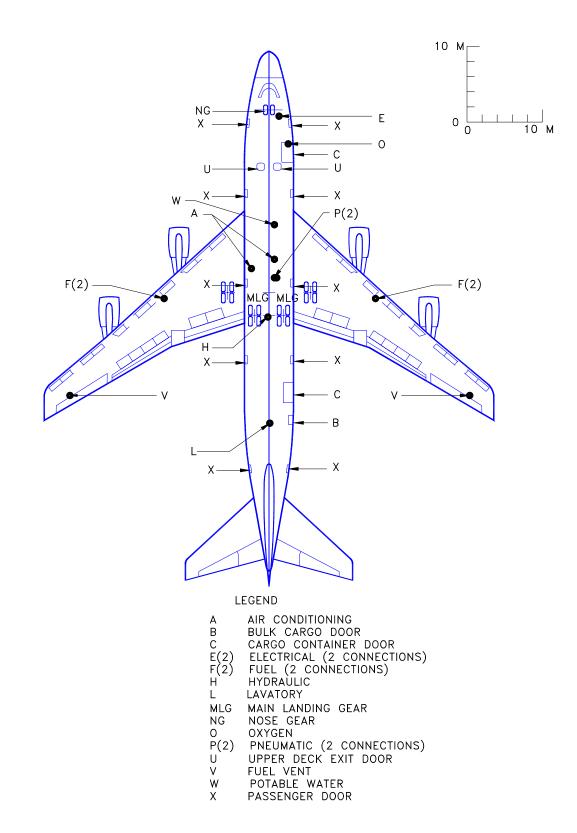

9.11.2 SCALED DRAWING – 1 IN = 32 FT MODEL 747- 400 DOMESTIC

9.12.1 SCALED DRAWING – 1 IN = 50 FT MODEL 747- 400 DOMESTIC

9.12.2 SCALED DRAWING – 1 IN = 60 FT MODEL 747- 400 DOMESTIC

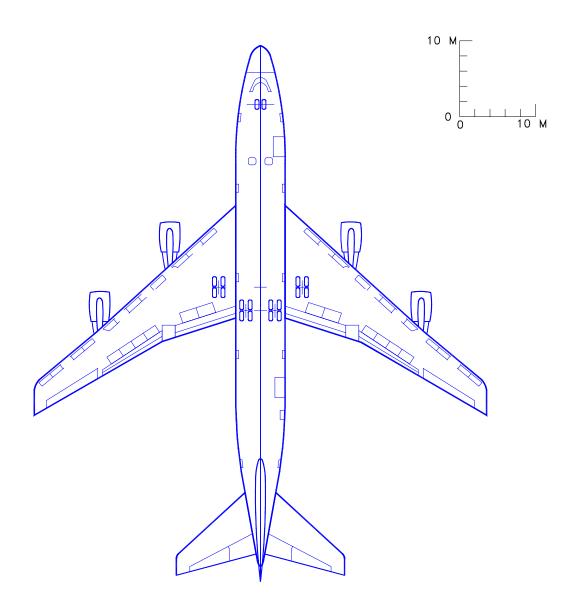


LEGEND

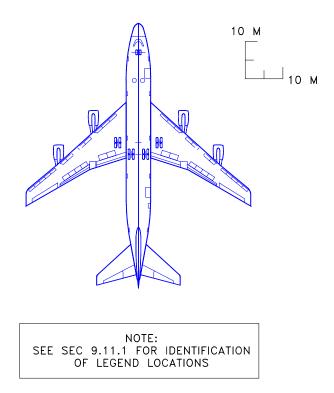

- А AIR CONDITIONING
- В BULK CARGO DOOR
- CARGO CONTAINER DOOR С
- ELECTRICAL (2 CONNECTIONS) FUEL (2 CONNECTIONS) HYDRAULIC E(2) F(2)
- ΗÌ
- LAVATORY L
- MLG MAIN LANDING GEAR
- NG NOSE GEAR
- 0 OXYGEN P(2) PNEUMATIC (2 CONNECTIONS)
- U UPPER DECK EXIT DOOR
- FUEL VENT ۷
- W
- POTABLE WATER PASSENGER DOOR Х

NOTE: ADJUST FOR PROPER SCALING WHEN PRINTING THIS PAGE

9.13.1 SCALED DRAWING - 1 IN = 100 FT MODEL 747- 400 DOMESTIC



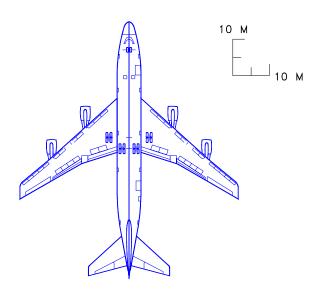
9.13.2 SCALED DRAWING – 1 IN = 100 FT MODEL 747- 400 DOMESTIC



9.14.1 SCALED DRAWING - 1:500

MODEL 747- 400 DOMESTIC

9.14.2 SCALED DRAWING – 1 :500 MODEL 747- 400 DOMESTIC


LEGEND

- AIR CONDITIONING А
- В
- BULK CARGO DOOR CARGO CONTAINER DOOR С
- ELECTRICAL (2 CONNECTIONS) FUEL (2 CONNECTIONS) HYDRAULIC E(2) F(2)
- H
- LAVATORY L
- MAIN LANDING GEAR MLG
- NOSE GEAR NG 0
- OXYGEN
- P(2) PNEUMATIC (2 CONNECTIONS)
- U UPPER DECK EXIT DOOR
- FUEL VENT ٧ W
- POTABLE WATER PASSENGER DOOR Х

NOTE: ADJUST FOR PROPER SCALING WHEN PRINTING THIS PAGE

9.15.1 SCALED DRAWING - 1:1000

MODEL 747- 400 DOMESTIC

9.15.2 SCALED DRAWING – 1:1000 MODEL 747- 400 DOMESTIC