WEIGHT AND BALANCE



Importanza del peso sulle prestazioni e controllo
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Sensibilita del Range al peso del velivolo
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B777-300: V=450 kts, C;=0.55, L/D=20, W=124,000kg, W,,=400,000kg

=>R = 6000 nm
ifL/D  -5% =>R =5700 nm =-5%
if C; +5% =>R=5714 nm =-5%
ifW,  +5% and W, constant =>R =5273 nm =-12%!!
ifW,  +5% and AW, =AW, =>R =5828 nm =-3%
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Considerazioni

* se il serbatoio di combustibile deve aumentare => ala di superficie maggiore ?

* 3 prestazioni costanti (T/W) => + spinta motore (es +5%) => motore + pesante

* 3 prestazioni costanti (W/S) => ala + grande ed irrobustita, carrello irrobustito =>
+ OEW

Tutto chiarisce il concetto di “snow-ball effect” che puo portare ad incrementi
notevoli del peso del velivolo (soprattutto rispetto a stime iniziali.

Il controllo del peso durante il processo di progettazione preliminare e di
fondamentale importanza.

| progettisti devono implementare un sistema di salvaguardia del peso.



Esempio

The Boeing 747-100 was initially designed to carry 350 passengers
over 5100 nm with a MTOW of 550,000 Ib....

....but was finally certified with a MTOW of 710,000 |b (+29%)
engine thrust for the Pratt & Whitney JT9D-7A had to be increased
from 41,000 Ib to 46,500 Ib (13.4%)

take-off field length had increased from 8000 to 11750 ft (+47%)

initial cruise altitude had dropped from FL 350 to FL 310

the later B747-400 carried 416 pax (+19%) over 7670 nm (+50%)
with a MTOW of 910,000 |b (+28%) largely due to improved SFC



Weight growth

Component weight has a tendency, just as for human beings, to
increase over time and stubbornly refuses to drop.

During the design process, component weight increase leads to
time consuming design iterations because all strength
computations have to be performed case by case and must be
documented extensively for certification purposes.

Therefore, a highly accurate (and preferably conservative) first
weight estimate is of paramount importance.

the weight topic is at least as important as aerodynamics,
propulsion and stability and control (but often receives less
attention, as reflected in literature!).

weight problems are difficult to cure because they demand more
material, which aggravates the problem.




Preliminary weight estimation

During the preliminary design phase, weight is not determined but
estimated using analytical tools, based on a mix of load cases and
statistical data.

These estimates should be regarded as design goals for the structural
engineers in the detailed design phase later on.

The preliminary designer does in this respect not design, but predict.

Weight is an indication of a design(er)’s quality, because that is where
all disciplines come together!
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Welight estimation accuracy

Due to the lack of detailed information on the often complicated final
design, gross simplifications in the geometric model must be made.

For many parts there are many load cases but only one chosen for the
computational model.

The critical load case is not always directly apparent.

Hence the models for the structural load cases are often tantalizing
Inaccurate.

In addition, many parts of the aircraft are not sized by load cases (such as
avionics, electrical systems, environmental control etc.).

As a result, many weight estimation tools are of highly (semi-)empirical
nature with large tailoring factors (up to 2).
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Weight is a very sensitive issue for aircraft manufacturers and hence
detailed data is extremely difficult to obtain.

This partially explains why weight estimation is by far not as extensively
covered in literature as aerodynamics and stability & control.

Often only group weights are available to textbook writers

Consequently, large errors may be observed for component weight
estimation but much better correlation is found for their summation (group
weights and MEW).

Therefore, component Welght estimates from one met
ever be combined with that from another method! -2

thod shall never



WEIGHT ~ 1000 LB
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to anticipate shortfalls, aircraft manufacturers

design weights

give range guarantees to airlines that are 5%

below the nominally expected values
reserve fuel is dead weight, *4.5% MTOW

weights must be limited to prevent

overloading the structure
unacceptable performance
unacceptable handling qualities



MTOW first estimation

Square Cube Law (SQL): scale aircraft by parameter A:

» length ~ A

> area ~ A2

> weight ~ A3

> W/S~ A3/ A=A
Large a/c are relatively heavy and have high wing loadings, need very
effective high-lift devices.



Constant OEW fraction for all transport a/c?
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Tipicamente abbiamo un valore del peso a vuoto operativo pari a circa

il 50% del peso massimo al decollo.
Ma e proprio 0.50 per tutti | velivoli da trasporto ?



Constant OEW fraction for all transport a/c?

li vaiore tende ad essere circa 0.58-0.60 per veiivoii da 50

065 tonnellate (120-140 posti)
Can RJ
OEM X Av RJ70
MTOM => Valori inferiori (circa 0.53) per velivoli al di sopra delle

200 tonnellate
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Fig. 7.3 Aircrafts=s=tmmssstotolio affsnne fontion AIRBUS A380-800

Maximum take-off weight 560,000 kg (1,200,000 Ib)

Maximum landing weight 386,000 kg (850,000 Ib)

Maximum zero fuel weight 361,000 kg (800,000 Ib)

Typical operating empty

weight OEW 276,800 kg (610,000 Ib) Rapporto =0.49



Effetto del peso sul COSTO del Velivolo
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Incidenza parti su OEW (valido per una certa categoria)

PERCENTAGE OF MTOW
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short-haul jets 3k.5 . &.0.13.5 50
turboprops| 32.0 12.5 13.5 58.0

pistons 29.5.20.5 15.5 65

long-haul jets 28,5 " "8.5 9.0 &
12,0 51.0
pistons 25.5 17.5 1.0 5%

o

turboprops| 27.0 12.

FREIGHTERS

short-haul turboprops | 35.0 13.0 8.0 56.0
long-haul turboprops |26.5 10.0 7.0 .43.5

EXECUTIVE JETS 27.5  -8.0 15.5°51.8

Table 8-2. Typical average empty weight
fractions for several categories of trans-

port aircraft
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Composite materials

At best 20% reductions in component weight can be achieved.
Combat aircraft show the way with 25% overall reduction in structure fraction.
Transport a/c have only attained 15%, so there is potential for another 10% reduction.
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Figure 43. Structural weight as a percentage of Year of Inception

maximum take-off weight

Figure 16. Relative usage (% mass) of materials in combat, civil and
military transport aircraft, including landing gear.



Composite materials

Materials Wedght Disiribulion

Composite materials have up to now
only been applied to secondary
structure such as tailplanes and fairings
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Figure 47. Percentage of civil aircraft structure made up of
carbon composite

Figure 46. The materials scenario, circa 1983: a supposedly
conservative forecast



Composite materials airliners

B787: 50% composite fraction!

B carbon laminate

[ carbon sandwich
M Fiberglass
M Aluminum

[C] Aluminum/steeltitanium pylons
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LOAD AND BALANCE DIAGRAM

Balancing
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Balancing

BALANCING THE AIRCRAFT (1)
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Load and balance diagram for short-haul wide-body airline
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mass [kg]

laoding diagran wing position 2

Balancing e
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Ala in posizione arretrata
rispetto alla fusoliera (CG piu
avanzato)

loading diagram wing position 3
29000
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Ala in posizione avanzata
rispetto alla fusoliera (CG piu
arretrato)

—e— window seats
—=— aisle seats
middle seat

s
Tipicamente si usa una posizione
della corda di radice sulla fusoliera
al 35-37% della lunghezza di
fusoliera (per velivoli con motori
sub-alari).
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BOEING 737-400
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Weight & Balance

Esempio
B737-400
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