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ABSTRACT 
 
Demand and capacity factor design (DCFD), which forms the analytical backbone of 
probabilistic performance evaluation in FEMA 350, essentially consists of a closed-form and 
analytical expression for the mean annual rate of exceeding a prescribed performance level. The 
format has been widely used, due to both its utility and simplicity of formulation. The DCFD has 
often tempted the researchers into trying to overcome its potential inaccuracies due to the 
underlying simplifying assumptions. The assumptions of a power-law hazard curve and 
Lognormality of the engineering demand parameter (EDP) given the intensity measure (IM) are 
distinguished as the two main causes of the inaccuracies in the formulation. This work offers an 
alternative glance into the original DCFD safety-checking format as a visual safety-checking 
instrument. The visualization draws upon overlapping of fragility and hazard curves. One of the 
advantages offered by this graphical procedure is that the site-specific hazard curve can be 
employed and visualized directly (only a slope parameter needs to be estimated). The proposed 
framework employs a reliability-based critical demand to capacity ratio as a global performance 
variable. It is shown that the proposed visual DCFD procedure leads –within acceptable limits of 
accuracy—to results that are comparable with those obtained through a direct calculation of risk 
by employing numerical integration, for the case-study frame and the collapse prevention 
performance level. 
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ABSTRACT 
 
 Demand and capacity factor design (DCFD), which forms the analytical backbone of probabilistic 

performance evaluation in FEMA 350, essentially consists of a closed-form and analytical 
expression for the mean annual rate of exceeding a prescribed performance level. The format has 
been widely used, due to both its utility and simplicity of formulation. The DCFD has often 
tempted the researchers into trying to overcome its potential inaccuracies due to the underlying 
simplifying assumptions. The assumptions of a power-law hazard curve and Lognormality of the 
engineering demand parameter (EDP) given the intensity measure (IM) are distinguished as the 
two main causes of the inaccuracies in the formulation. This work offers an alternative glance into 
the original DCFD safety-checking format as a visual safety-checking instrument. The 
visualization draws upon overlapping of fragility and hazard curves. One of the advantages offered 
by this graphical procedure is that the site-specific hazard curve can be employed and visualized 
directly (only a slope parameter needs to be estimated). The proposed framework employs a 
reliability-based critical demand to capacity ratio as a global performance variable. It is shown that 
the proposed visual DCFD procedure leads –within acceptable limits of accuracy—to results that 
are comparable with those obtained through a direct calculation of risk by employing numerical 
integration, for the case-study frame and the collapse prevention performance level. 

 
 

Introduction 
 
Demand and capacity factor design (DCFD, [1,2,3]), which forms the analytical backbone of 
probabilistic performance evaluation in FEMA 350 [4], is consisted of (the rearrangement of) a 
closed-form and analytical expression for the mean annual rate of exceeding a prescribed 
performance level. The format has been widely used, due to both its utility and simplicity of 
formulation. It has also been closely analyzed and criticized for its potential to lead to inaccurate 
performance evaluation [5-10]. However, albeit often valid allegations of inaccuracy, it has 
never ceased to fascinate the researchers and to challenge them into modifying it to overcome 
some of the causes of such inaccuracies. For the most part, the assumption of a power-law 
hazard curve (with a constant logarithmic slope) and the assumption of the Lognormality 
(power-law median with a constant logarithmic standard deviation) of the engineering demand 
parameter (EDP) given the intensity measure (IM) are recognized as the two main causes of the 
inaccuracies in the formulation, with the first one being much more important. However, 
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improving DCFD has proved to be very challenging as any effort to overcome and relax some of 
its underlying assumptions risks to further complicate its attractive back-of-the-envelope 
formulation. The current work offers a glance into the DCFD safety-checking format as a visual 
and practical instrument for controlling whether the structure manages to verify the performance 
level of interest. The visualization basically draws upon the overlapping of fragility and hazard 
curves. To achieve such graphical visualization, an (intensity measure) IM-based version of the 
format is adopted (developed in [2]) which compares factored demand defined in terms of the 
intensity measure that corresponds to a given hazard level (set numerically equal to the allowable 
risk level) and the factored capacity defined in IM terms. One of the most useful advantages 
offered by this graphical procedure is that the site-specific hazard curve can be employed and 
visualized directly. A major twist in the proposed formulation involves the choice of the 
engineering demand parameter (EDP) and the structural capacity. The proposed framework 
adopts a global performance variable expressed in demand-to-capacity ratio terms for the 
structure. The critical demand to capacity ratio is defined for a prescribed performance level and 
is –by definition- equal to unity at the onset of the limit state. Therefore, the factored capacity is 
defined in terms of the intensity measure that corresponds to the onset of limit state or the critical 
demand to capacity equal to unity and can be derived based on the information provided by the 
fragility curve; that is, the median IM corresponding to the onset of the performance level (a.k.a., 
median IM capacity) and its logarithmic standard deviation. It is worth mentioning that even if 
the fragility curve turns out to be not Lognormal, this visual procedure can extract the equivalent 
Lognormal statistics. In this approach the slope of the hazard curve is estimated as the slope of 
the hazard curve at the median IM capacity as suggested in [3]. This is, the point on the hazard 
curve which is going to receive the largest weight from the fragility in the risk integral. It is also 
shown (through an illustrative example) that the proposed visual DCFD procedure leads –within 
acceptable limits of accuracy—to results that are comparable with those obtained through a 
direct calculation of risk by employing numerical integration.     
 

The Performance Parameter 
 
One of the main characteristics of a safety-checking format like DCFD is that it adopts a scalar 
parameter to represent the global performance of a building. Naturally, the format can assume 
several alternative formulations based on the choice of such scalar parameters. The DCFD has 
been used most often by adopting the maximum inter-story drift as the engineering demand 
parameter. In such context, the structural demand and capacity are expressed in terms of the 
maximum inter-story drift ratio. Alternatively, the DCFD format can be adapted so that the 
performance parameter is the intensity value that corresponds to the onset of the performance 
level. This latter interpretation is known as the IM-based version [2]. Herein, a normalized 
performance variable denoted as DCRpl is employed [11-13] which is defined as the critical 
demand to capacity ratio for the structure. The main point about this performance variable is that 
it is, by definition, equal to unity at the onset of the performance level. For instance, the DCFD 
format based on the maximum inter-story drift ratio can be easily transformed into a demand to 
capacity ratio form by normalizing the maximum inter-story drift demand to maximum inter-
story capacity.  It is to note that this representation of the performance variable can automatically 
consider the possible correlations between seismic demand and capacity. Naturally, the IM-based 
version of the DCFD format is going to be based on the IM value that corresponds to the onset of 
performance level marked as DCRpl=1. 



 
Demand and Capacity Factor Design (IM-based version) 

 
The demand and capacity factor design [1-3] is a closed-form and analytical format derived for 
probabilistic performance-based seismic safety checking. Being formulated in an LRFD-like 
manner, it compares the seismic demand and capacity in probabilistic terms: the seismic demand 
is increased to account for the uncertainty in predicting the demand for an acceptable risk level 
and the seismic capacity is decreased to consider the uncertainty in predicting the seismic 
capacity for a given performance level (or limit state).  This probabilistic safety-checking format 
is based on rigorous probabilistic principles. However, the probabilistic basis is well-disguised 
through rearrangement in terms of the engineering demand parameter (EDP) or alternatively in 
terms of the intensity measure (IM). More specifically, the format generates from the risk-based 
statement of the performance objective for a prescribed performance level: 

 opl P  (1) 

Where pl is the seismic risk expressed in terms of the mean annual frequency of exceeding a 
specific performance level pl and Po is an acceptable risk level (e.g., 5% in 50 years for the 
Collapse Prevention performance level [14], see Fig. 1b).  

 
Figure 1. The IM-based version of the DCFD safety-checking format: the main players (a) the 

visual fragility/hazard representation; (b) the estimation of the slope k  
 
The DCFD safety checking format is derived into closed- and analytical form by making a series 
of assumptions: (1) the performance level exceedance can be expressed as a homogenous 
Poisson process; (2) the hazard curve (the mean annual frequency of exceeding a given seismic 
intensity level) denoted as IM is approximated by a power-law curve of the form IM = koIMk; 
(3) the IM capacity is expressed as a Lognormal distribution with median IM|DCR=1 and 
logarithmic standard deviation IM|DCR=1. The IM-based representation of the DCFD (neglecting 
the epistemic uncertainties) is expressed as:  

   1|DCRIMP FCIMFD
o

 (2) 

  Where FD the factored demand is equal to IMP which (as illustrated in Fig. 1b) is the intensity 
measure corresponding to the acceptable risk level Po through the hazard curve; IM|DCR=1  is the 
median seismic intensity at the onset of the performance level pl (described in more detail in the 
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next section);  is a de-magnifying factor applied to seismic capacity and is expressed as: 

 





 

2
1|2

exp DCRIM

k   (4) 

Where DCR|IM is the logarithmic standard deviation (i.e., the standard deviation of the logarithm) 
of the seismic intensity IM at the onset of the performance level (note that the subscript pl of the 
demand to capcity ratio is dropped for the sake of brevity of notation). The next section describes 
in detail how IM|DCR=1 and IM|DCR=1 can be estimated.   

 One very important and decisive factor for the accuracy of the DCFD safety-checking 
format is the estimation of the slope parameter k. The risk integral (for calculating pl 
accurately) can be calculated numerically as the area under the risk integrand. This latter for each 
IM value is equal to the product of hazard curve and the fragility increment (i.e., probability 
density function PDF of the IM capacity times the integration IM step). Therefore, the fragility 
increment can be viewed (for risk assessment) as the values used for weighting the hazard curve 
(the thick solid bell-shaped curve Fig. 1b). It can be shown that for a Lognormal fragility curve 
the fragility increment is a maximum at median IM capacity value IM|DCR=1 and will become 
negligible at the two extremes of the fragility curve. Therefore, it is expected that the vicinity of 
the IM|DCR=1 is the most important area to be captured by the approximate hazard line in the log-
log scale (the red dashed line in Fig 1b). Herein, the slope of the hazard curve is estimated as the 
slope of the tangent line illustrated in Fig.1b in the log-log scale. The Fig. 1b also shows the 
procedure for finding the FD=IMPo (since the probability level Po is small, it cannot be viewed 
properly in Fig. 1a which is in arithmetic scale.) 

Nonlinear Dynamic Analysis Methods for Implementation in DCFD 
 
To visualize the seismic capacity in the IM-based DCFD format, the compatible IM-based 
interpretation of the fragility curve is particularly useful (see e.g., [15]). This interpretation 
expresses the seismic fragility as the cumulative distribution for the capacity expressed in IM 
terms; in other words, the intensity value that corresponds to the onset of performance level IMpl: 
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In this section some alternative non-linear dynamic analysis methods are applied in order 
estimate the median IM|DCR=1 and the logarithmic standard deviation IM|DCR=1 for IMpl. 

From the simple Cloud Analysis 

The Cloud Analysis ([1,3,12,13]) is a non-linear dynamic analysis procedure that is most often 
applied to structural response to as-recorded (un-scaled) ground motion time-histories. The 
Cloud Analysis is the default method for implementation of main DCFD format (a.k.a, the EDP-
based version) as it is perfectly compatible with its underlying assumptions. More specifically, 
the median performance variable DCRpl for the prescribed performance level pl is described as a 
power-law function of the seismic intensity level: 



 b
pl IMaDCR   (5) 

This is equivalent to a linear regression model in the logarithmic scale. Moreover, it is assumed 
that the logarithmic standard deviation in the performance variable DCRpl given seismic intensity 
and denoted as DCR|IM is invariable with respect to the intensity level (equivalent to the 
assumption of a homoscedastic regression). Moreover, it is assumed that the performance 
variable given the intensity level can be described by a Lognormal probability model. Fig. 2a 
illustrates the performance variable DCRpl and intensity (herein, the first mode spectral 
acceleration) pairs (DCRpl,i , IMi), i=1:N obtained in response to a suite of N ground motion 
records. The figure also illustrates the power-law curve fitted to the data points. The median 
intensity level IM|DCR=1 corresponding to the onset of limit state can be estimated as the point on 
the power-law curve that corresponds to the onset of limit state; that is (1/a)1/b.  IM|DCR=1 can be 
estimated as a function of the standard error of the regression:  
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Note that the standard deviation IM|DCR=1 is calculated as DCR|IM/b where DCR|IM is the standard 
error of regression.  

  

Figure 2  (a) The simple Cloud Analysis; (b) Cloud Analysis considering the collapse cases  
 

From Cloud Analysis considering the collapse cases 

Jalayer et al. [13] have demonstrated that the Cloud Analysis can lead to sufficiently accurate 
results if the ground motion records are selected so that they can populate both sides of DCRpl 
=1. For ultimate performance levels such as life safety and collapse prevention, this may lead to 
numerical non-convergence and/or global dynamic instability –generically referred to as the 
“collapse cases”. Shome and Cornell [5] proposed a modified version of the DCFD format in 
which the “collapse cases” where considered explicitly. This has inspired the proposal of a 
modified version of the Cloud Analysis in [13], in which the simple Cloud Analysis as described 
in the previous paragraph is applied to the non-collapse-inducing records and the collapse-
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inducing records are treated separately. This leads to a non-Lognormal description of the 
structural fragility expressed as a weighted average of the (two-parameter) Lognormal 
cumulative distribution describing the non-collapse-inducing records and unity. The weights 
(which sum to unity) are the probability of non-collapse given the intensity level denoted as 
P(NoC|IM) and the probability of collapse given the intensity level denoted as P(C|IM). In the 
original version presented by Shome and Cornell [5], the probability of collapse P(C|IM) was 
estimated as the ratio of the number of collapse-inducing records to the total number of records. 
In the modified version of the Cloud Analysis considering the collapse cases proposed in [13], 
the probability of collapse given the intensity level is estimated by a bi-parametric logistic 
regression. It is interesting to note that the pth percentile of the performance variable given IM 
can be expressed as: 

   1
| ,( ) ( ) exp ( | )p

NoC DCR IM NoCDCR IM DCR IM p P NoC IM     (7) 

where DCRp is the pth percentile of the performance variable as a function of the seismic 
intensity, DCRNoC(IM)=aIMb is the median performance variable for the non-collapse portion of 
the data as a function of the seismic intensity and Ф-1 is the inverse function of standardized 
normal distribution. Fig. 2b illustrates another example of Cloud data pairs where collapse cases 
are identified. The 16th percentile (p=0.16), median (p=0.50) and 84th percentile (p=0.84) curves 
obtained from Eq. 7 are also illustrated in Fig. 2b. The median intensity at the onset of the 
performance level IM|DCR=1 can be obtained by finding the intensity value corresponding to unity 
from the median performance curve. The IM|DCR=1 can be estimated as half of the logarithmic 
(vertical) distance between the 16th and the 84th percentile curves measured at DCRpl =1; that is: 
0.5ln (IMpl

/IMpl


) in Fig. 2b.  

 

Figure 3. The incremental dynamic analysis and the distribution of IM capacities 

From the IDA Analysis 

The incremental dynamic analysis [16] is a non-linear dynamic analysis method in which a suite 
of ground motion records are scaled linearly in amplitude in order to obtain a set of IDA curves. 
The IDA analysis lends itself quite well to the IM-based interpretation of the DCFD format. 
Figure 4 demonstrates the IDA curves derived for a suite of ground motion records. The figure 
also shows the median IDA curve. The IMpl,i , (i=1:N) which are the seismic intensity values that 
correspond to the onset of the performance level (DCRpl =1) for each of the N  IDA curves, are 
also illustrated in the figure. Fig. 3 shows a Lognormal curve fitted to these IMpl,i points. The 
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IM|DCR=1 value can be estimated as the median of this Lognormal distribution. The IM|DCR=1 can 
be estimated as the logarithmic standard deviation of the IMpl,i points. 

 

The numerical Example 
 
One of the transverse frames of the seven-story hotel building in Van Nuys, California, is 
modeled and analyzed in this study (Fig. 4). The building is in the San Fernando Valley of Los 
Angeles County (34.221° north latitude, 118.471° west longitude). The frame building was 
constructed in 1966 according to the 1964 Los Angeles City Building Code. The building was 
damaged in the M6.7 1994 Northridge earthquake. After the 1994 earthquake, the building was 
retrofitted with addition of new RC shear walls. The original building (in its pre-retrofit 
condition) is modeled herein (see Miano et al. [17] for more details). The flexural-axial behavior 
is modelled using the fiber section (30 uniaxial fiber layers adopting OPENSEES Concrete01 
and Steel02 Giuffré-Pinto-Meneghotto strain-hardening in steel) with distributed plasticity (five-
point Newton-Cotes Integration) for the columns and concentrated plasticity for the beams 
(modified Gauss-Radau integration). The shear behavior is modeled as a non-linear and 
degrading translational zero-length spring in the top of the column up to the point of axial 
failure. The rigid end rotation due to bar-slip is modeled through two zero-length rotational 
springs at the two ends of the column members [18]. 

A set of 70 strong ground-motion records are selected from the NGA-West2 database 
[19] (see [13] for the list of records). This suite of records covers a wide range of magnitudes 
between 5.5 and 7.9, and closest distance-to-ruptured area up to around 40 km. The soil average 
shear wave velocity in upper 30 m of soil, Vs30, at the site is around 218 m/sec. Accordingly, all 
selected records are chosen from NEHRP site classes C-D. A limit of maximum six recordings 
from a single seismic event has been considered (except for Loma Prieta event from which 8 
events are chosen). Moreover, only one of the two horizontal components of each recording, the 
one with larger spectral acceleration at 1.0 sec is selected (fundamental period T1=1.11). The 
lowest useable frequency is set at 0.25 Hz. The records are from strike-slip or reverse faults 
(consistent with California faulting); They are either free field or on the ground level. Finally, 
there are no specific considerations for spectral shape, epsilon, and no distinction is made 
between the wave-forms in terms of ordinary and pulse-like ground motions.  
 

 
Figure 4 The moment-resisting frame and the finite element model for columns and beams 
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First-mode spectral acceleration is chosen as the intensity measure. Being a regular 
moment-resisting frame of medium height, it is expected that the first-mode spectral acceleration 
is relatively sufficient with respect to ground motion characteristics ([3,20]). The structure is to 
be assessed for the performance level of collapse prevention [14] based on an enhanced 
performance objective with Po=0.001. It has been made sure that the DCRpl values for the 
collapse prevention populate also the greater than unity zone. The mean site-specific hazard 
curve is calculated at T=1 sec and is extracted from USGS National Seismic Hazard Mapping 
Project website (http://earthquake.usgs.gov/hazards, last accessed Nov. 2017). The performance 
variable DCRpl is adopted as the demand to capacity ratio that brings the structure closest to the 
onset of the performance level (see [13] for more detail). The DCRpl is calculated as the 
maximum demand to capacity chord rotation ratio for all the elements of the frame. The 
collapse-inducing records are distinguished (according to [21]) as those records for which (a) 
50%+1 of the columns in only one story reach the chord rotation corresponding to the the 
complete loss of vertical-load carrying capacity; (b) the maximum inter-story drift exceeds 10% 
(to account for global dynamic instability). 

 

 
Figure 5 The risk integrand for the three considered non-linear dynamic analysis procedures (a) 
Cloud with collapse cases; (b) Cloud Analysis; (c) IDA 

Application of the DCFD Procedure  
 
The IM-based version of the DCFD format is applied herein for safety-checking of the case-
study frame for the Collapse Prevention performance level. The factored demand is calculated as 
the spectral acceleration value corresponding to the Po=0.001 (see Fig. 1a) from the site-specific 
hazard curve calculated for a period (T=1s) close to the fundamental period of the structure 
(T1=1.11s). Fig. 1a illustrates the visual DCFD procedure for Cloud Analysis with collapse cases. 
However, the procedure for determining the FD is the analogous for all the three non-linear 
dynamic analysis methods discussed above (reported in Table 1). The three methods distinguish 
themselves in the way in which they estimate the median and the logarithmic standard deviation 
for the IM capacity (IM corresponding to the onset of the performance level DCRpl) to be 
replaced in Eq. 5. It is interesting to note that the parameters necessary for calculating the 
factored capacity FC can be all extracted visually from the fragility curve (for example the 
fragility shown in Fig.1a). The median for the IM capacity IM|DCR=1 is the IM value 
corresponding to the 50% probability level. The logarithmic standard deviation IM|DCR=1 can be 
estimated as half of the distance in logarithmic scale between the IM values corresponding to 
84% and 16% probability levels. This can be useful for estimating the equivalent Lognormal 
IM|DCR=1 and IM|DCR=1 values for non-Lognormal fragility curves (here, these statistics are 
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calculated according to the procedures described above and not visually). The k parameter is 
estimated (as illustrated in Fig 1b) for each non-linear dynamic analysis method as the slope of 
the tangent line (in the log-log scale) to the hazard curve at the IM capacity IM|DCR=1. 
 
Table 1.     The comparison between numerical integration and the DCFD safety-checking 
 

Analysis Type NI Closed-Form FD [g] FC [g] FD / FC NI / Po Closed-Form / Po 

IDA 0.0027 0.0027 0.84 0.58 1.43 2.60 2.67 
Cloud Analysis 0.0021 0.0022 0.84 0.64 1.31 2.09 2.13 

Cloud w/ collapse   0.0023 0.0024 0.84 0.62 1.35 2.25 2.29 
 
 Figures 5a,b,c show the risk integrands calculated for all the three methods (Cloud with 
collapse cases, Cloud and IDA) based on numerical integration and based on DCFD-based 
assumptions. The figures show that the DCFD leads to almost exact results for all three cases. 
Table 1 tabulates the risk calculations (both numerical integration and based on DCFD 
assumptions), the factored demand and the factored capacity for all the three analysis procedures 
considered. It is to underline that the only approximation in the DCFD results (with respect to the 
exact numerical integration) in the cases presented in this paper is in the estimation of the 
factored demand and slope k.  As it can be seen from Fig. 1b, the tangent line at the median 
capacity manages to provide exact results in the zone which is going to be weighted the most by 
the fragility increment.   
 

Conclusions 
 

The IM-based version of the Demand to Capacity Factored Design (DCFD) format lends itself 
quite well to a visual fragility/hazard interpretation and reduces to a minimum the underlying 
assumptions necessary for deriving a simple closed-form. The fragility curve in this context can 
be calculated based the IM-based interpretation in which fragility is the cumulative distribution 
of the IM capacity. This IM-based interpretation has the advantage of relaxing the assumptions 
regarding the linear regression of engineering demand parameter versus IM (the power-law 
assumption and the homoscedasticity). Consequently, the slope factor b (i.e., slope of the EDP-
IM curve in the logarithmic scale) also disappears from the format’s closed-from. The only 
approximations involved in DCFD’s closed form are going to be related to the estimation of the 
factored demand and the slope parameter k. It is shown that the best-estimate for slope k is 
obtained as the slope of the line tangent to the hazard curve in the logarithmic scale at the median 
IM capacity (as the point which is weighted the most by the fragility increment in the risk 
integral). Finally, adopting as the performance parameter a global demand to capacity ratio 
(instead of maximum inter-story drift), facilitates to a great deal the identification of the IM 
values at the onset of the performance level (the performance variable is equal to unity at the 
onset of the performance level). This also considers in an automatic manner the possible 
correlations between seismic demand and seismic capacity. 
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