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ABSTRACT: 
Ground motion (GM) record selection represents one of the main issues in assessing the seismic response of a 
structure through numerical dynamic analysis. In the framework of the probabilistic performance-based 
assessment it is useful to introduce an intermediate parameter (scalar or vector), known as the ground motion 
intensity measure IM, to relate the GM record characteristics to the structural performance. This approach often 
assumes that structural response depends only upon the chosen IM, which is believed to carry the largest 
information with respect to other properties of the GM. This condition is termed “sufficiency” and must be 
carefully verified since, if it is not met, then the probability distribution for the damage measure will not only 
depend upon IM, but also upon the (other) properties of the records selected for analysis. In principle, careful 
record selection is not essential if the IM is demonstrated to be sufficient with respect to GM characteristics. 
However, establishing the sufficiency of an IM is not a trivial task and may be structure and/or response measure 
dependent. 
In cases where the IM is not sufficient, the GM record selection may be guided by the disaggregation of the seismic 
hazard for the site of interest. The results of seismic hazard disaggregation can be used to assign relative weights to 
a given GM record based on the likelihood that a GM having its corresponding magnitude, distance and deviation 
from the GM prediction model (epsilon) actually occurs. The weighted GMs can be used in order to make 
probability-based seismic assessments using non-linear dynamic analysis procedure both for a wide and a limited 
range of GM intensities. 
In this paper, the implications of using the weighted GM records are investigated in terms of seismic risk, which is 
represented herein by the mean annual frequency of exceeding the critical structural component demand to 
capacity ratio, in an existing reinforced concrete structure using both the peak ground acceleration and the 
first-mode spectral acceleration as IMs. It is demonstrated that the annual frequencies based on weighted records 
are comparable to those obtained using vector-valued intensity measures, yet requiring less computational effort. 
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1. INTRODUCTION 
 
In non-linear dynamic analysis procedures, the choice of seismic input may be affected by the interface 
variable used to measure the intensity of GM, known as the intensity measure IM. According to criteria 
proposed by Luco and Cornell (2003) a preferred IM is both “sufficient” with respect to the GM 
characteristics and also “efficient”. A sufficient IM renders the structural response conditionally 
statistically independent of other GM characteristics, while an efficient IM predicts the structural 
response with (comparatively) small record-to-record variability. In principle, careful record selection is 
not essential if the IM is demonstrated to be sufficient (Iervolino and Cornell 2005). An useful strategy, 
in cases where the adopted scalar intensity measure IM1 does not prove to be sufficient, is to introduce an 
additional intensity measure, IM2 adopting a vector-valued IM=[IM1,IM2] in order to render a more 
complete description of the GM characteristics (Baker and Cornell 2005).  
In this paper, an approximate method based on linear regression is used in order to establish possible 
correlation between the structural response conditional on the primary IM1 and the secondary IM2. 



Moreover, a weighting scheme based on seismic hazard disaggregation (Bazzurro and Cornell, 1999) is 
used, in the framework of the scalar IM1, for both wide and limited range of GM intensities, in order to 
adjust the structural response for possible correlations with a candidate secondary IM2.The efficiency of 
the weighting scheme is evaluated in terms of seismic risk which is represented herein by the mean 
annual frequency of exceeding the critical component demand to capacity ratio. 
 
2. PROBABILISTIC ASSESSMENT BASED ON NON-LINEAR DYNAMIC ANALYSIS 
 
Adopting the performance assessment methodology developed by the Pacific Earthquake Engineering 
Research (PEER) Center for buildings, a probabilistic performance-based criterion for seismic 
assessment of existing structures is: 
 

0PEDP ≤λ  (2.1) 
 
where λEDP is the (mean) annual frequency (MAF) of exceeding a specified damage level expressed in 
terms of an engineering demand parameter (EDP) and P0 is the allowable probability threshold for the 
assessment1. In this framework, an intermediate parameter known as the intensity measure IM is 
introduced in order to relate the characteristics of the GM record to structural performance. The MAF of 
exceeding a specified limit state can be expanded, using probability theory, with respect to IM in the 
following (Vamvatsikos and Cornell 2001; Jalayer and Cornell, 2009): 
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The first term in the integrand PEDP|IM(EDP > y|x) is the conditional probability of exceeding the 
structural response threshold y for IM=x. This term is also known as the structural fragility. The second 
term in the integrand is the absolute value of the derivative of the annual rate of exceeding IM=x; this 
second term is known as the hazard for the adopted IM. 
The non-linear dynamic analysis procedures based on a limited suite of GM records can be used to 
estimate the fragility term in equation 2.2. Depending on the amount of structural analysis, two 
alternative non-linear dynamic analysis procedures are considered in this work, the cloud method and 
the stripes method. Both procedures assume a Gaussian distribution for the logarithm of EDP given IM. 
The cloud method employs the linear least squares scheme to the specified EDP given IM based on 
non-linear structural response (cloud response) for a suite of GM records (un-scaled) in order to estimate 
the conditional mean and standard deviation of EDP given IM.  
The stripes method provides the non-linear structural response parameters for the suite of records that 
are scaled to successively increasing IM levels: this is referred to as the stripe response; the statistical 
properties of the stripe response are calculated for various IM. 
In the case where a vector-valued IM=[IM1,IM2] consisting of two scalar IM’s is adopted, the fragility 
term can be expanded with respect to IM2 and re-arranged as following (Baker, 2007): 
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The first term in the integrand is the conditional probability of exceeding EDP=y given IM1 and IM2 and 
the second term is the conditional probability density function (PDF) for IM2=z given IM1=x. 
In this work, both scalar and vector IM’s are studied. As scalar IM’s, the peak ground acceleration 
(PGA) and the first-mode spectral acceleration (Sa(T1)) are considered. As vector IM’s, the pairs 
consisting of PGA and magnitude M (Jalayer, 2003), Sa(T1) and the deviation from the GM prediction 
model epsilon (ε) (Baker and Cornell 2005) are considered. Epsilon is defined as the number of standard 
deviations by which an observed logarithmic spectral acceleration differs from the mean logarithmic 
spectral acceleration of a ground-motion prediction (attenuation) equation. 

                                                            
1 Note that in equation 2.1 it has been assumed that the numerical value of annual rate of exceedance is close to 
that of the probability of exceedance, which is acceptable if the latter is small. 



The EDP can be defined as a functional of component demand and capacities, which is equal to one at 
the onset of failure. 
The formulation adopted herein is based on the system reliability concept of cut-sets (Ditelvsen and 
Masden 1996). The scalar global EDP, denoted by Y (Jalayer et al., 2007), is a critical demand to 
capacity ratio defined as the demand to capacity ratio of the strongest component of the weakest 
structural mechanism or cut-set: 
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where Nmech is the number of considered cut-sets or potential failure mechanisms and Nl is the number of 
components taking part in the lth cut-set. A cut-set is defined as any set of components whose joint 
failure leads to system failure. 
 
3. STRUCTURAL MODEL 
 
As the case-study, an existing school structure in the city of Avellino, Italy, is considered herein. The 
structure consists of three stories and a semi-embedded story, and its foundation lies on stiff soil 
(category B according to Eurocode 8, CEN 2003). The building was constructed in the 1960’s and it is 
designed for gravity loads only, as it is frequently encountered in the post second world war 
construction. The main central frame in the structure is extracted and used as the structural model 
(Figure 1a). 
 

 
 

Figure 1. (a) The central frame of the case-study building. (b) Schematic diagram of the typical tri-linear behavior 
characterizing the plastic hinge. 

 
The steel yield resistance and the concrete compression resistance in the structural model are taken equal 
to 3200 kg/cm2 and 165 kg/cm2, respectively: these are mean values extracted from a statistical survey 
of material properties in existing buildings constructed in the 1960’s (Verderame et al., 2001a - b). 
The finite element model of the frame is constructed, using the Open System for Earthquake 
Engineering Simulation (OpenSees) software, assuming that the non-linear behavior in the structure is 
concentrated in plastic hinges located at the element ends (Scott and Fenves 2006). The concrete 
behavior is modeled based on the Mander-Priestly (Mander et al., 1988) constitutive relation for 
un-confined concrete. The reinforcing steel is assumed to have elastic-plastic behavior. The tri-linear 
moment-rotation backbone curve is demonstrated in Figure 1b2. The structural damping is modeled 
                                                            
2 These post-peak values for moment and rotation are chosen rather arbitrarily in order to avoid numerical 
in-convergence problems (M*=0.1·Mu; θ*=2·θu). 



based on the Rayleigh model and is assumed to be equal to 5% for the first two modes. The 
small-amplitude period for the first two vibration modes are equal to 0.73 and 0.26 seconds respectively. 
 
4. THE SUITES OF GROUND MOTION RECORDS AND THEIR PROPERTIES 
 
Two different suites, respectively of 21 (Sel_A) and 20 (Sel_B) GM records, all based on Mediterranean 
events, have been selected for this study. They are all main-shock recordings recorded on stiff soil (400 
m/s < Vs30 < 700 m/s) which is consistent with the soil-type of the site. The two suites of records are 
taken from European Strong-motion (ESD) (http://www.isesd.cv.ic.ac.uk/ESD/Database/Database.htm) 
and PEER Next Generation Attenuation (NGA) (http://peer.berkeley.edu/nga/flatfile.html) Database in 
order to cover a wide range of moment magnitude Mw values (Sel_A) and ε values (Sel_B).  
Table 4.1 illustrates the GM recordings, their Mw, epicentral distance (ED), PGA, Sa(T1)) and ε values 
for each record of Sel_A (left side) and Sel_B (right side) respectively. 
 
Table 4.1. Selection A and selection B of ground motion records. 

Sel_A Mw ED 
[km] 

PGA 
[g] 

Sa(T1) 
[g] ε Sel_B Mw ED 

[km] 
PGA
[g] 

Sa(T1)
[g] ε 

Basso Tirreno 6.0 18 0.15 0.17 -0.121 Friuli 6.5 42 0.06 0.22 -0.015 
Valnerina 5.8 23 0.04 0.03 -0.529 Friuli 6.5 87 0.05 0.11 0.003 
Cam. Lucano 6.9 16 0.16 0.31 -0.519 Cam. Lucano 6.9 48 0.11 0.25 -0.204 
Preveza 5.4 28 0.14 0.10 -0.244 Cam. Lucano 6.9 16 0.16 0.31 -0.493 
Umbria 5.6 19 0.21 0.02 0.230 Kalamata 5.9 10 0.22 0.48 -0.231 
Laz. Abruzzo 5.9 36 0.07 0.05 -0.219 Kalamata 5.9 11 0.24 0.48 -0.233 
Etolia 5.3 20 0.04 0.01 -0.518 Umb. Marche 6.0 11 0.52 0.56 -0.216 
Montenegro 5.4 18 0.07 0.09 -0.227 Umb. Marche 6.0 38 0.09 0.17 0.062 
Kyllini 5.9 14 0.15 0.15 -0.231 South Iceland 6.5 7 0.63 0.54 -0.288 
Duzce 1 7.2 26 0.13 0.18 -0.722 Duzce 1 7.2 26 0.13 0.18 -0.893 
Umb. Marche 5.7 32 0.04 0.05 -0.334 Friuli 6.5 42 0.09 0.25 0.031 
Potenza 5.8 28 0.10 0.08 -0.003 Friuli 6.5 87 0.07 0.12 -0.002 
Ano Liosia 6.0 20 0.16 0.06 -0.308 Cam. Lucano 6.9 48 0.14 0.26 -0.187 
Adana 6.3 39 0.03 0.05 -0.749 Cam. Lucano 6.9 16 0.18 0.31 -0.484 
South Iceland 6.5 15 0.21 0.13 -0.344 Kalamata 5.9 10 0.30 0.63 -0.120 
Tithorea 5.9 25 0.03 0.02 -0.639 Kalamata 5.9 11 0.27 0.51 -0.208 
Patras 5.6 30 0.05 0.02 -0.184 Umb. Marche 6.0 11 0.46 0.64 -0.156 
Friuli Italy1 6.5 20 0.35 0.35 0.168 Umb. Marche 6.0 38 0.10 0.18 0.065 
Friuli Italy2 5.9 18 0.21 0.08 0.110 South Iceland 6.5 7 0.51 0.74 -0.154 
Friuli Italy3 5.5 20 0.11 0.21 0.034 Duzce 1 7.2 26 0.16 0.14 -1.004 
Irpinia Italy1 6.9 15 0.13 0.30 -0.466 average 6.4 30 0.22 0.35 -0.236 
average 6.0 23 0.12 0.12 -0.277       
 
In order to adopt a vector-valued IM for representing the GM intensity in the seismic assessment 
outlined in equation 2.3, it is necessary to obtain the conditional probability distribution for the second 
IM (IM2) given the occurrence of the original IM (IM1). 
A site-specific seismic hazard analysis is performed based on the Italian seismic zonation (ZS9, Meletti 
et al., 2008) inside a Bayesian framework for inference in order to obtain the conditional probability 
distribution for magnitude m, distance r and the deviation from the attenuation law ε given IM1. The GM 
prediction relation adopted in this work is the Sabetta and Pugliese relation (Sabetta and Pugliese, 1996). 
Through the disaggregation of the seismic hazard for the site of the case-study structure, the conditional 
probability distributions of M given PGA and ε given Sa(T1), have been obtained. 
 
5. RESIDUAL-RESIDUAL PLOT AND THE WEIGHTED METHOD 
 
In this study, a simplified statistical approach based on regression is implemented for measuring the 
effectiveness of GM characteristics as additional regression variables. This method uses a graphical 
statistical tool known as the residual-residual plot. Residual-residual plots are constructed by: a) 
performing regression of the dependent variable EDP versus the (first) independent variable IM1 (e.g., 
PGA or Sa(T1)), b) performing regression of the second independent variable IM2 (e.g., M or ε) on the 



first variable IM1, c) plotting the residuals of the two regressions mentioned above against each other. 
The main advantage of the residual-residual plots is that they offer visual means for judging the 
improvement caused by an additional regression variable by observing a (statistically) significant trend, 
in the linear regression between the two sets of residuals. Through hypotheses test it is possible to 
evaluate if the IM introduced reduces the variability of results than the original prediction of regression. 
A weighted regression scheme is used herein as it may help in reducing the dependence of the residuals 
on IM2; its weights each error term (residual) proportional to its corresponding variance (Rice, 1995). It 
can be argued that the variance of each error term and hence the corresponding weight is positively 
related to the following ratio: 
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where 
( )xzf IMIM 12  is the fraction of the GMs with IM2 equal to z for a given IM1 equal to x. In this 

work, it is assumed that it is equally likely to observe IM2 given IM1 for each record in the set; therefore, 
( )

dataiIMIM xzf
12

 is going to be equal to 1/NT, where NT is the total number of records. 

( )
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12
 is the probability that IM2 is equal to zi for a given IM1 equal to x, estimated by 

disaggregation of seismic hazard. A similar procedure can be implemented in the framework of the 
multiple-stripe analysis, after having discretizing IM2 into a set of bins. In fact, for a given suite of GM 
records, the stripe response at each IM1 level can be weighted in relation to the conditional probability 
distribution f(IM2|IM1) (Shome and Cornell, 1999). 
In this study, the logistic regression (Neter et al., 1996) is applied to the collapse data in order to predict 
the probability of collapse as a function of the second IM2. Using the indicator variable C to designate 
occurrence of collapse (C equals 1 if the record causes collapse and 0 otherwise), the following 
functional form is fitted (Baker, 2007): 
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where a and b are coefficients to be estimated for the stripe response at IM1=x. Using the total 
probability theorem the first term in the integrand of equation 2.3 can be expanded in this way:  
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where ),(1),( zxCPzxNCP −= is the probability of not having collapses (NC) given IM1=x and 
IM2=z.  
 
6. NUMERICAL RESULTS 
 
6.1. The Cloud Method 
 
In Figure 3a and 3c the residual-residual plot related to the introduction of M (for Sel_A) and ε (for 
Sel_B) as IM2, together with the p-values calculated for the hypotheses test are shown. A significant 
trend in the plots can be observed: this means that PGA (for Sel_A) and Sa(T1) (for Sel_B) are not 
sufficient with respect to M and ε respectively. In Figure 3b and 3d the results obtained using the 
weighted regression scheme, based on the results of seismic hazard disaggregation, are shown; the 
results of structural analysis are plotted by circles with areas proportional to the corresponding weight. 
The dashed lines are obtained with the weighted regression scheme, instead, the thin lines are obtained 
with the simple regression scheme. 



 
 

Figure 3. (a) Residual-residual plot for the introduction of M as IM2, Sel_A (b) Simple regression Y-PGA and 
weighted regression PGA-M-Y, Sel_A. (a) Residual-residual plot for the introduction of ε as IM2, Sel_B (b) Simple 

regression Y- Sa(T1) and weighted regression Sa(T1)- ε-Y, Sel_B. 
 

It would be interesting to study how the seismic risk, represented herein by the MAF of exceeding Y, is 
affected by the weighed regression scheme (Figure 4).  

 

 
 

Figure 4. (a) The MAF of exceeding Y, Sel_A. (b) The MAF of exceeding Y, Sel_B. 
 

In Figures 4a and 4b the thick lines represent the MAF of exceeding the Y adopting as IM the pair [PGA, 
M] and [Sa(T1), ε], for Sel_A and for Sel_B, respectively. The thin lines represent the MAF of exceeding 
Y using a scalar IM1 (PGA for Sel_A and Sa(T1) for Sel_B). The dashed lines represent the MAF of 
exceeding Y using a scalar IM1 (PGA for Sel_A and Sa(T1) for Sel_B) but adjusting for the dependence 
on IM2 (M for Sel_A, ε for Sel_B) by weighted regression. It can be observed that the weighted 



regression manages to take into account some of the information provided by IM2 and its corresponding 
MAF of exceeding Y ends up somewhere between those corresponding to the original cloud method and 
the multiple-regression, respectively 
 
6.2. The Multiple-Stripe Analysis 
 
Figures 5a and 5b illustrate the results of multiple-stripe analysis, using the same IM’s adopted in the 
cloud method, for the case-study structure subjected to Sel_A and Sel_B respectively. The number of 
“collapse cases” encountered for each IM level and the lines connecting the (counted) 16th, 50th and 
84th percentiles of the stripe response at each IM level are also shown. 
 

 
 

Figure 5. (a) Results of multiple stripe analysis for Sel_A. (b) Results of multiple stripe analysis for Sel_B. 
 

Through numerical integration of the structural fragility with the IM hazard curve, the seismic risk 
curves for the critical component demand to capacity are calculated (Figure 6a and 6b). Similar to cloud 
method, the results of the multiple-stripe method indicate that seismic risk curve obtained using the 
weighted scheme is reasonably close to that based on multiple regression. 
 

 
 

Figure 6. (a) The MAF of exceeding Y, Sel_A. (b) The MAF of exceeding Y, Sel_B. 
 

7. CONCLUSIONS 
 
A simple statistical/graphical tool known as the residual-residual plot is employed in this work in order 
to reveal possible dependence of the EDP conditional on the adopted IM1, on a candidate IM2. In cases 
where sufficiency for IM1 is not established, a weighting scheme based on the results of the seismic 
hazard analysis can be adopted in order to implement the additional information provided by a candidate 
IM2. The conditional probability distributions f(M|PGA) and f(ε|Sa(T1)) have been calculated through 



the disaggregation of the seismic hazard for the site of the case-study structure using the Bayesian 
updating. Two alternative non-linear dynamic analysis procedures, the cloud method and the 
multiple-stripe method have been considered in this work. 
The implication of using the weighting scheme has been studied in terms of seismic risk represented 
herein by the MAF of exceeding the critical component demand to capacity ratio Y. The seismic risk 
curves obtained by adopting the scalar IM1 and the vector-valued IM=[IM1,IM2] are used to benchmark 
the efficiency of the weighting scheme. It is observed that the weighting scheme manages to take into 
account some of the information provided by IM2 and its corresponding MAF of exceeding Y ends up 
somewhere between those obtained adopting the scalar IM1 and the vector-valued IM=[IM1,IM2]. In this 
case-study, the weighting scheme proves to be more efficient for multiple-stripe analysis compared to 
the cloud analysis. This can be attributed to the fact that, the multiple-stripe analysis spans over a wider 
range of IM levels and therefore may be less sensitive to the selection of GM records. 
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