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Abstract

The post-earthquake assessment of existing structures can be further complicated by the progressive
damage induced by the occurrence of a sequence of after-shocks. This work presents a simple method
for the calculation of the probability of exceeding a certain limit state in a given interval of time.
The time-decaying mean daily rate of occurrence of significant after-shock events is modeled by
employing a generic after-shock model. The occurrence of after-shock events is modeled using a
non-homogenous Poisson model. An equivalent single-degree of freedom structure is used in order
to evaluate the progressive damage caused by a sequence of after-shock events. Given the time
history of the main-shock and the residual damage caused by it, the probability of exceeding a set
of discrete limit states in a given interval of time is calculated. Of particular importance is the
time-variant probability of exceeding the limit state in a 24-hour (a day) interval of time which can
be used as a proxy for the life-safety considerations regarding the re-occupancy of the structure. The
method presented herein can also be used in an adaptive manner, conditioning progressively on the
time-histories of after-shock events following the main-shock and the corresponding residual damage
caused by them.

1 INTRODUCTION

The inspection and management of the civil struc-
tures, after the occurrence of a severe earthquake
event is subjected to considerable challenges. The
post-earthquake deterioration as a result of the
sequence of after-shocks threaten significantly
eventual inspection and/or re-occupancy of these
structures. In fact, a significant main-shock is of-
ten followed by a number of after-shock events
(usually smaller in moment magnitude) which
take place in a limited area (i.e., the after-shock

zone) around the epicenter of the main event.
This sequence of after-shock events can last in
some cases for months. Although these events are
smaller in magnitude with respect to the main
event, they can prove to be destructive on the
structure. This is due to both the significant num-
ber of after-shocks (in some cases up to 6000) and
also due to the fact that the structure has proba-
bly already suffered damage from the main event.

The occurrence of main-shock events is often
modeled by a homogenous Poisson stochastic pro-
cess with time-invariant rate. However, the se-



quence of after-shocks are characterized by a rate
of occurrence that decreases as a function of time
elapsed after the earthquake. Therefore, the oc-
currence of the after-shocks are modeled by a non-
homogenous Poisson process with a decreasing
time-variant rate. The first few days after the
occurrence of main-shock can be very decisive as
there is urgent need for re-entrance in the build-
ing (for rescue or for inspection) while the mean
daily after-shock rate is quite considerable.

The after-shock assessment of civil structures
can be considered as decision making between
a set of actions such as, to evacuate, to en-
ter for inspection operations, to re-occupy the
structure, etc. In the context of performance-
based design, several performance objectives (e.g.,
ensuring life-safety in case of extreme and rare
events) can be considered for a set of (discrete)
limit states. Yeo and Cornell (Yeo and Cornell,
2008) have proposed a decision-making frame-
work based on stochastic dynamic programming
which minimizes the expected life-cycle cost sub-
jected to acceptable life-safety constraints. As a
proxy for life-safety, they have employed an equiv-
alent constant collapse rate for the main-shock
damaged structure (Yeo and Cornell, 2008b).

The present study presents a procedure for cal-
culating the time-dependent probability of exceed-
ing the limit states corresponding to various dis-
crete performance objectives. A simple deterio-
rating single degree of freedom (SDOF) model of
the structure is used in order to study the dam-
ages induced as a result of a sequence of after-
shocks. As a criteria for assessment of the deci-
sions regarding re-entrance for inspections pur-
poses, the (time-dependent) probability of ex-
ceeding the limit state of life-safety in a 24-hour
interval is compared to an acceptable threshold.
The less severe limit states of severe damage and
onset of damage can be used in a similar man-
ner in order to make decisions regarding the re-
occupancy and serviceability of the structure.

2 METHODOLOGY

The objective of this methodology is to calculate
the time-dependent probability of exceeding vari-
ous discrete limit states in a given interval of time
for a given structure subjected to a sequence of

after-shocks. The methodology presented herein
for the evaluation of the limit state probability in
a given time interval can be used for decision mak-
ing between different viable actions such as, re-
entry/evacuation, re-occupancy/shutting down.
This methodology starts from the state of the
structure after it is hit by a main-shock. There-
fore, given that the main shock wave-forms are
available, the damages undergone by the struc-
tural model can be evaluated. Since the clus-
tering of earthquakes usually occurs near the lo-
cation of the main-shock also referred to as the
after-shock zone, it is assumed that the source-
to-cite distance is constant for the sequence of
earthquakes including the main-shock and after-
shocks events. An important characteristic of the
sequence of after-shocks following the main-shock
is that the rate of after-shocks dies off quickly
with time elapsed since the main-shock. In the
absence of specific time-decaying laws regarding
a particular after-shock sequence, a generic after-
shock model can be employed. The methodology
presented is of an adaptive nature; that is, with
occurrence of more after-shock events, the state
of the structure can be updated by evaluating the
damages undergone by the structural model sub-
jected to the sequence of main-shock and after-
shocks.

2.1 The probabilistic seismic after-
shock hazard

The probability that the structural acceleration
at the fundamental period of the structure Sa ex-
ceeds a given level x given that a significant after-
shock event with a constant source-to-site dis-
tance R has taken place denoted by P (Sa > x|as)
can be calculated as:

P (Sa > x|as) =

∫ Mm

Ml

P (Sa > x|m,R)p(m)dm

(1)
where Mm is the moment-magnitude for the main-
shock event and Ml is the lower-bound for the mo-
ment magnitude for the earthquake events of en-
gineering interest. The term P (Sa > x|m,R) can
be calculated using the parameters of the ground
motion prediction relation for the site and p(m) is
the truncated Gutenberg-Richter probability den-



sity function for moment magnitude:

p(m) =
β · e−β·m

e−β·Ml − e−β·Mm
(2)

β = b log 10 where b is related to the seismicity
of the site. The mean daily rate of exceeding a
given spectral acceleration level can be calculated
by multiplying Equation 1 by the average daily
rate of occurrence of after-shock events:

H(Sa > x) = ν(t) · P (Sa > x|as) (3)

where ν(t) is the time-dependent average daily
rate of occurrence of after-shocks after t days are
elapsed from the main-shock.

2.1.1 Updating the hazard after the oc-
currence of the main-shock

After the occurrence of a main-shock, assuming
that its wave-form is known, the probability of
exceeding a given value of spectral acceleration in
Equation 1 can be updated using the Bayes for-
mula taking into account the spectral acceleration
at the fundamental period of the structure for the
main-shock, Sa,ms:

p(Sa,as = x|Sa,ms, as) =

=
p(Sa,ms|Sa,as = x, as)p(Sa,as = x|as)∑
x

p(Sa,ms|Sa,as = x, as)p(Sa,as = x|as)
(4)

where p(Sa,as = x|Sa,ms, as) denotes the proba-
bility density function (PDF) for the spectral ac-
celeration of the after-shock given that the spec-
tral acceleration of the main-shock is known,
p(Sa,ms|Sa,as = x, as) is the probability den-
sity function for main-shock given the after-shock
spectral acceleration is known and p(Sa,ms|Sa,as =
x, as) is the PDF for after-shock spectral accelera-
tion before having the extra information. Having
calculated the updated PDF, the updated prob-
ability of exceeding a given after-shock spectral
acceleration can be calculated using the following
relationship:

P (Sa = x) = −P (Sa > x)

dx
(5)

2.2 The assessment of time-dependent
limit state probability

Let Tmax denote a given interval of time elapsed
after a main-shock has taken place, N the maxi-
mum number of after-shock events that can take
place during Tmax

∗ and τ the repair time for the
structure. The probability P (LS; Tmax) of ex-
ceeding a specified limit state LS in time Tmax

can be written as:

P (LS; Tmax) =
N∑

i=1

P (LS|i)P (i; Tmax) (6)

Where P (LS|i) is the probability of exceeding the
limit state given that exactly i after-shocks take
place in time Tmax and P (i; Tmax) is the proba-
bility that exactly i after-shock events take place
in time Tmax. It is assumed that the after-shock
hazard for the site of the structure is expressed by
a non-homogenous Poisson probability distribu-
tion with the time-decaying rate denoted by ν(t).
The probability of having exactly i events in time
Tmax can be calculated as:

P (i; Tmax) =
(
∫ Tmax

0
ν(t)dt)ie−

∫ Tmax
0 ν(t)dt

i!
(7)

The term P (LS|i) can be calculated by taking
into account the set of mutually exclusive and
collectively exhaustive (MECE) events that the
limit state is exceeded at one and just one of the
previous after-shock events:

P (LS|i) = P (C1 + C1C2 + · · ·+

+C1C2 · · ·Ci−1Ci|i)
(8)

where Cj, j = 1 : i indicates the event of exceed-
ing the limit state LS due to the jth event and
Cj indicates the negation of Cj. The probabil-
ity P (Cj|i) can be further broken down into the
sum of the probabilities of two MECE events that
event j hits the “intact” structure (i.e., damaged
only by the main-shock) and that the event j hits
the damaged structure:

P (Cj|i) = P (CjI|i) + P (CjD|i) (9)

∗The number of possible events N in time Tmax is un-
bounded.



Equation 9 can be further expanded as follows:

P (Cj|i) = P (Cj|I, i)P (I|i)+

+
∑j−1

k=1 P (Cj|k, i)P (k|i)
(10)

where {k : k = 1, 2, · · · , i− 1} indicates the num-
ber of times the structure has been damaged by an
after-shock before reaching the target limit state,
implying that the structure deteriorates with the
occurrence of each event. The formulation in
Equation 10 is based on the consideration that
an event can hit a structure already damaged by
one or more previous event(s). This situation oc-
curs only if the inter-arrival time IAT for events
is smaller than the repair time τ . Moreover, since
the inter-arrival time can be described by the Ex-
ponential probability distribution, the probability
that the IAT is less than or equal to the repair
time τ can be expressed as 1 − exp(− ∫ τ

0
ν(t)dt)

times the probability exp(− ∫ τ

0
ν(t)dt) that the

structure is intact before k after-shock events.
Therefore, the probability that the structure is
damaged k times before reaching LS is equal to:

P (k|i) = e−
∫ τ
0 ν(t)dt(1− e−

∫ τ
0 ν(t)dt)k (11)

Assuming that the structure under repair is hit
by another after-shock event, the repair opera-
tions are going to resume from zero. Thus, the
probability that the structure is intact when hit
by an event can be calculated as the probability
that the IAT is greater than the repair time:

P (I|i) = e−
∫ τ
0 ν(t)dt (12)

Observing Equation 10, one can identify the se-
quence of the limit state probability terms terms,
namely, P (Cj|I, i) and P (Cj|k, i) where k =
1, · · · , (j − 1).

2.2.1 Estimation of limit state probabili-
ties

In order to calculate the sequence of limit
state probability terms P (Cj|Dk, i) where k =
1, · · · , (j − 1), the following procedure is applied.
A selection of n earthquake records (consisted of
main-shocks and after-shocks) is selected. In or-
der to emulate the deterioration caused by the
sequence of after-shocks, each ground motion is

applied k times in sequence to the structural
model. The maximum displacement response of
the structure due to the sequence of k events de-
noted by Y (k) is related to the spectral accel-
eration at the fundamental period of the struc-
ture denoted by Sa using the linear least squares
(in the logarithmic scale). That is, the me-
dian for maximum displacement is described by
ηY |Sa(k) = a · Sb

a and that the standard deviation
(of the logarithm) of Y (k) given Sa is calculated
as:

σln Y (k)|Sa =

√∑n
1 (ln Y (k)− ln a · Sb

a)
2

n− 2
(13)

where a and b are regression coefficients calcu-
lated as:

a =

∑
log Yi

∑
log S2

a,i −
∑

log Sa,i

∑
log Yi log Sa,i

n
∑

log S2
a,i − (

∑
log Sa,i)2

b =
n

∑
log Yi log Sa,i −

∑
log Sa,i

∑
log Yi

n
∑

log S2
a,i − (

∑
log Sa,i)2

(14)
The limit state probability P (Cj|Dk, i, Sa) can be
calculated as:

P (Cj|Dk, i, Sa) = 1−Φ

(
log YCj

− log(ηY |Sa(k))

σln Y (k)|Sa

)

(15)
In order to calculate P (Cj|Dk, i), the expression
in Equation 15 needs to be integrated with the
probability density function (pdf) for the spec-
tral acceleration given that a significant after-
shock has taken place, calculated by the differ-
entiation of the complementary cumulative dis-
tribution function for spectral acceleration given
a significant after-shock has taken place in Equa-
tion 3. Therefore:

P (Cj|Dk, i) =

∫ ∞

0

P (Cj|Dk, i, Sa) · p(Sa|as)

(16)
The procedure described in this section for the
calculation of the probability of exceeding limit
state LS can be employed to calculate the limit
state probabilities for an increasing sequence of
limit states, e.g., from serviceability to collapse.



2.3 The probability of collapse in a 24-
hour interval

In the previous section, it is explained how the
probability of exceeding the limit state LS in a
given interval of time Tmax can be calculated from
Equation 6. However, it is of interest to calculate
the probability of exceeding the limit state in a
reference time interval(e.g., 24 hours). The prob-
ability of exceeding the limit state in the reference
time interval [T, T + ∆T ] can be calculated as:

P (LS; [T, T +∆T ]) = P (LS; T +∆T )−P (LS; T )
(17)

Therefore, the probability of exceeding the limit
state in one day can be calculated from Equation
17, by setting ∆T equal to one.

3 NUMERICAL EXAMPLE

The methodology presented in the previous sec-
tion is applied to an existing structure as a case
study.

3.1 Structural model

The case-study building is a generic five-story RC
frame structure. The structural model is illus-
trated in Figure 1, presenting a plan of the generic
storey. Each storey is 3.00m high, except the sec-
ond one, which is 4.00m high. The non-linear be-
havior in the sections is modeled based on the
concentrated plasticity concept. It is assumed
that the plastic moment in the hinge sections is
equal to the ultimate moment capacity in the sec-
tions which is calculated using the Mander (Man-
der et al., 1988) model for concrete and elastic-
plastic model for steel rebar. In order to simplify
the structural analyses, an equivalent degrading
(SDOF) system is used as the structural model.
In order to model the the non-linear characteris-
tics of the equivalent SDOF system, a non-linear
static analysis on the case-study structure is per-
formed. The resulting pushover curve is trans-
formed into that of an equivalent SDOF system
based on the first mode shape of the structure.
Based on the resulting equivalent pushover curve,
the non-linear degrading hysteresis model for the
equivalent SDOF system is constructed. More de-

 

Figure 1: Storey view (dimensions in m) Beam
frame labels indicate the section dimensions in cm;
column sections are all (30×30) *this frame rep-
resents both storey beams (24×100) and stair knee
beams (50×30)

tails can be found in a previous work by the au-
thors (Asprone et al. 2008).

3.2 Probabilistic seismic after-shock
hazard assessment

It is assumed that the generic structure is located
in central Italy. The after-shock hazard at the
site is calculated assuming the main-shock and
after-shocks all take place at a constant source-
to-site distance of 10km. The average daily rate
of occurrence of after-shock events with mag-
nitude between Ml and Mm is calculated from
a generic after-shock sequence (Reasenberg and
Jones, 1989) as follows:

ν(t) =
10a+b(Mm−Ml) − 10a

(t + c)p
(18)

where a = −1.67, b = 0.91, Mm = 6.3, Ml =
4.7, c = 0.05 and p = 1.08. The probabil-
ity of exceeding a given value of spectral accel-
eration given an after-shock event has occurred
is calculated from Equation 1 using the ground
motion prediction relationship by Sabetta and
Pugliese (Sabetta and Pugliese, 1996) for the
horizontal component of the ground motion on
rock (type A) and plotted in Figure 2. The
site of the structure is assumed to be situated
in the zone number 920 of the seismogenetic
hazard zonation (ZS9, (Meletti and Valensise,
2004)). In order to update the aftershock hazard
given that the main-shock wave-form is known, a
set of main-shocks and the corresponding after-
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Figure 2: The probability of exceeding a given
level of Sa given the occurrence of an after-shock

shocks (registered at the same station) are gath-
ered from European strong motion database
(http://www.isesd.cv.ic.ac.uk/ESD/ ) and their
spectral acceleration values at the fundamental
period of the structure are calculated. The re-
sulting data-points together with the parameters
of a linear least squares performed on after-shock
spectral acceleration (as the dependent variable)
versus the corresponding main-shock spectral ac-
celeration (as the independent variable) are plot-
ted in Figure 3. The regression results can be
used to calculate the term p(Sa,ms|Sa,as = x, as)
assuming that Sa,ms = 0.3g. The probability of
exceeding the spectral acceleration taking into ac-
count the specific main-shock information is up-
dated using Equations 4 and 5. The resulting
updated probability of exceeding a given after-
shock spectral acceleration is plotted in Figure 2.
It can be observed that the additional informa-
tion about the main-shock reduces significantly
the aftershock hazard.

3.3 Calculation of failure probabilities

In order to calculate the failure probabilities due
to the sequence of after-shock events, a set of 50
ground motion records (consisting of main-shocks
and after-shocks) are chosen. Each ground mo-
tion record is applied sequentially k times on the
equivalent SDOF model. The probability of fail-
ure given that a sequence of k after-shocks has
occurred is calculated following the procedure ex-
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Figure 3: Predicting Sa(T1) of the main-shock
given the Sa(T1) of the after-shock using linear
least squares in the logarithmic scale

plained in section 2.2.1.

3.4 Time-dependent limit-state proba-
bility

The performance objectives for post-earthquake
assessment of the case-study structure are defined
in terms of discrete limit states of, serviceabil-
ity, onset of damage, severe damage and collapse.
These limit states have been defined in relation
to the maximum roof displacement. Table 1 illus-
trates the limit states and their corresponding en-
gineering demand parameter threshold. The limit

Table 1: Equivalent SDOF maximum displace-
ment [meters]

LS Maximum Roof Displacement
Serviceability 0.01
Onset of damage 0.02
Severe Damage 0.06
Collapse 0.10

states are distinguished in terms of increasing lev-
els of the maximum displacement for the equiva-
lent SDOF system. A ground motion record with
moment magnitude equal to 6.3 is assumed to
be the main shock event and is applied to the
equivalent SDOF system. Two distinct cases are
studied, the residual displacement of the SDOF
system is calculated to be equal to (1) 0.015m



(low-residual case, 15% of the total displacement
capacity) and (2) 0.05m (the high-residual case,
50% of the displacement capacity). In first case,
the structure has exceeded the limit state of ser-
viceability due to the main-shock and in the sec-
ond case the structure is very close to the onset
of severe damage. Assuming that in time Tmax

a maximum of 20 significant after-shock events
(i.e., Ml > 4.7 for zone 920 can take place), the
sequence of structural limit state probabilities due
to the occurrence of the after-shocks is calculated
by following the procedure discussed in section
2.2.1. The limit state probabilities P (Cj|Dk, i) for
k = i = 1 : 20 are plotted in Figure 4 where the
solid lines correspond to the low-residual case and
the dashed lines correspond to the high-residual
case. It can be observed that the probability of
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Figure 4: The limit state probabilities given k
after-shocks have taken place

exceeding each limit state increases as a function
of the first few aftershock events and quickly sat-
urates afterwards. This is because, after a cer-
tain number of after-shocks have taken place, the
probability of failure given spectral acceleration
reaches unity. For the limit state of onset of dam-
age, the low-residual structure reaches the limit
state threshold with the occurrence of the first
aftershock event.

The time-dependent limit state probabilities
are calculated based on the procedure described in
Section 2.2 for Tmax = 365 assuming that the re-
pair time for each limit state is much larger than
the after-shock inter-arrival times. The results

are plotted in Figure 5 for both cases. The same
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Figure 5: The limit state probabilities during a
year elapsed after the main-shock

as in Figure 4, it can be observed that the limit
state probability rapidly increases with time and
remains constant afterwards. This is caused by
the combined effect of the time-decaying rate of
after-shocks and the quick saturation of the limit
state probabilities as a function of the number of
aftershocks.

3.5 The probability of failure in a 24-
hour time interval

The probability of exceeding the limit state of
collapse in a day (24 hours) has been calculated
from Equation 17 setting ∆T = 1. The results
are plotted in Figure 6 where they are compared
against an acceptable mean daily collapse rate of
2× 10−3/365, as a proxy for life safety considera-
tions. This threshold value is on average equiva-
lent to an acceptable mean annual rate of collapse
equal to 2×10−3. This verification is done for en-
suring life safety for the building occupants. It
can be observed that the low-residual structure
is immediately below the acceptable threshold for
life-safety limit state; whereas, the high-residual
case does not verify the acceptable threshold up to
around 35 days elapsed after the occurrence of the
main-shock. After 35 days, due to the decreasing
rate of occurrence of after-shocks, the structure
verifies against the life-safety limit state thresh-
old. It should be noted that such a time-variant
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performance assessment can be potentially use-
ful for evaluation of the re-occupancy risk for
the structure after a certain amount of time has
passed from the occurrence of the main shock. In
fact, the necessary time elapsed after the occur-
rence of main-shock in order for the structure to
verify the life-safety limit state is calculated for a
range of residual to collapse displacement capac-
ity ratios. Figure 7 illustrates the time required in
order to verify the collapse limit state for differ-
ent residual percentiles. It can be observed that
the structure immediately verifies the life-safety
limit state when the residual damage is minimal;
whereas, it might take more than a year before
the structure verifies in cases where the residual
damage is very significant.

4 CONCLUSIONS

This paper presents a preliminary effort for quan-
tification of the time-variant probability of ex-
ceeding various discrete limit states for a struc-
ture in an after-shock prone environment. A sim-
ple methodology is presented for calculating the
probability of exceeding a limit state in a given
interval of time elapsed after the occurrence of
the main-shock event. This procedure employs
a generic after-shock sequence in order to model
the time-decay in the mean daily rate of the oc-
currence of significant after-shocks. The seismic
after-shock hazard at the site of the structure
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Figure 7: Time elapsed after the occurrence of
the main-shock in order to verify the life-safety
requirements

is calculated by setting the main-shock moment
magnitude as the upper limit for magnitude and
is updated using the Bayes formula given that the
small-amplitude spectral acceleration of the main-
shock at the fundamental period of the structure
is known. The progressive damage caused by the
sequence of after-shock events is modeled in the
form of a suite of different ground motion record-
ings that are applied (repeatedly) to the simplified
structural model. Conditioned on the occurrence
of a given number of after-shocks, the statistics of
the structural response to the suite of records can
be used to calculate the probability of exceeding
the limit state capacity. The numerical results are
presented for two cases where the structure has
undergone low residual damages and high resid-
ual damages after the main-shock. It can be ob-
served that the probability of exceeding the limit
state capacity increases as a function of the num-
ber of significant after-shocks until it reaches a
plateau and remains constant afterwards. Con-
ditioned on the occurrence of a given main shock
event, the probability of exceeding the limit states
of onset of damage, severe damage and collapse
in a given interval of time are calculated. It can
be observed that the limit state probabilities in-
crease as a function of time although they seem
to reach a constant threshold at the end of a year
passed from the occurrence of the main-shock.
In order to better observe this effect, the col-



lapse limit state probability in a 24-hour period
is calculated as the increment of the time-variant
limit state probability in a given interval of time
(measured in days). In fact, comparing the time-
variant probability of collapse in a 24-hour pe-
riod of time against an acceptable threshold, it
can be observed that the strongly damaged struc-
ture could be occupied after a certain amount of
days has elapsed after the occurrence of the main-
shock while the lightly damaged structure could
be occupied immediately. This type of verifica-
tion can be useful for evaluation of re-occupancy
risk for the structures located in a zone prone to
after-shocks, based on the life-safety criterion. In
fact, the necessary time elapsed after the main-
shock for the structure to verify the life-safety
requirements is calculated as a function of dif-
ferent values of residual to collapse displacement
capacity ratio. It is observed that time needed to
verify against the life-safety limit state increases
exponentially as a function of the level of resid-
ual damage undergone after the main-shock. The
methodology presented in this work is adaptive in
the sense that the limit state probability evalua-
tions can be updated in time as more after-shock
events take place. Finally, the proposed method-
ology could be used for post-earthquake decision-
making between a set of viable actions such as,
evacuation, shut-down, repair and re-occupancy.
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