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ABSTRACT  
The recent European codes such as Euro Code 8 seem to synthesize the effect of structural modeling uncertainties 
in the so-called confidence factors (CF) that are applied to mean material property values. However, the effect of 
the application of the confidence factors on structural reliability is not explicitly stated. An alternative approach 
featured in the SAC-FEMA guidelines, considers the effect of both ground motion uncertainty and the structural 
modeling uncertainties on the global performance of the structure, in a closed-form analytical safety-checking 
format. This work employs an approximate semi-deterministic method to study the confidence factors from the 
point of view of the characterization of uncertainties and structural reliability assessment. Moreover, an efficient 
Bayesian method is presented that can estimate both the robust structural reliability and also the joint probability 
distributions for structural fragility parameters, based on a small sample of structural model realizations and ground 
motion records. Based on findings featured in this work, a set of perspectives for the future European codes are 
outlined. 
 

1 INTRODUCTION 

Many European countries are subject to a 
considerable risk of seismic activity.  Quite a few 
of these countries enjoy a rich patrimony of 
existing buildings, which for the most part were 
built before the specific seismic design provisions 
made their way into the constructions codes. 
Therefore, the existing buildings can potentially 
pose serious fatality and economic risks in the 
event of a strong earthquake.  One main feature 
distinguishing the assessment of existing 
buildings from that of the new construction is the 
large amount of uncertainty present in 
determining the structural modeling parameters. 
The recent European codes seem to provide a 
level of conservatism in the assessment of 
existing buildings, in the application of the 
(inverse of the larger than unity) confidence 
factors (CF) to mean material property values. 
These confidence factors are determined as a 
function of the knowledge levels (KL). The 
knowledge levels are determined based on the 
amount of tests and inspections performed on the 
existing building. Table 1 illustrates the three 
KL's, namely, limited, extended and 

comprehensive, based on the amount of in-situ 
tests and inspections performed. 
Table 1. Recommended minimum requirements for 
different levels of inspection and testing (* for each type of 
primary element). 

KL Inspections of 
details 
(%  elements*) 

Testing of 
Materials 
(sample/floor) 

 

Limited 20 1 
     Extended 50 2 

Comprehensive 80 3 
  
The application of the confidence factor seems 

to be a deterministic method for addressing an 
inherently probabilistic problem. With the 
emerging of probability-based concepts such as 
life-cycle cost analysis and performance-based 
design, the question arises as to what the CF 
would signify and would guarantee in terms of 
the structural seismic reliability [Jalayer et al. 
2008, Franchin et al. 2008].  This would not be 
possible without a thorough characterization of 
the uncertainties in the structural modeling 
parameters [Monti and Alessandri 2008 and 
Jalayer et al. 2008]. Another issue regards the 
definition of the KL. The current code definition 
in Table 1 leaves a lot of room for interpretation; 
it is independent of the spatial configuration and 
the outcome of the test results. Moreover, the 
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logical connection between the numerical values 
for the confidence factors and the onset of the 
knowledge levels is not clear. A simple 
approximate semi-deterministic method is 
employed in this work in order to calculate the 
structural reliability based on code 
recommendations.    

 An alternative probabilistic and 
performance-based approach is adopted in the 
American Department of Energy Guidelines 
DOE-1020 and in SAC-FEMA guidelines.  This 
simplified approach leads to an analytic and 
closed-form solution which compares the factored 
demand against factored capacity. The factored 
demand and capacity are respectively equal to 
median demand and capacity multiplied by some 
factors. The magnifying demand factors and the 
de-magnifying capacity factors take into account 
all sources of uncertainty, such as record-to-
record variability, structural modeling uncertainty 
and the uncertainty in the capacities. This 
approach that is recently known as the Demand 
Capacity Factor Design (DCFD) [Cornell et al., 
2002] takes into account the overall effect of the 
various types of uncertainties on a global 
structural performance parameter. Therefore, in 
the case of existing buildings, there is a need for a 
method that can evaluate the global parameters 
reflecting the overall effect of structural modeling 
uncertainties.  

  
The Bayesian framework for probabilistic 

inference seems to be a perfect basis for taking 
into account the results of tests and inspection in 
updating the structural model. The authors in a 
previous work [Jalayer et al. 2008] have 
demonstrated how the advanced simulation 
methods based on Bayesian updating can be used 
to both update the structural reliability and also 
the probability distribution for the modeling 
parameters, in the presence of test and inspection 
results. However, the application of the advanced 
simulation schemes requires a large number of 
structural analyses and there seems to be a need 
for less computationally intensive methods for 
updating the structural model and structural 
reliability. The authors [Jalayer et al., 2009] have 
employed an efficient Bayesian simulation-based 
method for robust estimation of structural 
reliability. This method exploits a relatively small 
number of structural analyses in order to yield the 
robust reliability for the structure in question. 
The term robust herein refers to the fact that the 

reliability is calculated taking into account all 
possible structural models and their relative 
plausibilities. 

1.1 The Structural Performance Parameter  
The structural performance parameter in 

the context of this work is a particular kind of 
demand to capacity ratio. This parameter which 
denoted as Y, assumes the value of unity on the 
verge of the limit state LS.  In the case of static 
analyses, the capacity spectrum method [Fajfar, 
1990] is used to obtain the global demand to 
capacity ratio. In the case of dynamic analyses, 
the cut-set concept in reliability theory is 
employed to find the critical component demand 
to capacity ratio that takes the structure closer to 
the onset of the limit state LS. This critical 
demand to capacity ratio corresponds to the 
strongest component of the weakest structural 
mechanism [Jalayer et al., 2007]. 

2 METHODOLOGY 

In this section a methodology for taking into 
account the sources of modeling uncertainties in 
the probabilistic performance assessment of 
existing buildings is presented. 

2.1 The SAC-FEMA Methodology  

In the case of static analyses, the SAC-FEMA 
formulation reduces to the following: 

   
Eq. 1

 
Where ηy is the median and βY is the standard 

deviation of the logarithm for the probability 
distribution for the structural performance 
parameter Y. If Y is described by a Lognormal 
distribution, this is equivalent to checking 
whether the mean value for the structural 
performance parameter is less than unity.  The 
parameter βY represents the overall effect of 
uncertainties on the probability distribution for 
the structural performance parameter. When 
record-to-record variability is considered, the 
formulation is modified as: 

  
   

Eq. 2
Where Po is an acceptable threshold for structural 
failure probability and ηY(Po) is the median 
structural performance parameter corresponding 
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to the acceptable probability Po.  The terms βY|Sa 

and βUC represent the effect of record-to-record 
variability and structural modeling uncertainties, 
respectively, on the total dispersion in the 
structural performance parameter given spectral 
acceleration. 

2.2  Characterization of the Uncertainties 

It is assumed that the vector θ represents all 
the uncertain parameters considered in the 
problem. The vector θ can include the 
uncertainties in the mechanical properties of the 
materials, in the structural construction details 
(a.k.a., defects) and in the representation of the 
ground motion uncertainty. One of the main 
characteristics of the construction details is that 
possible deviations from the original 
configurations are mostly taken into account in 
those cases leading to undesirable effects. This 
justifies why the uncertainties related to 
construction details are usually referred to as the 
structural defects. 

Three types of uncertainties are considered 
herein, namely, the uncertainty in the ground 
motion input, the uncertainty in the material 
mechanical properties, and the uncertainties in the 
structural detailing parameters. A set of 30 
ground motion records are chosen from the 
European strong motion database for soil type B 
(400 < Vs < 600 m/s), with moment magnitude 
between 5.3 to 7.2 and the epicentral distance 
between 7 and 87 km. Moreover, a set of 7 
ground motion records are chosen compatible 
with the spectrum of Euro Code 8. The 
parameters identifying the prior probability 
distributions for the material mechanical 
properties (concrete strength and the steel 
yielding force) have been based on the values 
typical of the post world-war II construction in 
Italy [Verderame et al. 2001a,b]. Table 2a shows 
these parameters that are used to define the 
Lognormal probability distributions for the 
material properties. The prior probability 
distributions for the structural detailing 
parameters are defined based on qualitative prior 
information coming from expert judgment or 
based on ignorance in the extreme case [Jalayer 
et al., 2008]. Table 2b shows the specifications 
used to construct the prior probability 
distributions for the structural detailing 
parameters. It shows a list of possible defects, 
their probability distribution and correlation 
characteristics. 

Table 2. The uncertainties in the material properties 
(systematic per floor). 

material Type Median COV 
fc LN 165 0.15 
fy LN 3200 0.08 

 
Table 2. The uncertainties in details (systematic). 

defect Type Min Max 
spacing of 
shear  rebar 
 

Uniform 
(beams) 

15cm 30cm 

spacing of 
shear  rebar  

Uniform 
(column) 

20cm 35cm 

 
2.2.1 Updating the probability distributions 

The probability distributions for the structural 
modeling parameters can be updated employing 
the Bayesian framework for inference. It is 
assumed that the material properties are 
homogeneous across each floor or construction 
zone. Therefore, the material property value 
assigned to each floor can be thought of as an 
average of the material property values across the 
floor/zone in question. The results of tests and 
inspections for each floor can be used to update 
the probability distribution for the mean material 
property across the floor. Figure 1 illustrates an 
example where the test results have verified the 
nominal value for different levels of knowledge. 
It can be observed that the updated curve has the 
same median but has its dispersion reduced.  

Assuming that the probability not having 
a construction defect in a member is equal to f, 
the probability distribution for f can be updated 
using the test results. If the test results indicate 
that of n cases observed nd of them demonstrate a 
defect, the probability distribution for f can be 
updated according to the Bayes formula:   

   
Eq. 3

Where p(f) is the prior probability distribution 
for f and p(D|f) is the likelihood function for the 
data D given the value of f. In the absence of 
prior information it can be assumed that p(f)  is a 
uniform distribution from 0 to 1. Use can be 
made of expert judgment and experience in order 
to limit the lower and the upper bounds for the 
defect probability f. The likelihood function can 
calculated using the binomial distribution: 

  
Eq. 4
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Figure 2 illustrates the prior information on the 
distance between the shear reinforcement together 
with updated distribution based on the test results 
that verify the design value. It can be observed 
that the consideration of the test data focuses 
more narrowly the probability distribution around 
the design value. 

 
Figure 1. The prior and the updated probability distributions 
for concrete for different knowledge levels. 

 
Figure 2. The uniform prior and the updated probability 
distribution for the distance between shear reinforcement. 

 

2.3 Calculating Structural Reliability using an 
Approximate Semi-Deterministic Method  

The confidence factors specified by Euro Code 
8 are applied to the mean material properties. 
Obviously, the approach based on the application 
of the CF does not take into account explicitly the 
uncertainties. It would be interesting to 
investigate what would the application of CF 
achieve in terms of the seismic performance of 
the structure.  

Consistent with the definition of the KL in 
the code, one can define the KLo or the 
knowledge level before performing the tests. 
Therefore, for a structure in KLo the application 
of the confidence factor implies utilizing smaller 

material property values. Figure 3 illustrates 
different values of the material property in 
question for different values of the CF. It can be 
observed from Figure 3 that increasing the 
confidence factor decreases the percentage of 
values smaller than the nominal value or in other 
words increases the confidence in the nominal 
value. 

 
Figure 3 The percentiles corresponding to each CF on the 
prior probability distribution for concrete. 

 
Figure 4. The code-based updated probability distributions 
for concrete for each knowledge level. 

 
Figure 4 illustrates the probability distributions 

updated for each knowledge level where the mean 
value for resistance is divided by the 
corresponding confidence factor. It can be seen 
that with the increasing knowledge level, the 
standard deviation in the probability distributions 
decreases.   

In order to map the above discussion into the 
global performance of the structure, it is assumed 
for simplicity that the percentiles in the material 
properties map out invariantly into the structural 
performance parameter. This approximation 
would have been exact if the non-linear structural 
analysis was a strictly monotonic function.  
Figure  illustrates the structural fragility curve –



 

built deterministically- by calculating the 
structural performance variable for different 
values of CF and plotting them versus their 
corresponding confidence.  It can be seen from 
figure that with increasing the CF, the structural 
performance parameter increases and exceeds 
unity for CF > 1.  Therefore, the YCF>1 value 
corresponds to a Y value with a higher confidence 
compared to YFC=1. It should be noted that for KL 
levels higher than KLo, the CF will map out to 
even higher confidences. 

 
Figure 5. The (approximate) fragility curves corresponding 
to each CF. 

2.4 An efficient method for estimation of robust 
reliability 

The probability of failure given the set of 
parameters β (e.g., median and standard deviation 
of the fragility curve) is denoted by P(F| β), the 
expected value (or the robust estimate) for the 
probability of failure given a set of values Y for 
the structural performance index can be expressed 
as [Jalayer et al., 2009]: 

   
Eq. 5

 
where p(β |D) is the posterior probability 
distribution for the set of parameters β  given the 
data D and Ω is the space of possible values for 
β. In a similar way, the robust variance for the 
probability of failure can be calculated as: 

   
Eq. 6

 
     The structural reliability or the probability of 
failure in the case of a structure with modeling 
uncertainties (no uncertainty in the ground 
motion) can be expressed by a LogNormal 

cumulative distribution function (CDF) as 
following: 

   

Eq. 7

 
Where Y is the structural performance index 

and ηY and βY are the median and the standard 
deviation (of the logarithm) for the probability 
distribution of the structural performance index. 
Using Bayesian inference, the posterior 
probability distribution for median and standard 
deviation based on data Y can be written as [Box 
and Tiao, 1999]: 

   

Eq. 8

where Y={Y1, …, Yn } is the vector of  n 
different realizations of the structural 
performance index, ν=n-1, logY (overbar) is the 
mean value for logY and ns2 is sum of the squares 
of the deviations from the mean value. The 
expected value and the standard deviation for the 
probability of failure can be calculated from 
Equations 5 and 6 based on the posterior 
probability distribution p(ηY, βY|Y) in Equation 8. 
Otherwise, the best-estimate values for the 
median and standard deviation can be calculated 
either as the maximum likelihood pair for the 
posterior probability distribution function or 
based on a given (e.g., 84%) confidence. 

 
The structural reliability in the presence of 

modeling uncertainties and uncertainties in the 
representation of the ground motion can be 
calculated from the following LogNormal CDF: 

   
Eq. 9

where ηY|Sa is the median for the probability 
distribution of the structural performance index 
and βUT is the standard deviation for the 
probability distribution of the structural 
performance index. The terms βY|Sa and βUC 
represent the effect of the uncertainty in the 
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ground motion representation, the uncertainty in 
the material properties and the structural details, 
respectively. It should be noted that Equation 9 
yields the structural fragility; after integrating it 
with the hazard function for the spectral 
acceleration, the hazard function for the structural 
performance variable Y can be obtained. 

 
Suppose that a selection of n ground motion 

records are used to represent the effect of ground 
motion uncertainty on the structural performance 
index. Let Sa,i and Yi  represent the spectral 
acceleration and the performance index for the 
ground motion record i, respectively. The 
posterior probability distribution for standard 
deviation can be calculated as: 

 
   

                    Eq. 10 

The data pairs (Y, Sa) are gathered by calculating 
the structural performance measure for the set of 
n ground motion records applied at the structural 
model generated by different realizations of 
material mechanical properties and structural 
detailing parameters. νs2 is equal to the sum of 
the square of the errors for a linear regression of 
logY on logSa and a and b are the regression 
coefficients. The joint posterior probability 
distribution for the coefficients of the linear 
regression θ = (log a, b) can be calculated as: 

   
Eq. 11

 
which is a bivariate t-distribution where X is a 

nx2 matrix whose first column is a vector of ones 
and its second column is the vector of log Sa,i and 
θ is the 2x1 vector of regression coefficients log a 
and b. The median and the standard deviation for 
the probability distribution for Y|Sa can be taken 
equal to  the maximum likelihood estimates ηY = 
aSa

b and βY|Sa=s. The robust estimates for the 
expected value and the standard deviation of the 
failure probability can be obtained from 
Equations 5 and 6 based on the product of the 
posterior probability distributions p(θ|Y,Sa) and 

p(βUT|Y,Sa) in Equations 10  and 11, assuming 
they are independent. 

3 NUMERICAL EXAMPLE 
As the case-study, an existing school structure 

located in Avellino, Italy is considered herein. 
The structure is situated in seismic zone II 
according to the Italian seismic guidelines 
OPCM. The structure consists of three stories and 
a semi-embedded story and its foundation lies on 
soil type B. For the structure in question, the 
original design notes and graphics have been 
gathered. The building is constructed in the 
1960's and it is designed for gravity loads only, as 
it is frequently encountered in the post second 
world war construction. 

 
 
 
 
 
 
 

 

 

(IV)

(III)

(II)

(I)

(1) (2) (3) (4)

3.
50

 m
3.

90
 m

3.
90

 m
2.

20
 m

4.20 m 4.20 m 4.20 m 3.50 m
 

Figure 5(a) The tri-dimensional view of the scholastic 
building 5(b) The central frame of the case-study building 

In Figure 5a, the tri-dimensional view of the 
structure is illustrated; it can be observed that the 
building is highly irregular both in plane and 
elevation. In order to reduce the computational 
effort, the main central frame in the structure is 
extracted and used as the structural model (Figure 
5b). The columns have rectangular section with 
the following dimensions:  first storey: 
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40x55cm2, second storey 40x45cm2, third storey: 
40x40cm2, and forth storey: 30x40 cm2. The 
beams, also with rectangular section, have the 
following dimensions: 40x70cm2 at first and 
second storey, and 30x50 cm2 for the ultimate 
two floors. It can be inferred from the original 
design notes that the steel re-bar  is of the type 
Aq40 and the concrete has a minimum resistance 
equal to 180 kg/ cm2 [DL1939]. The finite 
element model of the frame is constructed 
assuming that the non-linear behavior in the 
structure is concentrated in plastic hinges. 

3.1 The structural performance index 

When only the structural modeling 
uncertainties are considered, the definition of 
structural capacity in this work is based on the 
limit state of severe damage as proposed by the 
Italian Code. That is, the onset of critical 
behavior in the first element, characterized by 
member chord rotations larger than the 
corresponding ultimate chord rotation capacity. 
The structural demand is characterized by the 
intersection of the code-based inelastic design 
spectrum and the static pushover curve 
transformed into that of the equivalent SDOF 
system. As an index for the global structural 
performance, the ratio of structural demand to 
capacity is used. The component shear failure 
demand to capacity ratios are also considered; 
they are combined with the CSM demand to 
capacity using the cut set theory (see below). 

When the ground motion uncertainty 
together with the modeling uncertainties are taken 
into account, the structural performance index is 
characterized based on the concept of cut-sets in 
structural reliability. A structural cut-set is 
defined as a set of structural components that, 
once all of them have failed, they can transform 
the whole structure or part of it into a mechanism. 
Among the set of all possible cut-sets, the critical 
cut-set is the one that first forms a global 
mechanism. Therefore, the performance index is 
taken as the demand to capacity ratio of the 
strongest component of the weakest cut-set. In the 
current work, three types of global mechanism 
are considered: (a) ultimate rotation capacity in 
the columns (b) formation of soft stories (c) shear 
failure in the columns. The component yield 
rotation, ultimate rotation and shear capacities are 
calculated according to the new Italian Unified 
Code (MIN.LL.PP 2008a,b). It should be noted 
that the structural performance in both cases 

signals failure when it is great than unity and 
signals no structural failure when it is less than or 
equal to unity. 

 

3.2 Calculating the structural Fragility: CSM  

The structural fragility based on the capacity 
spectrum method is estimated employing the 
efficient Bayesian method described above based 
on the structural performance parameter for a set 
of 20 Monte Carlo (MC) realizations of the 
structural model. These realizations take into 
account the uncertainties in the material 
properties and the structural defects. The 
probability distributions for the uncertain 
parameters are updated according to the 
increasing knowledge levels KLo, KL1, KL2 and 
KL3. As stated before, these knowledge levels are 
achieved based on the EC8 specifications 
tabulated in Table 1. Thus, for each knowledge 
level, the 20 realizations of the structural model 
are generated from the (updated) probability 
distributions corresponding to the KL’s and based 
on the results of tests and inspections. Since the 
results of tests and inspections available for the 
structure in question did not exactly match the 
EC8 criteria, the test results used herein are 
simulated assuming that all the inspections 
performed verify the original design values. 
Figure 6 demonstrates the robust fragility curves 
(the probability of failure for a given value of Y) 
obtained using Equations 5, 7 and 8 for 
knowledge levels KL1, KL2 and KL3. The 
fragility curves in grey for each knowledge level 
illustrate the corresponding robust fragility plus 
its standard deviation.  

 
Figure 6 The structural fragility curves for the knowledge 
levels KLo, KL1, KL2 and KL3. 



 

It can be observed that the upon increasing 
knowledge levels the both the median and the 
dispersion in the fragility curves (βY and ηY in 
Equation 1) decrease as the test results all verify 
the nominal values. However, it can be seen that 
the structure does not verify the SAF-FEMA 
criteria in Equation 1 in none of the knowledge 
levels. That is, because the median ηY is already 
greater than unity. Figure 7 shows the robust 
fragility curves for each knowledge level together 
with the approximate fragility curves developed 
based on the code-specified method plotted in 
grey. It can be observed that while the code-based 
fragility curves remain distinct and with the same 
dispersion, the robust fragility curves get closer 
and have smaller dispersion as the knowledge 
levels rises. 

  

 
Figure 7 The structural fragility curves for the knowledge 
levels KLo, KL1, KL2 and KL3. 

3.3 An Approximate Method for calculating 
Structural reliability: Dynamic Analyses 

It is shown previously in this work how the CF 
can be viewed in an approximate way from the 
stand-point of structural reliability using the non-
linear static analyses. In a similar way, it can be 
shown how the CF can be viewed in the dynamic 
case. A set of 7 records are chosen compatible 
with the code-specified spectrum [EC8]. For each 
CF specified in the code, the structural 
performance variable for the set of records is 
calculated for a structural model (without defects) 
with material properties divided by that CF. The 
structural performance variable is related to the 
spectral acceleration using linear regression with 
parameters ηY|Sa and βY|Sa. The structural fragility 
is calculated from Equation 9 setting βUC equal to 
zero. Finally, the structural fragility is integrated 
with the spectral acceleration hazard curve 

(extracted from the site of INGV) in order to 
calculate the probability of failure. The resulting 
hazard curves corresponding to different values 
of CF are plotted in Figure 8. It should be noted 
that dispersion in these hazard curves reflects 
only the record-to-record variability. In a way, 
similar to Figure 5 for the static case, using 
increasing values of CF is equivalent to taking 
into account the structural modeling uncertainties 
by taking hazard curves (including only the 
ground motion uncertainty) corresponding to 
higher confidence levels.  

 
Figure 8 The approximate code-based hazard curves for the 
knowledge levels KLo, KL1, KL2 and KL3. 

3.4 Calculating the Structural Reliability: The 
Dynamic Method 

The structural hazard curve for increasing 
levels of knowledge is calculated in this stage by 
integrating the robust fragilities and the spectral 
acceleration hazard curve at the site of the 
structure. For each level of knowledge, the robust 
fragility is calculated from Equations 5, 9, 10 and 
11 using a set of 30 MC realization of the 
structural model. The set of MC realizations for 
each KL are generated based on the 
corresponding (updated) probability distributions. 

The resulting hazard curves are plotted in 
Figure 9. The grey hazard curves correspond to 
robust fragility plus one standard deviation for 
each knowledge level. It can be observed that 
with increasing the knowledge level KL, the 
mean annual frequency of exceeding the 
structural performance parameter Y decreases.  It 
can be shown (Jalayer and Cornell 2008) that 
calculating the left-hand side of Equation 2 for a 
given acceptable probability Po is equivalent to 
finding the value corresponding to Po from the 
hazard curve for structural performance 
parameter. For example for an acceptable 



 

probability of Po=0.002 or 10% in 50 years, the 
structure does not verify for none of the KL.  

 
Figure 9 The hazard curves for robust fragility and robust 
fragility plus standard deviation for knowledge levels KLo, 
KL1, KL2 and KL3. 

Figure 10 illustrates the hazard curves based 
on the robust fragilities plotted together with the 
approximate code-based hazard curves.  

 
Figure 10 The robust hazard curves and the approximate 
code-based hazard curves for the knowledge levels KLo, 
KL1, KL2 and KL3. 

4 SOME PERSPECTIVES FOR EC8 IN 
LIGHT OF THE ITALIAN EXPERIENCE  

The knowledge levels (KL) defined by the 
code leave a lot of room for interpretation. In 
other words, the code-based definition for KL 
does not lead to a unique configuration of tests 
and inspections. Moreover, it is not clear what 
level of structural reliability does the application 
of the confidence factors guarantee.  Hence, with 
the emerging of performance-based design and 
life-cycle cost analysis in earthquake engineering, 
there seems to be a need for a code-based method 
that bridges the different knowledge levels to 
structural reliability and probabilistic structural 
performance assessment. A proper evaluation of 

the structural performance needs to take into 
account directly the uncertainties in the structural 
modeling parameters. Thus, the suitable approach 
for assessment of existing buildings is the 
probabilistic one which accounts for all the 
uncertainties. In this sense, the approach of CF 
can be seen as a deterministic way of dealing with 
a probabilistic problem.  

 
Intuitively speaking, the relation between 

the confidence factors and the knowledge levels 
seems to be highly dependent on the results of in-
situ tests and inspections. Therefore, it is 
necessary to adopt a general probabilistic 
framework for updating the probability 
distribution for the uncertain parameters based on 
the test results. The Bayesian framework for 
inference seems to be perfectly suitable for this 
end; as it can sequentially incorporate the 
incoming tests and inspection results without 
discarding any prior information available.   

 
 There seems to be a need for simple and 

approachable probabilistic performance-based 
alternatives to the CF method. These methods can 
be incorporated in increasing levels of 
sophistication depending on the importance of 
building under assessment. The simplified safety-
checking format adopted by the American 
SAC/FEMA guidelines for the assessment and 
retrofit of existing buildings seems to be an 
interesting example. This simplified method takes 
into account the effect of all sources of 
uncertainty (GN, structural modeling) in the 
global performance of the structure. This format 
is expressed as a function the statistical 
parameters of the structural performance 
parameter. 

  
In the context of a simple performance-

based assessment approach, different classes of 
existing buildings can be identified and analyzed. 
The prior probability distributions for the 
structural modeling uncertainties can be classified 
and tabulated based on the surveys of expert 
opinion and experience. It is important to identify 
those uncertain parameters that affect the 
structural response in a dominant way (e.g., the 
material properties, the stirrup spacing). These 
prior probability distributions are going to be 
updated based on the results of tests and 
inspections. The updated probability distributions 
are constructed for various KL’s, based on special 



 

cases of tests and inspection results. Finally, for 
different classes of structures and different levels 
of knowledge (and a few special cases of 
inspection results), the best-estimate values for 
the parameters defining the adopted safety-
checking format/structural fragility can be 
tabulated. In the case of strategic buildings, it 
would be useful to recommend some relatively 
simple and approachable methods suitable for 
case-specific estimation of the parameters 
defining the safety checking format and/or 
structural fragility. This work is a preliminary 
effort in classifying (for different levels of 
analysis sophistication) different methods suitable 
for the performance-based assessment of existing 
buildings. 
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