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ABSTRACT 
 

One of the most efficient non-linear dynamic analysis procedures for analytic fragility 

evaluation, known also as the Cloud Method, is based on simple regression of structural response 

versus seismic intensity for a set of registered records. This work presents a Bayesian take on the 

cloud method for efficient fragility assessment, considering both record-to-record variability and 

other sources of uncertainty related to structural modeling. The starting point of this method lies 

in the assumption of a prescribed probability distribution such as the Lognormal probability 

distribution. In the first stage, the structural response to a limited set of ground motions (applied 

to different realizations of the structural model generated through uncertainty modeling) is 

obtained. This is going to be used as data in order to update (through Bayesian updating) the 

joint probability distribution function for the Log Normal distribution parameters (i.e., two 

regression parameters and a conditional standard deviation). In the second stage, large-sample 

MC simulation based on the posterior joint probability distribution (calculated in the first stage) 

is used to generate a set of plausible fragility curves and their percentiles (e.g., 50
th

, 84
th

, etc.). 

This provides a confidence interval that takes into account also the effect of limited number of 

structural analyses. The application of the above-mentioned procedure for efficient fragility 

assessment by using the cloud method is demonstrated for a shear-critical existing RC frame 

designed only for gravity-loading. 
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ABSTRACT 
 
 One of the most efficient non-linear dynamic analysis procedures for analytic fragility evaluation, 

known also as the Cloud Method, is based on simple regression of structural response versus 

seismic intensity for a set of registered records. This work presents a Bayesian take on the cloud 

method for efficient fragility assessment, considering both record-to-record variability and other 

sources of uncertainty related to structural modeling. The starting point of this method lies in the 

assumption of a prescribed probability distribution such as the Lognormal probability distribution. 

In the first stage, the structural response to a limited set of ground motions (applied to different 

realizations of the structural model generated through uncertainty modeling) is obtained. This is 

going to be used as data in order to update (through Bayesian updating) the joint probability 

distribution function for the Log Normal distribution parameters (i.e., two regression parameters 

and a conditional standard deviation). In the second stage, large-sample MC simulation based on 

the posterior joint probability distribution (calculated in the first stage) is used to generate a set of 

plausible fragility curves and their percentiles (e.g., 50th, 84th, etc.). This provides a confidence 

interval that takes into account also the effect of limited number of structural analyses. The 

application of the above-mentioned procedure for efficient fragility assessment by using the cloud 

method is demonstrated for a shear-critical existing RC frame designed only for gravity-loading. 

 

 

Introduction 

 

Analytic structural fragility assessment is arguably one of the fundamental steps in the modern 

performance-based engineering [1]. The structural fragility can be defined as the conditional 

probability of exceeding a prescribed limit state given the intensity measure (IM). If the 

structural limit state is defined in terms of one or more engineering demand parameters (EDPs), 

the fragility is going to depend significantly on the EDP-IM relationship. There are alternative 

non-linear dynamic analysis procedures available in the literature for characterizing the 

relationship between EDP and IM based on recorded ground motions, such as, the Incremental 

Dynamic Analysis (IDA) [2], Multiple-Stripe Analysis (MSA) [3], [4] and the Cloud Method 

[5],[6],[7] just to name a few. The nonlinear dynamic methods such as IDA and MSA are 

suitable for evaluating the relationship between the EDP and the IM for a wide range of IM 

                     
1
Professor, Dept. of Struct. for Eng. and Architecture, Univ. of Naples, NA 80125, Italy. fatemeh.jalayer@unina.it 

2
Postdoctoral Researcher, Dept. of Struct. for Eng. and Architecture, Univ. of Naples, Naples, NA 80125, Italy. 

3
Professor, Dept. of Struct. for Eng. and Architecture, Univ. of Naples Federico II, Naples, NA 80125, Italy. 

 

Jalayer F, Elefante L, De Risi R, Manfredi G. Cloud Analysis revisited: Efficient fragility calculation and 

uncertainty propagation using simple linear regression. Proceedings of the 10
th

 National Conference in Earthquake 

Engineering, Earthquake Engineering Research Institute, Anchorage, AK, 2014. 

 



values. The application of MSA and IDA can sometimes be quite time-consuming as the non-

linear dynamic analyses are going to be repeated (usually for scaled ground motion time-

histories) for increasing levels of ground motion intensity. The Cloud Method is particularly 

efficient since it involves the non-linear analysis of the structure subjected to a set of un-scaled 

ground motion time-histories. The simplicity of its underlying formulation makes it a quick and 

efficient analysis procedure for fragility assessment or safety-checking in the context of the 

SAC-FEMA formulation [8]. The Cloud Method has been used, not only to model the record-to-

record variability in ground motion, but also to propagate structural modeling uncertainties such 

as uncertainty in component capacity [9] and the uncertainties in mechanical material properties 

and construction details [10]. Furthermore, a modified version of the Cloud Method has been 

proposed in [11] that implements a weighting scheme for taking into account magnitude and 

shape-factor dependence conditioned on the adopted IM. Finally, an information-based relative 

measure for the sufficiency [12] of the adopted IM has been derived based on Cloud Method's 

underlying probabilistic model in [13]. 

 

 Well-established results in Bayesian parameter estimation [14] are going to be used 

herein in order to construct an analytic closed-form (posterior) joint probability distribution for 

parameters of a regression-based Log Normal fragility model. In doing so, the results of the 

Cloud Method expressed in terms of a (limited) set of EDP values, obtained by applying a suite 

of records to various realizations of the structural model taking into account structural modeling 

uncertainties, are going to be used as data. A robust [15], [16] estimate of the structural fragility 

can be obtained by integrating the Log Normal structural fragility model and the joint probability 

distribution for the analytic fragility parameters. Solving the integral using Monte Carlo 

simulation, leads to a set of plausible fragility curves and their various counted percentiles (eg., 

16
th

, 50
th

, 84
th

). This is going to provide an equivalent of a (logarithmic) plus/minus one standard 

deviation confidence interval for the resulting robust fragility curve. The results are going to be 

compared with those obtained by employing the more accurate incremental dynamic analysis, for 

a shear-critical existing school building designed for gravity loading only (in its pre-retrofit 

state).  

 

 The small-amplitude first-mode spectral acceleration is adopted as the IM. The EDP 

herein is taken to be the critical demand to capacity ratio denoted as YLS and defined as the 

demand to capacity ratio for the component that brings the system closer to the onset of limit 

state LS. The formulation is based on the cut-set concept, which is suitable for cases where 

various potential failure mechanisms can be defined a priori: 

 
max minmech l jlN N

LS jl
jl

D
Y

C LS
        (1) 

where Nmech is the number of considered potential failure mechanisms and Nl the number of 

components taking part in the l
th

 mechanism. Djl is the demand evaluated for the j
th

 component of 

the l
th

 mechanism and Cjl(LS) is the limit state capacity for the j
th

 component of the l
th

 

mechansim. In the context of system reliability, a cut set is defined as any set of components 

whose joint failure Y(l) = min Djl/Cjl > 1, implies failure of the system, Y = max Y(l) > 1. 

 

  

 



A Brief Overview of the Cloud Method 

 

The Cloud Method implements the non-linear dynamic analysis results in a (linear) regression-

based probabilistic model. Let Y={Yi, i=1:N} be the critical demand to capacity ratio calculated 

through non-linear time-history analysis performed for a suite of N recorded ground motions 

with Sa={Sa,i, i=1:N}. The probabilistic model can be described as following: 
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where Y|Sa is the median for Y given Sa and Y|Sa is the logarithmic standard deviation for Y given 

Sa. The structural fragility obtained based on the Cloud Method can be expressed as: 
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Note that this is a three-parameter fragility model whose model parameters can be denoted as 

=[log a, b, Y|Sa]. 

 

The robust fragility 

 

Robust fragility is defined as the expected value for a prescribed fragility model taking into 

account the joint probability distribution for the (fragility) model parameters [15],[10],[16]. For 

the fragility model described in Eq. 2, the robust fragility can be written as: 
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where =[log a, b, Y|Sa] and p(|Y) is the posterior joint probability distribution for fragility 

model parameters given the vector of EDP values Y. 

 

The posterior joint probability distribution p(|Y) for =[log a, b, logY|Sa] 

 

The joint probability distribution for can be written as: 

 

log | log |( | ) (log , | , ) ( | )Y S Y Sa a
p p a b p χ Y Y Y  (4) 

 

In the following, we describe how the probability distributions p(logY|Sa|Y) and p(log a, b|Y|Sa,Y) 

are derived [14]. The posterior probability distribution for logY|Sa can be calculated as a derived 

distribution based on a chi-squared distribution with =N-2 degrees of freedom: 
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where s
2
 can be calculated from Eq. 1 as linear regression's best-estimate for logY|Sa. The posterior 

joint distribution p(log a, b|logY|Sa,Y) can then be expressed as a Normal bi-variate distribution: 
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where  is the vector of [log a, b] calculated as the linear least squares best-estimate from 

regression.  

 

Deriving the robust fragility curve(s) by Monte Carlo simulation 

 

The integral in Eq. 3 can be solved numerically, in a Monte Carlo simulation scheme, by first 

sampling logY|Sa based on the PDF in Eq. 5. In the next step, conditioning on the value of sampled 

logY|Sa, [log a, b] can be sampled based on the PDF in Eq. 6. Conditioning on the sampled vector 

 =[log a, b,logY|Sa], the Log Normal analytical fragility curve can be calculated from Eq. 2. This 

leads to a plausible fragility curve based on the underlying probabilistic regression model. 

Counted percentiles for the plausible fragility curves can be finally obtained by taking into 

account a large number of fragility curves. 

 

The numerical example 

 

As numerical example, the application of the Bayesian inference in the assessment of robust 

fragility based on the Cloud Method is demonstrated for a shear-critical existing RC school 

building. 

 

Description of the structural model 

 

An existing school structure located in Avellino, Italy is considered for the application of the 

robust fragility method. The structure is situated in seismic zone II according to the Italian 

seismic guidelines (see [10] for more information).  

 



 
 

Figure 1. (a) The tri-dimensional view of the scholastic building. (b) The central frame of the 

case-study building. 

 

The structure is consisted of three stories and a semi-embedded story and its foundation lies on 

soil type B. For the structure in question, the original design notes and graphics have been 

gathered. The building is constructed in the 1960's and it is designed for gravity loads only, as it 

is frequently encountered in the post second world war construction. In Fig. 1a, the tri-

dimensional view of the structure is illustrated; it can be observed that the building is highly 

irregular both in plane and elevation. In order to reduce the computational effort, the main 

central frame in the structure is extracted and used as the structural model (Fig. 1b). The columns 

have rectangular section with the following dimensions: first storey: 40x55cm
2
, second storey 

40x45cm
2
, third storey: 40x40cm

2
, and forth storey: 30x40 cm

2
. The beams, also with 

rectangular section, have the following dimensions: 40x70cm
2
 at first and second storey, and 

30x50cm
2
 for the ultimate two floors. The finite element model of the frame is constructed, using 

the OpenSees software, assuming that the non-linear behavior in the structure is concentrated in 

plastic hinges. 

 

Characterization of uncertainties  
 

Typically, the uncertainties present in a seismic vulnerability assessment problem can be 

classified in different groups; namely, the uncertainties in the representation of the ground 

motion (GM), the modeling uncertainties associated with the component capacity models, and 

the uncertainties in the structural modeling parameters. In order to take into account the 

uncertainty in the representation of the GM, a set of 20 GM records [11] based on Mediterranean 

events are chosen from European Ground motion database (18 recordings) and the database of 

the Next Generation Attenuation of Ground Motions (NGA) Project (2 recordings). They are all 

main-shock recordings and include only one of the horizontal components of the same 

registration. The soil category on which the GMs are recorded is stiff soil (400 m/s < Vs30 < 700 

m/s) which is consistent with the soil-type B (the soil-type for the site of the case-study presented 

in this work). The earthquake events have moment magnitude between 5.3 and 7.2, and closest 

distances ranging between 7 km and 87 km (see the spectra in Fig. 2a). 

 



Component capacities are modeled as the product of semi-empirical formulas and unit-median 

Log Normal variables accounting for the uncertainty in component capacity [9], according to the 

general format: 

 

Ciii ĈC   (7) 

 

Table 3 illustrates the values of the logarithmic standard deviation βCi for unit-median 

Lognormal variables εCi. These variables represent the uncertainty in the yield chord rotation 

capacity, the ultimate chord rotation capacity, and the ultimate shear capacity. 

 

Table 1.    Logarithmic standard deviation values for component capacity models (see [9] for 

source references).  

 

Unit-Log Normal variable βCi 

εCyield 36%  

εCult 47%  

εCshear 40%  

 

The parameters identifying the probability distributions for the material mechanical properties 

(concrete strength and steel yielding force) have been based on the values typical of the post 

world-war II construction in Italy (see [10] for more detail). It is assumed that the material 

properties are homogeneous across each floor. Table 2 illustrates the parameters that are used to 

define the lognormal probability distributions for the material properties; fci denotes the 

compressional strength for concrete for storey i and fy denotes the yield strength of steel. 

 

Table 2.    The uncertainties in the material mechanical properties. 

 

Material Type Median COV 

fc1 LN 165 0.15 

fc2 LN 165 0.15 

fc3 LN 165 0.15 

fy LN 3200 0.08 

 

Having a shear-critical model, the spacing of the shear rebar is expected to affect significantly 

the structural fragility. It is assumed that the information about the shear rebar is limited to 

knowledge of the intervals in which it is going to vary. Hence, a uniform distribution is assumed 

in that interval (Table 3).  

 

Table 3.    The uncertainties in the spacing of shear rebar. 

 

Defect Type Min Max 

spacing of shear rebar Uniform (beams) 15cm 30cm 

spacing of shear rebar  Uniform (column) 20cm 35cm 

 



The results of the Cloud Method  
 

The results obtained using the Cloud Method for first-mode spectral acceleration Sa(T1) and 

critical demand to capacity ratio Y data pairs are shown in Fig. 2. In particular, Fig. 2b illustrates 

the results obtained considering only the uncertainties related to the representation of the GM 

(case 1); Fig. 2c illustrates the results considering also the uncertainties in component capacity 

models (case 2); Fig. 2d, illustrates the results obtained considering also the epistemic 

uncertainties in the structural modeling (material properties plus construction details, case 3).  

 
Figure 2.   Cloud method results (a) considering only record to record variability (case 1); (b) 

accounting also for uncertainties in component capacity models (case 2); and (c) 

accounting also for structural modeling uncertainties (case 3). 

 

The robust fragility curves 
 

Figure 3 illustrates the fragility percentiles (16
th

, 50
th

 and 84
th

) calculated through the robust 

fragility procedure outlined herein (Eq. 2) for the three cases described above. The Cloud 

Method results Yi are used to update the joint probability distribution for the Log Normal 

fragility parameters. In the next step, large sample MC simulation is used in order to solve the 

integral in Eq. 2 numerically, by first sampling logY|Sa based on the PDF in Eq. 5. Conditioning 

on the value of sampled logY|Sa, [log a, b] can be sampled based on the PDF in Eq. 6. 

Conditioning on the sampled vector  =[log a, b,logY|Sa], the Log Normal analytical fragility 

curve can be calculated from Eq. 2. It can be observed that the consideration of component 

capacity uncertainty leads to an increase in the dispersion of the fragility curve but not affecting 

significantly the median. On the other hand, considering also the structural modeling 

uncertainties leads to both a significant shift in the median value and also an increase in the 

dispersion.  

 

 

 



The comparison with robust fragility curves based on IDA results  

 

Figure 4(a) and (b) illustrate the empirical distributions (plotted in red) for spectral acceleration 

corresponding to Y=1 obtained by employing the IDA method, for cases 1 and 3, respectively. 

The Log Normal distributions fitted to these empirical distributions are also plotted in red color. 

It can be observed that for both cases, the Log Normal fit to the empirical data (obtained by 

employing IDA) is well within the robust fragility plus/minus one standard deviation interval 

predicted by the Cloud Method. 

 

 
 

Figure 3.  The robust fragility curves (a) considering only record to record variability (case 1); 

(b) accounting also for uncertainties in component capacity models (case 2); and (c) 

accounting also for structural modelling uncertainties (case 3). 

 

 
Figure 4.  The robust fragility curves (a) case 1 together with the IDA results; (b) case 3 together 

with the IDA results. 



The confidence band as a function number of records 

A confidence interval is constructed herein by the 16
th

 and 84
th

 percentile curves around the 50
th

 

percentile curve. The error term H is defined as half of the logarithmic distance between the 16
th

 

and 84
th

 percentile curves Fig. 5(a). The procedure for the calculation of the robust fragility is 

repeated for a number of records varying from n=4 to 20. For each n, several combinations of n 

records from a total of twenty are considered. The median H value corresponding to each n is 

plotted versus n in Fig. 5(b) for case 1 (the green squares) and case 3 (the yellow circles). 

 

 
Figure 5.  (a) The logarithmic error term H; (b) H varying as the number of records. 

 

It can be observed that in both cases, H tends to decrease as the number of records increases. 

Moreover, the error term corresponding to case 3 is larger than that of case 1 and shows a more 

pronounced decrease as a function of the number of records. 

 

Conclusions  

Cloud Method is based on linear least squares regression of the structural response EDP versus 

the intensity measure IM, in the logarithmic scale. This procedure has many advantages such as 

simplicity, use of original records, and relatively small computational effort. Not to mention 

draw-backs such as but not limited to modeling of record-to-record variability with constant 

standard deviation. This work looks more closely to the probabilistic model underlying the linear 

regression. Employing the results of Cloud Method in a Bayesian framework, leads to closed-

form and analytic joint probability distribution for the parameters of the (Log Normal) Cloud 

fragility. A robust fragility curve is then calculated as the expected value of the Log Normal 

Cloud fragility, taking into account the joint probability distribution for the fragility parameters. 

The robust fragility curves can also be represented as curves constructed by the 16
th

, 50
th

 and 84
th

 

percentiles of the set of plausible fragility curves.  

 

 The robust fragilities are obtained for a shear-critical existing RC frame designed for 

gravity loading only, taking into account record-to-record variability, component capacity 

uncertainties, and structural modeling uncertainties (material properties and construction details). 

It can be seen that the consideration of component capacities leads to an increase in the 

dispersion of the fragility curve without significantly influencing the median. On the other hand, 

considering the structural modeling uncertainties leads also to a significant shift in median. The 

confidence bands constructed by the 16
th

 and 84
th

 percentile curves manage (in cases 1 and 3) to 

contain the Log Normal Fragility curves built based on IDA results. As a measure of error in the 



robust fragility curve, (half of) the logarithmic distance between the 16
th

 and 84
th

 percentile 

curves is used. It can be observed that this error measure tends to decrease as the number of 

records increases. In particular, the error is larger for cases with more sources of uncertainty and 

demonstrates a more pronounced decrease as the number of records increases.  

 

Acknowledgments  

 

This work was supported in part by the executive project ReLUIS 2010/2013 – Dipartimento 

della Protezione Civile. This support is gratefully acknowledged.  

 

 

References 
1. Cornell CA, Krawinkler H. Progress and challenges in seismic performance assessment. PEER Center News 

2000; 3 (2): 1-2. 

2. Vamvatsikos D, Cornell CA. Incremental Dynamic Analysis. Earthquake Engineering and Structural Dynamics 

2002; 31 (3): 491-514. 

3. Jalayer F, Cornell CA. Alternative Nonlinear Demand Estimation Methods for Probability-based Seismic 

Assessments. Earthquake Engineering and Structural Dynamics 2009; 38 (8): 951-972. 

4. Baker J. Probabilistic structural response assessment using vector valued intensity measures. Earthquake 

Engineering and Structural Dynamics 2007; 36 (13): 1861-1883. 

5. Shome N. Cornell CA, Bazzurro P, Carballo JE. Earthquakes, Records, and Nonlinear Responses. Earthquake 

Spectra: August 1998; 14 (3): 469-500. 

6. Luco N, Cornell CA. Seismic drift demands for two SMRF structures with brittle connections. Structural 

Engineering World Wide; Elsevier Science Ltd., Oxford, England, 1998. Paper T158-3.  

7. Jalayer F. Direct Probabilistic Seismic Analysis: Implementing Non-linear Dynamic Assessments. Ph.D. 

Dissertation, Stanford University, California, 2003. 

8. Cornell CA, Jalayer F, Hamburger RO, Foutch DA. The probabilistic basis for the 2000 SAC/FEMA steel 

moment frame guidelines. ASCE Journal of Structural Engineering, Special Issue: Steel Moment Resisting 

Frames after Northridge Part II, 2002; 128: 526-533. 

9. Jalayer F, Franchin P, Pinto PE. A scalar decision variable for seismic reliability analysis of RC frames. 

Earthquake Engineering and Structural Dynamics 2007; 36 (13): 2050-2079. 

10. Jalayer F, Elefante L, Iervolino I, Manfredi G. Knowledge-based Performance Assessment of Existing RC 

Buildings. Journal of Earthquake Engineering 2011; 15 (3): 362-389. 

11. Elefante L, Jalayer F, Iervolino I, Manfredi G. Disaggregation-based response weighting scheme for seismic 

risk assessment of structures. Soil Dynamics and Earthquake Engineering 2010; 30 (2): 1513-1527. 

12. Luco N, Cornell CA. Structure-specific scalar intensity measures for near-source and ordinary earthquake 

ground motions. Earthquake Spectra 2007; 23 (2): 357-392. 

13. Jalayer F, Beck JL, Zareian F. Intensity Measures of Ground Shaking Based on Information Theory. ASCE 

Journal of Engineering Mechanics 2012; 138 (3): 307-316. 

14. Box GEP, Tiao GC. Bayesian Inference in Statistical Analysis. Wiley Interscience, John Wiley and Sons, Inc, 

1993. 

15. Papadimitriou C, Beck JL, Katafygiotis LS. Updating robust reliability using structural test data. ASCE 

Probabilistic Engineering Mechanics 2001; 16 (2): 103-113. 

16. Jalayer F, De Risi R, Elefante L. Efficient Structural Fragility Assessment using Bayesian Parameter 

Estimation, 2013. submitted to Structural Safety. 


