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ABSTRACT The majority of bridge infrastructure in Italy has been built in the 60’s and 70’s without 

specific seismic provisions. Therefore, it is expected that they reveal high seismic vulnerability if 

subjected to a significant seismic event. Given this background, it is natural that rapid and accurate 

assessment of economic losses incurred to bridge infrastructure can play a crucial role in emergency 

management in the immediate aftermath of an earthquake. Focusing on the infrastructure system of 

highway bridges in the Campania region, it is shown how state of the art methodologies in portfolio 

loss assessment and available data can be implemented in order to assess the probability distribution of 

the repair costs incurred to the portfolio in question due the Irpinia 1980 earthquake. Formulating the 

probabilistic loss assessment for the portfolio of bridges as a standard Monte Carlo Simulation problem 

helps in resolving the spatial risk integral efficiently. One of the specific features of this case-study is 

the use of statistical methods for updating, a) ground motion prediction; b) vulnerability/fragility; and 

c) exposure/cost models based on available data. It has been observed that alternative hypotheses with 

regard to the ground motion correlation structure can significantly affect the distribution of the direct 

economic loss. Furthermore, updating the ground motion prediction based on available recordings may 

significantly reduce the dispersion in the estimation of the direct economic losses. 

 

In the immediate aftermath of a strong 

earthquake, the road networks play a crucial role 

in rescue and recovery operations. Since their 

loss of functionality may undermine the 

performance of the entire network, the bridge 

infrastructure can be considered as the so-called 

weak links within a road network affected by an 

earthquake. A large part of the Italian bridge 

infrastructure portfolio, dating back to the first 

half/beginning of the second half of the last 

century, is not designed based on earthquake 

resistant criteria. Therefore, the Italian highway 

bridges are potentially vulnerable to seismic 

actions, considering that the Italian territory is 

classified by medium to high seismicity. The 

total direct losses incurred to the bridge 

infrastructure in a road network can be used as a 

scalar proxy for the performance of the entire 

network right after the seismic event. This 

quantity encompasses various parameters, such 

as seismic hazard, the seismic vulnerability of 

the bridges and the repair costs. A prompt 
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assessment of incurred losses to a network is 

rendered more complicated by the spatial 

correlation in the ground motion and the possible 

inter-relations between the vulnerability and 

repair costs of various infrastructures. It is 

logical to exploit the available registrations 

related to a given seismic event in order to 

improve and update the seismic hazard and 

vulnerability evaluations, given the advances 

made in measurements, sensors and data transfer 

techniques. This work strives to employ various 

established statistical techniques in order to 

obtain updated and estimates of total direct 

losses for a portfolio of bridges for a given 

earthquake scenario, based on the available data. 

Treating the GMPE's as a regression 

probability model, provides many flexibilities; 

such as, consideration of spatial correlation in the 

GMPE regression residuals (e.g., Jayaram and 

Baker (2009)) and model updating using the 

available registrations. In particular Park, 

Bazzurro et al. (2007) have demonstrated the 

effect of spatial correlation in ground motion 

intensity for a given scenario on portfolio loss 

estimation. Moreover, treating the GMPE as 

probabilistic regression model defining a joint 

Log Normal distribution between various 

intensity values, they have shown how (the 

statistics of such model can be updated based on 

available registrations). The suggested spatial 

correlation structure and model updating based 

on available registrations has been later 

implemented by Crowley, Stafford et al. (2008) 

for loss assessment. In fact, many recent research 

efforts have been concentrated on evaluating the 

effect of spatial correlation in ground motion on 

loss estimation (e.g., Yoshikawa and Goda 

(2013)). With specific reference to bridges, 

Sokolov and Wenzel (2011) have carried out an 

assessment of the effects of the spatial 

correlation on economic losses, for extended 

targets (hypothetical portfolios) and critical 

elements (bridges), for a specific seismic event. 

Apart from the correlation in ground motion 

intensities, also the incurred damages and the 

costs of repair can be correlated for spatially 

distributed infrastructure (e.g., Bazzurro and 

Luco (2005)). In fact, Lee and Kiremidjian 

(2007) have presented a framework for treating 

both the ground motion and structure to structure 

correlations in risk analysis, with a practical 

example for a transportation network in the San 

Francisco Bay region. 

In this work, a spatially-distributed 

portfolio of bridges, was considered as a case 

study for scenario-based loss assessment. 

Available data such as, fragility curves and repair 

costs found in literature and ground motion 

recordings were used in order to update GMPE, 

vulnerability and repair cost estimates for the 

earthquake of Irpinia, 1980. More specifically, 

available recordings of the Irpinia earthquake 

were used in order to update the Italian GMPE 

by Bindi, Pacor et al. (2011) and the 

corresponding spatial correlation structure 

between its residuals (Esposito and Iervolino 

2012). The fragility curve for the considered 

class (herein, also the portfolio) of bridges was 

updated in a Bayesian updating scheme based on 

the bridge-specific fragility curves available in 

the literature for a few bridges in the highway 

road network of the case-study. The direct costs 

incurred as a result of past earthquakes is used in 

a Bayesian updating scheme in order to obtain 

updated repair cost distributions for two distinct 

limit states of damage and collapse, assuming 

perfect correlation between repair costs for 

individual bridge infrastructures. Finally, the 

effect of various alternative hypotheses with 

regard to the spatial correlation structure in the 

GMPE residuals on the estimation of the total 

repair costs is investigated.  

1. THE MONTE CARLO SIMULATION 

FRAMEWORK 

The total repair costs L for the entire network 

can be calculated as the sum of the total repair 

costs for each individual bridge (assuming that 

only the bridge infrastructure contributed to the 

incurred costs): 

1

bridgeN

i

i

L RC


   (1) 
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where Nbridge is the total number of bridges 

within the portfolio and RCi is the total repair 

costs for bridge i. The probability that the total 

repair cost exceeds a specific value l can be 

calculated as: 

1

( | )

( ) ( | ) ( )

simN

i i

i

sim

I L l

P L l I L l p d
N







   



θ

θ

θ θ θ  (2) 

where  is the vector of all the uncertain 

parameters that affect L; p() is the joint density 

function for the components of (L>l| is an 

indicator function which is equal to one only 

when L>l and otherwise equal to zero. In the 

above equation, the vector integral in Eq. 2 can 

be approximated using the Monte Carlo 

simulation with Nsim simulations. Let vector 

be consisted of [ , , ]θ IM DS RC , where IM 

is the vector of intensity measure values at the 

site of each bridge (neglecting the dimension of 

the bridge); DS be the vector of the damage 

states for each bridge; and RC be the vector of 

repair costs evaluated for each bridge. The 

expression in Eq. (2) can be expanded as 

follows: 
( ) ( | ) ( | ) ( | ) ( )P L l I L l f P g d d



  
θ

θ RC DS DS IM IM RC IM
 (3) 

where g(IM) is the joint probability density 

function for the vector of IM values IM; 

P(DS|IM) is the joint probability mass function 

for the damage states of the all the bridges within 

the network given IM; f(RC|DS) is the joint 

probability density function for the vector of 

repair costs RC given DS. Based on some 

simplified assumptions, the dimension of the 

vector of uncertain parameters can be reduced. 

Herein: we have assumed that: a)the repair costs 

for various bridges in the highway network are 

perfectly correlated (the repair cost for each 

damage state is defined by the same probability 

distribution over the entire network); b)the 

damage states for the various bridges given the 

value of IM at each corresponding location are 

perfectly correlated (i.e., portfolio is represented 

by a single fragility curve); c)the distribution for 

the repair costs given the damage state is 

independent of the IM. In the following, we 

illustrate the case-study probabilistic loss 

estimation for the Campania highway bridges by 

explaining how each of the terms within Eq.(3) 

are estimated.  

2. GENERATION OF GROUND 

MOTION FIELDS FOR A SPECIFIC 

SEISMIC SCENARIO 

The joint probability density function 

g(IM) for the vector of IM values at the location 

of each bridge of interest for a given earthquake 

scenario can be evaluated by employing a 

GMPE. Herein, the model proposed by Bindi, 

Pacor et al. (2011) for the peak ground 

acceleration (PGA) as the intensity measure is 

used. It has been assumed that the vector 

log10IM is described by a joint Normal 

probability distribution with the mean of the 

logarithm (base 10) denoted as vector M and 

covariance (of the logarithm) equal to matrix . 

The components of the vector M for a given 

earthquake scenario and site conditions are 

calculated according to Bindi, Pacor et al. 

(2011). The covariance matrix, Σ, is defined as 

the sum of inter-event and intra-event 

components: 
2 2

INTER INTRA    e R  (4) 

where σintra represents the intra-event 

variability and σinter representst the inter-event 

variability (both parameters are tabulated in 

Bindi, Pacor et al. (2011)); e is the all ones 

matrix and R is the matrix of correlation 

coefficients (with diagonal terms equal to unity 

and off-diagonals equal to ρ). The covariance 

matrix is calculated according to the following 

alternatives: 

1. ρ are calculated as (Esposito and 

Iervolino (2012)): 

exp( 3 / ( ))h b T     (5) 

 where h represents the distance between 

 sites i and j and b(T) is a coefficient equal 

 to 10.8km; 

2. ρ equal to zero (spatial correlation only 

 due to inter-event term); 

2 2

INTER INTRA    e I  
(6) 
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where e is the all-ones matrix and I is the 

identity matrix; 

3. zero correlation between IM values:  
2 2( )INTER INTRA   I  (7) 

2.1. Updating the joint probability distribution 

for the IM values based on registrations 

One of the specific characteristics of a joint 

Normal distribution for a vector of variables is 

that any given partition of the vector conditioned 

on the remaining components of the vector is still 

going to be a joint Normal distribution. With 

specific reference to the case of the vector of 

log10IM values, let the vector of mean values M 

and the covariance matrix be partitioned as 

follows (Park et al. 2007):  

111 12

2 21 22

;
M

M
M

   
     

      

(8) 

     where: 

 M1 is the mean vector of log10PGA for the  

bridges of interest (according to the GMPE); 

 M2 is the mean vector of calculated log10PGA 

for the  the stations within the area of interest 

(according to the GMPE); 

 Σ11 is the covariance matrix for the calculated 

log10PGA  for the bridges of interest; 

 Σ12=Σ21 is the cross-covariance matrix for the 

log10PGA values calculated at the location of 

the bridges and those calculated at the 

location of the stations; 

 Σ22 is the covariance matrix for the log10PGA  

values calculated at the stations. 

As described briefly above, the conditional 

distribution of the calculated log10PGA values  

given the registered log10PGA values at the 

stations is a joint Normal distribution with mean 

vector M1|2 and covariance matrix Σ11|22:  
1

1|2 1 12 22 2 2( )M M x M   
 

(9) 
1

11|22 11 12 22 21

     
 

(10) 

where x2 is the vector of the registered 

log10PGA values for the stations.  

It should be noted that the updating scheme 

described herein can be applied only to the first 

two alternatives outlined before. This is because, 

assuming independence between PGA values, 

the cross-covariance matrices Σ12 and Σ21 are 

going to be equal to zero. Later on, the 

sensitivity of the loss estimations to five 

alternative cases are going to be investigated: 

1. case 1 with updating (both inter- and intra- 

type correlations); 

2. case 2 with updating (only  inter- type 

correlation); 

3. case 1 without updating (both inter- and intra- 

type correlations); 

4. case 2 without updating (only  inter- type 

correlation); 

5. uncorrelated PGA values. 

Figure 1 illustrates a PGA field generated 

for the bridge portfolio in question for case 1. 

The vector of PGA values is simulated based on 

the conditional joint Normal distribution outlined 

in Eqs. (9) and (10). 

 

 
Figure 1 Example of simulation of a field of PGA for 

the portfolio of bridges with reference to case 1. 

3. VULNERABILITY MODEL 

This section describes how the probability mass 

function P(DS|IM) in Equation 2 is going to be 

evaluated. As mentioned before, it is assumed 

that the damage states for the various bridges 

given the value of IM at each corresponding 

location are perfectly correlated. In other words, 

the portfolio of bridges is represented by a single 

fragility curve for each damage state DS. The 

fragility curve for the portfolio can be 

represented in the scalar notation as P(DS>ds|im) 

or alternatively by the probability mass function 
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P(ds|im). The portfolio studied herein has been 

characterized by a single class of reinforced 

concrete girder bridges (a mono-class portfolio). 

In this work, two distinct damage states of 

ds=collapse and ds=damage are considered, 

These limit states are consistent with those 

defined by Noto and Franchin (2012) and with 

the restrictions imposed by Eucocode 8 Part 3 

(1998). The probability mass function P(ds|im) 

can be written as: 
 

no damage       ( | )

( | ) damage            ( | ) - ( | )

collpase           ( | )

ds P ds damage im

P ds im ds P ds damage im P ds collapse im

ds P ds collapse im

 


   
  

 

(11) 

It can be argued that the median value of  

the PGA value marking the onset of the damage 

state DS denoted as DSPGA  , under the 

assumption of a homogeneous mono-class 

portfolio, represents the onset of the damage 

state for the entire portfolio. Hence, the portfolio 

fragility curve for damage state DS can also be 

interpreted as the cumulative probability 

distribution of . The Bayesian updating is 

employed herein in order to update the prior 

portfolio fragility curves for the damage states 

collapse and damage based on bridge-specific 

fragility curves available in the literature. Let us 

assume that the prior probability distribution for 

is Log Normal (i.e., Log Normal prior portfolio 

fragility) and that the likelihood function is 

expressed by a Log Normal probability density. 

It can be shown (e.g., Singhal and Kiremidjian 

(1998)) that the posterior distribution of the 

parameter λ, f(λ), is also Log Normal with mean 

value 
log''   and standard deviation 

log''  : 

 
2

2

log log

log 2

2

log

' ' '

''

'

p

p

p

p

p

n

n

 






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




 
  

 
 

  
 

  (12) 
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 

 (13) 

where: 

log'   is the prior mean of log; 

'p  is the mean of the natural logarithm of the 

DSPGA   values obtained as data; 

2

log'   is the prior variance of log; 

ζ
2

p is the variance of the natural logarithm of the 

of the 
DSPGA   values obtained as data; 

np is number of 
DSPGA   values obtained as 

data. 

3.1. Updating the portfolio fragility curves based 

on bridge-specific fragility data 

The Bayesian updating scheme outlined 

above has been employed in order to update the 

portfolio analytical fragility curves for the Italian 

roadway girder bridges derived in Borzi, Ceresa 

et al. (2014), in press, and Noto and Franchin 

(2012). The parameters 
log'   and 

2

log'   have 

been estimated as the logarithmic mean and 

variance of the median fragility curve reported in 

Borzi, Ceresa et al. (2014), in press. The 

database, used for the updating of the fragility 

curves, consists of eight curves for the limit state 

of collapse and six curves for the limit state of 

damage. These fragility curves all correspond to 

RC girder highway bridges belonging to the 

portfolio of interest. This updating scheme 

should be viewed as a statistical exercise in 

portfolio fragility updating and needs to be 

further validated in terms of the consistency of 

the damage states.  

Herein, the parameters μp and ζ
2

p have 

been estimated as the mean and variance of the 

logarithm of the median PGADS values obtained 

from the fragility curves used as data. In other 

words, from each fragility curve, only the 

median PGA value for each DS has been used as 

data.  

Figures 2 and 3 show, for both limit states, 

the prior fragility curve, the updated fragility and 

the bridge-specific fragility curves. Table 1 

shows the statistical parameters of the prior and 

of the updated fragility curves. 
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Figure 2 Collapse fragility curves. 

 
Figure 3 Damage fragility curves. 

 

Table 1 Fragility curves parameters prior and 

posterior to updating. 

Collapse  (g)  

Prior curve 2.044 1.081 

Updated curve 0.411 0.155 

Damage  (g)  

Prior curve 0.093 0.302 

Updated curve 0.160 0.155 

4. THE REPAIR COST MODEL 

The repair cost model in Eq. (3) is 

expressed as the joint probability density 

function f(RC|DS). Assuming that the repair 

costs for the various bridges in the portfolio 

given their damage state are fully correlated, it 

would suffice to estimate the scalar probability 

density functions f(RC|DS=ds) for ds=collapse 

and ds=damage. Given the scarcity of 

documentation on direct repair costs incurred to 

the bridge infrastructure in the aftermath of 

Irpinia earthquake, we carried on the 

probabilistic characterization of repair costs 

based on available literature. The Bayesian 

updating framework was adopted in order to 

update general repair cost distributions, based on 

available earthquake-specific data. Assuming 

Log Normal prior distributions for the average 

costs of repair, the information provided by the 

South Carolina Department Of Transportation 

(SCDOT) has been used in order to estimate the 

logarithmic mean and standard deviation of the 

prior distributions for the damage states of 

collapse and damage. The repair cost data used 

for updating is gathered with reference to the 

costs of repair for the damage states of collapse 

and damage for bridges damaged due various 

past earthquakes. The updating scheme 

employed for the damage state damage is based 

on the closed-form reported in Eqs. (12) and (13) 

assuming a Log Normal likelihood function. The 

updating scheme for the damage state of collapse 

is based on an exponential likelihood function. In 

this case, the posterior distribution for the 

median repair cost ( )DSrc RC was obtained 

through the following formula: 
1( | , ) ( | , ) ( | )f rc Data ds c f Data rc ds f rc ds    (14) 

where f(rc|Data,ds) is the posterior density of the 

median cost rc; 

c
-1

 is the bayesian factor; 

f(Data|rc,ds) is the likelihood density function 

(exponential); 

f(rc) is the prior density of rc (Log Normal) 

Table 2 reports the parameters of the prior, 

the posterior and the likelihood density functions 

for both damage states. 
Table 2 Cost distributions parameters. 

Collapse 
Mean 

(euro/m2) 

Median 

(euro/m2) 

Std 

(euro/m2) 

Std 

log 

COV 

(%) 

Prior 
distribution 

851 841 132 
0.1

5 
15.5 

Likelihood 

distribution 
2340 2020 1380 

0.5

4 
58.7 

Posterior 

distribution 
1110 1100 143 

0.1

3 
12.9 

Damage 
Mean 

(euro/m2) 

Median 

(euro/m2) 

Std 

(euro/m2) 

Std 

log 

COV 
(%) 

Prior 

distribution 
68.1 67.3 10.6 

0.1

5 
15.5 

Likelihood 
distribution 

121 64.2 194 
1.1

3 
160 

Posterior 

distribution 
68.8 68.3 8.44 

0.1

2 
12.3 
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5. PORTFOLIO LOSS ASSESSMENT 

After describing the steps for 

characterizing the ground shaking map, the 

vulnerability and the repair costs for the case-

study portfolio, in this section the probability 

distribution for the total repair costs are 

calculated from Eq. (3) by using the Monte Carlo 

Simulation (Nsim=3000). For each simulation 

{i:i=1:Nsim}, a vector of IM values (or the PGA 

field) is generated based on the joint Log Normal 

distribution both before and after updating based 

on the available Irpinia PGA recordings in the 

five alternative cases described beforehand in 

Section 3. For each IM value generated, the 

probability mass function p(ds|IM) is calculated 

according to Eq.(11) as a function of the updated 

posterior fragility curves derived based on 

bridge-specific fragility data for the portfolio in 

question, as described in Section 4. This 

probability mass function is used in order to 

simulate the damage state for each bridge. For 

each simulation of the PGA field, the repair costs 

(per square meter) for the damage states collapse 

and damage are also simulated from the updated 

probability distributions reported in Table 2. 

Given, the damage state of each bridge in the 

portfolio, the corresponding repair cost is 

calculated as the product of the bridge area by 

the simulated repair cost per square meter. The 

total portfolio repair cost for the simulation i, is 

calculated as the sum of the repair costs for each 

bridge. Finally, the probability of exceeding a 

specific loss value l is calculated as the ratio of 

the number of bridges with L>l over Nsim. Table 

3 reports the parameters of the loss probability 

density function for the five cases described in 

Section3.  
 

Table 3 PDF parameters for the analyzed five cases. 

 
Mean 

(euro/m2) 

C.O.V. 

(%) 

Case 1: with updating (both inter- 

and intra- type correlations) 
2.93·10^7 63.66 

Case 2: with updating (only inter- 

type correlation) 
3.42·10^7 48.22 

Case 3: without updating (both 

inter- and intra- type correlations) 
4.26·10^7 103.8 

Case 4: without updating (only  

inter- type correlation) 
4.35·10^7 96.73 

Case 5: Uncorrelated PGA values 4.22·10^7 35.92 

 

Figure 4 below illustrates the probability of 

exceeding a given loss value for the 5 cases 

reported in Table 3. 

 
Fig. 4 The probability of exceeding a given loss value  

 

It can be observed that in case 5 

(uncorrelated PGA values) the loss dispersion is 

underestimated with respect to cases 3 and 4 

where spatial correlation is considered (before 

updating). In cases 1 and 2 where updating is 

done (based on available PGA recordings) a 

slight reduction in the estimated expected repair 

costs and a significant reduction in the dispersion 

is evident. In comparison, taking into account the 

spatial correlation in the intra-event residuals of 

the GMPE seems to be not very significant in the 

final loss estimations for the portfolio 

considered. This is to be expected since most of 

the bridges are much more than b(T)=10.8km 

apart (the intra-event correlation term in Eq. 6 

becomes very small for distances larger than 

b(T)). 

6. CONCLUSIONS 

In this preliminary work, a scenario-based 

probabilistic assessment of direct losses (repair 

costs) for the highway bridges in Campania was 

performed. This was achieved by using the 

available ground motion recordings for the 

Irpinia 1980 earthquake, and literature in order to 

update the ground motion prediction, fragility 

and repair cost models. The advantage of the 
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updating schemes adopted herein is that they can 

be reproduced promptly for any seismic event 

that may occur in the future. 

It can be observed that the spatial 

correlation assumptions are going to affect in a 

significant manner the dispersion in the portfolio 

repair cost distribution. Moreover, it can be seen 

that the updating of the GMPE based on 

available recordings leads to a significant 

reduction in the dispersion of the loss 

distribution. The findings of the paper are based 

on the assumption of a homogenous mono-class 

portfolio of RC girder bridges and also the 

assumption that the repair costs for the 

considered damage states are fully correlated for 

the bridges within the portfolio. The uniformity 

in the definition of the damage states through 

various sources of data is expected to be an 

important issue. 

7. ACKNOWLEDGEMENTS 

This work was supported in part by National 

Operative Program Project STRIT.  

8. REFERENCES 

Bazzurro, P. and N. Luco (2005). 

"Accounting for uncertainty and correlation in 

earthquake loss estimation." Proc. 

ICOSSAR2005. 

Bindi, D., F. Pacor, L. Luzi, R. Puglia, M. 

Massa, G. Ameri and R. Paolucci (2011). 

"Ground motion prediction equations derived 

from the Italian strong motion database." 

Bulletin of Earthquake Engineering 9(6): 1899-

1920. 

Borzi, B., P. Ceresa, P. Franchin, F. Noto, 

G. M. Calvi and P. E. Pinto (2014). "Seismic 

Vulnerability of the Italian Roadway Bridge 

Stock." (In Press) Earthquake Spectra. 

Crowley, H., P. J. Stafford and J. J. 

Bommer (2008). "Can earthquake loss models be 

validated using field observations?" Journal of 

Earthquake Engineering 12(7): 1078-1104. 

Esposito, S. and I. Iervolino (2012). 

"Spatial correlation of spectral acceleration in 

European data." Bulletin of the Seismological 

Society of America 102(6): 2781-2788. 

Eurocode 8 Part 3 (1998). "Eurocode 8: 

design of structures for earthquake resistance–

Part 3: assessment and retrofitting of buildings." 

En 3: 2005. 

Jayaram, N. and J. W. Baker (2009). 

"Correlation model for spatially distributed 

ground motion intensities." Earthquake 

Engineering & Structural Dynamics 38(15): 

1687-1708. 

Lee, R. and A. S. Kiremidjian (2007). 

"Uncertainty and correlation for loss assessment 

of spatially distributed systems." Earthquake 

Spectra 23(4): 753-770. 

Noto, F. and P. Franchin (2012). 

"BRI.T.N.E.Y BRIDGE AUTOMATIC 

NLTHA-BASED EARTHQUAKE 

FRAGILITY." Opensees Days Italia. 

Park, J., P. Bazzurro and J. W. Baker 

(2007). "Modeling spatial correlation of ground 

motion intensity measures for regional seismic 

hazard and portfolio loss estimation." 

Applications of statistics and probability in civil 

engineering. Taylor & Francis Group, London: 

1-8. 

Singhal, A. and A. S. Kiremidjian (1998). 

"Bayesian updating of fragilities with application 

to RC frames." Journal of structural Engineering 

124(8): 922-929. 

Sokolov, V. and F. Wenzel (2011). 

"Influence of spatial correlation of strong ground 

motion on uncertainty in earthquake loss 

estimation." Earthquake Engineering & 

Structural Dynamics 40(9): 993-1009. 

Yoshikawa, H. and K. Goda (2013). 

"Financial Seismic Risk Analysis of Building 

Portfolios." Natural Hazards Review 15(2): 112-

120. 
 


