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ABSTRACT 
 
The first few days elapsed after the occurrence of a strong earthquake and in the 
presence of an ongoing aftershock sequence are quite critical for emergency decision-
making purposes. Epidemic Type Aftershock Sequence (ETAS) models are used 
frequently for forecasting the spatio-temporal evolution of seismicity in the short-
term. In such a context, the forecasted seismicity usually makes reference to a 24-
hour forecasting interval. Focusing the attention on clustering of events in time only, 
a robust seismicity forecast based on (a simplified version of) the ETAS model takes 
into account the joint probability distribution for the model parameters conditioned 
on the events already registered with the ongoing sequence. The advanced simulation 
procedures such as Markov Chain Monte Carlo simulation provide very efficient 
means of estimating the robust seismicity forecasts. In addition to the uncertainty in 
model parameters, the robust simulation-based forecasting of seismicity can also take 
into account the uncertainty in the sequence of events that are going to happen during 
the sampling interval. With regard to a specific application to the L'Aquila 2009 
seismic sequence, the daily robust ETAS forecasts in the first ten days elapsed after 
the main event can predict the seismicity within plus/minus one standard deviation 
interval.  
 
INTRODUCTION 
 
After the occurrence of high-magnitude earthquakes and in the presence of 
aftershocks, short-term seismicity forecasts (in the order of days to months) are of 
utmost importance for decision-making. The short-term forecasts can be made based 
on stochastic models that describe the spatio-temporal clustering of earthquakes in 
space and time (for an extensive review see Jordan et al. 2011). The Epidemic Type 
Aftershock Sequence (ETAS, Ogata, 1988; 1998) model is an epidemic stochastic 
point process in which every earthquake is a potential triggering event for subsequent 
earthquakes. The ETAS model performed quite well in operational seismic 



forecasting during the recent L'Aquila seismic sequence (Marzocchi and Lombardi, 
2009). 

The ETAS model parameters are usually calibrated a priori and based on a set 
of events that do not belong to the on-going seismic sequence (Marzocchi and 
Lombardi 2009). However, adaptive model parameter estimation, based on the events 
in the on-going sequence, may have several advantages such as, tuning the model to 
the specific sequence characteristics, and capturing possible variations in time of the 
model parameters. For instance, Jalayer et al. (2011) and Ebrahimian et al. (2014) 
estimated the parameters of the Modified Omori Model (Utsu, 1961) based on the 
ongoing sequence catalogue and by employing Bayesian parameter estimation. 

Focusing the attention on the temporal dimension (the spatial dimension is not 
considered herein), simulation-based methods are employed in order to provide a 
robust estimate for the forecasted number of events in a prescribed forecasting time 
interval (i.e., a day) after the main event. The robust estimate takes into account the 
uncertainty in the model parameters expressed as the posterior joint probability 
distribution for the model parameters conditioned on the events that have already 
occurred (i.e., before the beginning of the forecasting interval) in the on-going 
seismic sequence. The Markov Chain Monte Carlo simulation scheme is used in 
order to sample directly from the posterior probability distribution for ETAS model 
parameters. Moreover, the sequence of events that is going to occur during the 
forecasting interval (and hence affect the seismicity in an epidemic type model like 
ETAS) is also generated through a stochastic procedure. The procedure leads to a 
probability distribution for the forecasted number of events and the uncertainty in 
estimating the probability of exceeding a certain number of events. The robust ETAS 
forecasts can be directly implemented in adaptive daily aftershock hazard and risk 
assessment procedures (Ebrahimian et al. 2013, 2014)  
 
ROBUST SEISMICITY FORECASTING 
 
Let the aftershock occurrence be described by a non-homogenous Poisson point 
process over time. The process can be identified by λ(t,m|seq) which represents the 
rate of occurrence of events with magnitude greater than or equal to m at time t 
(elapsed after the main event) in the forecasting interval [Tstart,Tend] and given the 
sequence of aftershocks, seq. This sequence of events seq includes the aftershock 
events before the forecasting interval. The average number of events with magnitude 
greater than or equal to m in the forecasting interval can be calculated as (see also 
Ebrahimian et al. 2014): 
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where Ml is the lower cut-off magnitude.  

Let Θ denotes the vector of model parameters for λ(t,m|seq,Ml). Conditioned 
on a particular space-time model and a specific realization of the vector of model 
parameters Θone can calculate a plausible value for the rate of occurrence denoted 
as λ(t,m|Θ,seq,Ml) (we have not included the conditioning on the model assumptions 



for the sake of brevity). A robust (Papadimitriou et al. 2001; Beck and Au 2002; 
Jalayer and Beck 2008; Jalayer et al. 2010) estimate of the average (expected) 
number of events with magnitude greater than or equal to m in the forecasting interval 
[Tstart,Tend] and over the domain of the model parameters ΩΘ can be calculated as: 
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where p(Θ|seq,Ml) is the joint conditional probability distribution for Θ given the seq 
and the lower cut-off magnitude Ml.  
 
AN EPIDEMIOLOGICAL MODEL FOR TIME CLUSTERING OF 
AFTERSHOCKS 
 
The ETAS model (Ogata 1988; Ogata 1998; Zhuang et al. 2002; Marzocchi and 
Lombardi 2009) is an epidemic stochastic point process in which every earthquake is 
a potential triggering event for subsequent earthquakes. Thus, the seismicity is 
expressed as the superposition of the triggering effect induced by previous events on 
the background/base seismicity. Herein, a simplified version of the ETAS model, with 
temporal clustering only, is considered. In this simplified version, the seismicity rate 
for events with magnitude greater than m in time t and denoted by 
λETAS(t,m|Θ,seq,Ml) is calculated as: 
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where seq= {(ti,Mi), ti<Tstart} refers to the catalogue of events up to time Tstart; 
parameters K, c, and p are those of the Modified Omori’s Law (Utsu 1961) defining 
the decay in time of the short-term triggering effect, β defines the dependence of 
triggering capability on the magnitude of an earthquake; β=b ln(10) for which b 
represents the seismicity rate of the considered site (note that, in general, the 
parameter that defines the magnitude-dependence of the triggering capability is 
different from β). Therefore, the vector of ETAS model parameters is Θ=[β, K, c, p]. 

The rate of events with magnitude exactly equal to m can be calculated by 
taking the derivative of Eq. 3 with respect to magnitude m: 
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SIMULATION OF THE SEQUENCE OF EVENTS IN THE FORECASTING 
TIME INTERVAL 
 
As mentioned above, the sequence of events seq={(ti,Mi), ti<Tstart} refers to the 
registered aftershocks taking place before the beginning of the forecasting interval 
[Tstart,Tend]. Given the fact that ETAS is an epidemic type model, the sequence of 
aftershock events, taking place during the forecasting interval is simulated / generated 
herein. This generated sequence is denoted as seqg. 

Let us assume that a possible seqg is defined as a set of pairs of arrival times 
and magnitudes defined as seqg={(ti,Mi), Tstart≤ti≤Tend}. A robust estimate for the 
number of aftershock events based on ETAS model should also take into account the 
uncertainty in the sequence of events seqg that is going to happen during the 
forecasting time interval: 
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where p(seqg|Θ,seq,Ml) is the conditional probability distribution for the generated 
sequence seqg within the forecasting time interval, and consequently, 
λETAS(t,m|Θ,seq,seqg,Ml) is the time-dependent rate of ETAS model conditioned on 
both the registered and generated sequence of events.  
 
Generating sequences according to p(seqg|Θ,seq,Ml) 
 
The probability distribution p(seqg|Θ,seq,Ml) can be written as follows (based on the 
probability product rule, Jaynes 2003): 
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where ngen in the first term (within the brackets) is the number of generated events 
within the forecasting time interval [Tstart,Tend], which is unknown at the time of 
generation. The second term defines the Cumulative Density Function (CDF) of inter-
arrival time for event ngen+1 with magnitude M>Ml for the time interval between the 
last arrival time tngen and the end of the forecasting interval Tend. It is noteworthy that 
for the first generated event (i=1), the condition t1>Tstart should be satisfied. The 
probability distribution p(ti,Mi|Θ,seq,Ml) can be further expanded (again using the 
probability product rule): 
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where p(ti|Θ,seq,Ml) is the marginal probability distribution for the arrival time given 
the information (i.e., vector of parameters Θ, the sequence seq, and the lower cut-off 
magnitude Ml). Moreover, p(Mi|ti,Θ,seq,Ml) is the marginal probability distribution 
for Mi given that the value of arrival time is equal to ti, and the above-mentioned prior 
information.  

In the context of the robust estimation method outlined in Equation (6), the 
sequence of events seqg can be generated in an adaptive manner with reference to 
Eqs. 7 and 8. Hence, the break-down into the product of several marginal probability 
distributions (as shown in Eq. 8) is necessary during the sequence generation process. 
This means that the ith event within the seqg, which is distinguished by the pair 
(ti,Mi), is simulated by conditioning on all the previous events within the seq. This 
event is generated by first simulating the arrival time ti from p(ti|Θ,seq,Ml). 
Subsequently, the Mi is simulated from p(Mi|ti,Θ,seq,Ml). The simulation procedure is 
started with t1>Tstart and continued while ti<Tend. This latter condition will be 
equivalent of sampling from the probability of having no events with magnitude 
greater than Ml after the ngen simulated events in the forecasting interval (see Eq. 7). 
 
Sampling arrival times from p(ti|Θ,seq,Ml) by employing the thinning method  
Considering the probability distribution p(ti|Θ,seq,Ml) as a non-homogeneous Poisson 
process with rate λETAS(ti,Ml|Θ,seq) according to Eq. 4, the arrival times can be 
simulated by employing the very efficient thinning algorithm (Lewis and Shedler 
1978; Ogata 1981). 
 
Sampling magnitudes from p(Mi|ti,Θ,seq,Ml) 
The conditional marginal probability distribution for magnitude p(Mi|ti,Θ,seq,Ml) is 
calculated herein by assuming that the occurrence of events with M=Mi is 
independent of the its arrival time, ti. Assuming a Gutenberg-Richter magnitude 
recurrence model, it can be shown that: 
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Thus, Mi is sampled (independently from the arrival time) from a truncated 
exponential distribution with the rate β. 
 
Using Markov Chain Monte Carlo (MCMC) Simulation for Calculation of 
E[N(m|seq,Ml)] 
 
In the robust simulation-based procedure outlined in Eq. 6 for forecasting the number 
of events with magnitude more than m, the MCMC simulation procedure can be used 
for taking into account the uncertainty in ETAS model parameters . As mentioned 
before, the uncertainty in  is represented by sampling directly from the posterior 
probability distribution p(Θ|seq,Ml). This probability distribution can be calculated as 
(using Bayesian parameter estimation): 
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where p(seq|Θ,Ml) denotes the likelihood of the observed sequence given the vector 
of model parameters Θ and cut-off magnitude Ml; p(Θ|Ml) is the prior distribution for 
the model parameters Θ, and c-1 is a normalizing constant. The MCMC simulation 
routine is particularly useful for cases where the sampling needs to be done from a 
probability distribution that is known up to a constant value (Beck and Au 2002). 
This method employs the Metropolis-Hastings (MH) algorithm (Metropolis et al. 
1953, Hastings 1970) in order to generate samples as a Markov Chain sequence 
which is used later to estimate the robust reliability (Eq. 6). 
 
The likelihood of the observed sequence 
The likelihood for the observed events within the seq can be calculated as: 
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where nseq denotes the number of registered events within the seq. Note that the 
following relation holds: seqi={seqi-1,(ti,Mi)}. Index i=0 indicates the main event; 
despite the fact that the calculations start from i=1 (the first registered aftershock).  
 
NUMERICAL EXAMPLE 
 
As the numerical example, the L’Aquila 2009 (central Italy) aftershock sequence is 
used herein. The methodology described in the previous section is applied in order to 
perform robust forecasting for the distribution of number of events within the first 
few days elapsed after the main-shock with local magnitude equal to 5.9. The 
hypothetic site is located near the recording station AQK 
(http://itaca.mi.ingv.it/ItacaNet/). To make reference to a provisional catalog, a quasi 
real-time catalog used by Marzocchi and Lombardi (2009) is utilized (for more 
details on the aftershock zone and the considered catalog, see also Ebrahimian et al. 
2014). 

In this study, prediction time window [Tstart,Tend] indicates a 24-hour interval 
associated with the desired day elapsed after the main event. Daily forecasts are 
provided at 6:00AM UTC every day since April 6, 2009. Each forecast uses available 
information at the time when the forecast is issued. This corresponds to the sequence 
of events, seq that is comprised of the events registered in the above-mentioned 
catalog right after the main-shock up to Tstart of the upcoming day. It has been shown 
that for the first time interval (i.e. after the main-shock up to 6:00AM UTC of 6 April 
2009), the completeness magnitude of the catalog is equal to 3.0. The cut-off 
magnitude for the subsequent time intervals is parctically equal to 2.5 (Ebrahimian et 
al. 2014).  
 
 



Model parameters calibrated for L’Aquila aftershock sequence 
 
The vector of model parameters Θ is updated on a daily basis by applying the 
Bayesian updating routine illustrated in Eq. 11. As prior information, the non-
evolutionary ETAS model parameters calibrated for the L’Aquila aftershock 
sequence (Marzocchi and Lombardi 2009) are used. However, in lieu of such prior 
information, one can also use uniform probability distributions which require the 
knowledge of the upper- and lower-bound intervals for the model parameters.  

By employing the MH algorithm, samples for Θ are generated as a Markov 
Chain sequence directly from the posterior (target) probability distribution 
p(seq|Θ,Ml). The MCMC procedure is carried out by generating nchain=20 
independent Markov chains. The 20 seeds corresponding to Markov Chains’ initial 
state (i=1) are generated by taking the proposal PDF equal to the prior PDF p(Θ|Ml). 
In all other states i>1, the candidate sample candidate is sampled from a proposal 
distribution constructed as a Normal distribution centered around i-1 (for a complete 
discussion on adaptive sampling techniques see Au and Beck 2001). Within each 
chain, ns=100 samples are generated (the first 20 samples within each chain are later 
discarded; therefore the effective number of states for each chain is equal to 80). It 
can be shown that (Beck and Au 2002) the samples i are asymptotically distributed 
as the posterior distribution p(seq|Θ,Ml). 

Figure 1 shows the evolution of the marginal PDF's corresponding to the four 
model parameters for first 3 days after the main-shock. Each plot contains the prior 
PDF, a set of PDF's corresponding to states 20<i<100, and the marginal PDF's for 
i=100. 
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Figure 1. The marginal PDF's for the four model parameters for selected days
 
Robust estimate for the number of aftershock events  
 
The probability of having events greater than a specified value, i.e. p(N>n), can be 
obtained as a direct result of the robust estimation procedure within Eq. 6. This 
probability can be estimated as follows: 
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where IN>n is an indicator function that is equal to one if N>n, otherwise equal to zero; 
Nf is the number of cases with IN>n=1 (N>n). The coefficient of variation of the 
estimator for probability p(N>n) can calculated through a procedure described in 
detail in Au and Beck (2001) and Beck and Au (2002). Figure 2(a) illustrates the 
complementary CDF for the number of events N, for the first five days elapsed after 
the main-shock and for magnitudes larger than the corresponding cut-off magnitude 
Ml. In addition, Figure 2(b) shows the histogram of the number of events for the first 
two days elapsed after the main-shock. 

The distribution of the number of events within the forecasting time interval 
(i.e. Figure 2b) can be directly used for adaptive aftershock vulnerability and risk 
assessment (see Ebrahimian et al. 2013). 
 
Comparison between the seismicity rates of both models 
 
The daily earthquake forecasts are provided for an event larger than the cut-off 
magnitude Ml (i.e., Ml=3 for the first day elapsed after the main event and Ml=2.5 for 



all other days) based on both the robust ETAS model estimates (Eq. 6) and the 
original model (Marzocchi and Lombardi 2009). Figure 3(a) shows the evolution of 
the forecasts made according to both models, and the comparison with the number of 
observed data in the catalog. It can be observed that both models perform quite well 
in capturing the trend in the number of aftershocks. It is worth noting that the robust 
ETAS forecasts are obtained through a fully automated simulation procedure and 
without considering the background seismicity compared to the original model. In 
particular, the robust ETAS forecasts are provided based on only 4 parameters; 
whereas, the original model is comprised of 6 parameters (including a parameter 
related to the base seismicity) regarding the temporal seismicity evolution. 
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Figure 2. (a) Probability of exceeding various levels of number of events within the first 5 days 
elapsed after the main-shock; (b) Histogram of the number of events for the first 2 days 

 
Furthermore, the mean and mean±1 standard deviation of the forecasted 

number of events (based on the distributions shown in Figure 2) are illustrated in 
Figure 3(b) for the first ten days. The observed number of events lies within the ±1 
standard deviation interval of the forecasted distribution. The forecasted robust 
number of events provided by the ETAS model can be directly applied in adaptive 
daily forecasting of seismic aftershock hazard (see Ebrahimian et al. 2014).  
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Figure 3. (a) Daily observed and forecasted number of events; (b) The robust forecasted 
number of events, mean, mean±1 standard deviation 
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CONCLUSION 
 
Robust daily forecasts of seismicity (number of events with magnitude larger than a 
prescribed threshold), in the presence of an ongoing aftershock sequence, are 
obtained through a simulation-based procedure. These forecasts are based on a 
simplified version of the ETAS model with temporal clustering only, where the model 
parameters are updated adaptively based on the aftershock events already occurred in 
the ongoing sequence. The model parameters are simulated using MCMC algorithm 
directly from the posterior joint probability distribution for the model parameters 
conditioned on the events already registered in the ongoing sequence. Given the 
epidemic nature of ETAS model, the robust forecasts also take into account 
uncertainty in the sequence of aftershock events that is going to take place during the 
forecasting interval.  

It is observed that the robust forecasts, in the first ten days elapsed after the 
L'Aquila 2009 main-shock, are quite close to the original ETAS model. It should be 
noted that the original ETAS model has been quite successful in forecasting the 
seismicity for this particular seismic sequence. Moreover, the observed number of 
events occurred during the first ten days elapsed after the main event fall within ±1 
standard deviation of the robust ETAS forecasts. The robust daily seismicity forecasts 
provided through this procedure are directly applicable to adaptive daily hazard, 
vulnerability and risk assessments. The procedure should be extended to take into 
account the spatio-temporal clustering of aftershock events as in the original ETAS 
model. 
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