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Abstract. Quantifying the impact of modelling uncertainty on the seismic performance as-
sessment is a crucial issue for existing buildings, considering the partial information availa-
ble related to material properties, construction details and the uncertainty in the capacity 
models. The effect of structural modelling uncertainties on the seismic performance of exist-
ing buildings can be –under certain circumstances- comparable to that of uncertainty in 
ground motion representation. In this work, a modified version of Cloud analysis considering 
the (eventual) cases of global dynamic instability and adopting the critical demand to capaci-
ty ratio as the damage measure/decision variable, based on coupling the simple regression in 
the logarithmic space of structural response versus seismic intensity for a suite of registered 
records with logistic regression, has been implemented to consider the record-to-record vari-
ability, structural modelling uncertainties and the uncertainties in the parameters of the 
adopted fragility model. For each of the registered records within the suite of ground motion 
records, a different realization of the structural model has been generated through a standard 
Monte Carlo Simulation procedure. A Bayesian version of the Cloud method is employed, in 
which the uncertainty in the structural fragility model parameters is considered. This leads to 
a robust fragility estimate—reflecting both record-to-record variability and structural model-
ing uncertainties-- and a desired confidence interval defined around it –reflecting the uncer-
tainty in the fragility model parameters. The longitudinal frame of an existing building in Van 
Nuys, CA, modeled in OpenSees considering the flexural-shear-axial interaction, has been 
employed in order to demonstrate this procedure. The critical demand to capacity ratio 
adopted as the damage measure/decision variable, corresponding to the component or mech-
anism that leads the structure closest to the onset of limit state (e.g., near collapse), is adopt-
ed as the structural response parameter. This structural response parameter can encompass 
both ductile and fragile failure mechanisms. Moreover, it can register a possible shift in the 
governing failure mechanism with increasing intensity. The selection of the suite of ground 
motion records has been based on a set of criteria that ensure the statistical significance of 
the linear regression in predicting the structural response as a function of the intensity meas-
ure.  
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1 INTRODUCTION 

Assessment of analytic structural fragility for existing buildings is one of the fundamental 
steps in the modern performance-based engineering [1]. One main feature distinguishing the 
assessment of existing buildings from that of the new ones is the large amount of uncertainty 
present in determining the structural modeling parameters. In particular, considering the par-
tial information available related to material properties, construction details and also the un-
certainty in the capacity models, the impact of modelling uncertainties on the seismic 
performance assessment is a crucial issue for existing buildings. Thus, for this type of build-
ings, explicit consideration of modelling uncertainty in the process of the assessment of struc-
tural performance can lead to more accurate results.  

In order to assess the performance of the existing buildings, there are alternative non-linear 
dynamic analysis procedures available in the literature. These methods, such as, Incremental 
Dynamic Analysis (IDA, [2]), Multiple-Stripe Analysis (MSA, [3-5]) and Cloud Analysis 
[3,6-9], characterize the fragility, expressed as the conditional probability of exceeding a pre-
scribed limit state given the seismic intensity and by employing recorded ground motions. 
Cloud Analysis is particularly efficient since it involves the non-linear analysis of the struc-
ture subjected to a set of un-scaled ground motion time-histories. The simplicity of its under-
lying formulation makes it a quick and efficient analysis procedure for fragility assessment 
[10]. However, Cloud Analysis is also notorious for being based on a few simplifying as-
sumptions (fixed standard error of regression, mean response varying linearly as a function of 
IM in the logarithmic scale, and structural response given IM being modeled as a Lognormal 
distribution), and for being very much sensitive to the selected suite of records [8-9]. Cloud 
Analysis has been used, not only to model the record-to-record variability in ground motion, 
but also to propagate structural modelling uncertainties such as uncertainty in component ca-
pacity [8,11] and the uncertainties in mechanical material properties and construction details 
[8,12]. One approximate way to consider the epistemic uncertainties in the fragility assess-
ment is to consider the uncertainty in the evaluation of the median of the fragility curve (e.g., 
[10-11,13-17]). Such modelling of epistemic uncertainties, assuming that the median is unbi-
ased and normally distributed, leads to an overall increase in the fragility dispersion and 
leaves the fragility median invariant. In other words, such procedure does not manage to cap-
ture the bias in median limit state probability due the effect of epistemic uncertainties. Simu-
lation-based methods are arguably the most efficient and straightforward means for taking 
into account the epistemic uncertainties (see e.g., [18-19]). However, they fall short of model-
ling record-to-record variability when recorded ground motions are implemented (due to a 
lack of reference probability distributions for recorded ground motions). In the recent years, 
several alternative methods have been proposed that combine reliability methods such as the 
first order second moment (FOSM and MVFOSM, see for example [20]) methods, response 
surface methods [21], simulation-based methods (e.g., Monte Carlo, Latin Hypercube Sam-
pling) with non-linear dynamic procedures such as IDA based on recorded ground motions in 
order to take into account also sources of uncertainties other than record-to-records variability 
[22-25].  

In this work, a modified version of Cloud Analysis considering the (eventual) cases of 
global dynamic instability, based on coupling the simple regression in the logarithmic space 
of structural response versus seismic intensity for a suite of registered records with logistic 
regression, has been implemented to consider both record-to-record variability and modelling 
uncertainties. This modified version of Cloud Analysis relies on adopting a critical demand to 
capacity ratio, which is equal to unity at the onset of limit state, as the damage meas-
ure/decision variable. This structural response parameter can encompass both ductile and 
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fragile failure mechanisms. Moreover, it can register a possible shift in the governing failure 
mechanism with increasing intensity. For each of the registered records within the suite of 
ground motion records, a different realization of the structural model has been generated 
through a standard Monte Carlo Simulation procedure. A Bayesian updating framework, 
which treats the structural response to the selected records as “data”, is adopted to take into 
account the uncertainty in the fragility parameters. One advantage in using the Bayesian 
framework is that it leads to fragility estimation together with the definition of a prescribed 
confidence band. Consequently, the risk estimates can be provided as a range of values that 
map a certain probability content in terms of the confidence in the fragility estimate (e.g., 
plus/minus one or two standard deviations from the median that correspond to approximately 
70% and 95% probability content, respectively, assuming Normality). There are no specific 
restrictions on the sample of “data” points other than being plausible independent “observa-
tions” (in reality they are calculated) of the structural response. Another advantage in using 
such framework is that it enables the formal introduction of prior information available about 
the fragility parameters (e.g., particularly useful for updating of existing fragility models).  

The longitudinal frame of a seven-story existing building in Van Nuys, CA, which has 
been modeled in OpenSees considering the flexural-shear-axial interactions, has been em-
ployed to demonstrate this procedure. The selection of the suite of ground motion records has 
been performed based on a set of criteria that ensure the statistical significance of the linear 
regression in predicting the structural response as a function of the intensity measure. 

2 METHODOLOGY 

The methodology for the assessment of the robust structural fragility and its prescribed 
confidence interval based on Cloud Analysis and considering explicitly the cases of “col-
lapse” has been documented in detail in [9] considering only record-to-record variability. This 
paper employs this method to consider also the structural modeling uncertainties. Below, a 
brief description of this method is reported.  

2.1 The Intensity Measure and the Structural Performance Variable 

The original framework for performance-based earthquake engineering (PBEE, [26]) prop-
agates the various sources of uncertainty in the structural performance assessment through 
adopting a series of generic variables representing the seismic intensity (intensity measure, 
IM), the structural response (engineering demand parameter, EDP), the structural damage 
(damage measure, DM), and the structural performance (decision variable, DV).  Herein, the 
critical demand to capacity ratio for a prescribed limit state [11] and denoted as DCRLS, has 
been adopted as a proxy for the structural performance variable (DV). This DV is going to be 
convoluted directly with the intensity measure (IM) in order to estimate the seismic risk in the 
PBEE framework. DCRLS is defined as the demand to capacity ratio for the component or 
mechanism that brings the system closer to the onset of limit state LS. The formulation is 
based on the cut-set concept [27], which is suitable for cases where various potential failure 
mechanisms (both ductile and fragile) can be defined a priori. DCRLS, which is always equal 
to unity at the onset of limit state, is defined as: 

 max min
( )

mech l jlN N
LS l j

jl

D
DCR

C LS
  (1) 

where Nmech is the number of considered potential failure mechanisms; Nl is the number of 
components taking part in the lth mechanism; Djl is the demand evaluated for the jth structural 
component of the lth mechanism; Cjl(LS) is the limit state capacity for the jth component of 
the lth mechanism.  
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In this work, the critical demand to capacity ratio is going to be evaluated for the near col-
lapse limit state [28]. The component demand to capacity ratios are expressed in terms of the 
maximum component chord rotation. This leads to a deformation-based DCRLS. The maxi-
mum chord rotation demand Djl for the jth component of the lth mechanism is obtained from 
the results of the nonlinear dynamic analysis. The component chord rotation capacity Cjl for 
the jth component of the lth corresponds to the ultimate capacity of the member. For the near 
collapse limit state it is defined as the point on the softening branch of the force-deformation 
curve of the component, where a 20% reduction in the maximum strength takes place (Euro-
code 8, Part 3). In this study, the possible failure mechanisms associated with the near-
collapse limit state correspond to ductile or brittle failures of the columns; i.e., DCRLS>1 for a 
column is achieved when Djl > Cjl where Djl and Cjl for each column are obtained by taking 
into account the flexural/axial behavior, the shear behavior and the fixed-end rotation due to 
bar slip.  

When predicting non-linear response of structures for an ultimate limit state, it is common 
to encounter a few records leading to global “Collapse”; i.e., very high global displacement-
based demands or non-convergence problems in the analyzing software. Obviously, DCRLS>1 
for the near-collapse limit state does not necessary imply the occurrence of global Collapse. 
Herein, the global Collapse of the structure is identified explicitly by verifying the following 
two criteria: (1) accounting for the loss of load bearing capacity when 50% +1 of the columns 
of a story reach the chord rotation corresponding to the complete loss of vertical-load carrying 
capacity of the component [29]; (2) accounting for for global dynamic instability when maxi-
mum inter-story drift exceeds 10%.  

2.2 The “observed data” D 

Let vector θ represent all the uncertain parameters considered in the problem (apart from 
the fragility model parameters and those related to the ground motion representation). For ex-
ample, this vector may contain component capacity model parameters, construction detail pa-
rameters and parameters related to mechanical material properties. It is enough to note that 
any given realization θi of vector θ identifies in a unique manner the structural model. Ideally, 
a standard Monte Carlo simulation can be used for generating a set of i=1:N realizations of the 
vector θ.  

In particular, for each of the registered records within the suite of ground motion records, a 
different realization of the structural model has been generated through a standard Monte Car-
lo Simulation procedure. This way, each realization of the vector θ (plausible structural model 
subjected) subjected to a registered record leads to the corresponding DCR value. The set of 
DCR values calculated this way are then used as “observed data” in order to update the prob-
ability distribution for the parameters of the prescribed fragility model (e.g., Lognormal). 

2.3 A regression-based probabilistic model for predicting DCRLS given IM (Cloud 
Analysis)  

Herein, a regression-based probability model is employed to describe the DCRLS for a giv-
en IM level. Let DCRLS={DCRLS,i, i=1:N} be the set of critical demand to capacity ratio for 
limit state LS, calculated through non-linear time-history analyses performed for a suite of N 
recorded ground motions, and Sa={Sa,i, i=1:N} be the set of corresponding spectral accelera-
tion values (where DCRLS,i and Sa,i are calculated for the ith ground motion record). The 
Cloud data or simply data hereafter refer to the set D={(Sa,i, DCRLS,i), i=1:N}. The regression 
probabilistic model can be described as follows: 
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where E[lnDCRLS|Sa] is the expected value for the natural logarithm of DCRLS given Sa; 

DCRLS|Sa is the median for DCRLS given Sa; lnDCRLS|Sa is the logarithmic standard deviation 
for DCRLS given Sa. This non-linear dynamic analysis procedure, also known as the Cloud 
Analysis (e.g.,[]), graphically invokes the idea of the scatter plot of data pairs of structural per-
formance variable and the intensity measure for a given ground motion record. The Cloud 
Analysis is particularly useful when one deals with un-scaled ground motion records. The 
structural fragility obtained based on the Cloud Analysis can be expressed as the probability 
that DCRLS exceeds unity given Sa: 
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where ∙ is the standardized Gaussian Cumulative Distribution Function (CDF), =[lna, b, 
DCRLS|Sa] denotes the model parameters and DCRLS|Sa lnDCRLS|Sa. Note that Eqn 3 is a three-
parameter fragility model which can be determined as a function of known vector . 

2.4 Cloud Analysis considering collapse and/or global dynamic instability 

This section illustrates that, with some modifications, the Cloud Analysis can still be car-
ried out in the cases in which some records take the structure to verge upon “Collapse”. Let 
the Cloud data be partitioned into two parts: (a) NoC data which correspond to that portion of 
the suite of records for which the structure does not experience “Collapse”, (b) C correspond-
ing to the “Collapse”-inducing records. The structural fragility for a prescribed limit state LS, 
expressed in Eqn 3, can be expanded with respect to NoC and C sets using Total Probability 
Theorem (see [4,30]):  
          1 1 , 1 ( ) 1 ,LS a LS a a LS a aP DCR S P DCR S NoC P C S P DCR S C P C S         (4) 

where P(DCRLS>1|Sa,NoC) is the conditional probability that DCRLS is greater than unity giv-
en that “Collapse” has not taken place (NoC) and can be described by a Lognormal distribu-
tion (a widely used assumption that has been usually verified for maximum inter-story drift 
response given intensity in cases where the regression residuals represent unimodal behavior, 
e.g., [4,6]): 

   | ,

| ,

ln
1 , LS a

LS a

DCR S NoC

LS a
DCR S NoC

P DCR S NoC



 
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 
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where DCRLS|Sa,NoC and DCRLS|Sa,NoC are conditional median and logarithmic standard 
deviation (dispersion) of DCRLS for NoC portion of the data. P(DCRLS>1|Sa,NoC) is calculated 
in exactly the same manner as the standard Cloud Analysis discussed in Section 2.2 (see Eqn 
3). The term P(DCRLS>1|Sa,C) is the conditional probability that DCRLS is greater than unity 
given “Collapse”. This term is equal to unity, i.e., in the cases of “Collapse”, the limit state LS 
(herein, Near-Collapse) is certainly exceeded. Finally, P(C|Sa) in Eqn 4 is probability of col-
lapse, which can be predicted by a logistic regression model (a.k.a., logit) as a function of Sa 
(see also [31], and expressed as follows: 

    0 1 ln( )

1

1 a
a S

P C S
e

   



 (6) 

where  and  are the parameters of the logistic regression. It is to note that the logistic 
regression model belongs to the family of generalized regression models and is particularly 
useful for cases in which the regression dependent variable is binary (i.e., can have only two 
values 1 and 0, yes or no, which is the case of C and NoC herein). Note that the logistic re-
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gression model described above is applied to all records; they are going to be distinguished by 
1 or 0 depending on whether they lead to collapse or not. Finally, the analytic fragility model 
in the case where the data includes “collapse-cases” can be obtained by substituting the terms 
P(DCRLS>1|Sa,NoC) and P(C|Sa) from Eqns 5 and 6 into Eqn 4: 
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Eqn 7 illustrates a five-parameter fragility model whose model parameters can be denoted 
as =[lna, b, DCRLS|NoC,Sa, 0, 1 ]. Given the fragility can be perfectly determined (for 
simplicity, DCRLS|NoC,Sa is replaced with  hereafter). The CDF of DCRLS|Sa for a given de-
mand to capacity ratio dcr can be derived as follows based on Total Probability Theorem: 
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where it has been assumed that P(DCRLS ≤ dcr |C,Sa)=0 assuming that DCRLS is going to be 
un-boundedly large for the collapse cases. Eqn 8 can be used in order to calculate the value 
dcr=DCRp corresponding to the percentile p by setting the left side of the Eqn 8 equal to p and 
solving it for DCRp: 
   1

| , | ,exp ( | )
LS a LS a

p
DCR S NoC DCR S NoC aDCR p P NoC S      (9) 

where Ф-1 is the inverse function of standardized normal distribution. For example, the above 
equation can be used the 16th, 50th and 84th percentile curves of DCR versus spectral accelera-
tion. 

2.5 Robust Fragility assessment (using simulation) 

Inspired from the concept of updated robust reliability [18,32], the Robust Fragility is de-
fined as the expected value for a prescribed fragility model taking into account the joint prob-
ability distribution for the (fragility) model parameters  [8,12,31]. The Robust Fragility can 
be written as: 
      1 , 1 , ( )d 1 , ,LS a LS a LS aP DCR S P DCR S f P DCR S



      
χ

χD χ χ D χ D χ  (10) 

where  is the vector of fragility model parameters and  is its domain; f(|D) is the joint 
probability distribution for fragility model parameters given the vector of Cloud data D (see 
Section 2.2). The term P(DCRLS>1|Sa,) is the fragility model given that the vector  is 
known (see Eqn 3 or Eqn 7). Note that it has been assumed that the vector  is sufficient to 
describe the data D (that is why D has been dropped from the right-hand side of the condition-
ing sign |). E(∙) is the expected value over the vector of fragility parameters . The variance 
2 in fragility estimation can be calculated as: 

      22 21 , , 1 , ( )d 1 , ,LS a LS a LS aP DCR S P DCR S f P DCR S


          
χ

χ χD χ χ χ D χ D χ  (11) 

Note that calculating the variance over the vector of fragility parameters  from Eqn 11, i.e. 
2

(∙), provides the possibility of estimating a confidence interval of for the fragility consider-
ing the uncertainty in the estimation of the fragility model parameters. The integrals in Eqn 10 
and Eqn 11 in general do not have analytic solutions and should be solved numerically. Simu-
lation schemes provide very efficient means for numerical resolution of an integral. Herein, a 
very efficient simulation scheme known as Markov Chain Monte Carlo (MCMC) Simulation 
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is employed in order to sample from f(D) and solve the integral in Eqs. 10 and 11, as pro-
posed in [9].  

2.6 Implementing the concept of Robust Fragility in order to take into account the 
structural modeling uncertainties 

This paper implements the concept of Robust Fragility in order to efficiently propagate the 
sources of uncertainty related to both record-to-record variability and structural modelling, 
based on the results of a Cloud Analysis. In particular, the Cloud procedure is embedded in a 
Bayesian updating framework that updates the distribution of the fragility model parameters 
(based on the Cloud Analysis results) in order to lead to robust fragility estimates and the con-
fidence bands. The flowchart in Figure 1 describes this procedure in a step-by-step manner: 

Step 1: Perform the record selection. In this step, the record selection for Cloud Analysis 
should be performed, based on very few main rules. That is, the records should be selected in 
a way that they cover a vast range of spectral acceleration values and the records should be 
selected so that a significant proportion of records have DCRLS greater than unity.  

Step 2: Characterize the uncertainties vector θ and the associated joint PDF, where θ repre-
sents all the uncertain parameters in the problem related to structural modeling. For example, 
as previously explained, this vector may contain component capacity modelling parameters, 
construction detailing parameters, parameters related to mechanical material properties and 
parameters related to the ground motion representation. It is enough to note that any given 
realization θi of vector θ identifies in a unique manner the structural model. 

Step 3: Generate n samples (with MC simulation, LHS, …, etc.) of the vector θ, where n is 
the number of the records. Note that for each of the registered records within the suite of 
ground motion records, a different realization of the structural model is generated through for 
example a standard Monte Carlo Simulation procedure or a Latin Hypercube Sampling.  

Step 4: Subject each structural model configuration to one of the records within the set. In 
this way, each realization of the vector θ (plausible structural model subjected to a registered 
record) leads to a corresponding critical DCRLS value. 

Step 5: Form the set of the critical DCRLS={DCRLS,i, i=1:Nrecords} and perform Cloud 
Analysis. As said in sections 2.3 and 2.4, Cloud Analysis is based on a regression-based prob-
ability model, that is employed to describe the DCRLS for a given IM level. Let 
DCRLS={DCRLS,i, i=1:N} be the set of critical demand to capacity ratio for limit state LS, cal-
culated through non-linear time-history analyses performed for the set of N records, and 
Sa={Sa,i, i=1:N} be the set of corresponding spectral acceleration values (where DCRLS,i and 
Sa,i are calculated for the ith record). The Cloud data refer to the set D={(Sa,i, DCRLS,i), 
i=1:N}. If cases in which some records take the structure to verge upon “Collapse” are pre-
sent, the Cloud data can be partitioned into two parts (e.g. No Collapse data and Collapse da-
ta). The structural fragility can be expanded with respect to No Collapse and Collapse sets 
using Total Probability Theorem as explained in Eqn. 4 

Step 6: Obtain the Robust Fragility and the desired confidence bands. This entails Updating 
the joint distribution (χ|D) for the fragility model parameters χ, based on the cloud data D (see 
sect. 2.5) and simulating vector i based on its probability density function f(D). This leads 
to the solution of the integrals leading to the Robust Fragility and its standard deviation (Eqs. 
10 and 11). 
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Figure 1 Step-by-step guide to implementing the Robust Fragility procedure for propagating both record-to-

record variability and structural modelling uncertainties.  

3 NUMERICAL APPLICATION 

3.1  Case-study structure and model description 

One of the longitudinal frames of the seven-story hotel building in Van Nuys, California, is 
modeled and analyzed in this study. The building is located in the San Fernando Valley of 
Los Angeles County (34.221° north latitude, 118.471° west longitude). The frame building 
was constructed in 1966 according to the 1964 Los Angeles City Building Code. The building 
was damaged in the M6.7 1994 Northridge earthquake. After the 1994 earthquake, the build-
ing was retrofitted with addition of new RC shear walls. Columns in the longitudinal frame 
are 356 mm wide and 508 mm deep, i.e., they are oriented to bend in their weak direction 
when resisting lateral forces in the plane of the longitudinal frame. Spandrel beams in the 
north frame are typically 406 mm wide and 762 mm deep in the second floor, 406 mm wide 
and 572 mm deep in the third through seventh floors, and 406 mm by 559 mm at the roof lev-
el. Column concrete has a compressive nominal strength f’c of 34.5 MPa in the first story, 
27.6 MPa in the second story, and 20.7 MPa in other floors. Beam and slab concrete strength 
f’c is 27.6 MPa in the second floor and 20.7 MPa in other floors. Grade 60 (fy=414 MPa) rein-
forcing steel is used in columns. The specified yield strength, fy, is 276 MPa (Grade 40) for 
the steel used in beams and slabs. Figure 2 shows the longitudinal frame modeled in this re-
search and some of the damaged columns in this frame after the 1994 Northridge earthquake. 
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Figure 2 Holiday Inn hotel building longitudinal frame and some of the damaged columns in this frame after 

the 1994 Northridge earthquake. 
 
3.1.1. Flexural model 

Unidirectional axial behavior of concrete and steel materials are modeled to simulate the 
nonlinear response of beams and columns. Concrete material response is simulated using the 
Concrete01 material in OpenSees [33], which includes zero tensile strength and a parabolic 
compressive stress-strain behavior up to the point of maximum strength with a linear deterio-
ration beyond peak strength. Because the transverse reinforcement ratio for beams and col-
umns in the Van Nuys building is relatively low and detailing does not meet the modern 
seismic code requirements, concrete is modeled more close to the unconfined concrete model 
with peak strength achieved at a strain of 0.002 and minimum post-peak strength achieved at 
a compressive strain of 0.006. The corresponding strength at ultimate strain is 0.05f’c for 
f’c=34.5 MPa and f’c=27.6 MPa, and 0.2f’c for f’c=20.7 MPa. 

Longitudinal steel behavior is simulated using the Steel02 material in OpenSees. This 
model includes a bilinear stress-strain envelope with a curvilinear unload-reload response un-
der cyclic loading. The previous research indicates that the observed yield strength of rein-
forcing steel exceeds the nominal strength [34,35]. Following the recommendation of [35], 
yield strength of 345 MPa (50 ksi) and 496 MPa (72 ksi) are used in this research for Grade 
40 and Grade 60 steel, respectively. Both Grade 40 and Grade 60 reinforcement are assumed 
to have a post-yielding modulus equal to 1% of the elastic modulus, which is assumed to be 
200 GPa. Additional parameters required to define the Steel02 material model are taken equal 
to those recommended in the OpenSees User’s Manual. Uniaxial fibers within the gross cross 
section were assigned either concrete (Concrete 01) or steel (Steel 02). A typical column cross 
section included 30 layers of axial fibers, parallel to the depth of the section. Effective slab 
width was included in beam cross sections. Flexural response of beams and columns are 
simulated using fiber cross sections, representing the beam-column line elements Figure 3(a). 

In OpenSees, flexural beam-column members are modeled as force-based in which an in-
ternal element solution determines member deformations that satisfy the system compatibility. 
In force-based column elements, distributed plasticity model is used to accurately determine 
yielding and plastic deformations at the integration points along the element length under in-
creasing loads. Newton-Cotes integration [36] is selected as a suitable numerical integration 
solution for the force-based column element to accurately capture plastic deformations along 
the members. Newton-Cotes method distributes integration points uniformly along the length 
of the element. Herein, five integration points is used including one point at each end of the 
element, as shown in Figure 3(b). Force-deformation response of beam elements is computed 
based on the assumption that inelastic action occurs mainly at the member ends and that the 
middle of the member remains typically elastic (however, this is not necessary). Therefore, 
plastic hinge integration methods are used to confine nonlinear deformations in end regions of 
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beam elements, while the remainder of the element is assumed to stay linear elastic. It is as-
sumed that the length of plastic region is equal to the depth of the cross-section. The modified 
Gauss Radau hinge integration method [36] is used for numerical integration of the force-
based beam elements where the integration within each hinge region is implemented at four 
points; two integration points in the element ends, and two at 8/3 of the hinge length, Lo=h, as 
illustrated in Figure 3(c). 
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Figure 3 a) moment-curvature relationship for a single column (second column on the left in the second and 
fourth stories in Figure 2); spring model used for b) column with fixed ends, and c) beam with fixed ends. 

 
3.1.2. Shear model 

Recent earthquakes have shown that columns in older RC buildings with poor seismic de-
tailing, including the hotel building considered in this paper, experience shear or flexure-shear 
failures. The shear model proposed by [37] can capture both the inelastic shear response and 
the shear failure. The lateral force-shear displacement envelope includes three distinct points 
corresponding to: (a) maximum shear strength and corresponding shear displacement; (b) on-
set of shear strength degradation and corresponding shear displacement; and (3) shear dis-
placement at axial load failure. 
Accordingly, the maximum shear strength, Vn, is predicted by the following expression [38]: 
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where Av is the transverse reinforcement area within a spacing, s, in the loading direction; fy is 
the transverse reinforcement yield strength (MPa); d is the section depth; f’c is the compres-
sive strength of concrete; a is the shear span of the element; P is the axial load; Ag is the gross 
area of the section; and k is a factor to account for ductility-related strength degradation. 
Shear displacements are calculated using a combination of two existing models, i.e., [37,39]. 
The shear displacement corresponding to peak strength, v,n, is calculated as: 
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where l is the longitudinal steel ratio and L is the length of the column. As described in [39], 
the shear displacement at the onset of shear failure can be adopted from [40]. Shear displace-
ment at axial failure, denoted as θaxial in Section 2.1, is obtained using the procedure given in 
[37], which requires the calculation of total lateral drift a/L. The latter is calculated using the 
equation proposed by [41]: 

(c) 

(b) (a) 
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3.1.3. Bar slip model 

When a reinforcing bar embedded in concrete is subjected to a tensile force, strain accumu-
lates over the embedded length of the bar. This tensile strain causes the reinforcing bar to slip 
relative to the concrete in which it is embedded. Slip of longitudinal column bars at column 
ends (i.e., from the footing or beam-column joint) will cause rigid body rotation of the column. 
This rotation is not accounted for in flexural analysis, where the column ends are assumed to 
be fixed. The bar slip model used in this study was presented in [37]. This model assumes a 
stepped function for bond stress between the concrete and reinforcing steel over the embed-
ment length of the bar. The bond stress is taken as 1∙√f’c MPa for elastic steel strains and as 
0.5∙√f’c MPa for inelastic steel strains. The rotation due to slip, s, is calculated as slip/(d-c), 
where slip is the extension of the outermost tension bar from the column end, and d and c are 
the distances from the extreme compression fiber to the centroid of the tension steel and the 
neutral axis, respectively. Steel strains and neutral axis location, determined at each step dur-
ing the moment curvature analysis, are used here to determine slip rotation under increasing 
moment or column lateral force. The column lateral displacement due to bar slip, slip, is 
equal to the product of the slip rotation and the column length (slip=s∙L). 
 
3.1.4. Total lateral response 

The total lateral response of a RC column can be modeled using a set of springs in series in 
OpenSees. The flexure, shear and bar slip deformation models discussed in previous sections 
are each modeled by a spring or flexural line element. Each spring or element is subjected to 
the same lateral force. Initially, the total displacement response is the sum of the responses of 
each spring. A typical column element includes two zero-length rotational bar-slip springs at 
its ends, one zero-length shear spring, and a flexural element with five integration points (see 
Figure 3(b)). The shear behavior is modeled as uniaxial hysteretic material in direction 1 in 
Figure 3(b). The bar slip is modeled with two rotational springs at the column ends using uni-
axial hysteretic material in direction 3. Finally, same vertical displacement is maintained be-
tween nodes of zero length elements in the vertical direction (i.e., direction 2), using the 
equalDOF restraint in OpenSees. 

The three deformation components are simply added together to obtain the total response 
up to the peak strength of the column [37]. Rules are established for the post-peak behavior of 
the springs based on a comparison of the shear strength Vn, the yield strength Vy, and the flex-
ural strength Vp required to reach the plastic moment capacity. By comparing Vn, Vy, and Vp, 
the columns can be classified into five different categories [37]: Category I: Vn<Vy, the shear 
strength is less than the lateral load causing yielding in the tension steel. The column fails in 
shear while the flexural behavior remains elastic; Category II: Vy<Vn<0.95Vp, the shear 
strength is greater than the yield strength, but less than the flexural strength of the column. 
The column fails in shear, but inelastic flexural deformation occurring prior to shear failure 
affects the post-peak behavior; Category III: 0.95Vp<Vn<1.05Vp, the shear and flexural 
strengths are very close; Category IV: 1.05Vp<Vn<1.4Vp: the shear strength is greater than the 
flexural strength of the column. It is to note that for both categories III and IV, the column 
experiences large overall deformations potentially leading to two different possible failure 
modes: (a) flexural failure (which can be reached when the maximum inter-storey drift ex-
ceeds 10%, see Section 2.1 for the definition of the onset of collapse limit state), and (b) shear 
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failure: inelastic shear deformations affect the post-peak behavior, and shear failure may oc-
cur as increasing displacements reach θaxial; Category V: Vn<1.4Vn, the shear strength is much 
greater than the flexural strength of the column. The column fails in flexure while the shear 
behavior remains in the elastic range. 
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Figure 4: Different deformation components and the total lateral displacement for column 11 and 21 of the 
longitudinal frame, belonging to Category I (left) and Category IV (right) 

 
Figure 4 shows the three different deformation components and the total lateral displace-

ment for columns 11 and 21 of the analyzed frame, belonging to two different categories de-
scribed above, i.e., Category I and Category IV, respectively (see Figure 2a). Failure modes 
are identified for all the columns of the case-study frames and reported on the right-hand side 
of the columns in Figure 2a. A comprehensive discussion on different issues about modeling 
part of the case-study frames is performed in [42]. 
 
3.2 The uncertainties characterization 

Various sources of uncertainty are considered herein. In particular, the record-to-record 
variability (uncertainties in the representation of the ground motion), the uncertainties in 
component capacity models; in the mechanical material properties and in the construction de-
tails (the latter is also referred to as structural “defects”). For mechanical material properties 
and the construction details, the prior probability distributions are updated based on the avail-
able data for the case study, employing a Bayesian framework (see [12] for detailed descrip-
tion of the updating procedure). 
 
3.2.1 Uncertainty in the representation of ground motions 

The record selection for Cloud Analysis is particularly important. Here are few points to 
consider when selecting records for Cloud Analysis [9]: a) the records should be selected in a 
way that they cover a vast range of spectral acceleration values. In other words, the larger is 
the dispersion in Sa values, the smaller is the standard error of regression DCRLS|Sa; b) the rec-
ords should be selected in such a way that a significant proportion (say more than 30%) of 
records have DCRLS greater than unity; c) It is recommended to avoid selecting both horizon-
tal components of the same recording unless the structural model is three-dimensional. More-
over, it is recommended to avoid selecting too many records from the same seismic event.  

Two sets of 34 and 70 strong ground-motion records are selected from the NGA-West2 da-
tabase (see [9] for the list of the records). The suite of 70 records covers a wide range of mag-
nitudes between 5.5 and 7.9, and closest distance-to-ruptured area (denoted as RRUP) up to 
around 40 km, as illustrated by the scatter diagram in Figure 5(a). The associated spectral 
shapes are shown in Figure 5(b). The soil average shear wave velocity in upper 30 m of soil, 
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Vs30, at the Holiday Inn hotel’s site is around 218 m/sec. Accordingly, all selected records are 
chosen from NEHRP site classes C-D. The lowest useable frequency is set at 0.25 Hz, ensur-
ing that the low-frequency content is not removed by the ground motion filtering process. 
There is no specific consideration on the type of faulting; nevertheless, all selected records are 
from strike-slip or reverse faults (consistent with California faulting). The records are selected 
to be free field or on the ground level. The set of 34 ground-motion records is extracted from 
the set of the 70 records. The only criterion for this selection is to limit the number of records 
from a single seismic event to be one (to avoid intra-event correlations). 
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Figure 5 (a) Scatter diagram, and (b) Spectral shape, for the suite of the 70 ground-motion records. 
 

3.3.2 Uncertainty in the component capacity models 

Component capacities are modelled herein as the product of predictive formulas expressed 
as ηCi and unit-median Log Normal variables εCi accounting for the uncertainty in component 
capacity [8,11], according to the general format: 
                                                                           i Ci CiC                                             (17) 

The expression for median capacities corresponding to the considered mechanism are de-
scribed below. The median of the lognormal distribution of the maximum shear strength, Vn, 
is calculated according to Eq. 14 (Ci=Vn), while the relative COV has been provided in [38]. 
The median of the lognormal distribution of shear displacement corresponding to peak 
strength, v,n, is calculated according to Eq. 15 (Ci=v,n), while the relative COV has been 
assumed equal to 0.15 due the lack of specific data. 

The median of the lognormal distribution of total lateral displacement, a, is calculated ac-
cording to Eq. 16 (Ci=a), while the relative COV has been taken as presented in [43]. 

Table 1 summarizes the component capacity variables, that have been considered herein, 
and the relative distributions. 
 

Log-normal variable COV References 
Vn 0.15 [38] 
Δv,n 0.15 [40] 
Δa 0.26 [41,43]  

Table 1 Logarithmic standard deviation values for component capacity models. 
 

3.3.3 Uncertainty in the mechanical material properties and in the construction details 

The probability distributions for the material mechanical properties and for the construc-
tion details (structural defects) are obtained using a Bayesian framework, updating the prior 
probability distributions with the available data for the specific case study [18]. The parame-
ters identifying the prior probability distributions for the material mechanical properties 

(b) (a) 
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(compressive concrete strength for beams and columns at different floors, steel yielding force 
for beams and columns, compressive concrete ultimate strain, steel hardening slope) have 
been based on the values provided in Table 2. The probability distributions for the material 
mechanical properties are later updated employing the Bayesian framework for inference (see 
[12] for details of the updating procedure).  

As said, Table 2 shows the statistics of the lognormal prior and posterior probability distri-
butions for the material mechanical properties and the related references. Figure 6a illustrates 
the prior and posterior probability distributions of the concrete strength fc1 (see Table 2). 

 

Material 
Prior distribution Posterior distribution 

References Available data 
Type Median COV Type Median COV 

fy1 (MPa) LN 496 0.12 LN 488 0.07 [34,35] [34,35] 
fy2 (MPa) LN 344 0.12 LN 339 0.07 [34,35] [34,35] 
fc1 (MPa) LN 34.5 0.15 LN 39.1 0.11 [34] [34,35] 
fc2 (MPa) LN 27.6 0.15 LN 31.5 0.11 [34] [34,35] 
fc3 (MPa) LN 20.7 0.15 LN 23.5 0.11 [34] [34,35] 

ecu LN 0.006 0.40 LN 0.007 0.30 [44,45] [34,35] 
hardening LN 0.010 0.40 LN 0.011 0.31 [34] [34] 

Table 2 The uncertainty characterization for the material mechanical properties. 
 

With regard to the construction detailing parameters, it has been assumed herein that 50% 
of the inspections verify the design values indicated in the original documents. Table 3 shows 
the prior and posterior probability distribution statistics for the spacing between the shear re-
inforcement for the columns, which is the only construction detailing variable assumed as un-
certain herein. Figure 6b illustrates the prior and posterior probability distributions for the 
spacing between the shear reinforcement together with updated distribution based on the hy-
pothesis that 50% of the inspections verify the design value (s=30.5cm). The updating proce-
dure is described in detail in [12]. 
 

Defect Prior distribution Values Reference Posterior distribution Median COV 
Shear rebars spacing  Uniform  30-40cm [34] Lognormal 35.5cm 0.18 

Table 3 The uncertainty in spacing of shear rebars 
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Figure 6 a) The prior and updated probability distributions for the concrete strength fc1 (see Table 2); b) The 
uniform prior and updated probability distributions for the spacing of the shear rebars (see Table 3). 

 



Andrea Miano, Fatemeh Jalayer and Andrea Prota 

3.3 Cloud Analysis 

Figures 7a show the scatter plots for Cloud data D={(Sa,i, DCRLS,i), i=1:34} for the case-
study frame and for the set of the different realizations (each one is a simulated structural 
model through the standard Monte Carlo procedure plus a registered record). The grey-
colored circles represent the NoC data, while the grey-colored with red edge squares indicate 
the C data or “collapse-cases” (see Section 2.4). In order to have a better representation of 
NoC data, an upper-bound limit of 5 is assigned to the horizontal DCRLS-axis. It can be noted 
that, consistent with the Section 2.3 recommendations, the Cloud data not only covers a vast 
range of spectral acceleration values, but it also provides numerous data points in the range of 
DCRLS>1. Figure 7a illustrates also Cloud Analysis regression prediction model (i.e., regres-
sion line and the estimated parameters, see Eq. 2) fitted to the NoC data. The Lognormal dis-
tribution displayed in Figure 7a denotes the distribution of DCRLS given Sa (T1). Moreover, the 
line DCRLS=1 corresponding to the onset of limit state (herein, Near-Collapse) is shown with 
red-dashed line. Finally, Figure 7a shows the 16th, 50th and 84th percentiles of the performance 
variable as a function of spectral acceleration, with and without considering the collapse cases. 
Figure 7b shows the same information for the larger set of 70 records/structural model realiza-
tions. 
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Figure 7 a) Cloud data and regression for the set of 34 records/realizations; b) Cloud data and regression for 
the set of 70 records/realizations 

 
It is worth noting that the structural model realizations can also be generated through a Lat-

in Hypercube (LHS described briefly in the next section, [46-48]) sampling scheme. This is 
done herein but the corresponding Cloud Analysis results are not reported for brevity. How-
ever, the fragility and risk results are reported later. 

 
3.4 IDA with Latin Hypercube Sampling (LHS) 

The LHS belongs to the category of advanced stratified sampling techniques which result 
in a good estimate of statistical moments of response using small-sample simulation. The 
basic feature of LHS is that the range of univariate random variables is divided into N inter-
vals (N is a number of simulations); the values from the intervals are then used in the simula-
tion process (random selection, median or the mean value). The selection of the intervals is 
performed in such a way that the range of the probability distribution function of each random 
variable is divided into intervals of equal probability, 1=N. The samples are chosen directly 
from the distribution function based on an inverse transformation of the univariate distribution 
function. The representative parameters of variables are selected randomly, being based on 
random permutations of integers k=1,2,..,N. Every interval of each variable must be used only 
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once during the simulation. The generation of the LHS is then completed by randomly pairing 
(without replacement) the resulting values for each of the random variables. Unfortunately, 
the nature of LHS does not allow us to determine a priori the appropriate sample size N to 
achieve a certain confidence level. Still, the use of a relatively high N that is substantially 
larger than the number of parameters will always result to reasonably accurate estimates for 
practical purposes. The optimal N to use is obviously a function of the number of random var-
iables and their influence on the response is a subject of further research [23].  
The LHS has been paired up with incremental dynamic analysis (IDA) in order to consider 
both the record-to-record variability and the epistemic uncertainties (eg, [22-24]). In this 
work, for the sake of comparison with the literature, Monte Carlo with LHS has been per-
formed for N=34 and for N=80 realizations of the frame, a relatively high number that has 
been chosen to allow pinpoint accuracy in our estimates (the number of uncertain variable is 
11). Thus, by performing IDA on each of the N realizations, 34×34=1156 and 80×34=2720 
IDA curves have been obtained, respectively. Each IDA curve traces the variation in DCRLS 
for a given realization of the structural model as a function of Sa(T1) as the record’s amplitude 
is linearly scaled up. As explained in Sect. 3.4, the spectral acceleration values at DCRLS=1, 
denoted as SaDCR=1, are used in order to obtain the IDA-based fragilities [11].  
 
3.5 Mean Value First-order second-moment (MVFOSM) method 

The MVFOSM method, which is based on the calculation of the first two moments of a 
nonlinear function, is an approximate method for propagating the uncertainties (e.g. [23,49]). 
The number of simulations required is only 2K +1, where K is the number of uncertain varia-
bles considered in the study. Let the log of the Sa capacity denoted as ln Sa

DCR=1 be a function 
f of the uncertainties vector: 
                                                    1

1 2ln ( ) f( , ,..., )DCR
a kS f                                                (22) 

where f is a function of the random variables for the given limit state and θ is the vector of the 
random uncertain modeling parameters. It should be noted that the Sa capacity is calculated 
from the median of IDA curves.  

In the first place, the base-case value of f denoted as ln Sa
DCR=1,0, that corresponds to all 

random variables being set equal to their mean mk is calculated. The remaining 2K simula-
tions are obtained by shifting each parameter θk from its mean by ±1.7θk [25], while all other 
variables remain equal to their mean mθk. When the θk parameter is perturbed, the logs of the 
median Sa-capacities are denoted as ln Sa

k+ and ln Sa
k-, where the sign indicates the direction 

of the shift. Since the number of simulations required is 2K+1 and K=11 in this study, 
23×34=782 (where 34 is the number of records) IDA curves have been obtained, based on the 
previous recommendations. 

According to MVFOSM, the nonlinear function f can be approximated using a Taylor ex-
pansion to obtain its first and second moments. Following the notation of Eq. 22, the function 

f= ln Sa
DCR=1 is expanded around the mean value denoted as   [50]: 
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The gradient and curvature of f can be approximated with a finite difference approach, 
which is why 2K+1 simulations were needed. The random parameters are set equal to their 
mean to obtain ln Sa

DCR=1,0 and then each random parameter is perturbed as described above. 
Thus, the first and the second derivative of f with respect to θk, will be: 
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Truncating after the linear terms in Eq. 23 provides a first-order approximation for the lim-
it-state mean-log capacities, where they are going to be equal to the base-case values ln 
Sa

DCR=1,0  (the linear term is going to be equal to zero). A more refined estimate is the mean-
centered, second-order approximation, which according to Eq.23 can be estimated as [23]: 
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Thus the median Sa capacity, assuming lognormality, comes out to be: 
                                                           1

1

lnSa
ˆ exp(m )DCR

DCR
aS 

                                                        (26)                        

while, using a first-order approximation, the standard deviation of the logs is estimated as: 
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It should be noted that the above statistics refer to the Sa capacity as calculated from the me-
dian IDA curve and total dispersion will need to combine also the effect of record-to-record 
variability. In this work, the SRSS approach has been used in order to combine the dispersion 
due to the structural modeling uncertainties and the record-to-record variability. 
 
3.6 Fragility curves comparison 

Figure 8a illustrates the Cloud-based Robust Fragility curve (black solid line) and its 
plus/minus two standard deviation confidence bands (grey dashed lines). The Robust Fragility 
curve and its confidence interval is obtained following the procedure described in Section 2.5 
(see [9] for more details). As mentioned in Section 2.5, one distinct advantage gained by cal-
culating the Robust Fragility lies in the estimation of its confidence band. In Figure 8a the 
Cloud-based Robust Fragility curve is compared with the fragility curve obtained through 
Cloud Analysis (black dashed line) with the consideration only of the record to record (R2R) 
variability. Moreover, also the the site-specific hazard (at T=1 sec, from USGS National 
Seismic Hazard Mapping Project website (http://earthquake.usgs.gov/hazards, red solid line) 
is shown in Figure 8a. As it can be seen from Figure 8a, Cloud-based Robust Fragility curve 
with the consideration of all the sources of uncertainty present a reduction both in median ca-
pacity and in the dispersion with respect to the fragility curve obtained through Cloud Analy-
sis with the consideration only of the record-to-record variability. 

Figure 8b illustrates the Cloud-based Robust Fragility curve (black solid line) with its 
plus/minus one standard deviation confidence bands (grey dashed lines) and the fragility 
curves (thin grey solid lines) obtained based on Cloud Analysis through the generation of dif-
ferent sets of realizations (10 different sets) of the structural model. It can be observed that the 
different simulations of the cloud-based fragility curves are contained within the plus/minus 
one standard deviation interval of the robust fragility curve. The fragility curve based on the 
Cloud Analysis of 70 records/structural model realizations is also shown in Figure 8b in solid 
blue lines. The figure also illustrates how the cloud-based fragility curves would shift if the 
LHS procedure is used for stratified sampling of the structural model parameters instead of 
the standard Monte Carlo procedure proposed herein (for both sets of 34 and 70 records plot-
ted as black dotted and blue dotted lines, respectively). It can be observed that the differences 
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between the number of records/extractions and the type of simulation (random versus strati-
fied) is again contained within one standard deviations away from the Robust Fragility curve 
(obtained based 34 record/realizations and standard Monte Carlo sampling of the structural 
model parameters). This underlines the utility of the confidence bands, that represent a relia-
ble interval, in which the “true” fragility curve would lie with a prescribed probabil-
ity/confidence level. Moreover, it can be observed that the fragility curve based on 70 
records/LHS-generated realizations marks an increase in the dispersion with respect to the rest 
of the curves. 
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Figure 8 a) Robust Fragility and its plus/minus two standard deviation confidence interval and Cloud-based 
fragility curve, considering only the R2R variability; b) Robust Fragility and its plus/minus one standard devia-
tion confidence interval, Cloud-based fragility curves based on 10 different 34 records/MC-based realizations, 

Cloud-based fragility curves based on 70 records/MC-based realizations, 34 records/LHS-based realizations and 
70 records/LHS-based realizations of the uncertainties vector  

 
Figure 9 illustrates the comparison between the (cloud-based) Robust Fragility curve and 

its plus/minus two standard deviations interval, the IDA-based fragility curves obtained using 
the LHS, with 34 and 80 realizations of the structural model (plotted in blue solid and blue 
dashed lines, respectively), and the fragility curve obtained through MVFOSM approach (in 
black dashed line). As it can be seen from Figure 9, the different fragility curves are close in 
terms of median capacity. The difference between the IDA-based/LHS fragilities and the 
IDA-based/MVFOSM fragility curves is contained within the plus/minus two standard devia-
tions interval of the Robust Fragility. It can be observed that the Cloud-based Robust Fragility 
is quite close to the fragility curves obtained through the IDA-based/LHS and IDA-
based/MVFOSM approaches, while the computational effort is sensibly lower. As shown in 
Table 1, the Cloud-based Robust Fragility requires number of analyses equal to the number of 
the records in the chosen set (34 and 70 for the case study). To implement IDA using LHS 
and MVFOSM, the necessary analyses are in the order of thousands and hundreds, respective-
ly. In particular, for IDA paired up with LHS the number of required analysis is the product of 
the number of structural realizations, the number of the selected records and the number of 
steps for IDA procedure. For implementing the IDA paired up with the MVFOSM approach, 
the number of required analysis is the product of two times the number of the uncertain varia-
bles plus one (the base-case value of f that corresponds to all random variables being set equal 
to their mean), the number of the selected records and the number of steps for IDA procedure.  

It is important to note that these results refer to the specific case study and additional com-
parisons are needed to validate these results. Based on the site-specific hazard shown in Fig-
ure 9, it can be noted that the difference between the Cloud-based Robust Fragility curve and 
IDA-based/LHS and IDA-based/MVFOSM fragility curves are more accentuated in the zone 
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of very small hazard values. This observation is further validated by risk calculations reported 
in Table 4. 
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Figure 9 Comparison between Cloud-based Robust Fragility curve and its plus/minus two standard deviations 
intervals, IDA-based fragility curves obtained using LHS sampling with 34 and 80 realizations and IDA-based 

fragility curve obtained through MVFOSM approach. 
 

Table 4 summarizes for all the procedures discussed herein, the number of analyses re-
quired and the mean annual frequencies of exceeding the Near-Collapse limit state (i.e., risk 
obtained by integrating the fragility and site-specific hazard curve) denoted by LS corre-
sponding to the different fragility curves. In particular, RF denotes the risk corresponding to 
the Robust fragility curve and RF±2 define the risk values associated with Robust Fragility 
plus/minus its two standard deviation confidence intervals. It can be noted that Cloud-based 
Robust fragility curves (with 34 or 70 realizations through standard MC simulation or LHS 
sampling) with their plus/minus two standard deviation confidence bands provide reliable re-
sults in term of risk with respect to IDA-based LHS and MVFOSM approach fragility curves. 

 

Type of procedure 
Number of 
analyses 

LS	using the Robust fragility	

RF+2	  RF  RF-2	
RF with 34 realizations through MC sim 34 7.410-3 1.110-2 1.510-2 

RF with 34 realizations through LHS 34 7.810-3 1.010-2 1.410-2 
RF with 70 realizations through MC sim 70 7.910-3 1.010-2 1.210-2 

RF with 70 realizations through LHS 70 7.710-3 1.010-2 1.410-2 
MVFOSM approach 7820 - 1.510-2 - 

IDA with LHS (34 realizations) 11560 - 1.010-2 - 
IDA with LHS (80 realizations) 27200 - 9.010-3 - 

Table 4 Number of analyses required and the mean annual frequency of exceeding the limit state for the 
alternative procedures. 

4 CONCLUSIONS  

In this work, a modified version of Cloud Analysis considering the (eventual) cases of 
global dynamic instability, based on coupling the simple regression in the logarithmic space 
of structural response versus seismic intensity for a suite of registered records with logistic 
regression, has been implemented to propagate both record-to-record variability and model-
ling uncertainties. For each of the registered records within the suite of ground motion records, 
a different realization of the structural model has been generated through a standard Monte 
Carlo Simulation procedure. A Bayesian version of the Cloud method is employed, in which 
the uncertainty in the structural fragility model parameters is considered. This leads to a ro-
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bust fragility estimate and a desired confidence interval defined around it. The longitudinal 
frame of an existing building in Van Nuys, CA, modeled with the consideration of the flexur-
al-shear-axial interaction, has been employed to demonstrate this procedure. The selection of 
the suite of ground motion records for the case study has been based on a set of criteria that 
ensure the statistical significance of the linear regression in predicting the structural response 
as a function of the intensity measure. 

It is observed that, for the case study frame, Cloud-based Robust Fragility curve with the 
consideration of both record-to-record variability and structural modelling uncertainties leads 
to a reduction both in median and in the dispersion of the fragility curve with respect to the 
Cloud-based fragility considering only R2R variability. Moreover, the Cloud-based Robust 
Fragility curve is very close to the results provided by IDA-based LHS and MVFOSM fragili-
ty curves, while the computational effort is sensibly lower. These observations refer to the 
specific case study and additional comparisons needed to validate these results. Based on the 
site-specific hazard, it can be noted that the difference between the Cloud-based Robust Fra-
gility curve and the IDA based fragility curves obtained using the LHS and the MVFOSM 
approach are more accentuated in the zone of very small hazard values. Thus, it can be noted 
that Cloud-based Robust Fragility curves (with 34 or 70 realizations through standard MC 
simulation or LHS sampling) with their plus/minus two standard deviation confidence bands 
provide reliable results in term of risk with respect to IDA-based LHS and MVFOSM fragility 
curves. Consequently, and with specific reference to the case-study frame, the Cloud-based 
Robust Fragility procedures provides --in an extremely efficient manner-- reliable risk esti-
mates. 
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