
1 INTRODUCTION 

Many existing reinforced concrete (RC) moment-
resisting frame buildings in regions with high seis-
micity were built without adequate seismic-detailing 
requirements and are particularly collapse-prone 
buildings. Identifying accurately the level of per-
formance can facilitate an efficient seismic assess-
ment and classification of these buildings. In this 
context, analytic structural fragility assessment is 
one of the fundamental steps in the modern perfor-
mance-based engineering (Cornell & Krawinkler 
2000). The structural fragility can be defined as the 
conditional probability of exceeding a prescribed 
limit state given the intensity measure (IM). There 
are alternative non-linear dynamic analysis proce-
dures available in the literature for characterizing the 
relationship between engineering demand parame-
ters (EDPs) and IM based on recorded ground mo-
tions, such as, the Incremental Dynamic Analysis 
(IDA, (Vamvatsikos & Cornell 2004) Multiple-
Stripe Analysis (MSA, see (Jalayer & Cornell 
2009)) and the Cloud Method (Bazzurro et al. 1998, 
Cornell et al. 2002, Jalayer 2003, Jalayer & Cornell 

2003, Jalayer et al. 2015). The nonlinear dynamic 
methods such as IDA and MSA are suitable for 
evaluating the relationship between EDP and IM for 
a wide range of IM values; however, their applica-
tion can be quite time-consuming as the non-linear 
dynamic analyses are going to be repeated (usually 
for scaled ground motions) for increasing levels of 
IM.  

In this context, it can be very useful to find a way 
to reduce the computational effort of IDA analysis, 
keeping the same accuracy of the results. Herein, an 
alternative and more quick way to implement IDA 
analysis is presented, starting from the results of 
Cloud Analysis. Cloud analysis is based on a simple 
regression in the logarithmic space of the structural 
response versus the seismic intensity for a set of reg-
istered records. Cloud is particularly useful and effi-
cient since it involves the non-linear analysis of the 
structure subjected to a set of un-scaled ground mo-
tions. It is shown herein that, exploiting the cloud 
results in term of predicted median and standard de-
viation, the IDA analysis can be performed in an ef-
ficient manner without significant loss of accuracy 
(with respect to a complete IDA). This method, 
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which is called Cloud to IDA, considers only few 
spectral acceleration levels (i.e., data points) for 
each record.  

As a numerical example, the transverse frame of a 
seven-story existing RC building in Van Nuys, CA, 
modeled in Opensees modeled by considering the 
flexural-shear-axial interactions in the columns, is 
employed. Because of the old construction philoso-
phy, column members are sensible to possible shear 
failure during earthquakes; hence, a non-linear mod-
el is used to predict an envelope of the cyclic shear 
response (Setzler & Sezen 2008, Sezen 2008). This 
envelope includes the shear displacements and cor-
responding strength predictions at the peak strength, 
onset of lateral strength degradation, and loss of axi-
al-load-carrying capacity. In addition, the total lat-
eral displacement of the members includes also the 
consideration of the deformability due to bar slip 
contribution. The adopted engineering demand pa-
rameter (EDP) is the critical demand to capacity ra-
tio (Jalayer et al. 2007) corresponding to the compo-
nent or mechanism that leads the structure closest to 
the onset of near collapse limit state. This structural 
response parameter, that is equal to unity at the onset 
of the desired limit state, can encompass both ductile 
and fragile failure mechanisms. 

It is demonstrated that, for the case-study struc-
ture considered, the Cloud to IDA procedure pro-
vides reliable results in terms of the capacity curves 
that are very close to those based on a complete IDA 
and with smaller computational effort. 

2 METHODOLOGY 

2.1 Structural performance variable 

The EDP herein is taken to be the critical demand 
to capacity ratio (Jalayer et al. 2007, Jalayer et al. 
2015) denoted as YLS and defined as the demand to 
capacity ratio for the component or mechanism that 
brings the system closer to the onset of limit state LS 
(herein, the near collapse limit state). The formula-
tion is based on the cut-set concept (Ditlevsen & 
Madsen 1996), which is suitable for cases where 
various potential failure mechanisms (both ductile 
and fragile) can be defined a priori. YLS, which is al-
ways equal to unity at the onset of limit state, is de-
fined as: 
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where Nmech is the number of considered potential 
failure mechanisms; Nl the number of components 
taking part in the lth mechanism; Djl is the demand 
evaluated for the jth component of the lth mechanism; 

Cjl(LS) is the limit state capacity for the jth compo-
nent of the lth mechansim. The capacity values refer 
to the near collapse limit state in this work, but the 
procedure can be repeated for any other prescribed 
limit state. In the context of this work, the demand is 
expressed in terms of maximum chord rotation for 
the component, denoted as θmax, and computed based 
on the nonlinear dynamic analysis. The component 
chord rotation capacity is denoted as θultimate corre-
sponding to the ultimate capacity of the member. In 
particular, θultimate corresponds to the point on the 
softening branch of the force-deformation curve of 
the member, where a 20% reduction in the maxi-
mum strength takes place. 

The possible failure mechanisms are associated to 
the limit state of near collapse (Ynear collapse=Y). They 
correspond to ductile or brittle failures of the col-
umns, depending on whether the column is flexural 
or shear critical.  Y>1 for a column is achieved 
when θdemand > θultimate where θultimate for each ele-
ment takes into account the flexural/axial behavior, 
the shear behavior and the deformation due to bar 
slip.  

When predicting non-linear response of struc-
tures, it is necessary to account for the possibility 
that some records may cause global “Collapse”; i.e., 
very high global displacement-based demands or 
non-convergence problems in the analysis software. 
It is obvious that, Y>1 for the limit state of near-
collapse does not guarantee the exceedance of col-
lapse limit state. Herein, the cases of collapse are 
identified explicitly by verifying the following crite-
ria for structural collapse: 1) 50% +1 of the columns 
of only one floor have achieved θaxial (Galanis & 
Moehle 2015), where θaxial corresponds to the point 
associated with the complete loss of vertical-load 
carrying capacity of the component on the softening 
branch; 2) 10% of the maximum interstory drift be-
tween all the floors has achieved. 

2.2 Nonlinear dynamic analyses procedure 

In order to estimate the structural fragility, Cloud, 
IDA and Cloud to IDA analyses are adopted herein 
as alternative nonlinear dynamic analysis proce-
dures. The cloud analysis is a procedure in which a 
structure is subjected to a set of ground motion rec-
ords of different first-mode Sa(T) values. The cloud 
data encompasses pairs of ground motion IM (herein 
first-mode Sa(T)) and its corresponding structural 
performance variable Y (see Eq. 1) for each record. 
Cloud method provides estimates of the first two sta-
tistical moments (e.g., logarithmic mean and stand-
ard deviation) of the performance parameter Y given 
the first-mode spectral acceleration. Once the 
ground motion records are selected, they are applied 



to the structure and the resulting Y=D/C (demand 
over capacity ratio, as described above) is calculat-
ed. This provides a set of values that form the basis 
for the cloud-method calculations. The cloud data 
can be separated to two parts: (a) NoC data which 
correspond to that portion of the suite of records for 
which the structure does not experience “Collapse”, 
(b) C data for which the structure leads to “Col-
lapse”. In order to estimate the statistical properties 
of the cloud response, with respect to NoC data, 
conventional linear regression (using least squares) 
is applied to the response on the natural logarithmic 
scale, which is the standard basis for the underlying 
log-normal distribution model. This is equivalent to 
fitting a power-law curve to the cloud response in 
the original (arithmetic) scale. This results in a curve 
that predicts the median drift demand for a given 
level of structural acceleration:  
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where ln(a) and b are linear regression constants. 
The logarithmic standard deviation Y|Sa,NoC can be 
estimated as the root mean sum of the square of the 
residuals with respect to the regression prediction: 
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where Yi and Sa,i are the demand over capacity ratio 
values and the corresponding spectral acceleration 
for record number i within the cloud response set 
and NNoC is the number of NoC records.  

The standard deviation of regression, as intro-
duced in the preceding equation, is presumed to be 
constant with respect to spectral acceleration over 
the range of spectral accelerations in the cloud. 
The fragility, expressed generally as the conditional 
distribution of Y given Sa, can be expanded with re-
spect to NoC and C data as follows using Total 
Probability Theorem (see [Shome & Cornell 1999, 
Jalayer & Cornell 2009, Miano et al. 2017]):  
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The probability terms in Eq. (4) are described 
clearly as follows: 

 The NoC term P(Y>1|Sa,NoC) is the conditional 
distribution of Y given Sa and NoC, and can be de-
scribed by a lognormal distribution (a widely used 
assumption that has been usually verified for cases 
where the regression residuals represent unimodal 
behavior, see e.g. [Jalayer & Cornell 2009, Jalayer 
and Ebrahimian 2016, Miano et al. 2017]): 
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where  is the standardized Gaussian cumulative 
distribution function (CDF) and Y|Sa,NoC and 
Y|Sa,NoC are presented in Eqs. (2) and (3).It should be 
noted that Eq. (4) is based on the implicit assumption that 
in the cases of global dynamic instability (global Col-
lapse), the limit state LS (hereafter LS= Near Collapse) is 
certainly exceeded. 
 The term P(C|Sa)=1-P(NoC|Sa) is probability of 

global dynamic instability (Collapse), which can 
be expressed by a logistic regression model 
(a.k.a., logit) on the Sa values of the entire cloud 
data: 
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where  and  are the parameters of the logistic 
regression. It is to note that the logistic regression 
model belongs to the family of generalized 
regression models and is particularly useful for cases 
in which the regression dependent variable is binary 
(i.e., can have only two values 1 and 0, yes or no, 
which is the case of C and NoC herein). Note that 
the logistic regression model described above is ap-
plied to all records; they are going to be distin-
guished by 1 or 0 depending on whether they lead to 
C or NoC. 

The structural fragility from IDA analysis can be 
calculated using the (Log-Normal) probability densi-
ty function fitted to the spectral acceleration values 
at Y=1, SaY=1: 
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where ηSaY=1  and SaY=1 are the parameters of the 
Log-Normal probability density function. 

 The proposed Cloud to IDA procedure can be 
carried out by considering few levels of spectral ac-
celeration for each record (limited to 4 levels in the 
majority of cases), in order to obtain the distribution 
of SaY=1. In particular, four spectral acceleration lev-
els are chosen per record based on the results of 
cloud analysis; namely, the original Sa(T1); median 
Sa(T1) at Y=1 estimated based on Cloud Analysis 
(equal to (1/a)1/b per Eq. (2));  (logarithmic) mean 
plus one standard deviation Sa(T1) at Y=1 estimated 
based on Cloud Analysis (equal to (1/a)1/b e+Y|Sa,NoC/b 
per Eqs. (2) and (3)); and (logarithmic) mean minus 
one standard deviation Sa(T1) at Y=1 (equal to 
(1/a)1/b e-Y|Sa,NoC/b per Eqs. (2) and (3)). Obviously, 
other scaling points can be added as needed, by as-
signing a certain value of  in order to calculate 
(logarithmic) mean plus or minus  standard devia-



tion Sa(T1) at Y=1 estimated based on Cloud Analy-
sis equal to (1/a)1/b e±Y|Sa,NoC/b. As a rule of thumb, it 
is important to have enough spectral acceleration 
levels so that the resulting IDA curve (obtained by 
connecting the points) covers Y=1 (that is, SaY=1 for 
each record can be obtained by interpolation). Final-
ly, the structural fragility from Cloud to IDA analy-
sis is calculated the same as that of IDA analysis 
(see Eq. 7). 

3 NUMERICAL APPLICATION 

3.1 Building description and modeling 

One of the transverse frames of the seven-story 
hotel building in Van Nuys, California, is modeled 
and analyzed in this study. The building is located in 
the San Fernando Valley of Los Angeles County 
(34.221° north latitude, 118.471° west longitude). 
The frame building was designed in 1965 according 
to the 1964 Los Angeles City Building Code, and 
constructed in 1966. The building was severely 
damaged in the M6.7 1994 Northridge earthquake 
(Krawinkler 2005).  

Columns in the transverse frame are 356 mm 
wide by 508 mm deep, i.e., oriented to bend in their 
strong direction when resisting lateral forces in the 
plane of the transversal frame. Spandrel beams in the 
frame are typically 406 mm wide and 762 mm deep 
in the second floor, 406 mm wide and 572 mm deep 
in the third through seventh floors, and 406 mm by 
559 mm at the roof level. Column concrete has com-
pressive nominal strength f’c of 34.5 MPa in the first 
story, 27.6 MPa in the second story, and 20.7 MPa 
in other floors. Beam and slab concrete strength f’c 
is 27.6 MPa in the second floor and 20.7 MPa in 
other floors. Grade 60 (fy=414 MPa) reinforcing 
steel is used in columns. The specified yield 
strength, fy, is 276 MPa (Grade 40) for the steel used 
in beams and slabs. The column and beam rein-
forcement details are provided in Krawinkler (2005). 
Figure 1 shows the transverse frame modeled in this 
research. 

 

 
Figure 1. Geometric configuration of the transverse frame. 
Configurazione geometrica del telaio trasversale. 

3.1.1 Flexural, shear and bar slip models 
The Holiday Inn hotel building experienced mul-

tiple shear failures in the columns in the fourth story 
during the 1994 Northridge earthquake (Krawinkler 
2005) in the longitudinal perimeter frames. The 
amount and the spacing of the transversal reinforce-
ment in most columns were insufficient. Therefore, 
it is necessary to model materials and column mem-
bers to capture the shear and the flexure-shear fail-
ure modes in columns and the potential collapse of 
the transverse frame. About flexural model, unidi-
rectional axial behaviour of concrete and steel are 
modeled to simulate the nonlinear response of beams 
and columns. Concrete material response is simulat-
ed using the Concrete01 material in OpenSees 
(http://opensees.berkeley.edu), which includes zero 
tensile strength and a parabolic compressive stress-
strain behaviour up to the point of maximum 
strength with a linear deterioration beyond peak 
strength. Because the transverse reinforcement ratio 
for beams and columns in the Van Nuys building is 
relatively low and detailing does not meet the mod-
ern seismic code requirements, concrete is modeled 
more close to the unconfined model, with peak 
strength achieved at a strain of 0.002 and minimum 
post-peak strength achieved at a compressive strain 
of 0.006. The corresponding stress capacity at ulti-
mate strain is 0.05*f’c for f’c=34.5MPa and for 
f’c=27.6MPa and 0.2*f’c for f’c=20.7MPa. Longitu-
dinal reinforcing steel behavior is simulated using 
the Steel02 material in OpenSees. This model in-
cludes a bilinear stress-strain envelope with a curvi-
linear unload-reload response under cyclic loading. 
The previous research indicate that the observed 
yield strength of reinforcing steel exceeds the nomi-
nal strength (Krawinkler 2005, Islam 1996). As sug-
gested by Islam (1996), yield strength of 345 MPa 
(50 ksi) and 496 MPa (72 ksi) are used in this re-
search for Grade 40 and Grade 60, respectively. 
Both Grade 40 and Grade 60 reinforcement are as-
sumed to have a post-yield modulus equal to 1% of 
the elastic modulus, which is assumed to be 200 
GPa. Additional parameters required to define the 
Steel02 material model are taken equal to those rec-
ommended in the OpenSees User’s Manual. 

Flexural response of beams and columns response 
is simulated using fiber cross sections, representing 
the beam-column line elements. Uniaxial fibers 
within the gross cross section were assigned either 
concrete or steel. A typical column cross section in-
cluded 30 layers of axial fibers, parallel to the depth 
of the section. In OpenSees, flexural beam-column 
members are modeled as force-based in which a 
specific moment distribution is assumed along the 
length of the member. An internal element solution 



is required to determine member deformations that 
satisfy the system compatibility. In force-based col-
umn elements, distributed plasticity model is used in 
OpenSees in order to allows for yielding and plastic 
deformations at any integration point along the ele-
ment length under increasing loads. In order to char-
acterize the numerical integration options for the 
force-based column element and to accurately cap-
ture plastic deformations along the members, New-
ton-Cotes integration (Scott & Fenves 2006) is se-
lected. Newton-Cotes method distributes integration 
points uniformly along the length of the element, in-
cluding one point at each end of the element (Figure 
2a). Beams member force-deformation response is 
computed assuming that inelastic action occurs 
mainly at the member ends and that the middle of 
the member remains typically elastic, but this is not 
necessary. Plastic hinge integration methods are 
used to confine non linear deformations in end re-
gions of the element of specified length. The re-
mainder of the element is assumed to stay linear 
elastic and it is assumed that the length of plastic re-
gion is equal to the depth of the cross-section. The 
modified Gauss Radau hinge integration method is 
used for numerical integration to capture non linear 
deformations near the ends of the force-based beam 
elements. The modified two-point Gauss-Radau in-
tegration within each hinge region is implemented at 
two integration points at the element ends and at 8/3 
of the hinge length, Lo=h, from the end of the ele-
ment (Figure 2b). 

As far as it regard shear modeling, the shear 
model by Setzler and Sezen (2008) can capture the 
shear response with a lateral force-shear displace-
ment envelope, that includes three distinct points 
corresponding to: 1)Maximum shear strength and 
corresponding shear displacement; 2)Onset of shear 
strength degradation and corresponding displace-
ment; 3)Shear displacement at axial load failure. The 
shear strength is calculated according to the model 
by Sezen and Moehle (2004): 
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where Av is the transverse reinforcement area in 
the loading direction; s is the transverse reinforce-
ment spacing; fy is the transverse reinforcement yield 
strength; d is the section depth; f’c is the compres-
sive strength of concrete; a is the shear span of the 
element; P is the axial load; Ag is the gross area of 
the section; k is a factor to account for ductility-
related strength degradation and it is defined to be 

equal to 1.0 for displacement ductility less than 2, 
equal to 0.7 for displacement ductility exceeding 6, 
and varies linearly for intermediate displacement 
ductility values. 

Shear displacements are calculated using a com-
bination of two existing models (Sezen 2008 and 
Setzler and Sezen 2008).  The shear displacement at 
peak strength, Δv,n, is calculated as:  
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where ρl is the longitudinal steel ratio and L is the 
length of the column. 

As described in Sezen 2008, the shear displace-
ment at the onset of shear failure is adopted from 
Gerin & Adebar (2004). Shear displacement at axial 
failure is obtained using the procedure given in Setz-
ler & Sezen 2008, which requires the calculation of 
total lateral displacement. Total lateral drift is calcu-
lated using the equation proposed by Elwood & 
Moehle (2004). 

About bar slip model, when a reinforcing bar em-
bedded in concrete is subjected to a tensile force, 
strain accumulates over the embedded length of the 
bar. This tensile strain causes the reinforcing bar to 
slip relative to the concrete in which it is embedded. 
Slip of column reinforcing bars at column ends (i.e., 
from the footing or beam-column joint) will cause 
rigid body rotation of the column. This rotation is 
not accounted for in flexural analysis, where the 
column ends are assumed to be fixed. The bar slip 
model used in this study was originally developed 
by Sezen & Moehle (2003) and presented in Setzler 
& Sezen (2008). This model assumes a stepped 
function for bond stress between the concrete and re-
inforcing steel over the embedment length of the bar. 
The bond stress is taken as 1∙√f’c MPa for elastic 
steel strains and as 0.5∙√f’c MPa for inelastic steel 
strains. The rotation due to slip, θs, is calculated as 
slip/(d-c), where slip is the extension of the outer-
most tension bar from the column end and d and c 
are the distances from the extreme compression fiber 
to the centroid of the tension steel and the neutral 
axis, respectively. The column lateral displacement 
due to bar slip, Δslip, is equal to the product of the 
slip rotation and the column length (Δslip= θs∙L). 

3.1.2 Total lateral response 
The total lateral response of a RC column can be 

modeled using a set of springs in series in OpenSees 
(where the flexural spring is represented by a fiber 
section element). The flexure, shear and bar slip de-
formation models discussed above are each modeled 



by springs in series. Each spring is subjected to the 
same lateral force. The total displacement response 
is the sum of the responses of each spring. The col-
umn spring model is shown in Figure 2. A typical 
column element includes two zero-length bar slip 
springs at its ends, one zero-length shear spring and 
a flexural element with five integration points. The 
shear behavior is modeled as an uniaxial hysteretic 
material defined for the spring in the shear direction 
(i.e., transverse direction of the column or direction 
1 in figure 2). The longitudinal displacement caused 
by the bar slip is modeled with two rotational 
springs at the column ends using an uniaxial hyster-
etic material (i.e., direction 3 in Figure 2). Finally, 
same vertical displacement is maintained between 
nodes of zero length elements in the vertical direc-
tion (i.e., direction 2 in Figure 2), using the equal-
DOF option in OpenSees. 

 

 
(a) (b) 

Figure 2. Elements used for modeling (a) columns and (b) 
beams. Elementi usati per modellare (a) le colonne e (b) le tra-
vi. 

The three deformation components are simply 
added together to predict the total response up to the 
peak strength of the column (Setzler and Sezen 
2008). Rules are established for the post-peak be-
havior of the springs based on a comparison of the 
shear strength Vn, the yield strength Vy, and the flex-
ural strength Vp required to reach the plastic moment 
capacity. By comparing Vn, Vy, and Vp, the columns 
can be classified into five different categories, as de-
scribed in Setzler and Sezen (2008): 1) Category I: 
Vn<Vy: the shear strength is less than the lateral load 
causing yielding in the tension steel. The column 
fails in shear while the flexural behavior remains 
elastic; 2) Category II: Vy<Vn<0.95∙Vp: the shear 
strength is greater than the yield strength, but less 
than the flexural strength of the column. The column 
fails in shear, but inelastic flexural deformation oc-
curring prior to shear failure affects the post-peak 
behavior; 3) Category III: 0.95∙Vp<Vn<1.05∙Vp: the 
shear and flexural strengths are very close; 4) Cate-
gory IV: 1.05∙Vp<Vn<1.4∙Vp: the shear strength is 
greater than the flexural strength of the column. The 
column experiences large flexural deformations po-

tentially leading to a flexural failure. Inelastic shear 
deformations affect the post-peak behavior, and 
shear failure may occur as displacements increase; 
5) Category V: Vn<1.4∙Vn: the shear strength is 
much greater than the flexural strength of the col-
umn. The column fails in flexure while the shear be-
havior remains elastic. Figure 3 shows the three dif-
ferent deformation components and the total lateral 
displacement for two generic columns of the frame, 
belonging to two different categories. 
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Figure 3. Three different deformation components and the total 
lateral displacement for two generic columns of the frame, be-
longing to Category I (left) and Category III (right). Le tre dif-
ferenti componenti deformazionali e la risposta laterale totale 
per due generiche colonne del telaio, appartenenti alle catego-
rie I (sinistra) e III (destra). 

3.2 Record selection 

A set of 34 strong ground-motion records are se-
lected from the NGA-West2 database (Ancheta et al. 
2014). This suite of records covers a wide range of 
magnitudes between 5.5 and 7.9, and closest dis-
tance-to-ruptured area (denoted as RRUP) up to 
around 40 km. Since the soil shear wave velocity in 
upper 30m of soil, Vs30, at the structure’s site is 
around 218 m/sec, all selected records are chosen to 
be on NEHRP site classes C-D (where C:360< 
Vs30<760 m/s and D:180< Vs30≤360 m/s). The 
number of records from a single seismic event is 
limited to one, while only one of the two horizontal 
components of each recording, with higher spectral 
acceleration around 1.0 sec, is selected. The lowest 
useable frequency of 0.25Hz ensures that the low-
frequency content is not removed by the ground mo-
tion filtering process. The records are selected to be 
free field or on the ground level without considera-
tion of station housing.  

3.3 Cloud analysis 

As explained comprehensively in section 2.2, the 
Cloud Analysis is a nonlinear dynamic procedure in 
which the structure is subjected to a set of (un-
scaled) ground motion records covering a wide 
range of IM, herein Sa(T1), values. Fig. 4 shows the 
Cloud data and the associated Cloud linear regres-
sion (fitted to the NoC portion of the Cloud data). 
For each data point (colored squares), the corre-



sponding record ID is shown. It can be see that 7 
records out of 34 ground motions cause collapse or 
global dynamic instability (C data) as shown with 
red-colored squares. The line Y=1 corresponding to 
the onset of Near Collapse LS is shown with dashed 
red line. 
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Figure 4. The Cloud Regression. Regressione della Cloud. 

3.4 IDA analysis 

Each IDA curve herein shows the variation in the 
performance variable Y for a given ground motion 
record as a function of Sa(T1) while the record is 
scaled-up linearly in amplitude. Each IDA curve has 
19 strips. Initially a constant step of 0.1 from 0.1g to 
1.5g has been adopted. Since the goal is that all IDA 
curves are able to populate both the Y<1 and Y>1 
zones (for the purpose of interpolation of SaY=1), the 
records are scaled to four spectral acceleration levels 
(see the methodology section, in reality one of the 
levels correspond to the unscaled spectral accelera-
tion). It can be seen that these spectral acceleration 
levels cover values ranging between 0.4g and 0.8g 
(the zone in which most of the records exceed Y=1).  
Fig.5 illustrates the complete IDA curves (in thin 
grey lines) with respect to Y for the suite of 34 
ground-motions. The vertical red line plotted at Y=1 
demonstrates the dispersion in the spectral accelera-
tion values SaY=1 plotted as red-star points. The fig-
ure also demonstrates the (Log-Normal) probability 
density function fitted to the SaY=1 values. The hori-
zontal red-dashed line represents the median of SaY=1 
values (denoted as SaY=1) from IDA analysis. In or-
der to facilitate the comparison with Cloud Analysis 
results, the corresponding Cloud data (the squares) 
and the regression prediction (blue line) are also 
plotted. The spectral acceleration value correspond-
ing to Y=1 from the Cloud regression prediction (de-
rived as SaY=1 = (1/a)1/b, the blue dashed line) repre-
sents the median spectral acceleration capacity 
corresponding to Cloud analysis. 
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Figure 5. IDA curves, Cloud data, and the regression predic-
tion. Curve IDA, dati e regressione della Cloud. 

3.5 Cloud to IDA 

As described in section 2.2, Cloud to IDA pro-
poses an efficient procedure for performing IDA, 
which only considers few points (in most cases 4 
points) of spectral acceleration for each record, in 
order to obtain the distribution of SaY=1. Initially, all 
the records are scaled to the four points presented in 
section 2.2. Since, as said, the goal is that all the 
records are able to populate both the Y<1 and Y>1 
zones for producing a good estimation of the distri-
bution of SaY=1, just for four records, it was neces-
sary to use a fifth level of scaling equal to (1/a)1/b ∙e-

2Y\Sa,NoC/b. Figure 6 shows the Cloud to IDA results. 
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Figure 6. Cloud to IDA analysis. Analisi Cloud to IDA. 

3.6 Fragility curves results and comparisons 

Figure 7 illustrates a comparison between the 
three non-linear dynamic procedures (Cloud, Cloud 
to IDA and IDA) discussed herein. Table 1 shows 
the statistical parameters for the fragility curves, 
where η is the median value of the fragility curve 
and β is its standard logarithmic deviation. 
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Figure 7. Fragility curves comparison. Confronto tra le curve 
di fragilità. 



Table 1. Statistical parameters for fragility curves. Parametri 
statistici delle curve di fragilità. 

Methodology η(g) β Number of analyses 
Cloud 0.65 0.21 34 
IDA 0.59 0.22 19∙34 

Cloud-IDA 0.59 0.23 4∙34+4 

CONCLUSIONS 

Cloud to IDA procedure is proposed herein as an 
efficient procedure for implementing incremental 
dynamic analysis (IDA), by exploiting both the data 
points and the statistic estimates from a simple 
Cloud Analysis. The transverse frame of a shear-
critical seven-storey older RC building in Van Nuys, 
CA, which is modeled in Opensees with fiber-
section considering the flexural-shear-axial interac-
tions and the bar slip, is employed in order to illus-
trate this procedure. In particular, the procedure of 
Cloud to IDA manages to get the same results (in 
terms of fragility and for this specific case-study 
structure) as the complete IDA procedure based on 
only around 4 data point per ground motion record. 
La procedura Cloud to IDA è presentata come una 
soluzione efficiente per implementare un’analisi 
IDA. Essa si serve sia dei punti che delle stime stati-
stiche di un’analisi Cloud. Il telaio trasversale di un 
edificio in C.A., sito in Van Nuys, CA, critico a ta-
glio e modellato in OpenSees con sezioni a fibre e 
considerando l’interazione flessione-taglio-sforzo 
assiale ed il fenomeno del bar slip, è usato come ca-
so studio. La procedura Cloud to IDA, basata soli-
tamente su 4 punti riesce a cogliere gli stessi risultati 
di un’IDA completa in termini di curva di fragilità 
per il caso studio. 
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