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SUMMARY: 

The seismic risk assessment of a structure in performance-based design (PBD) may be significantly affected by 

the representation of ground motion uncertainty. In PBD, the uncertainty in the ground motion is often 

represented by a probabilistic description of a scalar parameter, or low-dimensional vector of parameters, known 

as the intensity measure (IM), rather than a full probabilistic description of the ground motion time history in 

terms of a stochastic model. In this work, a new procedure employing what we call a relative sufficiency 

measure is introduced based on information theory concepts in order to quantify the suitability of one IM relative 

to another in representing ground motion uncertainty. Based on this relative sufficiency measure, several 

alternative scalar- and vector-valued IMs are compared in terms of the expected difference in information they 

provide about a predicted structural response parameter, namely, the seismically-induced drift in an existing 

reinforced-concrete frame structure.  
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1. INTRODUCTION 

 

It is common to represent the uncertainty in the ground motion with a probabilistic model for a 

parameter, or a vector of a few parameters, related to the ground motion and known as an intensity 

measure (IM) (e.g. Luco and Cornell 2007; Jalayer and Cornell 2009; Goulet et al. 2007). One then 

faces the question of how suitable the adopted IM is for representing ground motion uncertainty.  

 

 Luco and Cornell (2007) have proposed sufficiency as one of the criteria for measuring the 

suitability of an IM in representing the dominant features of ground shaking. A sufficient IM has been 

defined as one that renders the structural response conditional on this IM to be independent of other 

ground motion characteristics. Establishing sufficiency in an absolute sense is likely to require high-

dimensional vector IMs since it involves independence, conditional on the IM, of a designated 

structural response parameter from other ground motion characteristics for all possible values of the 

IM. Information theory concepts can be employed in order to measure the suitability of one IM 

relative to another in representing ground motion uncertainty. The (Shannon) entropy of an uncertain-

valued variable is a measure of the amount of uncertainty in the value of that variable (Shannon 1948; 

Cover and Thomas 1991); more specifically, it is a measure of the missing information that is required 

(on average) to specify the value of the uncertain variable. In this work, based on the application of 

entropy and the related concept of relative entropy, we introduce a simple quantitative measure, called 

herein the relative sufficiency measure, for comparing the suitability of several IMs. This measure 

states (on average) how much more information about the designated structural response parameter 

one IM gives relative to another. We also present a case-study using the relative sufficiency measure 

to compare the suitability of various IMs for predicting the maximum inter-story drift ratio response in 

an existing reinforced-concrete moment-resisting frame located in Los Angeles.  

 

 

 



2. METHODOLOGY 

 

2.1 Information and Entropy 

Let P[A|IA] denote the probability that statement A is true based on the information in statement IA. 

The information measure H[A|IA] is a function of P[A|IA] that quantifies the amount of missing 

information about A given IA and it is expressed [in bits] as: 

]|[log]|[ 2 AA IAPIAH   (2.1) 

Now let IA state that one of {Ak: k=1,...,n} is true and that P[Ai^Aj|IA]=0 if i ≠ j, i.e., the Ak are 

mutually exclusive and exhaustive under IA. Define the entropy (Shannon 1948) of the set of Ak as the 

mean of the missing information about {Ak: k=1, ..., n}, then: 
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where IA specifies a probability model P[Ak|IA], k=1,...,n, for the Ak.  

2.2 Relative Entropy 

Suppose we gain additional (incomplete) information JA about statement A, so that the probability 

P[Ak|IA] changes to P[Ak|IA^JA], then the amount of information gain about A from JA over IA is defined 

by: 
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which is the original missing information H[A|IA] minus the subsequent missing information 

H[A|IA,JA]. Note that H may be negative, which signals an information loss. Define the relative 

entropy (Cover and Thomas 1991) of {Ak, k=1, …, n} , n mutually exclusive and exhaustive 

statements, as the mean information gain from JA over IA: 
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(2.4) 

It can be shown that the mean information gain when information JA is added to information IA is 

always non-negative; it is zero only when P[Ak|IA]=P[Ak|IA,^JA], for all k=1, …, n, i.e., information JA 

does not change the probabilities P[Ak|I] for all k (Cover and Thomas 1991). The relative entropy is 

also called the divergence or Kullback-Leibler information (Kullback 1959) or cross entropy. 

2.3 Relative Entropy of a Continuous Variable 

Let Ak={X  V(xk)} where V(xk) is a volume element at xk of volume |V(xk)|. Define the PDF for X: 
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The relative entropy can be calculated by partitioning the entire X-space with volume elements: 
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where q(xk) is the PDF corresponding to P[Ak|IA^JA] defined as in Eq.(2.5). 

2.4 Sufficiency of an Intensity Measure in an Absolute Sense 

Luco and Cornell (2007) have introduced sufficiency as one of the criteria for assessing the suitability 

of an intensity measure. Here, a variation of their original definition is given: For a designated 

structural response parameter, such as the maximum inter-story drift max, the intensity measure IM is 

perfectly sufficient if and only if: 

))(|()|( maxmax gg xIMpxp     (2.7) 

for all ground motion (acceleration) time-histories, x g, that can happen at a site. Sufficiency in this 

absolute sense is an extremely strong condition for an intensity measure; it is unlikely that any scalar 

or low-dimensional vector IM satisfies this condition. Qualitatively speaking, it means that the IM 

provides as much information about max as the entire ground motion time-history x g. If the structural 

modeling uncertainty is assumed to be negligible, a perfectly sufficient IM would fully determine the 

scalar structural response parameter max. 

2.5 Relative Entropy and Sufficiency of an Intensity Measure  

The concept of relative entropy in Eq.(2.6) can be applied to measure the average information gained 

about the maximum inter-story drift max when the available information about the ground motion is 

increased from knowing only the intensity measure IM to knowing the entire ground motion time-

history x g: 
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where IM is irrelevant under conditioning on x g and so the conditioning on IM can be dropped in that 

case. Since the relative entropy D(max|IM| x g) is zero if and only if p(max| x g)=p(max |IM( gx )), the 

adopted IM is perfectly sufficient if and only if the relative entropy D(max|IM | x g) is zero. It is noted 

that the relative entropy provides a quantified measure of the sufficiency of an IM in the sense that the 

farther away it is from zero, the less sufficient (less informative) that the IM is about max.  

2.6 Relative Sufficiency Measure Definition 

The relative sufficiency of alternative IMs can be measured by comparing the difference between their 

corresponding relative entropies as given in Eq.(2.8). First, note that the difference between relative 

entropies corresponding to IM1 and IM2 may be expressed as: 
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Therefore, the difference between relative entropies is a functional of the ground-motion time 

history x g. Its expected value over all the ground motions that could happen at the site is defined here 

as the relative sufficiency measure for max of IM2 relative to IM1: 
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where p( x g) is the PDF for the ground-motion time history at the site. If structural modelling 

uncertainty is ignored, for given x g, max is known and is equal to max( x g). This means that the 

probability density p(max | x g) reduces to a Dirac delta function (max( x g)).Therefore, after a few 

algebraic manipulations, the relative sufficiency measure I(max|IM | x g) can be expressed as:  
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(2.11) 

The relative sufficiency measure I(max|IM2| IM1) can be interpreted as a measure of how much 

information on average is gained about the uncertain structural response parameter max by knowing 

IM2 instead of IM1. If the logarithm is calculated in base two, the relative sufficiency measure is 

expressed in terms of bits of information. If the relative sufficiency measure is zero, this means that on 

average the two IMs provide the same amount of information about max. In other words, they are 

equally sufficient. If the relative sufficiency measure is positive, this means that on average IM2 

provides more information than IM1 about max, so IM2 is more sufficient than IM1. Similarly, if the 

relative sufficiency measure is negative, IM2 provides on average less information than IM1 and so IM2 

is less sufficient than IM1. 

2.7 Calculation of the Relative Sufficiency Measure 

In order to calculate the relative sufficiency measure using Eq.(2.11), both p(max|IM) and p( x g) are 

needed, so one has to choose probability models for the structural response for each candidate IM and 

for the ground motion time history. Strictly speaking, then, the relative sufficiency measure is 

conditional on these probability models, in addition to being conditional on the chosen structural 

model.  

 

In this study, the probability model p(max|IM) is selected by first choosing a set of real ground 

motion records. The structural response for each of these ground motion records is obtained by 

performing non-linear dynamic analyses. Taking p(max|IM) as a lognormal probability density 

function, the two parameters (mean and standard deviation) of each distribution can be estimated using 

simple linear regression of structural response versus the corresponding IM (Luco and Cornell 1998, 

Jalayer and Cornell 2009). The procedure for calculating the relative sufficiency of a two-dimensional 

vector-valued IM denoted by [IM1,IM2] with respect to a given reference IM is very similar to that of a 

scalar IM. The only difference is in the construction of the lognormal probability model p(max|IM1, 
IM2) where multi-variate linear regression of the structural response versus [IM1,IM2] is used in order 

to estimate the mean and standard deviation for p(max|IM1, IM2). The second step in evaluating the 

relative sufficiency measure is to calculate the expectation in Eq.(2.11) over the possible ground 

motions at the site. Strictly, this requires a probability model p( x g) for future ground motions at the 

structural site but a simple approximation is to replace the expectation by an average over a selected 



set of ground motion records. However, the resulting average may not be a good estimate of the 

expected value in Eq.(2.11) which strictly should take into account all the ground motions possible at 

the site, weighted by how likely each one is. It is shown later in the example results that this can be 

done using a stochastic ground motion model in conjunction with deaggregation of the seismic hazard 

at the site.  

 

3. APPLICATION OF THE RELATIVE SUFFICIENCY MEASURE 

 

The methodology described in the previous section is applied to an existing reinforced-concrete frame 

in order to compare the suitability of candidate intensity measures by calculating their relative 

sufficiency measures. 

 

3.1. Model Structure: Longitudinal Frame of an Existing Building 

The case-study building is a 7-story hotel in Van Nuys, California (34.221° N, 118.471° W) which has 

been studied by several researchers since the 1971 San Fernando Earthquake (e.g. Krawinkler 2005; 

Jennings 1971). The building footprint is 63 ft (3 bays) by 150 ft (8 bays), where the longitudinal 

direction is oriented east-west. The building is approximately 65 ft tall. The structural system is made 

of cast-in-place reinforced-concrete moment-resisting frames and flat plates. In the perimeter, the flat 

plate is combined with beams for additional lateral resistance. Due to old design of this building, 

columns have non-ductile detailing. In this study we use a two-dimensional model of the longitudinal 

direction of the Van Nuys building. In this direction, the building has four moment-resisting frames 

(i.e., two interior and two exterior moment-resisting frames), two of which with half of the mass of the 

building are modeled for computational efficiency (Figure 3.1). The model’s first-mode period is 

T1=1.5sec with an effective modal mass participation factor of 87%.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. (Top) The structural model consisting of two moment-resisting frames in series.  

(Bottom-left) The component backbone curve; (Bottom-right) The component hysteretic behavior. 

 

A critical damping coefficient of 5% in both the first and second longitudinal modes of vibration is 

considered for nonlinear response history analysis. The building model consists of structural 

component models that incorporate both monotonic and cyclic deterioration (Ibarra et al. 2005, see 
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Figure 3.1). Beams are modeled assuming that the effective width of the two-way slab is equal to the 

external frame’s column strip. Column shear strengths were obtained from the recommendations made 

by Kowalsky and Priestley (2000), and assuming that the concrete contribution to shear strength is 

related to the flexural ductility demand in the hinge zone. In order to consider the shear transfer 

limitation in the interior flat slab to column joints, the maximum plastic rotation of the slab in the 

internal frame was limited to 0.04. 

3.2. Selected Intensity Measures 

Various alternative scalar intensity measures are compared in this study. One of the most commonly 

used IMs is PGA (peak of the ground motion acceleration time-history). Another widely-used IM is the 

spectral acceleration at the small-amplitude fundamental period T1 of the structure, often denoted by 

Sa(T1), but more briefly referred to as the spectral acceleration Sa. Unlike PGA, which is only a 

characteristic of the ground motion, Sa(T1) also takes into account the ground-motion frequency 

content around the structure’s first-mode period. Currently, this is the most widespread IM used in 

seismic risk analyses. Luco and Cornell (2007) have proposed a structure-specific intensity measure 

denoted by IM1I,2E that takes into account not only the ground-motion frequency content around the 

first two modal periods but also inelastic structural behavior to some extent:  
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where PF1 and PF2 are modal participation factors for the first two modes of vibration; Sd(T1,1) and 

Sd(T2,2) are the spectral displacements with periods T1 and T2 and damping ratios 1 and 2 

corresponding to the first two modes; and Sd
I
(T1,1,dy) is the spectral displacement of an elastic-

perfectly plastic oscillator with period T1 damping ratio 1 and yield displacement dy. Luco and 

Cornell (2007) have demonstrated that IM1I,2E is a better predictor of the structural response of 

moment-resisting frames than Sa(T1). The final scalar IM to be considered is Sa*, which is an IM 

proposed by Cordova et al. (2000) which takes into account spectral shape information: 
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where Tf  is another period at which spectral response is calculated. In this work, the values Tf and 

are taken to be equal to T2 and 0.5; i.e. Sa* = [Sa(T1) Sa(T2)]
0.5

, a geometric mean of the spectral 

acceleration values at T1 and T2.  

Three different vector-valued IMs are considered herein:  

(a) [PGA,M] where M is the moment magnitude of the event generating the ground motion. It is 

expected that this vector is a better predictor than PGA alone; 

(b) [Sa(T1), Sa(Tf)] where Tf > T1 is another period at which spectral response is calculated; 



(c) [Sa(T1), epsilon] where epsilon is the normalized regression residual for the ground motion 

prediction relationship that predicts spectral acceleration at the period T1 in terms of the ground motion 

characteristics: magnitude M and source-to-site distance Rrup: 

1 lnln ( ) ( , )
aa rup SS T f M R epsilon    (3.4) 

where f (M, Rrup) is the ground motion prediction relation and ln Sa is the conditional logarithmic 

standard deviation for spectral acceleration at period T1 given the ground motion characteristics M 

and Rrup. Herein, epsilon is calculated based on f (M, Rrup) and ln Sa from Abrahamson and Silva 

horizontal ground motion prediction relationship (Abrahamson and Silva 1997). Baker and Cornell 

(2005) have observed that epsilon is a good proxy for spectral shape because it can predict whether for 

a given period T1, Sa(T1) is in a peak or valley of the spectrum. This means that, given Sa(T1), ground 

motion records with a positive epsilon (peak) lead to smaller demands compared to ground motions 

with a negative epsilon (valley). Therefore, the vector consisting of the pair of IMs [Sa(T1), epsilon] is 

expected to be a better IM for predicting the structural response than Sa(T1) alone.  

3.3 Selected Ground Motion Records 

The non-linear dynamic analyses are performed on a suite of 30 real ground-motion records that are 

selected from a ground motion database (PEER NGA 2010). The records are on stiff soil from a 

magnitude range of 75.6  M  and source-to-site distances of 15 35R  km. For each ground 

motion, the structural response max, as well as the values of the 8 candidate IMs are calculated. 

3.4 Parameters for Probability Model p(max| IM) 

A non-linear dynamic procedure referred to as the Cloud Method by Jalayer and Cornell (2009) has 

been employed in order to calculate the parameters of the lognormal PDF, p(max|IM). The cloud 

method consists of first applying a suite of ground motion records to the structure and calculating the 

structural response max. The parameters for the lognormal distribution can then be estimated by 

performing a simple linear regression on lnmax versus the candidate IM. More specifically, the 

expected value of lnmax given IM is modeled by a regression equation of the following form: 

(a) For a scalar IM: E[lnmax|IM]= a+bln(IM) 

(b) For IM=[Sa(T1),Sa(T2)]: E[lnmax|IM]= a+blnSa(T1)+clnSa(T2) 

(c) For IM=[PGA, M]: E[lnmax|IM]= a+blnPGA+cM 

(d) For IM=[Sa(T1), epsilon]: E[lnmax|IM]= a+blnSa(T1)+c epsilon  

In all cases, the standard deviation of lnmax given IM is estimated by the standard error s of the 

regression. The estimated parameters a, b, c (when applicable) and s for each IM are given in Table 

3.1. 

3.5 Calculation of the Relative Sufficiency Measure for Selected Intensity Measures 

In this section, the relative sufficiency measure is calculated in an approximate manner based on the 

set of recorded ground motions. As explained in the previous section, first the set of recorded ground 

motions is used to construct the probability models for the structural response max given each 

candidate intensity measure. In the next step, the relative sufficiency measure in Eq. (2.11) is 

calculated in an approximate manner as the average of the logarithmic term inside the integral over the 

set of recorded ground motions. 



The reference IM is taken to be Sa(T1) and the relative sufficiency measure for the other seven IMs 

relative to Sa(T1) is first estimated by simply replacing the expectation (an integral over all possible 

ground motion records) in Eq.(2.11) by an average over the set of selected ground motions. The 

relative sufficiency measures estimated in this way are listed in the second column of Table 3.2. The 

results can be interpreted for the studied building as, for example, PGA gives (on average) 1.33 bits of 

information less about the structural response max than Sa(T1) while IM12E gives (on average) 0.12 bits 

of information more about max than Sa(T1). This ranks IM1I,2E as the least sufficient and [Sa(T1), Sa(T2)] 

as the most sufficient of the IMs. 

Table 3.1. Regression parameters for the adopted IMs. The regression related to [PGA, M] is performed on M 

and not on ln(M); the same is true for the regression on epsilon. 

 

Although the approximation of Eq.(2.11) by an average over a set of ground motion records is 

straightforward to calculate, these estimates of the relative sufficiency measure may be too crude 

because the suite of ground motion records selected is not a random sample drawn from an appropriate 

PDF for the ground motion at the site. This deficiency in the approximation is confirmed by a more 

refined calculation of the relative sufficiency measure in Eq.(2.11), which is performed next. 

3.6 Refined Calculation of Relative Sufficiency Measure 

The expectation in the definition of the relative sufficiency measure should be calculated over the 

range of all possible ground motions at the site. This can be achieved by expanding the right-hand side 

of Eq.(2.11) with respect to source-to-site distance R and moment-magnitude M using the total 

probability theorem (Benjamin and Cornell 1970): 
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The integration in Eq.(3.5) can be carried out using a standard Monte Carlo simulation 

scheme. This paper employs the deaggregation of seismic hazard (McGuire 1995; Bazzurro and 

Cornell 1998) at different levels of ground motion intensity in order to obtain a joint probability 

distribution p(M,R) for magnitude and distance (Jalayer and Beck 2008). The stochastic ground 

motion model proposed by Atkinson and Silva (2000) is used to obtain the PDF p( x g|M,R) for the 

ground motion time history given M and R. The simulation has been carried out using 2000 sample 

analyses and the resulting values for the relative sufficiency measure are presented in the third column 

of Table 3.2. Upon screening the maximum inter-story drift ratios calculated for the 2000 synthetic 

records, 6 cases of collapse or numerical non-convergence are detected. The relative sufficiency 

measures are calculated without considering these cases, and so are conditional on structural collapse 

not taking place. 

IM a b c s 

S a (T 1 ) 0.0355 0.82 NA 0.1444 

PGA 0.0277 0.8309 NA 0.3656 

Sa*(T1,T2) 0.0254 0.85 NA 0.1824 

IM 1I,2E 0.0487 0.5393 NA 0.3945 

IM 12E 0.1695 0.837 NA 0.1334 

[S a (T 1 ), S a (T 2 )] 0.0334 0.7062 0.1433 0.1333 

[PGA, M] 3.58E-04 0.7319 0.625 0.3576 

[S a (T 1 ), epsilon] 0.0423 0.9048 -0.0615 0.1457 



 

 

Table 3.2. Relative sufficiency measures for alternative IMs relative to Sa(T1) 

Relative Sufficiency Measure Approximate Refined 

I(max|PGA|Sa(T1)) -1.330 -1.020 

I(max|Sa*(T1,T2)|Sa(T1)) -0.338 0.542 

I(max|IM1I,2E|Sa(T1)) -1.450 -1.620 

I(max|IM12E|Sa(T1)) 0.115 0.560 

I(max|[Sa(T1), Sa(T2)]|Sa(T1)) 0.140 0.330 

I(max|[PGA, M]|Sa(T1)) -1.280 -0.015 

I(max|[Sa(T1), epsilon]|Sa(T1)) 0.011 NA 

 

The results rank IM1I,2E as the least sufficient and rank IM12E as the most sufficient followed 

closely by Sa*(T1,T2), which is slightly different from the conclusion drawn before by taking the 

average over the suite of ground motion records. However, the results here are more defensible than 

those calculated previously using the simple average over the set of recorded ground motions. As can 

be seen from the results, the vector [PGA,M] gives almost the same amount of information about max 

as Sa(T1); this is different from the conclusion drawn based on the approximate solution using the set 

of real ground motion records. However, in that case the residuals of the max-PGA regression show 

very little or no trend with respect to the moment magnitude. This may be why the approximate 

calculation ranks [PGA,M] so poorly but the refined calculation ranks [PGA,M] almost as good as 

Sa(T1) for predicting max. Looking at Table 3.2, it can be observed that the relative sufficiency 

measure corresponding to [Sa(T1), epsilon] is not reported. This is because the ground motion records 

used in the refined calculations are not real recordings. 

3.7 Discussion 

It may seem surprising that IM1I,2E, the IM proposed by Luco and Cornell (2007), is ranked so poorly 

by both the approximate and refined method for the calculation of the relative sufficiency measure. 

However, this case-study structure reaches the ultimate capacity at low drift ratios (i.e., 1.8%) and 

experiences a steep post-capping stiffness. This means that IM1I,2E which is calculated based on elastic 

perfectly plastic non-linear behavior, may not capture well the non-linear behavior in the structure. 

Therefore, in terms of dynamic response given that collapse does not take place, the structure is going 

to behave more-or-less linearly. This also explains why the reference IM, Sa(T1), does well. The best 

IMs, however, are those that not only take into account information related to the first mode of 

vibration but also the information related to the second mode of vibration of the structure: [Sa(T1), 

Sa(T2)], IM12E and Sa*(T1,T2). 

4. CONCLUSIONS 

 

A measure of the relative sufficiency of alternative intensity measures for representing ground motion 

uncertainty is derived in this work based on information theory concepts. This relative sufficiency 

measure quantifies the amount of information gained (on average) about a designated structural 



response parameter by adopting one intensity measure instead of another. Adopting the first-mode 

spectral acceleration Sa(T1) as the reference IM, the relative suitability of four scalar and three vector-

valued IMs is quantified in terms of the relative sufficiency measure for the maximum inter-story drift 

ratio for a case-study building. It is found that the most sufficient (most informative) intensity 

measures are IM12E and Sa*(T1,T2), which give an average of 0.5 bit of more information than Sa(T1). 

The vector IM of PGA and magnitude M is just as sufficient (equally informative) as Sa(T1). 
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