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5.1 Abstract 
 
The demand and capacity factored design procedures discussed in the previous chapter, may 

break down in the region of global dynamic instability. This is the regime of large roof or other 

displacements where such displacements grow rapidly even for small increments in ground 

motion intensity. This chapter presents methods for determining the probability distribution for 

displacement demand that explicitly account for demand values reaching global instability. This 

probability distribution is usually conditioned on an appropriate seismic intensity measure, here, 

the spectral acceleration at the first mode period of the structure. The analysis methods discussed 

in the previous chapter can be modified for the estimation of the conditional probability 

distribution of displacement demand (given intensity) in the range of instability or “collapse” 

(e.g., “collapse” may be defined as global displacements beyond an arbitrary large value, or as 

lack of numerical convergence). This conditional probability distribution is used then in the 

implementation of probabilistic frameworks for seismic assessments. The mean annual frequency 

of exceeding a given maximum inter-story drift angle or “drift hazard” can be derived in various 

ways based on how the conditional probability distribution of drift demand given the spectral 

acceleration and the spectral acceleration hazard (the mean annual probability of exceeding a 

given spectral acceleration) are estimated. Factored demand and factored capacity were 

introduced in Chapter 3, as the main components of demand and capacity factored design 

(DCFD). A generalized definition of factored demand can be used to estimate the factored 

demand based on the estimated drift hazard curve. Factored capacity can also be estimated based 

on the estimated drift hazard and corresponding limit state probability. However, based on this 

definition, the factored capacity for the limit state of global collapse lies at infinity. Therefore, the 

modified DCFD design procedure taking into account the collapse information can be applied for 

seismic assessments only for limit states other than collapse or (“exogenous” limit states such as 

maximum local displacement limits). This study is presented through a comprehensive case study 
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of an existing reinforced concrete 7-story frame structure in Los Angeles, which is modeled with 

degrading strength in the nonlinear range.  

 

5.2 Introduction 
 
This chapter discusses the formulation and estimation of nonlinear dynamic displacement demand 

for probabilistic seismic assessments in the most severe ground motion regime, i.e., when the 

displacement demand is in the region of “global instability” in the structure. Global instability 

refers to a limiting case in structural response, namely, a mode of collapse when the global 

(dynamic) displacement response in the structure grows rapidly, i.e., the displacements increase 

an arbitrarily large amount for a (relatively) small increase in ground motion intensity. This 

limiting case in structural behavior, for a particular ground motion record can be marked by a 

point where the slope of the incremental dynamic analysis (IDA) curve decreases to a certain 

small percentage of its initial slope in the elastic region. Included too in global instability are the 

situations when the computer algorithm fails to converge. (See Chapter 4 or Vamvatsikos and 

Cornell (2001) for the description of an IDA curve). 

 

In the previous chapter, we studied alternative methods for estimating the conditional probability 

distribution of displacement demand for a given intensity measure. We then calculated the 

demand hazard by integrating the estimated conditional distribution of displacement demand 

given the intensity measure and the hazard function for the intensity measure. An analytical 

closed-form expression was derived in Chapter 2 for the demand hazard assuming a parametric 

function (power-law) for the hazard and a lognormal distribution with constant dispersion for the 

conditional distribution of displacement demand. A demand and capacity factored design (DCFD) 

format was derived in Chapter 3 based on this analytical form. Factored demand, as introduced in 

Chapter 3, essentially forms one “half” of the formulation; the other “half” is the factored 

capacity. In chapter 4, we focused our attention on factored demand estimation. Building on a 

prior development in Chapter 3, factored demand was shown to be the demand value that 

corresponds to a hazard value equal to the allowable frequency of limit state (this demand value 

can be found from the demand hazard curve.). This equivalence property will be retained and will 

prove useful for the estimation of factored demand in this chapter. 

  

Estimation of the conditional probability distribution for the displacement demand is pivotal in 

the demand estimation process. In Chapter 4, the distribution was typically modeled by a 
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lognormal distribution, which was used for the derivation of the closed form DCFD format; it was 

also estimated by a non-parametric empirical distribution which was used for the numerical 

integration calculations. However, for large values of ground motion intensity level, when the 

displacement demand approaches the region of global instability in the structure, a considerable 

portion of structural analysis results used for calculating the non-parametric percentiles produce 

arbitrarily large displacements. As a result, additional parameters may need to be introduced in 

order to reflect the portion of data in which the displacement response has become too large to be 

appropriately modeled by a common statistical model (e.g., log-normal). Shome and Cornell 

(1999) introduced a three-parameter distribution model in order to model the conditional 

probability distribution of displacement demand for a given intensity measure when cases of 

global instability (due to large deformations) are observed in the structural response. In this 

model, for a given intensity measure, the conditional probability distribution for non-collapse 

cases is modeled with a two-parameter lognormal distribution and a third parameter is introduced 

as the probability of collapse. 

 

This chapter revisits some of the methods discussed in Chapter 4, this time considering explicitly 

global instability or “collapse” cases observed in the dynamic displacement response of the 

structure. The dynamic displacement response for the non-collapse portion of the sample of 

responses is modeled using the same statistical models discussed in Chapter 4. The additional 

variable accounting for the global instability is modeled both parametrically and non-

parametrically. Parametric modeling is helpful for deriving a closed-form expression for demand 

hazard later in this chapter (similar to the DCFD presentation in Chapter 3), while non-parametric 

models are going to be useful for demand hazard estimation by numerical integration. 

 

In the context of this study, the spectral acceleration of the fundamental period of the structure, 

, is chosen to represent the ground motion intensity measure and the maximum inter-story 

drift, 

aS

maxθ , represents the dynamic displacement-based demand. The methods discussed are 

equally applicable to other choices of the intensity measure and demand definitions. 

 

5.3 Organization of this chapter 
 
Chapter 4 was structured based on alternative analytical methods for the estimation of the 

displacement-based demand (here, the maximum inter-story drift angle), such as, single-stripe 

method or multiple-stripe method. This chapter, however is organized based on the quantities that 
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are being estimated, namely, the conditional drift demand, the drift hazard, and, the factored 

demand.  

 

This chapter starts with a brief overview of spectral acceleration (the intensity measure) hazard 

estimation, as it will be the basis of future calculations. The next section discusses various ways 

in which the drift demand (displacement-based demand) can be estimated. The main purpose for 

demand estimation is to be able to estimate the conditional probability distribution of drift 

demand for a given spectral acceleration. The discussion of alternative methods for drift hazard 

estimation follows, as it is based on how the spectral acceleration hazard and the conditional 

probability distribution of drift demand for a given spectral acceleration are estimated. The 

demand and capacity factored design discussed in Chapter 4 is revisited, this time considering the 

global instability information in its formulation. Within this context, the alternative options for 

the estimation of the factored demand will be discussed.  

 

Among the narrow-range and wide-range analysis methods discussed in Chapter 4, only single-

stripe analysis, multiple-stripe analysis (MSA) and incremental dynamic analysis (IDA) are going 

to be used here as estimation tools.  

 

Similar to the previous chapter, we have selected the transverse frame in a 7-story frame structure 

in Los Angeles, CA, as the case study frame structure. Information about modeling of this 

structure can be found in Chapter 4. Based on the static pushover results in Figure 4-3, we can 

anticipate that when maximum inter-story drift levels reach 1 to 2% or more, global instability 

may begin to be a threat. Further as we saw in the several figures there the curve of median 

maximum drift versus (dynamic intensity) first-mode spectral acceleration begins to curve and 

become much less stiff for drifts above about 1%, again implying that under some records (at 

least) the drifts are increasing rapidly as they do when under incipient dynamic instability. The 

nonlinear dynamic analyses are performed using the same selection of ground motion records 

described in the previous chapter. The selection consists of a set of 30 ground motion records 

selected from the Silva Catalog (Silva, 1998). These records were all California events recorded 

on stiff soil and were selected from a moment magnitude-(closest) source-to-site distance range 

of,  and 15 . 5.75.5 ≤≤ M 120≤≤ R
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5.4 Global dynamic instability capacity (collapse) estimation 
 
In order to conduct studies in the region of global instability in the structure, we need first to 

estimate the drift demand values that represent the onset of global instability in the structure. For 

brevity, we will refer to these points as the “collapse cases”.  

 

We have used the results of the incremental dynamic analyses (see Chapter 4) in order to estimate 

the onset of global dynamic instability in the structure for each ground motion record. In this 

study, the onset of global instability is marked by the point where the local slope of the IDA 

curve decreases to a certain percentage (here 16.6% or less1) of the initial slope of the IDA curve 

in the elastic region (Figure 5-1-a and 5-1-b). Note that some of these maximum inter-story drift 

values are as low as 1 to 2 % but the majority lie in the 2 to 4% range. 
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Figure 5-1 – Estimation of collapse points from IDA curves.  a) IDA curves with the collapse 

points marked on them. b) Collapse Points plotted Separately. 

 

Here we assume that for all spectral acceleration levels greater than the spectral acceleration 

capacity (the corresponding ordinate in the plot in Figure 5-1-b for each record), the structure has 

collapsed. Also, similar to FEMA 350 guidelines (SAC), we set an arbitrary upper bound (in 

SAC, it is a drift equal to 10%, here we set it equal to 5%) beyond which the model is surely 

                                                 
1 Note that this percentage (16.6% or 1/6 of the elastic slope ) is slightly less than the (20% or 1/5 of the 
elastic slope) used in the previous chapter. By decreasing the percentage, we were able to “catch” the corner 
point that precede a flat line in some of the IDA curves. 
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invalid. It should be noted that while this program (virtually always “converged”, meaning that it 

produced a number) some programs do not. Such non-converging cases are also decidedly 

collapse cases. 

5.5 Spectral acceleration hazard 
 
The spectral acceleration hazard, i.e., the annual frequency of exceeding a given spectral 

acceleration, , can be represented both parametrically and non-parametrically. The hazard 

curve is normally described non-parametrically, which is the natural outcome of performing a 

site-specific probabilistic seismic hazard analysis (PSHA), as in the example in Chapter 4. A 

particular parametric formulation for the spectral acceleration hazard was introduced in the 

previous chapters (see also, Kennedy and Short, 1994, and, Luco and Cornell, 1998), in which the 

non-parametric spectral acceleration hazard curve was estimated (at least locally) by a power-law 

expression. Hence, at : 

)(⋅
aSλ

xSa =

 

1)-(5                               )( 0
kxS kx

a

−
⋅=λ  

5.6 Probability distribution of demand for a given spectral acceleration 
 
As discussed above, we presented alternative methods for estimating the conditional probability 

distribution of drift demand for a given spectral acceleration in the previous chapter. This chapter 

focuses on demand estimations in the region of global instability in the structure. In order to 

model the distribution of demand in this region, we disaggregate the reported displacement 

response values into two groups: given non-collapse and given collapse groups. For example, 

given a spectral acceleration level of 0.5g, 3 of the 30 records have led to collapse. Thus, 27 

records represent the “given non-collapse” group and 3 records the “given collapse” group for 

this ground motion level. All the alternative methods discussed in the previous chapter are still 

applicable for modeling the distribution of demand given non-collapse. The non-collapse 

estimations need to be supplemented with information about the conditional probability of 

collapse for a given spectral acceleration. This chapter presents both parametric and non-

parametric methods for representing the conditional probability of collapse for a given spectral 

acceleration. Combining alternative methods for demand estimation introduced in Chapter 4 

(here, for the non-collapse part), and the available options for estimating the conditional 

probability of collapse leads to a large variety of possibilities for estimating the distribution of 

demand in the region of global instability. We are not going to discuss all the possible options, 
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however. We shall only elaborate on those options that will be employed later for the estimation 

of drift hazard and factored demand. 

 

For a given spectral acceleration, the conditional probability distribution function for drift 

demand in the region of the global instability in the structure can be estimated by parametric, 

semi-parametric and non-parametric methods, based on the methods used for modeling the 

distribution of non-collapse drift demand and the conditional probability of collapse. 

 

Most of the methods discussed in this section incorporate a parametric statistical model known as 

the three-parameter distribution (Shome and Cornell, 1999) in their formulation. This model, 

estimates the distribution of the drift demand for a given spectral acceleration given that global 

instability is not happening (non-collapse cases), by a lognormal (two-parameter) distribution. It 

employs an additional (third) parameter to account for the probability of global instability 

(collapse) for a given spectral acceleration level. The conditional probability of collapse for a 

given spectral acceleration level, x, is denoted as: 

 

2)-(5                      ]|[ )(| xScollapsePxP aSC a
==  

Equivalently, we can define the limit state of collapse in spectral acceleration capacity terms, i.e., 

collapse occurs when the spectral acceleration demand exceeds the (random variable) spectral 

acceleration capacity, . Then, the conditional probability of collapse for a given spectral 

acceleration demand can also be written as: 

CaS ,

 

3)-(5          )(]|[]|[ )(
,,| xFxSSSPxScollapsePxP
Caa SaaCaaSC ==≤===  

where is the cumulative distribution function (CDF) of the spectral acceleration capacity. 

This function is also known as a fragility function. A fragility function refers to a conditional 

probability of exceeding a limit state for a given intensity measure or demand parameter (for a 

discussion of fragility functions see Chapter 3 or Kennedy and Ravindra, 1984).  

)(
,

xF
CaS

 

We dedicate the next few paragraphs to introducing the three-parameter distribution. This will be 

useful later when we discuss the alternative methods for estimating the conditional distribution of 

demand for a given spectral acceleration. Most of these methods employ the proposed three-

parameter distribution for modeling the distribution of demand. 
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5.6.1 A Three-parameter distribution and its percentiles  
 
Shome and Cornell (1999) expanded as follows the probability that drift demand, maxθ , exceeds 

a specified value, y, for a given spectral acceleration, x : 

 

4)-(5   ) )(1()|()()|(  ]|[)|( |,||,|max| maxmaxmax
xPxyGxPxyGxSyPxyG

aaaaa SNCSCSNCSNCaS −⋅+⋅==>= θθθ θ

 

where  denotes the complementary cumulative distribution function (CCDF) and  

(=1  ) is the probability of no collapse for a given spectral acceleration, 

)(⋅G

)(| x
aSC

)(| xP
aSNC

P− x . Equation 5-4 

is a special application of total probability theorem (see Appendix B or Benjamin and Cornell, 

1970) expanding the probability of exceeding drift hazard based on whether the drift response has 

reached collapse (denoted by C) or not (denoted by NC). Given collapse, the conditional 

probability of exceeding any finite drift demand given collapse, , is assumed to be 

equal to 1: 

)(,|max
⋅

aSCGθ

 

5)-(5              1 ],|[)|( max,|max
==>= xSCollapseyPxyG aSC a

θθ  

 

Using the above assumption, Equation 5-4 can be re-written as follows: 

 

6)-(5           ) )(1()()|(  )|( ||,|| maxmax
xPxPxyGxyG

aaaa SNCSNCSNCS −+⋅= θθ  

 

where is the CCDF of displacement demand, y, for a given spectral acceleration, x, 

given that no collapse cases has happened. Assuming that the drift demand distribution of non-

collapse cases (for a given spectral acceleration) is lognormal, with median, 

)(,|max
⋅

aSNCGθ

aSNC ,|maxθη , and 

fractional standard deviation (i.e., standard deviation of the natural logarithm or dispersion), 

. The CCDF, , can be calculated as: 
aS,NC|maxθβ )(,|max

⋅
aSNCGθ

 

7)-(5           )
)(

))(ln()ln(
(],  |[)|(

,|

,|
,max,|

max

max

maxmax
 

x

xy
 ΦxSCollapseNoyPxyG

a

a

aa
SNC

SNCC
S|NCaSNC

θ

θ
θθ β

η
θ

−
==>=

 

Where is the standardized gaussian CCDF. Note that both the median and the dispersion 

are in general functions of level, x. Substituting 

)(⋅ΦC

aS )(| ⋅NCDG with expression above (Equation 5-7) 

the CCDF for the drift demand given spectral acceleration, )(|max
⋅

aSθG , is finally calculated as: 
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Equation 5-8 demonstrates that the conditional probability distribution of drift demand for a given 

spectral acceleration is expressed by three parameters, namely, the conditional probability of no 

collapse, , the median drift demand, , and the fractional standard deviation 

or dispersion of drift demand given no collapse, 

(.)| aSNCP (.),|max aSNCθη

|max NCθ (.)(.) ,|ln, max aa SNCS θσβ = , all functions of 

ground motion intensity level. 

 

The CDF of the three-parameter distribution can be calculated after some simple algebraic 

manipulations and noting that )(1)( ⋅−=⋅ FG : 

 

 9)-(5                   )()
)(

))(ln()ln(
( )|(1

]|[)|(

|
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where  is the gaussian CDF. Equation 5-9 can be used in order to calculate the drift demand 

value, , corresponding to percentile p of the three-parameter distribution, by setting the left 

side of the equation equal to p and solving it for : 

)(⋅Φ

py

py

 

10)-(5              ))
)(

()( exp()()|()(
|

1
,|,|,|

1
| maxmaxmaxmax xP

pΦxxxpFxy
a

aaaa
SNC

SNCSNCSNCSp
−− ⋅⋅== θθθθ βη  

where  is the drift demand percentile for the spectral acceleration level x, i.e., the p% drift 

value, assuming that the probability distribution of the displacement response is estimated by the 

three-parameter distribution and  is the inverse function of standardized normal 

distribution. Note that for , this leads to familiar formulas for 16

)(xy p

)(1 ⋅Φ −

1) =x(|P
aSNC

th, 50th, and 84 

percentiles of a lognormal distribution: 
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)()(

  ))(- exp()()(
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5.6.2 Methods incorporating the three-parameter distribution 
 
In the section below, we discuss methods that incorporate the three-parameter distribution for 

modeling the conditional probability distribution of demand for a given spectral acceleration. 

These methods are differentiated based on how they estimate the (three) parameters of the three-

parameter distribution. 

 

5.6.2.1 Fully parametric using power-law functions 
 
In this method, the parameters of the three-parameter distribution are all represented by analytical 

(parametric) functions that are assumed to apply at least locally in the region of interest. More 

practically, this means that they are accurate enough to provide adequate numerical estimates of 

the drift hazard, Equation 4-5-a, in some interval of drift levels of interest. The median drift 

demand for a given spectral acceleration given non-collapse, (.),|max aSNCθη , is assumed to follow a 

power-law expression (e.g., Luco and Cornell, 1998, and, Cornell, Jalayer et al., 2002): 

 

11)-(5                                                      )( ,|,| maxmax

b
xSNCSNC xax

aa
⋅== =θθ ηη  

The fractional standard deviation of drift for a given spectral acceleration given no-collapse is 

assumed in this model to be constant with respect to spectral acceleration: 

 

12)-(5                                                      )(,|max NCSNC x
a

ββθ =  

The parameters, a, b, and NCβ  can be estimated for example, by simple regression applied to 

cloud or set of stripes of response results, as in Chapter 4, but now using only non-collapse data 

points. The conditional probability of non-collapse for a given spectral acceleration, , or 

the spectral acceleration fragility, , can be modeled by a power-law distribution (see 

Shome and Cornell (1999): 

aSNCP |

)(
,

xF
CaS

 

                         1)(1)(
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
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The collapse points in Figure 5-1 can be used to estimate empirically (e.g., by the ratio of 

the “collapse” points with a spectral acceleration greater than a given value, x). The values of the 

two parameters,  and 

aSNCP |

0as cβ can be estimated, for example, by performing linear regression in the 

 139



 
CHAPTER 5                  DEMAND ESTIMATIONS IN THE REGION OF GLOBAL INSTABILITY 

logarithmic space on the empirical values (Figure 5-2 and Table 5-1). If we substitute the 

above expressions in Equation 5-8, the CCDF for the drift demand given spectral acceleration, 

 will be written as: 

aSNCP |

)(|max
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aSGθ
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Figure 5-2 - Conditional probability of non-collapse for a given spectral acceleration represented 

both empirically and analytically. 

 

a0 βC

0.55g 2.3
Table 5-1. Parameter estimates for  and 0as cβ  

 
For spectral acceleration values smaller than , the conditional probability distribution of drift 

demand for a given spectral acceleration is the same as the non-collapse conditional probability 

distribution. This is because, according to the model, the spectral acceleration value  marks 

0as

0as
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the minimum spectral acceleration at which “collapse” cases can occur in the structure. In 

application, as in this example, there may be cases, e.g., 55.0=aS

0as

                    

, where there are observed 

collapses at levels less than the estimated value of . Other methods of parameter 

estimation, e.g., maximum likelihood, could be used to avoid this inconsistency if it should prove 

unsatisfactory. The parametric model has the advantage that it can be estimated by results from as 

few as two  levels, implying savings in analysis runs. This property will be explored in a 

following section. Equation 5-14 will be used later in this chapter for the derivation of a closed-

form result for the drift hazard considering now the global instability information. 

aS

aS

lnθ

Bµ

) 17 -(5        

Aη

) 22
Bx σ⋅2β θ

 

5.6.2.2 Fully parametric using the IDA procedure 
 
This method employs incremental dynamic analysis (IDA) to estimate the parameters of the 

three-parameter distribution. For a set of ground motion records, the results of incremental 

dynamic analysis of the structure are represented by the IDA curves. This new estimation method 

is based on the typical observation that the individual IDA curves in the non-collapse regime may 

each be relatively straight in a log-log representation but with quite widely varying slopes and 

intercepts (see Figure 5-3). The underlying probabilistic model is that each such curve is a 

straight line with random slope and intercept: 

 

16)-5 (                                   lnln)( ,,|max caSNC SxxBAx
a

≤⋅+=  

in which the intercept denoted by  (natural log of A) and slope b are assumed to be jointly 

normally distributed random variables with means, 

Aln

Alnµ . and , and variances, .and 

, and correlation coefficient, 

Aln
2σ

B
2σ ρ . The easily derived implications of this model are that 

 is log-normally distributed with median: )(, x
aSNC|maxθ

 

           )()(,|max
B

aSNC
xx Ax
µ

θ ηη ⋅=  

in which the  is the median of A (i.e., ]exp[ ln Aµ ), and fractional variance (i.e., variance of 

θln ): 

 

18)-(5                  (lnln2)( ln
2
ln,|max ABASNC xxa σσρσ +⋅⋅⋅⋅+=  

Note that unlike the model in previous section the fractional standard deviation is a function of 

spectral acceleration, not a constant. 
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The statistical parameters of Aln

ln i

 and b can be estimated as follows. For each record, i, fit (by 

regression) a line of the form,   lnln)( xbax ii ⋅+=θ , to the nonlinear dynamic runs for all non-

collapse cases, i.e., for , where is the i
ica,Sx ≤

icaS ,
th observed value of the capacity random 

variable, i.e., the  level at which collapse is observed under the i

aS

aS th record. Then the sample 

values  for i=1,2,…,n, can be simply processed for the sample means, standard 

deviations and correlation coefficient, which can serve as estimates of the corresponding model 

parameters. Note that we are ignoring the variability of individual data points about each IDA 

line. Experience has shown that (in the non-collapse domain) this variability is quite small 

relative to the record-to-record variability of the fitted lines themselves. Figure 5-3 shows a few 

examples of such fitted lines. In fact, it is this small variability that implies that non-collapse 

portion of this method could be accurately implemented by as few as two non-linear analyses per 

record, which is a primary advantage it has. 

},{ln ii ba

 

 

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Incremental Dynamic Analysis − Holiday Inn, Van Nuys

Maximum Interstory Drift Angle, θ
max

S
pe

ct
ra

l A
cc

el
er

at
io

n 
of

 "
fir

st
" 

m
od

e,
 S

a [g
] s

Northridge,  Hollywood Stor, 360

Imperial Valley,  Westmorland, 90 

Kern County,  Hollywood Stor, 90 

Figure 5-3 - Some IDA curves in the non-collapse regime approximated by straight lines in the 

log-log representation. Note that the points marked as circles in the end are the points at which 

the global instability capacity was reached (Figure 5-1) 

 

The expression for the CCDF of drift demand for a given spectral acceleration  is 

similar to Equations 5-14 and 5-15, where the median and fractional standard deviation are 

calculated now from Equations 5-17 and 5-18. The conditional probability of no collapse 

)(|max
⋅

aSGθ
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(Equation 5-13) is modeled and found as in the previous section. Figure 5-4 illustrates the 16th, 

50th and 84th percentiles of the distribution of drift given spectral acceleration obtained by 

substituting the values for (.),|max aSNCθη  and (.),|max aSNCθβ  from Equations 5-17 and 5-18 into 

Equation 5-10. The thin lines are the percentiles of the drift response (given spectral acceleration) 

obtained using the fully parametric IDA curves given no-collapse but ignoring the likelihood of 

collapse, i.e., by assessing  in Equation 5-13 equal to infinity (i.e., as if this IDA-based 

method had been applied in Chapter 4 as it very well could have been). The thick lines are the 

percentiles using the fully parametric IDA curves and incorporating the probability of collapse 

information. The consideration of collapse cases has caused the percentiles to bend and diverge 

from their corresponding no-collapse values. This approach and the information gathered from 

the percentiles are going to be incorporated in the factored demand estimation later in this 

chapter. The parameter estimates used in this example are given in Table 5-2. 

aos

A

 

η βA µB σB ρ

0.025 0.43 1.23 0.19 0.93
 

Table 5-2. Statistical parameters for ln A and B 
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Figure 5-4 - Fully parametric 16th, 50th and 84th percentiles of the drift response given spectral 

acceleration obtained using parametric IDA curves. 
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5.6.2.3 Semi-parametric using multiple-stripe analysis 
 
This method uses the results of the multiple-stripe analysis (revisited in Chapter 4) in order to 

estimate now the parameters of the three-parameter distribution and hence the probability 

distribution of demand in the region of global instability. For a given set of records, the results of 

the multiple-stripe analysis on the structure are represented by a series of “stripes” that are plotted 

for multiple spectral acceleration levels. For each spectral acceleration level, x, the non-collapse 

part of the stripe response is modeled by a lognormal (parametric) distribution. Also, the 

proportion of the observed collapse cases in the stripe response is used to estimate the 

(conditional) probability of collapse for the given spectral acceleration level, x. In contrast to the 

previous sections of this chapter these three parameter distribution parameters are not represented 

by parametric functions of x, however. 

 

The results of the multiple-stripe analysis on the structures are plotted in Figure 5-5. These results 

are the same as those obtained in the previous chapter. The collapse cases, i.e., those for which 

the value exceeds  of that record, are marked as stars inside the circles. aS ciaS ,
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Figure 5-5 - Response results of multiple-stripe analysis with cases identified as collapse marked. 

 
In order to fit a lognormal distribution to the non-collapse results for each spectral acceleration 

level, x, we need to estimate the median, , and the fractional standard deviation, )(,|max
x

aSNCθη

)(,|max
x

aSNCθβ . Here, we have estimated the non-collapse median, )(,|max
x

aSNCθη , by the (counted) 

50th percentile of the non-collapse part of the stripe response. The non-collapse fractional 
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standard deviation, , is estimated in the logarithmic scale by half the distance 

between 16

)(,|max
x

aSNCθβ

th and 84th percentiles of the non-collapse results. Note that the more conventional 

method of moments might have been used as well in this case. (The counted method has been 

used in the past largely to avoid the problems introduced by collapse-case data points, especially 

when these are associated with the non-convergence for which no observed value of maxθ  is 

available.) The conditional probability of non-collapse, , for the stripe is estimated 

(empirically) by the ratio of the non-collapse cases to the total number response points on the 

stripe.  

)(| xP
aSNC

 

Having estimated the three parameters of the three-parameter distribution, as explained in the 

above paragraph, we can calculate the 16th, 50th and 84th percentiles of the marginal distribution in 

Equation 5-9 for each spectral acceleration level, x. Figure 5-6 illustrates these percentiles, as a 

function of the spectral acceleration, against the multiple-stripe analysis results in the 

background. The heavy lines stop when the probability of collapse becomes so large as to leave 

them undefined. The probability of collapse exceeds 50% above 0.7 g. 
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Figure 5-6 - The 16th, 50th and 84th percentiles of the semi-parametric three-parameter 

distribution calculated from the results of the multiple-stripe analysis. 
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5.6.2.4 Pseudo-parametric method 
 

An alternative way to consider the collapse cases in the estimations is to fit a two-parameter 

lognormal distribution to the estimated percentiles. In this method, which we refer to as the 

pseudo-parametric approach, the 16th, 50th and 84th percentiles of the three-parameter distribution 

(calculated from Equation 5-10) are used to estimate the (two) parameters of the lognormal 

distribution, namely, the conditional median and fractional standard deviation of the drift demand 

given spectral acceleration. The conditional median, 
aS|maxθη , is estimated by the 50th percentile 

and the conditional factional standard deviation, , is estimated by half the distance 

between counted 16

aS|maxθβ

th and counted 84th percentiles in the logarithmic scale. We have just 

presented several methods for deriving the parameter values of the response based on the three-

parameter distribution. In this pseudo-parametric approach, the estimated percentiles using these 

alternative methods are approximated by a lognormal distribution. This model should be used 

with caution since it is trying to represent a sample including both extreme values (the collapse 

cases) and moderate values (the non-collapse cases) by only two parameters. Nonetheless we are 

going to use this method for factored demand estimation later in this chapter, if only because it 

provides the opportunity to use the simple representation of factored demand in Chapter 4. We 

shall compare its estimates with those obtained more rigorously. 

5.6.2.5 Comparison of the fully-parametric IDA method to the semi-parametric method 
with MSA 

 
The counted 16th, 50th and 84th percentiles of the drift response given spectral acceleration 

obtained semi-parametrically (using multiple-stripe analysis) and fully-parametrically (using 

IDA) are compared in Figure 5-7.  

 
We can observe that parametric percentiles are somewhat different from the semi-parametric 

percentiles especially at lower  values. Reasons for this difference include the fact that the 

power-law curve in Figure 5-2 is not a very good approximation for the empirical , that 

IDA fits are dominated here by the higher density of points at the higher  levels, and that the 

IDA method simply does not have the flexibility that the MSA method has. However, the 

advantage of using the fully parametric method for estimating the probability distribution of drift 

given spectral acceleration is that the resulting percentiles are smooth functions of spectral 

acceleration. 

aS

aSNCP |

aS
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Figure 5-7 - The 16th, 50th and 84th percentiles of drift response given spectral acceleration 

estimated semi-parametrically using multiple-stripe analysis (MSA) and fully parametrically 

using the IDA procedure. 

 

5.6.3 Non-parametric Methods 
 
The methods that are discussed next do not explicitly use the three-parameter distribution for 

modeling the conditional probability distribution of demand for a given spectral acceleration. 

These methods simply estimate the counted percentiles of the drift demand given spectral 

acceleration using the results of multiple-stripe analysis. 

 

The calculation of the counted percentiles involves sorting the reported drift results in ascending 

order. Therefore, the large drift values that correspond to collapse cases will move to the upper 

end of the sorted data and, hence, they will not enter the calculations as long as the desired 

percentile values exist (i.e., they have not yet reached the global dynamic instability limit). 

 

5.6.3.1 Non-parametric considering the collapse cases 
 
The non-parametric percentiles of the drift demand given the spectral acceleration can be 

calculated by treating the collapse cases similar to non-converging results. In other words the 

reported drift values that are beyond the drift capacity level (for each specific record) are 

 147



 
CHAPTER 5                  DEMAND ESTIMATIONS IN THE REGION OF GLOBAL INSTABILITY 

effectively set to infinity. When, for any spectral acceleration value, the number of such 

considered collapse cases is large enough, the percentile value becomes effectively infinite as 

well and we simply cut-off or stop reporting the percentiles at that point.  

 

The non-parametric estimates can also be obtained for  and . The CDF 

for the non-collapse part of the stripe response is estimated empirically by the fraction of the non-

collapse results that are less than or equal to a given drift value. The probability of non-collapse is 

estimated empirically by the ratio of the non-collapse cases observed in the stripe response. This 

method will be applied later in this chapter for calculating the drift hazard by numerical 

integration. 

)|(,|max
xyG

aSNCθ )(| xp
aSNC

 

5.6.3.2 Non-parametric not considering the collapse cases 
 
In this method the percentiles of the drift response for a given spectral acceleration are calculated 

by counting as described above. The counted percentiles are calculated from the reported drift 

values ignoring the fact that some may be beyond the collapse drift levels, i. e., collapse or non-

collapse is not considered or recognized. The counted percentiles obtained in the previous chapter 

were calculated this way. 

5.6.3.3 Comparison of the non-parametric methods considering and not considering the 
collapse cases  

 
Figure 5-8 illustrates the non-parametric (counted) percentiles of the drift response as a function 

of spectral acceleration for the two methods discussed above, namely, the methods considering 

and not considering the collapse cases. The two sets of percentiles are of course identical as long 

as the counted percentiles considering the collapse cases exist. It can be observed that the counted 

percentiles considering the collapse information are cut off when the percentage of non-collapse 

cases is less than the corresponding percentile. For example, the 50th percentile curve considering 

collapse is cut off at 0.7g. At this spectral acceleration level, some of the (relatively) smaller drift 

values were recognized as collapse cases, and this has slightly shifted the 50th percentile curve 

towards larger drift values. It is at higher  and drift levels, near collapse that differences 

emerge.  

aS

 148



 
CHAPTER 5                  DEMAND ESTIMATIONS IN THE REGION OF GLOBAL INSTABILITY 

10
−3

10
−2

10
−1

10
−1

10
0

Counted Percentiles for Multiple−Stripe Analysis 
Holiday Inn, Van Nuys

Maximum Interstory Drift Angle, θ
max

S
pe

ct
ra

l A
cc

el
er

at
io

n 
of

 "
F

irs
t"

 M
od

e,
 S

a [g
] s

 

counted 50th considering collapse infromation         
counted 16th considering collapse information         
counted 84th considering collapse information         
counted 50th NOT considering collapse information     
counted 16th NOT considering collapse information     
counted 84th NOT considering collapse information     

 
Figure 5-8 - Multiple-stripe analysis counted 16th, 50th and 84th percentiles of the response with 

and without consideration of the collapse information 

5.6.3.4 Comparison of the non-parametric method not considering the collapse cases and 
semi-parametric method with multiple-stripe analysis 

 
The counted 16th, 50th and 84th percentiles of the drift response as a function of the spectral 

acceleration (as in Chapter 4, not considering the collapse information) and the semi-parametric 

estimation of parameters of the three-parameter distribution using multiple-stripe analysis 

discussed in Section 5.6.2.3 are compared in Figure 5-9 below.  

 

The median curves in the two cases are very close up to the cut-off point. The 16th and 84th 

percentiles are fairly close for the two cases especially when the drift values are small. It can be 

anticipated, however, that predictions associated with large drift values (beyond 2-3%)will be 

strongly affected. We shall see in Section 5.7.2 that, indeed the drift hazard results diverge in this 

(large drift) region. 

5.6.3.5 Discussion 
 
Several methods for estimating the conditional probability distribution of demand given spectral 

acceleration have been discussed. These methods have been classified based on the degree to 

which they use parametric estimations in their calculations. Obviously, not all the possible 

options have been presented. The attention has been focused on the methods that are going to be 
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used later in this chapter for the estimation for the drift hazard and factored demand. For this 

illustrative case at least, as shown in Figure 5-7, the percentiles for demand provided by the fully 

parametric method based on IDA procedure, are not very close to those of the semi-parametric 

method using MSA analysis. Nevertheless, the percentiles provided by the fully parametric 

method can be obtained with a relatively small amount of analysis effort and yet they provide 

smooth results.  
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Figure 5-9 - The counted 16th, 50th and 84th percentiles not considering the collapse cases (as 

per Chapter 4) and the semi-parametric 16th, 50th and 84th percentiles using multiple-stripe 

analysis. 

 

It is observed that the non-parametric counting method provides very good estimates at lower 

spectral acceleration/drift levels where there are few (if any) collapse cases. But deviations at 

large values may affect predictions, e.g., drift hazard at larger drift values in the collapse regime 

(to be seen in the next section). Nonetheless, the non-parametric counting methods still provide 

reasonable predictions in the near collapse regime, given their theoretical simplicity. 
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5.7 Drift Hazard – Annual Frequency of Exceeding Maximum Inter-Story Drift 
Demand 

 
The drift hazard, or the mean annual frequency of exceeding maximum inter-story drift demand, 

, when the drift demand is in the region of the global instability in the structure, can be 

estimated by parametric, semi-parametric and non-parametric methods. Based on how the 

spectral acceleration hazard and the probability distribution for demand given spectral 

acceleration are estimated, there are various possibilities for calculating the drift hazard. Only 

those that are more useful in the context of probabilistic seismic assessments in the region of 

global instability in the structure will be discussed here. 

)(
max

⋅θλ

 
5.7.1 Estimating drift hazard by disaggregating into collapse and non-collapse parts 
 
In the previous chapter, the drift hazard or the annual frequency of exceeding maximum inter-

story drift demand was expanded with respect to the spectral acceleration as follows: 

 

19)-(5            
)(

)|( )( |maxmax ∫ ⋅⋅=
x

S
S dx

dx

xd
xyGy a

a

λ
λ θθ  

Where )(⋅λ denotes the hazard function and G  denotes the CCDF of maximum inter-story 

drift for a given spectral acceleration level.  

)(|max
⋅

aSθ

 

While deriving the three-parameter distribution in the previous sections, we represented the 

CCDF of maximum inter-story drift for a given spectral acceleration level, )(|max
⋅

aSGθ , in the 

region of the global instability in the structure by Equation 5-6. Substituting that expression for 

 in the drift hazard equation in Equation 5-19, the drift hazard becomes: )(|max
⋅

aSGθ

 

20)-(5            
)(

} )(1()()|({ )( ||,|maxmax ∫ ⋅⋅−+⋅=
x

S
SNCSNCSNC dx

dx

xd
xPxPxyGy a

aaa

λ
λ θθ  

5.7.1.1 Drift hazard estimation in limiting cases 
 
When the drift value, y, is very large, , the probability that the drift demand 

exceeds y given non-collapse, approaches zero for all spectral acceleration values, x. In this case, 

the drift hazard in Equation 5-20 becomes: 

)|(,|max
xyG NCSaθ
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21)-(5         
)(

 )(   
)(

 ))(1( )( ||max LS
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S
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x

S
SNC dx

dx

xd
xPdx

dx
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xPy a

a

a

a
λ

λλ
λθ =⋅⋅=⋅⋅−= ∫∫  

 

The expression for drift hazard in Equation 5-21, which is independent of the value y, is equal to 

the annual frequency of collapse limit state, LSλ . Therefore, for large drift values, the drift hazard 

is asymptotically equal to the annual frequency of global instability limit state, LSλ  (or frequency 

of collapse).  

 

When the drift value y is very small, , or the probability of non-collapse for a given 

spectral acceleration, approaches to zero for all spectral acceleration values, x. In this case, the 

drift hazard in Equation 5-20 becomes: 

)|(| xyP
aSNC

 

22)-(5          )( 
)(

 )]|([ )( |,| maxmaxmax
ydx

dx

xd
xyGy NC

x

S
SNC

a

a θθθ λ
λ

λ ∫ =⋅⋅=  

Thus, for small drift values, the drift hazard is equal to the drift hazard assuming no collapse, 

which we denote by, (.)|max NCθλ . 

 

5.7.2 Non-parametric calculation of drift hazard by numerical integration 
 
We can use the non-parametric method discussed in the previous section to estimate the CCDF of 

drift for a given spectral acceleration and given non-collapse, , and the conditional 

probability of non-collapse for a given spectral acceleration, . The spectral acceleration 

hazard, , can also be estimated non-parametrically as explained previously. Substituting the 

non-parametric estimates for ,  and  into Equation 5-20, we can 

calculate the integral by numerical integration. This approach is parallel to the one used for the 

calculation of drift hazard by numerical integration in Chapter 4. 

(.),|max NCSa
Gθ

(.)| aSNC

(.)
aS

P

λ

(.)
aSλ

)|(,|max
xyG NCSaθ (.)| aSNCP

 

The drift hazard derived by numerical integration of Equation 5-20 is plotted versus spectral 

acceleration in Figure 5-10-a. In Figure 5-10-b, the drift hazard is plotted together with the drift 

hazard curve calculated non-parametrically by numerical integration without taking into account 

the “collapse” cases in the integration (as in Chapter 4). The two curves are identical for the low 

drift values where the probability of collapse given spectral acceleration is small. This is expected 

since the drift hazard given non-collapse is the upper limit for the drift hazard as discussed above. 
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The two curves start to diverge as the drift values become larger, when the drift hazard 

considering the collapse cases draws close to its lower limiting value, the annual frequency of 

collapse, LSλ . 

 

The probability of the global instability limit state in the structure can be estimated by the lower 

asymptotic limit of the drift hazard, as described in the previous section. Here, as the drift 

demand becomes large, the drift hazard gradually drops to a limiting value of =LSλ 0.007. Thus, 

the general form of this drift hazard was anticipated and it deviates from that which would have 

been determined by methods presented in the previous chapter in the near collapse regime, here, 

for drifts of 1-2% and higher. 
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Figure 5-10 - Non-parametric estimation of drift hazard: a) “collapse” cases considered  

b) Plot 10-a together with drift hazard when the “collapse” cases are not considered. 

 

5.7.3 Semi-parametric calculation of drift hazard by numerical integration using 
multiple-stripe analysis 

 
The drift hazard can also be calculated by applying the semi-parametric method (using multiple-

stripe analysis) for demand estimation. Recall for each stripe, the non-collapse median, 

, and fractional standard deviation, , are estimated in order to fit a lognormal 

distribution to the non-collapse part of the stripe response. This provides . The 

conditional probability of non-collapse for the stripe, , and the spectral acceleration hazard, 

aSNC ,|maxθη aSNC ,|maxθβ

NCP

(.),|max NCSa
Gθ

aS|
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(.)
aSλ , are both estimated empirically, as in the previous section. The drift hazard is calculated by 

numerical integration from Equation 5-20.  

| aSNCP

 

The semi-parametric drift hazard is plotted in Figure 5-11 together with the non-parametric drift 

hazard calculated in the previous section. The two curves illustrated in Figure 5-11 are so close 

that they may be used inter-changeably. This implies that the lognormal distribution is an 

adequate representation of the drifts given non-collapse. 
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Figure 5 -11 - Drift hazard calculated by numerical integration using the non-parametric and 

semi-parametric (using the lognormal distribution for the non-collapse cases) methods. 

 

5.7.4 Fully parametric (closed-form) evaluation of drift hazard 
 
The fully parametric method for estimating the probability distribution of drift for a given spectral 

acceleration was introduced in a previous section (Equations 5-13 to 5-15). We use this method 

next to evaluate the drift hazard curve analytically. The conditional probability of non-collapse 

for a given spectral acceleration, , can be modeled parametrically by the power-law form 

introduced in Equation 5-13. The spectral acceleration hazard, 

(.)| aSNCP

(.)
aSλ , is also estimated 

parametrically from Equation 5-1. After substituting these estimates for G , 

 and 

)|(,|max
xyNCSaθ

(.) (.)
aSλ  in Equation 5-20 and carrying out the integral, a closed form expression for 

the drift hazard can be derived (for details of the derivation see Shome and Cornell, 1999): 
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23)-5 (               2    1      )(
max

termcollapsenontermcollapsenontermcollapsey −+−+=θλ  

where: 
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Where  is the spectral acceleration corresponding to the drift value, y, from the median curve 

(Equation 5-11), i.e., 

y
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The other parameters have been defined previously. Recall that k is a (log) slope parameter for 

the spectral acceleration hazard curve; b is a (log) slope parameter for the median drift demand 

curve (Equation 5-11) and Cβ  is a (log) slope parameter for or spectral acceleration 

fragility function (Equation 5-13).  is the fragility function parameter representing the 

minimum spectral acceleration value in which collapse cases are presumed to occur in the 

structure (Equation 5-13). 

aSNCP |

0as

NCβ  is the constant fractional standard deviation of the non-collapse 

drift demand given spectral acceleration (Equation 5-12). 

 

The consideration of collapse information makes the closed-form solution significantly more 

complicated than the DCFD formulation discussed in the previous chapter. It should also be noted 

that although Equation 5-23 gives a closed-form solution for the drift hazard when collapse 

information is being considered, it is not an analytical solution like the one in Chapter 4, due to 
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the (non-analytical) standardized Gaussian CDF, (.)Φ , and its complement which appear in the 

formulation. 
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When the drift level y is low enough that is small relative to , the drift hazard will be in this 

limit equal to the drift hazard given non-collapse: 

y
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This is the same form as in the previous chapter. On the other hand when y is such that  is 

large compared to , the drift hazard will in this limit be equal to the limit state of collapse 

frequency, 

y
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0as
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Figure 5-12 - Full-parametric drift hazard estimation using single-stripe analysis 

 

Figure 5-12 illustrates a drift hazard calculated from Equation 5-23, using,  and 0as Cβ  values 

estimated in Figure 5-2 by fitting a power-law function to the empirical  data points, the a 
aS|NCP
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and b and NC|maxθβ  values close to the estimates given in Figure 4-10 (cloud analysis for the un-

scaled records), and and  values by fitting a power-law to the hazard curve in the region of 

interest (near ). The figure also illustrates the limiting values for the drift hazard 

curve, namely, the drift hazard given non-collapse, 

k

.0

0k

g70Sa =

NC|maxθλ , and limit state frequency, LSλ . 

..DF

 

5.7.5 Discussion 
 
The drift hazard has been evaluated in this section by disaggregation of the drift response into 

collapse and non-collapse parts. Various methods for drift hazard estimation stem from this 

formulation, among which, several non-parametric, semi-parametric and fully parametric 

methods haven been discussed. The non-parametric method uses numerical integration to 

calculate the drift hazard. This method which relies on many runs at many closely spaced S  

stripes and hence many non-linear analysis runs, is the most reliable method for estimating the 

drift hazard among the methods discussed in this chapter. Hence, its resulting drift hazard curve is 

used in this chapter in order to measure the relative accuracy of the other methods, which in 

practice can be implemented with fewer dynamic analyses. 

a

 

It is demonstrated that the non-parametric drift hazard curve considering the collapse cases is 

identical to the one that is calculated not considering the collapse cases until it starts to diverge 

and approach its minimum asymptotic value, the annual frequency of exceeding the collapse limit 

state (Figure 5-10). The semi-parametric method is very similar to the non-parametric method; it 

differs only in that it estimates the non-collapse CCFD of demand given spectral acceleration by a 

lognormal CCDF. As it is demonstrated in Figure 5-11, the resulting semi-parametric drift hazard 

curve is nearly identical to the non-parametric curve, proving that the lognormal assumption for 

the non-collapse CCDF of the response is a reasonable assumption in this case. A fully parametric 

closed-form solution for the drift hazard is presented at the end of this section. This formulation is 

parallel to the DCFD formulation presented in the previous chapter. Hence, it is going to be used 

in the next section for factored demand estimation. 

5.8 Factored Demand 
 
Factored demand, , was introduced in Chapter 4 as a part of the DCFD formulation for 

seismic assessment. When displacements are in the region of the global instability in the 
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structure, factored demand can be estimated by parametric, semi-parametric, pseudo-parametric 

and non-parametric methods. 

 

Recall that we also observed in the previous chapter under the assumptions made there that the 

definition of factored demand for a given tolerable probability, , is just equal to the drift value 

from the drift hazard curve corresponding to a hazard value equal to, . The assumptions 

leading to the simple analytical DCFD formulation derived in Chapter 3 are not necessarily valid 

in the region of global instability. Hence, we propose here to use the alternative interpretation of 

factored demand, i.e., that which relates to drift hazard curve as a general definition of the 

factored demand. 

op

op

 
5.8.1 Factored demand: Non-parametric using the non-parametric drift hazard 
 
The non-parametric factored demand is calculated, using the general definition proposed above of 

factored demand, from the non-parametric drift hazard curve (Figure 5-10). According to this 

definition, the factored demand for an allowable limit state probability, , is equal to the drift 

value corresponding to a drift hazard equal to . This implies that the factored demand 

associated with a tolerable failure probability of  is equal to the drift demand with a mean 

annual frequency of exceedance of 

op

op

op

0max
p=θλ (recall annual probabilities and mean annual 

frequencies are numerically equivalent in this range). Further this definition means that the non-

parametric factored demand curve plotted versus the acceptable probability values is the same as 

the non-parametric drift hazard curve in Figure 5-10. It should be noted that the factored demand 

in this case is read from the x-axis. Figure 5-14 is an example of such a curve re-labeled to 

emphasize this difference.  

 
5.8.2 Fully-parametric using IDA procedure with simple DCFD formulation 
 
The fully-parametric method for demand estimation was introduced in previous sections. In its 

pseudo-parametric form, this method provides a simple two-parameter lognormal approximation 

to the conditional distribution of demand given spectral acceleration even when there are collapse 

cases in the data set. Although this approach is not potentially favorable (for reasons discussed 

before), it is useful because it permits estimation of factored demand from the simple DCFD 

formulation (Equation 4-7): 
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As described in the pseudo-parametric demand estimation method, we begin by deriving the full 

parametric 16th, 50th and 84th percentiles (Equation 5-10, the three-parameter distribution) of the 

drift response given spectral acceleration obtained using parametric IDA curves (Section 5.6.2.2), 

although other method such as MSA might also be used. Then, we use the full-parametric 

percentiles in order to estimate the median drift for a given spectral acceleration, , the 

conditional fractional standard deviation, 

aS|maxθη

aS|maxθβ , and the local b value. In order to estimate the 

local k value and the spectral acceleration hazard, (.)
aSλ , we use the non-parametric spectral 

acceleration hazard curve. 

λLS=0.0078
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Figure 5-13 - Fully parametric factored demand estimation: Simple DCFD formulation using the 

parametric IDA curves and non-parametric spectral acceleration hazard 

 

Here, we have estimated pseudo-parametric factored demand as described above and have plotted 

it in Figure 5-13. The non-parametric factored demand calculated by numerical integration is also 

plotted in the figure. We can observe that the pseudo-parametric factored demand stops at a drift 

value close to 0.024. This is due to the fact the parametric 50th percentile is only available up to a 

spectral acceleration level of 0.7g. However, as long as the pseudo-parametric estimation is 

available, there is close agreement between the two estimates for factored demand. This 

agreement looks promising, considering that the pseudo-parametric factored demand can be 

calculated with relatively little analysis effort compared to non-parametric factored demand 
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estimates. The relatively small analysis effort is attributed to the fact that the non-collapse parts of 

the IDA curves in the logarithmic scale are approximated with lines by performing regression. It 

is expected that the regression can result in reasonable estimates for the non-collapse IDA curves 

using fewer points than the several stripes of multiple-stripe analysis (as it is used for non-

parametric factored demand estimation). Nonetheless, the method fails in the near-collapse 

regime (drifts larger than 1.5%) of primary interest here. 

 

5.8.3 Factored demand: Semi-parametric using parametric IDA curves 
 
We can employ the closed-form solution for the drift hazard considering the collapse cases in 

Equation 5-23, in order to calculate the factored demand. Figure 5-4 illustrates the full-parametric 

16th, 50th and 84th IDA percentiles given non-collapse in thin lines. These non-collapse IDA 

percentiles are used to estimate the local median, 
aSNC ,|maxθη , fractional standard deviation of drift 

given spectral acceleration, NCβ , and value. The non-parametric spectral acceleration hazard 

curve is used to estimate the local k value and the spectral acceleration hazard, . 

NCb

(.)
aSλ

 

We have incorporated the above estimations in Equation 5-23 and have plotted the resulting drift 

hazard in Figure 5-13. We have also plotted the non-parametric drift hazard curve for 

comparison.  

 

The semi-parametric drift hazard curve illustrated above shows good agreement with the non-

parametric drift hazard curve, especially for the drift values that are close to the range of global 

dynamic instability. However, the semi-parametric factored demand curve has a lower right 

asymptotic limit compared to the non-parametric factored demand. Similar to pseudo-parametric 

factored demand estimation in the previous section, the semi-parametric method uses linear 

regression to approximate the non-collapse portion of the IDA curves with lines in logarithmic 

scale. However, the semi-parametric method provides slightly better estimates for the factored 

demand compared to the pseudo-parametric method, since it is applying the (more elaborate) 

closed-form solution for drift hazard considering the collapse cases (Equation 5-23) instead of the 

simple DCFD formulation (Equation 5-24). 
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Figure 5-14 - Semi-parametric factored demand estimation: Using the closed-form for drift 

hazard in Equation 5-23 considering the collapse cases, with the parametric non-collapse (linear) 

IDA curves and non-parametric spectral acceleration hazard 

 

5.8.4 Factored demand: Semi-parametric using single and double-stripe analysis 
 
We have used the efficient single-stripe analysis in the previous chapter in order to estimate the 

factored demand for single limit state reliability assessments. This was possible since the drift 

hazard equation derived in the Chapter 2 (Equation 2-25) was invertible with respect to the drift 

values, and that resulted in an explicit formulation for the factored demand as a function of the 

allowable probability (Equation 5-26). Nevertheless, the single stripe analysis could not provide 

an estimate for the slope parameter, b. It was observed that the single-stripe analysis could 

provide accurate estimates of the factored demand provided that a reasonable value for the b-

value was assumed. In this chapter, the estimation of factored demand is further complicated by 

the consideration of the collapse cases. The closed-form expression derived for the fully 

parametric drift hazard evaluation, Equation 5-23, is not invertible with respect to the drift value, 

y. Also, the number of parameters in the formulation increases. For example if we try to estimate 

the factored demand using a single-stripe analysis, we would have to assume value for the b value 

as well as two additional parameters that define the fragility function for the collapse capacity. 

Nevertheless, provided with the required parametric estimates, one could calculate the drift 

hazard curve from Equation 5-23 and then use the drift hazard curve to calculate factored demand 

as the drift value corresponding to a hazard value equal to , i.e., factored demand for allowable 

probability, . A double-stripe analysis (as per Chapter 3) may prove to be an adequate 

op

op
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estimation procedure, as with well chosen values it can provide at least local estimates of all 

the six parameters necessary to calculate the drift hazard from Equation 5-23. In order for the 

estimates to be local, they need to be in the vicinity of . Therefore, this approach may involve 

an additional iteration, and hence an additional single-stripe analysis. This method is called semi-

parametric since it incorporates the non-parametric spectral acceleration hazard curve in the 

parametric formulation for the drift hazard curve. We outline as a step-by-step procedure for 

finding the factored demand using a double-stripe analysis.  

aS

a
P so

(,SNC a

op

o Determine the tolerable probability level, . op

o Estimate the k value. The k value can be estimated by the local (log) slope of the hazard 

curve in the vicinity of the allowable probability value, . op

o Calculate the spectral acceleration corresponding to  from the spectral acceleration 

hazard curve. Take the spectral acceleration of the first stripe equal to, . 

op

a
P so

o Perform a single-stripe analysis at . 

o Check to see if there are collapse cases in the response. Two cases can happen: 

o There is no collapse cases observed in the response. calculate the drift hazard 

from the parametric expression for drift hazard given non-collapse (Equation  

5-24). This requires assumption of a value for the slope parameter, b. Since there 

is no collapse case in the response, one may assume that the b value is equal to 

one, as per the equal displacement rule. In order to estimate the drift hazard in the 

vicinity of collapse one needs to repeat this first single-stripe analysis with a 

larger spectral acceleration value. This value should be large enough so that 

collapse cases are observed in its response. 

o There are collapse cases observed in the response. Find the conditional median 

and the fractional standard deviation of the stripe response given non-collapse, 

and , respectively. Proceed to the next steps. )(ˆ ,|max a
P

SNC so
aθη )ˆ

|max a
P so

θβ

o Estimate , the probability of non-collapse at a spectral acceleration equal to 

, as the fraction of the non-collapse cases in the stripe, . 

)(| a
P

SNC sP o
a

a
P so )(ˆ

| a
P

SNC sP o
a

o Choose the spectral acceleration of the second stripe, . Since we are interested in 

making estimations close to the collapse regime, the placement of the second stripe 

depends on the number of collapse cases observed in the response of the original stripe. If 

there are relatively few collapse cases, the spectral acceleration of the second stripe can 

be larger than that of the first stripe. If there are many collapse cases among the 

2
as
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responses, it is preferable to take the spectral acceleration of the stripe smaller than the 

first stripe. In both cases, it is useful to make sure that the two stripes are “sufficiently” 

spaced from each other in order to prevent the parameter estimates from being affected 

by possible local peculiarities. However, the spectral acceleration of the second stripe 

should be large enough so that there is at least one collapse case observed in the response. 

This is because the additional information provided by the second stripe is also going to 

be used for estimating the parameter estimates for the conditional probability of collapse 

for a given spectral acceleration, namely,  and 0as Cβ . It should be noted that this 

procedure is implementing the double-stripe method outlined in the previous chapter. 
2
as

ˆθη
=        

0a

a

s

s≥

for   

for       

o Perform the second single-stripe analysis at, . 

o Find and . )(ˆ 2
,|max aSNC s

aθη )(ˆ 2
,|max aSNC s

aθβ

o Estimate  as the fraction of the non-collapse cases in the second stripe, 

  

)( 2
| aSNC sP

a

)2
a(ˆ

|SNC sP
a

o Estimate the  and  (the later value as the slope of the line connecting the 

conditional median of the two stripes given non-collapse versus spectral acceleration, in 

the logarithmic space): 
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o If the parameters  and 0as Cβ  were known, the conditional probability of non-collapse 

for the two stripes could be calculated from the following equations: 
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Since both stripes have collapse cases in them (as it is ensured in the preceding steps), their 

corresponding conditional probabilities of non-collapse are going to be described by the 

above equations that are specific to spectral acceleration levels higher than . Estimates of 0as
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the left hand sides of the two equations are available from prior steps. Therefore, and 0as Cβ  

can be calculated by solving the above equations, yielding: 
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o Calculate the drift hazard from Equation 5-23 for a set of drift values close to 

 and  and plot the resulting drift hazard curve. )(ˆ ,|max a
P

SNC so
aθη )(ˆ 2

,|max aSNC s
aθη

o Find the drift value that corresponds to a drift hazard equal to . This is the factored 

demand for an allowable probability equal to . This is only possible if the range of the 

drift hazard values is wide enough to contain . 

op

op

op

o In case the factored demand calculated is too “far” from the drift values,  

and , then another iteration or at least another single-stripe analysis may be 

necessary. 

(ˆ
max

Po
aθη

)(ˆ 2
,|max aSNC s

aθη

 

As an example, we have used the procedure outlined above to calculate the factored demand for 

an allowable probability of, , which corresponds to a spectral acceleration equal to, 

. First, we have obtained the local parameter estimates in the expression for 

drift hazard (Equation 5-23), following the steps above. The second stripe was chosen at 

. The factions of collapses in these two stripes were 0.4 and 0.13 (Figure 5-2), 

respectively. Estimated parameter values are  and . We have 

plotted in Figure 5-15 the drift hazard for drift values near drift values,  and 

. The final step is to find the drift value that corresponds to a hazard value equal to 

. It is estimated to be 0.018 (Figure 5-15, heavy line). If we use the non-parametric 

method to calculate the factored demand corresponding to an allowable probability of 

, we get a value equal to 0.025 (Figure 5-15, light line). We can enhance the former 

estimate by selecting a new  level higher than 0.7g. However, in this case study, the median 

conditioned on no collapse displays abrupt changes at spectral accelerations larger than 0.70g 

0088.0=op
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gsa
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(Figure 5-6). This will cause the resulting drift hazard curves to be less reliable for intensity 

levels larger than 0.70g. 

 

second stripe at Sa=0.60 g 

first stripe at Sa=0.70 g 

Po=0.0088 

F.D.(po)=0.0183 
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Figure 5-15 - Double-stripe, semi-parametric factored demand estimation: Using the closed-form 

drift hazard in Equation 5-23 considering the collapse cases, with results for  and 

 and non-parametric spectral acceleration hazard. 

gSa 6.0=

gSa 70.0=

 
It can be observed that the drift hazard estimated using double-stripe analysis is fairly close to the 

non-parametric drift hazard for a range of drift values in the vicinity of the conditional median 

values for the two stripes given non-collapse,  and , e.g., drift 

values as large as 1.6%. The drift hazard curve starts to diverge from the non-parametric drift 

hazard curve, as the drift values get closer to the collapse regime. It should be mentioned that this 

description has presented that collapse could be recognized from single-stripe analysis. This 

would be true if collapse is defined by non-convergence or an excessive (unreasonable) 

displacement. If, however, it is defined by the shape of the IDA, then more than one analysis of 

each record is needed to define the collapse capacity. Clearly these runs can be of value in the 

over-all drift hazard and/or factored demand analysis. While a systematic method to search 

efficiently for IDA-based capacities exists (Vamvatsikos and Cornell, 2001), there are no 

)(ˆ ,|max a
P

SNC so
aθη )(ˆ 2

,|max aSNC s
aθη
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algorithms as yet that treat global capacity estimation and drift hazard/factored capacity 

estimation together in a coordinated manner. 

 
5.8.5 Discussion 
 
Several methods for estimating the displacement-based demand (the engineering demand 

parameter) in the collapse regime were discussed. These methods employ the proposed 

generalized definition of the factored demand. In this definition, the factored demand for the 

allowable probability, , is equal to the drift value that has an annual frequency of exceedance 

(hazard), 

op

maxθλ , equal to . Based on this property, any drift hazard curve is also a factored 

demand curve where the hazard axis is the same as the allowable probability axis and the drift 

axis is the same as the factored demand axis. The non-parametric method for estimating the 

factored demand makes use of the above property to estimate the factored demand from the non-

parametric drift hazard curve considering the collapse cases. This is the most accurate method for 

demand estimation studied in this chapter. Other methods considered include the fully-parametric 

method that uses the pseudo-parametric IDA percentiles to obtain the required parameter 

estimates in order to calculate the factored demand from the simple DCFD format (see Chapter 

4). Comparing the results of the fully parametric method with the non-parametric one, we can 

observe that the fully-parametric method provides a smooth and accurate approximation to the 

non-parametric results as long as a fully-parametric estimate for median is available (Figurer 5-

13). The relatively small computational effort involved in the fully parametric method together 

with the simplicity of the DCFD formulation (Equation 5-26), makes this an efficient alternative 

to use. 

op

 

The next method studied in this section is the semi-parametric method using the fully parametric 

IDA curves. This method is very similar to the one studied before apart from the fact that it 

incorporates the local parameter estimates derived from the parametric IDA curves into the 

formulation for the drift hazard considering the collapse cases (Equation 5-23). This method 

better captures the close-to-collapse part of the drift hazard. Finally, a semi-parametric method 

using a minimal number of stripes is discussed. This method is being presented in the form of a 

step-by-step procedure for the local estimation of the drift hazard/factored demand. The 

advantage of this method is that it uses few stripes (typically two) to obtain parameter estimates 

for the drift hazard curve considering the collapse cases. This method is not very accurate in this 

example.. The inaccuracy can be attributed to the less-than-smooth behavior of the given no 

collapse median at intensity levels larger than 0.7g. 
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5.9 Factored capacity 
 
Similar to factored demand, the factored capacity was defined in Chapter 4 in the context of the 

demand and capacity factored design as: 

factor    capacity  thecapacity median capacity  factored ×=
 

Alternatively, the factored capacity can be defined as the drift value with a frequency of 

exceedance equal to the limit state frequency. In other words, the factored capacity is the drift 

value corresponding to a frequency equal to the limit state frequency from the drift hazard curve. 

For example, the factored capacity derived from the drift hazard considering the collapse cases 

(e.g., Figure 5-10) lies at infinity. This is because the frequency of the collapse limit state is the 

right asymptotic value for the drift hazard considering the collapse cases. The drift hazard 

considering the collapse cases should however be used for the estimation of factored capacity 

values that correspond to limit states other than collapse, called here the “exogenous” limit states, 

e.g., the immediate occupancy limit state or a local member failure limits state short of collapse 

due to global instability. It should be noted that the same information that is used to derive the 

drift hazard considering the collapse cases is used to calculate the collapse limit state probability. 

Thus, the drift hazard considering the collapse cases cannot be used to estimate the factored 

capacity for the collapse limit state. It should be noted that this definition of factored capacity, 

although it is theoretically sound, has very little practical use. However, there are many ways to 

define the factored capacity as long as it is equal to factored demand at . Therefore, there 

still is room for introducing more practical propositions for factored capacity.  

fPP =0

 

5.10 Practical Applications 
 
The methods proposed in this chapter can be used for reliability assessments for “exogenous” 

limit states, (i.e., other than global instability induced collapse). The formulation presented in this 

chapter already takes into account this collapse information yielding the probability of limit state 

as an asymptote of the drift hazard curve (Figure 5-10). Reliability assessments for a single limit 

state can be performed by obtaining local parameter estimates. By local, we mean a region that is 

close to the onset of the limit state under investigation. In order to ensure that the estimates are 

obtained close to the onset of the limit state under consideration, a re-iteration of the analyses 

might become necessary especially if the structure is in the global collapse sensitive regime. It is 

shown that in this regime these local estimates can be provided by means of performing a double-
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stripe analysis. A procedure for both locating and performing the double-stripe analyses is 

discussed. It was demonstrated in the previous chapter that the single-stripe analysis could be 

used for reliability assessments for a single limit state, provided that a reasonable value for the 

slope parameter b could be assumed. However, acquiring a (local) estimation of parameter b 

required at least a second stripe. If the collapsing cases are considered in the modeling, there will 

be more parameters to estimate compared to the simple DCFD formulation derived in Chapter 3. 

Also, unlike in the previous chapter, the formulation of drift hazard considering the collapse 

information is not invertible with respect to the drift values. These factors add to the difficulty of 

reliability assessment based on the results of a single stripe analysis. Performing a double-stripe 

analysis can be expected to enable us to estimate all the necessary parameters in order to estimate 

the drift hazard or factored demand in the region of global instability. 

 

Reliability assessment for multiple limit states requires the use of wide-range methods such as the 

MSA or the IDA procedure (as presented in Chapter 4). In the case of IDA procedure, it is 

demonstrated here that the analysis effort can be reduced by approximating the individual IDA 

curves by parametric functions. Parametric approximations of IDA curves are obtained by 

implementing the results of linear regressions performed on the individual IDA curves into the 

three-parameter formulation. The number of points required for each IDA curve in order to get 

these parametric estimates can be as low as 4 points. The first two points are needed in order to 

estimate the non-collapse intercept and slope of the IDA curve in the logarithmic space. A 

minimum of two additional points in needed in order to find the global stability limit state 

capacity point according to a procedure proposed by Vamvatsikos and Cornell, 2002, for locating 

the capacity points. This procedure uses spline fits to the IDA curves in order to predict the limit 

state capacity point (see Vamvatsikos, 2002). 

 

5.11 Summary and Conclusions  
 
The conditional probability distribution of drift given spectral acceleration is developed by using 

the total probability theorem in the range of drift values close to collapse (Equation 5-6). Collapse 

is defined as the onset of global dynamic instability in the structure marked by the point where 

the slope of the IDA curve (see Chapter 4, or Vamvatsikos and Cornell, 2001) is reduced to a 

certain percentage of its initial slope. A proposed parametric representation of this conditional 

probability distribution is called the three-parameter distribution (see Shome and Cornell, 1999) 

in order to account for the fact that the probability distribution of drift given spectral acceleration 
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prior to the occurrence of collapse can be modeled by a lognormal (two-parameter) distribution 

and the fraction of the collapse cases observed in the data-set can be defined by a third parameter.  

 

Nonlinear dynamic procedures are used with the derived formulation in order to estimate the 

distribution of the drift given spectral acceleration in the collapse range. The alternative methods 

for the estimation of the probabilistic distribution of drift response given spectral acceleration can 

be differentiated based on whether they are derived fully-parametrically, semi-parametrically or 

non-parametrically. As a special application of the three-parameter distribution, parametric IDA 

curves and the parametric IDA percentiles are derived for the drift values close to collapse. 

Alternatively, the results of multiple-stripe analysis (see Chapter 4) are post-processed in order to 

be implemented in the three-parameter distribution. The resulting semi-parametric percentiles 

show good agreement with the counted percentiles that were derived in the previous chapter 

without special consideration of collapse cases. The distribution of drift demand for a given 

spectral acceleration can also be estimated empirically (non-parametrically) based on the results 

of multiple-stripe analysis. The advantage of estimating the distribution non-parametrically is that 

it avoids prior assumptions about the shape of the distribution. 

 

The alternative drift demand estimation methods discussed above are then used in order to derive 

the annual frequency of exceeding a certain drift value. The result is known as the drift hazard. 

The non-parametric probability distribution for the drift demand is used to calculate the drift 

hazard by numerical integration. The result is used as a standard by which the estimates provided 

by other approaches are compared. Similar to the demand estimation procedures studied in this 

chapter based on the three-parameter distribution, the alternative methods for the estimation of 

the drift hazard can be differentiated based on whether they are derived fully parametrically, 

semi-parametrically or non-parametrically. Parallel to the closed-form solution for the drift 

hazard in the previous chapter, a fully parametric closed-form for the drift hazard is derived. In 

practice it is desirable to avoid the close multiple stripes used in this research effort as they 

require intensive computational effort. As shown in Chapter 4, the single-stripe analysis can be 

used to estimate the drift hazard from the derived closed-form for a specific drift value, provided 

that the displacement-based response is not in the region of global instability. It is demonstrated 

here that utilizing the carefully designed double-stripe analysis in the closed-form solution for 

drift hazard can provide fairly good local estimates of the drift hazard, in the large drift regime 

when a large fraction of the records here cause collapse. 
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The factored demand for a given allowable probability, , can be defined as the drift value with 

 probability of exceedance (see Chapter 3). This definition is used to estimate the factored 

demand from the estimated drift hazard curve(s). Therefore, factored demand can be estimated 

non-parametrically from the non-parametric drift hazard curve derived by numerical integration. 

op

op

 

The parametric IDA percentiles for drift values close to collapse can be used to estimate the 

factored demand from the simple (two-parameter) closed-form formulation for DCFD format 

derived in Chapter 3 (Equation 5-26). Factored demand calculated for multiple allowable 

probability levels, , is compared to the non-parametric factored demand. The results show very 

good agreement as long as the parametric IDA percentiles are still available. Alternatively, the 

parametric IDA curves can be incorporated in the closed-form drift hazard derived based on the 

three-parameter distribution (Equation 5-23). The resulting factored demand calculated for 

multiple allowable probability levels have been compared to the corresponding non-parametric 

estimates for factored demand and the results indicate good agreement. This agreement between 

the parametric factored demand derived from the closed-form drift hazard curve and the non-

parametric results is particularly desirable since the parametric factored demand can be obtained 

with considerably less analysis effort than the non-parametric factored demand. In an attempt to 

estimate the drift hazard locally, a double-stripe method (see Chapter 4) was used. The double-

stripe method was used in order to provide parameter estimates for the drift hazard in Equation  

op

5-23. The resulting estimate for drift hazard by following this approach was fairly close to the 

non-parametric results. Nonetheless, this method needs to be tested for a variety of ductility 

ranges in order to test its robustness. 
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