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2.1 Abstract 
 
This chapter presents an analytical foundation for probability-based formats for seismic design 

and assessment of structures. These formats are designed to be suitable for code and guideline 

implementation. The framework rests on non-linear, dynamic seismic analysis. The formats can 

be used to ensure that the structural seismic design can be expected to satisfy specified 

probabilistic performance objectives, and perhaps (more novel) that it does so with a desired, 

guaranteed degree of confidence. Performance objectives are presumed to be expressed as the 

annual probability of exceeding a structural performance level. Structural performance levels are 

in turn defined as specified structural parameters (e.g., ductility, strength, maximum drift ratio, 

etc.) reaching a structural limit state (e.g. onset of yield, collapse, etc.). The degree of confidence 

in meeting the specified performance objective may be quantified through the upper confidence 

bound on the (uncertain) probability. In order to make such statements, aleatory (random) 

uncertainty and epistemic (knowledge limited) uncertainty must be distinguished. The single 

seismic design foundation can be formatted into the alternative conventional design methods such 

as LRFD design and fragility-hazard design. Versions of the new developments reported here are 

already in place in recently completed seismic guidelines (see FEMA 350-352, and Banon et al., 

2001). 

 

2.2 Introduction 
 

This chapter is the first part to a report (Jalayer and Cornell 2003) that develops a framework for 

probability-based seismic demand and capacity design and assessment procedures. In this 

framework, the natural randomness inherent in seismic phenomena and the uncertainty involved 

in the evaluation of parameters related to such phenomena are both considered. 
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This chapter (part 1 of the report) develops the necessary formal foundation for this probability-

based design framework; producing the annual probability of exceeding a prescribed performance 

level as the main output. The foundation derivation is performed in two sections. The first 

considers only the variability due to randomness. In the second section the uncertainty due to 

imperfect models and model parameters are introduced into the foundation derivation. 

 

The next chapter (part 2 of the report) derives various alternative design formats that stem from 

the probability-based foundation developed in the former part of the report. Most of these formats 

are analogous to Load and Resistance Factor Design (LRFD) procedures associated with static, 

force-based structural engineering, e.g., the AISC LRFD Code, but due to the generalizations here 

to a non-linear, dynamic displacement basis we refer to these new formats as DCFD (Demand 

and Capacity Factor Design). The choice among these alternative formats must be made on 

grounds such as familiarity, practicality, etc., because in many cases they are technically 

equivalent. 

 

2.3 Sources of Uncertainty in Engineering Problems  
 

Sources of uncertainty in engineering safety problems are classified into two major groups 

known, confusingly and unfortunately, by various pairs of words in the broader reliability 

community, for example, randomness and statistical uncertainty, aleatory uncertainty and 

epistemic uncertainty, frequency and probability, and simply Type I and Type II. Moreover, there 

is still some inconsistency between the researchers regarding the nature of uncertainty each group 

identifies. However, in the present work, the first term identifies the more familiar “natural 

variability” such as the times and magnitudes of future earthquakes in a region, record-to -record 

variability in acceleration time-history amplitudes and phases, etc. The second term of each pair 

signifies the limited knowledge and data that the profession currently has about, for example the 

modeling of structural systems in the highly non-linear range and exact numerical values of 

parameters of physical and random (stochastic) models, e.g., the median value of the maximum 

inter-story drift of a particular model frame under a population of future ground motions of 

specified intensity. This second kind of uncertainty can be reduced by more data (larger sample 

sizes) and/or by more research. In the following text we shall typically use the simple pair of 

words “randomness” and “uncertainty”. Therefore we shall be using the second word in the more 

restrictive sense of epistemic uncertainty and not in the broad, common sense, as we used it in the 

title of this section. Occasionally, for example when precision is imperative, we shall use the 
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longer unambiguous terms “aleatory uncertainty” and “epistemic uncertainty”, which are now 

quite common in seismic hazard analysis. 

2.4 Document Map 
  

This report contains a complete analytical background for the probability-based seismic design 

procedure. For pedagogical reasons the development of the text follows a detailed stepwise 

manner that makes it somewhat long. However, it is possible to bypass some sections without 

losing the general picture. The document map below illustrates two possible routes the patient 

reader can follow. 

Foundation Development 
 

Format Development 
 

Sources of Uncertainty:  
Randomness and 
Uncertainty 
 

Source of  Uncertainty:  
Randomness Only 
 
 

Source of  Uncertainty: 
Randomness 
   
 
 
 
Sources of  Uncertainty:  
Randomness and  
Uncertainty 
 

Limit State Probability 

DCFD Formats 

Limit State Probbaility 
with Uncertainty 

Fragility/Hazard 

DCFD Format s 
with uncertainty 

Fragility/Hazard 
with uncertainty 

Route 1 
 
Route 2 

Route 1 goes through the entire development of the framework taking in to account the 

randomness source of variability only. Route 2 goes through a more generalized derivation that 

considers uncertainty also. 

2.5 Foundation Development 
 
This part of the report is dedicated to developing an analytical foundation for the probability-

based framework. This foundation involves the entire endeavor that leads to the estimation of 

probability of exceeding a specified limit state for a given structural system. In other words, the 

final product of this section is the annual limit state probability that is calculated taking into 
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account the uncertainty in the various elements involved in the seismic design of the structural 

system. 

 

Estimation of the limit state probability (a short way of saying “the probability of exceeding a 

specified limit state”) will be presented in two parts. In the first part, limit state probability is 

derived considering only the variability due to randomness. In the second part, the more 

generalized form of limit state probability is introduced which accounts for both randomness and 

uncertainty. 

 

2.5.1 Structural Limit States  
 

Structural limit states are thresholds for structural behavior defined in different ways in various 

codes. One of the most commonly used structural limit states is the global collapse limit state. 

The foundation derivation represented in this text applies to virtually any limit state. However for 

simplicity and clarity, this report focuses on the global collapse limit state C.  

 

2.5.2 Structural Demand Variable (State Variable)  
 
 Demand or state variable is normally chosen as a displacement-based structural response 

representative of structural dynamic and nonlinear behavior. The most common examples for 

buildings include: roof displacement or inter-story drift.  

 

For demonstration here we have chosen the maximum inter-story drift ratio (MIDR) as the 

demand variable. (The maximum is the peak in the response time histories over all stories in the 

building.) MIDR is particularly relevant to global collapse prediction (FEMA 350). Maximum 

inter-story drift values may be obtained from the results of structural analyses for various ground 

motion intensities.  

 

We have chosen to refer to the maximum inter-story drift variable as D. This will keep the future 

derivations general with respect to a generic demand variable D. It is also suggestive of the 

displacement-based nature of the demand variable.  

 

2.5.3 Structural Capacity Variable (Limit State Variable) 
 
The capacity or limit state variable as the name suggests, is a limit (threshold) for acceptable 

structural behavior. We have already introduced the demand (state) variable for describing the 
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structural behavior. The capacity (limit state) variable describes the limiting value for the demand 

(state) variable. Obviously, it will be represented on the same basis as the structural demand 

value; maximum inter-story drift ratio in this case. The capacity might be a pre-specified inter-

story drift ratio, e.g., 2% (which FEMA 350 uses for an “onset of damage limit state”), or 

capacity with respect to connection failure that might be modeled as a random variable based on 

test data. In this chapter, we shall focus on global (dynamic) collapse capacities determined for 

IDA (Incremental Dynamic Analysis) curves corresponding to a set of ground motion records 

applied to the structure (see Vamvatsikos and Cornell, 2001). 

 

In order to keep the derivations general, we have used the generic notation C for the random 

inter-story drift capacity. This will also be consistent with the demand variable denoted as D. 

 

2.5.4 Limit State Probability PLS 
 

The final product of the proposed probabilistic procedure is called the probability of exceeding a 

structural limit state, where the limit state is the condition that, D > C. In order to be brief, we 

will refer to it as the limit state probability PLS. For the case that we are mainly interested in, i.e. 

the collapse limit state, it is also reasonable to call this quantity the failure probability. Therefore, 

we seek: 

 

][ CDPPLS >=  

2.5.5 General Solution Strategy 
 

In order to determine , we are going to decompose the problem into more tractable 

pieces and then reassemble it. First, we introduce a ground motion intensity measure IM  (such as 

the spectral acceleration , S

][ CDPPLS >=

a , at say 1 second period), because the level of ground motion is the 

major determinant of the demand D and because this permits us to separate the problem into a 

seismological part and a structural engineering part. To do this, we make use of a standard tool in 

applied probability, The Total Probability Theorem (see Appendix B), TPT which permits the 

following decomposition of PLS with respect to an interface variable (here, the spectral 

acceleration): 

 

1)-(2                               ][]|[][
   xall

xSPxSCDPCDPP aaLS =⋅=>=>= ∑  
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In Equation 2-1 we have introduced  as the intensity measure. In simple words, the problem of 

calculating the limit state probability has been decomposed into two problems that we already 

know how to solve. The first problem is to calculate the term 

aS

][ xSP a =  or the likelihood that the 

spectral acceleration will equal a specified level, x. This likelihood is a number we can get from a 

Probabilistic Seismic Hazard Analysis (PSHA) of the site. The second problem is to estimate the 

term  or the conditional limit state probability for a given level of ground motion 

intensity, here represented by, S

]|[ xSCDP a =>

xa = . Estimating the conditional limit state probability, for a 

given ground motion intensity, requires an understanding of, for example, response/demand 

variability from record-to-record of the same intensity, which is an easier and “purely” structural 

problem to resolve. The TPT simply tells us how to re-combine these two pieces of the problem 

back into . The solution strategy outlined above, calculating the limit state probability by 

decomposing it with respect to spectral acceleration, shall be referred to as the “IM-based 

approach” hereafter. 

LSP

 

An alternative solution strategy (which is the main strategy employed in this chapter) consists of 

decomposing the expression for the limit state probability in two steps and therefore employs two 

interface variables. The first step is to decompose the limit state probability with respect to the 

displacement-based demand (the first interface variable) using TPT: 

 

][]|[][
d  all

dDPdDCDPCDPPLS =⋅=>=>= ∑  

The second step is to decompose the term, ][ dDP = , or the likelihood that the displacement-

based demand is equal to a value d, with respect to the spectral acceleration (the second interface 

variable): 

 

2)-(2                ][]|[]|[][
d  all   xall

xSPxSdDPdDCDPCDPP aaLS =⋅==⋅=>=>= ∑∑  

This two-step solution strategy, which employs the displacement-based demand as one of the 

interface variables, shall be referred to as the “displacement-based approach”. Equation 2-2 is a 

special case of the framework equation used by Pacific Earthquake Engineering Research (PEER) 

as a basis for probabilistic design and assessments. 
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It should be noted that the equations introduced in this section are valid for discrete interface 

variables. However, here they solely serve as a schematic outline of the solution strategy. Later in 

this chapter, we are going to present parallel equations for continuous interface variables. 

 

2.5.6 Ground Motion Intensity Measure  
 
The ground motion intensity measure, IM, implemented in the solution strategies outlined in the 

previous section, serves as an interface between the seismicity characterization and structural 

behavior assessment. Ideally, such a variable should contain sufficient information about the 

ground motion to serve as an accurate and efficient predictor of structural response, and it should 

preferably be a variable for which the PSHA results are available (or readily obtainable). This 

problem has been studied by Shome et al. (1998) and by Luco and Cornell, (2003). It has been 

demonstrated by Shome and Cornell (1999) that, for short and moderate-period structures, the 

spectral acceleration at a period approximately equal to that of the fundamental mode of the 

structure satisfies the criteria mentioned above. In fact, the study of such “intensity measure” is 

the subject of significant current research by a variety of investigators within PEER. We shall use 

this variable here for specificity, but the resulting derivations will not change if spectral 

acceleration is replaced by any other scalar intensity measure, such as, for example, the inelastic 

spectral acceleration (see Luco and Cornell, 2003). 

 

2.5.7 Randomness: The Only Source of Variability 
 

The probability-based seismic assessment and design procedure presented here aims to evaluate 

the probability PLS that the limit state variable exceeds a limit state threshold LS. Our first 

objective here is to derive the limit state probability assuming that randomness is the only source 

of uncertainty in the design variables. 

 

We will follow the displacement-based solution strategy discussed in Section 2.5.5. in order to 

derive the limit state probability. The derivation are laid out in a step-by-step manner in order to 

make them easier to follow. At the end of this section we are going to briefly present the IM-

based approach for deriving the limit state probability. We start by deriving the hazard values for 

our adopted seismic intensity measure, which is the spectral acceleration of the “first” structural 

mode. Then we use common probabilistic tools (e.g., TPT as explained previously) in order to 

first derive the hazard values for the displacement-based response, (here, maximum inter-story 

drift angle) and then to derive the limit state probability PLS . 
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2.5.7.1 Spectral Acceleration Hazard: 
 

The hazard corresponding to a specific value of the ground motion intensity measure is defined as 

the probability that the intensity measure for future ground motion events be greater than or equal 

to this specific value. Spectral acceleration hazard curves are normally provided by seismologists 

for a given site (e.g. The USGS website). Each curve provides the mean annual frequency of 

exceeding a particular spectral acceleration for a given period and damping ratio. It is 

advantageous to approximate such a curve in the region of interest by a power-law relationship 

(see DOE, 1994, and, Luco and Cornell 1998): 

 

3)-(2                                 ][)( 0
k

aaS xkxSPsH
a

−⋅=≥=  

0k  and  are parameters defining the shape of the hazard curve.  k
 

Figure 2-1 shows a typical hazard curve for a Southern California site that corresponds to a period 

of 1.8 seconds and damping ratio of 5%. As it can be seen from the figure, a line with slope k  

and intercept  is fit to the hazard curve in the logarithmic scales around the region of interest 

(e.g., mean annual frequencies between 1/475 or 10% frequency of exceedance in 50 years  and 

1/2475 or 2% frequency of exceedance). Here, =2.73 and =0.00012. 

0k

k 0k

 
 

HSa(sa) =k0 (sa) -k 

 
Figure 2-1 - A typical hazard curve for spectral acceleration. It corresponds to a damping ratio 

equal to  and a structural fundamental period of 1.8 seconds %5
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It is important to note that the hazard values are usually provided in terms of the “mean rates” of 

exceedance over a certain time interval (usually a year) rather than the “probabilities” of 

exceedance. Therefore, it is more appropriate to refer to the hazard function as, for example, the 

“mean annual frequency” rather than the “annual probability” of exceeding a certain value. 

Nonetheless, for very small probability values, that are for example derived from a Poisson 

model, the average rate and the resulting probability value are almost the same. For simplicity, we 

are going to drop the “mean” term before the frequency. However, in the part where epistemic 

uncertainty is introduced into the problem, we will need to be more precise in how we refer to the 

hazard function. 

2.5.7.2 Median Relationship between Spectral Acceleration and Inter-story Drift Demand  
 

Observations of demand values are normally obtained from the result of structural time history 

analyses performed for various ground motion intensity levels. Figure 2-2 shows such results, e.g. 

maximum inter-story drift, D, versus Sa.  For a given level of ground motion intensity, there will 

be variability in the displacement-based demand results over any suite of ground motion records 

applied to the structure. It is assumed here that this variability is a result of randomness in the 

seismic phenomena as the discussed before (later in Section 2.5.7 we are also going to take into 

account the epistemic uncertainties, such as modeling uncertainty, in addition to record-to-record 

variability). It is convenient to introduce a functional relationship between the load intensity 

measure and a central value, specifically the median Dη  of the demand parameter based on the 

data available from such time history analyses.  

 

In general, for a spectral acceleration equal to x , the functional relationship will be: 

 

) ()( xgxD =η  

This is called the conditional median of  given D aS  (more formally denoted as )(| x
aSDη , but we 

shall keep the simpler notation). We can construct a full conditional probabilistic model of the 

variability displayed in Figure 2-2 by writing: 

 

     ) ()( εεη ⋅=⋅= xgxD D  

in which ε  is a random variable with a median equal to unity and a probability distribution to be 

discussed below. At this point we introduce a particular functional relationship that both 

conforms to our perceptions of a structural performance curve and also helps simplifying the 
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future analytical efforts. We have used the linear regression in logarithmic space (i.e. 

xbaxaD lnln)(ln +=η  ) to fit a power-law curve, , to our collection of maximum inter story 

drift  ratio and “first” mode spectral acceleration data pairs.  

b
aSa ⋅

η

                    

 
 

 

η D=g(Sa) 

This is a probabilistic m odel of the 
(conditional) d istribution of dem and 
given an in tensity level. 

            M axim um  Inter-story Drift, D  

η D.e-β
 

η D.eβ
 

D

D 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-2 - A set of spectral acceleration and demand data pairs, showing the model fit to these 

data points. 

 

It is not an objective here to describe the various ways )(xD  may be estimated. In design practice 

it is likely to come from one or more structural analysis procedures, perhaps previously calibrated 

to nonlinear dynamic results for similar structures (see FEMA 350, and Yun and Foutch, 2002). 

In assessment practice or research it can be obtained through one or more schemes of selecting 

and processing records and results (see Bazzurro et al, 1998, Luco and Cornell, 1998, 

Vamvatsikos and Cornell, 2001, Chapters 3 and 4 of this thesis). We shall see below that the 

number of required time history analyses may be quite small (e.g., of the order of 5 to 10 time 

history analyses). For a set of drift demand and spectral acceleration data points, such a 

regression in the logarithmic scale will result in the following relationship between spectral 

acceleration and (median) inter-story drift response: 

 

)4-2(                       )( b
aD xax ⋅=η  

Figure 2-2 illustrates a typical power law relationship between the median maximum inter story 

drift demand and the spectral acceleration for a three-story steel frame building located in Los 
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Angeles. In this case, b  which is consistent with the so-called “equal displacement rule” 

(Veletsos and Newmark, 1960). 

1≅

 

2.5.7.3 Annual frequency of exceeding  demand – Drift Hazard 
 

We are going to break the displacement-based approach for deriving the limit state probability in 

Equation 2-2 into two parts. The first part is to derive the probability that the displacement-based 

demand exceeds a given value d, and the second part is to derive the probability that the 

displacement-based demand exceeds the capacity or the limit state probability. In simple words, 

the randomness in demand and capacity is modeled in two stages. This section describes the 

derivation of a closed-form expression for the annual probability of exceeding a certain demand 

value d, also known as the Drift Hazard, by modeling the randomness in the displacement-based 

demand.  

 

Recalling from last section, the median demand versus spectral acceleration relationship was 

introduced as: 

 

5)-(2                                     )( bxaxD ⋅=η  

As shown above, the demand can be written in terms of the product of its median value and a 

lognormal random variable ε  with the following characteristics: 

 

6)-(2                                       )( εη ⋅= xD D  

We assume (based on observation of data) that ε  can be represented by a lognormal distribution, 

in which case we define its parameters, the median and standard deviation of εln , to be: 

 

7)-(2                                      
1

|)ln(

))(ln(

aSD

meane
βσ

η

ε

ε
ε

=
==

 

where εη  denotes the median value for ε . Note that what we call the “dispersion”, i.e., 
aSD|β , 

will in general depend to some degree on the level of . Here for analytical tractability, we 

assume it is constant; the value should be chosen for  values in the range of primary interest. If 

we replace 

aS

aS

)(xDη  with its corresponding value from Equation 2-4, the following expression for 

drift demand as a function of spectral acceleration and lognormal random variable ε  is obtained: 

 

18 



 
CHAPTER 2           A TECHNICAL FRAMEWORK FOR PROBABILITY-BASED ASSESSMENTS 

8)-(2                                   ε⋅⋅= b
axaD  

Since we have assumed that ε  is a lognormal variable, we can also conclude that the 

displacement-based demand D is also a random variable with the following statistical properties: 

 

9)-(2            )(

)(

||ln

|

aa

a

SDSD

b
SD

x

xax

βσ

η

=

⋅=
 

where  and  are the conditional median and standard deviation of the natural 

logarithm for the displacement-based demand given spectral acceleration. As mentioned above, 

the conditional standard deviation of the natural logarithm  or the conditional 

“fractional” standard deviation

)(| x
aSDη )(|ln x

aSDσ

)(|ln x
aSDσ

)(| x
aSDβ  of demand given spectral acceleration is assumed to be 

constant. The conditional median demand for a given spectral acceleration )(| x
aSDη  (or more 

briefly )(xDη ) is approximated as a power-law function of the spectral acceleration level, x. 

Figure 2-3 illustrates a graphical presentation of basic components for drift hazard evaluation in 

which the median drift curve, the variability of the displacement-based response around it, and 

the conditional lognormal distribution fit to the data (at any given ) are all plotted together 

with the spectral acceleration hazard. The median drift times 

aS

)exp( | aSDβ is referred to as the 

“mean plus one sigma” curve as it corresponds to the 84th percentile of the data for a lognormal 

variable; this is illustrated in the figure as . In a similar manner, the median drift 

times is referred to as the “mean minus one sigma” curve as it corresponds to the 16

)exp()( | aSDD x βη ⋅

][ dDP ≥

)
a

))
aS

exp( |SDβ−

exp( |Dβ−⋅

th 

percentile of the data (for a lognormal variable) that is illustrated in the figure as 

. Our objective is to find the drift hazard curve, , the annual probability 

of exceeding a certain drift angle d  (e.g., ). The strategy outlined below for finding the 

P

(D xη )(dH D

LS  involves decomposition and re-composition via the TPT. 

 

We have two random variables of interest D and , analogous to Equations 2-1 and 2-2 

presented in Section 2.5.5. Under the general solution strategy, we can decompose the drift 

hazard into conditional probability of exceeding drift value d for a given spectral acceleration 

value x and the likelihood that the spectral acceleration is equal to the value x: 

aS

 

10)-(2                               ][]|[][)(
 xall

xSPxSdDPdDPdH aaD =⋅=>⋅=>⋅= ∑νν  
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 Maximum inter-story drift angle (Demand), D HSa(x) 

D|Sa 
ηD=g(x) 

ηD (x)

x 

HSa(x) 

mean minus sigma  
median 
mean plus sigma  ηD.e-β

 

ηD.eβ
 D|Sa 

LN(ηD , βD|Sa) 

Figure 2-3 - Basic elements for drift hazard evaluation, , and the distribution of D given S)(xH
sS a 

characterized by )(xDη and . 
aSD|β

 

Where ν  represents the (annual) rate of the occurrence of the events “of interest” (or rate of 

seismicity for brevity), e.g., events with magnitude greater than 5 in surrounding 200km. Thus, 

the drift hazard in Equation 2-10 is equal to  times the rate of occurrence of the 

earthquake events that interest us. Therefore, the drift hazard itself is expressed in terms of the 

“rate of exceedance” or the “mean annual frequency of exceedance” (however, in this chapter we 

may use the terms probability and frequency interchangeably). 

][ dDP >

 

We should note that the above expression involves discrete variables. However, since we are 

using analytic parameter estimations, we are going to base our derivations on an equivalent 

expression for the drift hazard derived for continuous variables: 

 

11)-(2

  )(]|[)(]|[][)(
00
∫∫
∞∞

⋅⋅=>=⋅⋅⋅=>=>⋅= xdGxSdDPdxxfxSdDPdDPdH
aa SaSaD ννν

 

where  is probability density function (PDF) at spectral acceleration value x, and, G  

is the complementary cumulative distribution function (CCDF) at 

)(xf
aS )(x

aS

xSa = . It should be noted that 

the )ν (xdG
aS⋅  term in Equation 2-11 is resulting from the following relationship between )(⋅F  
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or the cumulative distribution function (CDF) and )(⋅f  or the PDF for a random variable (e.g., 

spectral acceleration ): aS

x
∆
∆+S≤

aS ν

          

 )
0
∫
∞

=x
0
∫
∞

P

d>

ln

|

|

−

−

aSD

D

SD

mean

β
η

β

1 

1

=

−=

 

12)-(2 

  
)()(][-][

lim
][

lim)(
00 dx

xdG

dx

xdF

x
xSPxSP

x
xxxP

xf aa

a

SSaa
x

a
xS ==

≤≤
=

∆
∆+≤

=
→∆→∆  

The last equality is based on the fact that the CCDF is expressed in terms of the probability of 

exceedance whereas the CDF is expressed in terms of the probability of being less than or equal 

to. Therefore, their corresponding derivatives are equal in absolute values but will have opposite 

signs. 

 

It should be noted that the spectral acceleration hazard  is equal to the spectral 

acceleration CCDF, G  times the rate of seismicity 

)(xH
aS

)(x : 

 

13)-(2                    )()(  xGxH
aa SS ⋅=ν  

Therefore, we can re-write Equation 2-11 as a function of the spectral acceleration hazard: 

 

14)-(2

 )(]|[(]|[)( ⋅=>⋅⋅=>= xdHxSdDPdGxSdDdH
aa SaSaD ν

 

Since we have assumed that the displacement-based demand is a lognormal variable, we can 

derive the term  using the tables that provide the CDF of a standardized normal 

variable (Rice 1995). In order to use the normal tables, we first need to transform the random 

variable D into a standardized normal variable: 

]|[ xSDP a =

 

15)-(2          
)ln(

1]
)(ln)(lnln

[                              

]|lnlnlnln[1]|[]|[

|

|

|

|

|


















⋅Φ−=≤

−
−

=
−

≤−==≤=>

aa

aa

SD

bSa

SD

SaD

a
SD

aa

xa
d

xdxD
P

xSDmeandDDPxSdDPxSdDP

ββ
η

β

 

where  is the standardized Gaussian CDF. The above equation is derived based on the 

following property of a lognormal variable in which the mean of the logarithm is equal to the 

logarithm of the median (Benjamin and Cornell 1970) 

)(⋅Φ

21 



 
CHAPTER 2           A TECHNICAL FRAMEWORK FOR PROBABILITY-BASED ASSESSMENTS 

 

DDmean ηlnln =  

If we substitute the standardized Gaussian representation of ]|[ xSdDP a =>  in Equation 2-15 

into Equation 2-14, the drift hazard will be expressed as: 

 

16)-(2        )( }
)ln(

1{)(]|[)(
0 |0
∫∫
∞∞

⋅


















⋅Φ−=⋅=>= xdHxa
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We are going to use integration by parts in order to re-arrange the above equation so that we can 

integrate it analytically. We first need to calculate the derivative of the first term in the integrand: 
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where ( )⋅φ  is the standardized Gaussian PDF which is equal to: 
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for any standardized normal variable u. The drift hazard in Equation 2-14 is re-arranged into the 

following form after applying the integration by parts assuming that the term 

is close to zero for the integration limits, i.e., very small and very large 

values. It should be noted that for a lognormal variable, the range of possible values vary from 

 to ∞ . 

)(]|[ xHxSdDP
aSa ⋅=>

aS

0
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Now we are going to replace the hazard term  by its power-law approximation from 

Equation 2-3 and also replace the Gaussian PDF by its analytical form in Equation 2-17: 

)(xH
aS
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In order to calculate the above integral analytically, we are going to form a square term (so that 

we can form a Gaussian PDF) inside the integral. This way we can calculate the integral by using 

the fact that the integral of a PDF function (over all possible values of the variable) is equal to 

unity. We begin by some simple algebraic manipulations in order to make the equation is a bit 

simplified: 
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The next step is to form a full squared term inside the integral and also take all the constant terms 

out of the integral: 
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We can notice that the term inside the integral is indeed the PDF for the standardized Gaussian 

variable u with the derivative 
dx
du : 
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Therefore the expression for drift hazard can be also written as: 
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Noting that the integral of a normal PDF over all the possible values is equal to unity, the drift 

hazard can be written in the following simplified form: 
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In order to have a more condensed formulation of the drift hazard, we introduce the notation S  

or spectral acceleration “corresponding” to drift angle d  defined as: 

d
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1
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
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This is also the solution of Equation 2-4 for a given value of , i.e., if we read the corresponding 

 value

d

aS 1 from  curve. The graphic interpretation of  can be seen from Figure 2-4. 

In simple words, this means that for a given drift demand value d, we find the corresponding Sa 

value from the median curve .  

b
aSad ⋅= d
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b
aaD SaS ⋅=)(η

 

The derivation can be further simplified by making use of the hazard curve definition in Equation 

2-3: 
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1 Note that S  is not necessarily the median for a given value of drift angle d . It is just the 
corresponding  value found from the curve. In other words, the fact that  the -  curve gives the 
median drift  for a given value of S  does not mean that  it will also provide the median for a given 
value of drift . 

d
a

d
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aS D aS

a aS
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Maximum Interstory drift Angle,θmax 
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  a
t  
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η = a Sa 
b 

d 

Sa d 
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Figure 2-4 - Spectral acceleration corresponding to the demand value, d. 

 

It can be seen by inspection of Equation 2-25 that the hazard curve for the drift demand  is 

equal to the hazard function  evaluated at the spectral acceleration corresponding to this 

drift demand times a factor related to dispersion in the drift demand for a given spectral 

acceleration. The first factor can be interpreted as a “first order” estimate; it is also the drift 

hazard if the dispersion  is zero. Experience suggests that the second factor may typically 

have values in the order of 1.5 to 3. Note that in this form one can read the first factor directly 

from a given hazard curve without actually making the approximating fit . The log-log 

slope k of the approximation is needed for the second factor however. 

)(dH D

(.)
aSH

aSD|β

kxk −⋅0

 

2.5.7.3.1 Numerical Example 
 

We would like to derive the drift hazard curve for a 3-story (model) structure with brittle 

connections located in Los Angeles. This structure is a typical 3-story steel moment resisting 

frame building used in the SAC project (Luco and Cornell 1998). A set of nonlinear dynamic 

analyses were conducted, and the resulting maximum inter-story drift ratios have been plotted 

versus the first mode spectral acceleration as it is illustrated in Figure 2-5. The hazard curve 

represented in Figure 2-5 corresponds to oscillators with a fundamental period around 1.0 sec and 

located in Los Angeles, thus we have used it as the spectral acceleration hazard curve for our 

model structure. In approximate analytical form it is: 

 

   00124.0][)( 03.3−⋅=≥= aaaS ssSPsH aa
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Note that the  value is nearly equal to 3.0. Our next step is to determine the median relationship 

between spectral acceleration and drift. This is done in Figure 2-5, by fitting a line to the data 

points in a log-log scale; which gives the following information: 

k

 

3.0299.0 
0325.0)(

|

002.1

≈=
⋅=

aSD

aaD SS
β
η  

 

 

 

 

 
 
 
 
 
 

 

 

 

 

 

Sa  =0.6150.02 

HSa(sa)=0.007 

 

Figure 2-5 - Hazard curve for spectral acceleration values corresponding to an oscillator with a 

period equal 1.0 and damping ratio of 2%. 

 

Note that b  for this range of data, i.e., the median drift is approximately proportional to the 

. It should be mentioned however that there may be a certain level of non-linearity (material or 

geometric) in which  is not close to 1.0 anymore. Linear behavior is limited in this structure to 

inter-story drifts less than about 0.01. We would like to evaluate the probability that the 

maximum inter-story drift angle exceeds a specific value, say 2%, . If we substitute 

0.02 for d in Equation 2-25: 

1≈

aS

b
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Recall that  is equal to d
aS   

1
bd

a a
dS 






= per definition: 
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  [g]   0.615
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02.0 1

02.0 =
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



=aS  

Equivalently we could simply have read this value from median line in Figure 2-3 by entering at a 

drift value equal to 0.02. Now we look up for the value of for the spectral acceleration 

hazard curve. As illustrated in Figure 2-5 it is equal to 0.007. Hence, can be derived as: 

)615.0(
aSH

H )02.0(D
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Note that the factor )3.0
1
3

2
1exp( 2

2

2
⋅⋅ is equal to 1.50. 

 

We can repeat the above calculations for multiple drift values in order to obtain the drift hazard 

curve or we can find an analytical expression for the drift hazard. In general we can compute the 

drift hazard for a specified drift value, say d as follows: 
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Next we need to find the expression for the spectral acceleration hazard curve evaluated at 

  
0325.0
d . This is: 

   1025.4
0325.0

00124.0)
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( 38
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−−
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⋅⋅≈
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



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Finally the drift hazard for a specified value of drift, d is derived as: 

 

   10375.6)( 38 −− ⋅⋅≈ ddH D  

The above relationship is plotted in Figure 2-6. 
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d1/100

1/100

 
Figure 2-6 - Hazard curve derived for maximum inter-story drift values 

 

One can use the above curve, to determine for example the 100 year return period drift, by setting 

 to 1/100 and solving for d : )( 100/1dH D 100/1

 

 )(10375.6100/1 3
100/1

8 −− ⋅⋅= d  

solving for : . The same value can be also found simply from Figure 2-6. 100/1d  0185.0100/1 =d

2.5.7.4 Annual Frequency of Exceeding a Limit State 
 

We have already derived the probability that the limit state variable exceeds a certain value. The 

next step is to find the probability that this limit state variable exceeds a specified limit state 

threshold or capacity, C. The difference in this case is due to the fact that the limit state threshold 

can be a random variable itself. For example in the SAC project (FEMA 350) modern “reduced 

beam section” (RBS) connections were concluded to have a median capacity of 07.0=Cη  (inter-

story drift ratio) with a dispersion of 2.0=Cβ  reflecting specimen-to-specimen variability in 

(hypothetical2) test results and even possible record-to-record variations in the drift failure due to 

sequence effects in the low-cycle fatigue suffered by the connection. Beyond the drift capacity 

the connection lost virtually all vertical load carrying (shear) capacity implying the potential 

collapse of floor above. In this section we will derive the expression for the probability of limit 
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state, , by introducing the variability in the limit state threshold. The basic 

elements involved in the derivation are illustrated in Figure 2-7. 

][ CDPPLS ≤=

=LSP

 

Once again we use the total probability theorem to sum the joint probabilities that limit state 

variable exceeds the capacity variable for a given value of capacity, over the entire range of 

possible values for the capacity variable: 

 

26)-(2                         ][]|[][
 

∑ ==≥=≥
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cCPcCcDPCDP  

We next assume that demand and capacity are (statistically) independent, i.e. that: 
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LN(ηD|Sa,βD|Sa) 

ηD(x) 

sa 

HSa(x) 
LN(ηC ,βC) ηC
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x 

 ηC 

Figure 2-7 - Basic elements for limit state probability evaluation, , distribution of drift 

variable D given S

)(xH
sS

a characterized by )(xDη and , distribution of capacity variable C 

characterized by 

aSD|β

Cη and Cβ  

 

The annual frequency of exceeding the limit state, , can be expressed as the limit state 

probability  times the seismicity rate 

LSH

LSP ν  (as mentioned in the Section 2.5.7.4.): 
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CHAPTER 2           A TECHNICAL FRAMEWORK FOR PROBABILITY-BASED ASSESSMENTS 

28)-(2                                     ][ CDPPH LSLS ≤⋅=⋅= νν  

Since we are going to base our derivation on the expression for drift hazard, our calculations are 

going to yield the mean annual frequency of exceedance (or limit state frequency in short), LSH 3, 

as the end result. Therefore, the limit state frequency can be calculated by substituting Equations 

2-26 and 2-27 into Equation 2-28: 
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∑ =≥⋅=≥⋅=⋅=
call

LSLS cCPcDPCDPPH ννν  

The probability that drift demand exceeds drift capacity for a given value of drift capacity can be 

readily determined from the drift hazard curve: 

 

30)-(2                                 ][ )( cDPcH D ≥⋅=ν  

Substituting the term ][ cDP ≥⋅ν  in Equations 2-29 by  from the above equation, )(cH D
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∑ =⋅=⋅=
call

DLSLS cCPcHPH ν  

However, the above equation is valid for discrete variables; in the continuous form, the 

summation is replaced by an integral and the probability term, ][ cCP = , is replaced by a 

probability density function term, dccfC ⋅)( : 

 

32)-(2                       )()(∫ ⋅⋅=⋅= dccfcHPH CDLSLS ν  

Substituting the drift hazard value for  from Equation 2-25 into Equation 2-32 results in: )(cH D
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From Equations 2-3 and 2-4,  is equal to )( c
aS SH

a  0
b
k

a
c

−







⋅k . Thus, the limit state frequency is 

obtained by performing the following integration: 

 

                                                                                                                                                 
were estimated indirectly and are based on some level of expert opinion. 
3 In this chapter, we have used the notation  in order to refer to the mean annual rate of exceedance. 
However, in the next chapters we may use the notation 

(.)H
(.)λ instead. 
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34)-(2 

  )()()(
|

2
2

2

|
2

2

2

2
1

0
2
1

cdcfe
a
ckcdcfeSHH C

b
k

b
k

C
b
k

d
aSLS

aSDaSD

a ∫∫ ⋅⋅⋅





⋅=⋅⋅⋅=

−
ββ

 

For the above integral to be evaluated, the probability density function of the random variable C , 

, has to be known. Here for tractability, it is assumed that  is a lognormal random 

variable with following characteristics: 

)(cfC C
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After some simple re-arrangements: 
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It can be seen that the term inside the last integral equals expectation of b
k

c
−

. It has been shown in 

Appendix A that the expected value of log normal random variable Y (with median Yη and 

dispersion Ylnσ ), to the power of α equals to: 
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Since C is assumed to be a lognormal variable, the above property can be used to solve the 

integral in Equation 2-35 as follows (For further details regarding the integration scheme refer to 

Appendix A): 
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We conclude that: 
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We can recognize in the above expression the spectral acceleration hazard from Equation 2-3 

combined with the spectral acceleration-median drift relationship in Equation 2-4, , 

which equals the hazard value for the spectral acceleration corresponding to median capacity, 

: 

bk
C ak /

0 )/( −η

C
aSη
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Thus: 
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where the last equality is based on the expression for drift hazard at median capacity,  (.)DH Cη , 

from Equation 2-25, and , as mentioned before, is the spectral acceleration “corresponding” 

to a drift value equal to 

C
aSη

Cη , i.e., . Finally, the probability of limit state is derived 

as: 
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It can be observed that the probability of limit state (or the probability of drift demand exceeding 

the drift capacity) is equal to the hazard curve for the spectral acceleration corresponding to the 

median drift capacity times two coefficients accounting for the randomness in drift demand for a 

given spectral acceleration and the randomness in drift capacity itself. Again the first factor can 

be seen as a first-order approximation to the limit state frequency, . LSH

 

2.5.7.4.1 Numerical Example: 
 

Returning to our 3-story frame numerical example of the last section,  now we assume that the 

median drift capacity and its dispersion parameter are given as: 

 

20.0
07.0)(

)ln( ≅=
≅=

CC

CCmedian
βσ

η
 

We first need to find . We can do this graphically.  can be calculated as the spectral 

acceleration corresponding to 

)( C
a aS SH η C

aSη

07.0=Cη  from median-spectral acceleration curve in Figure 2-7 

resulting in  (note that the capacity points in the figure are only for schematic 

representation). We enter the hazard curve (Figure 2-8 below) with this value and find 

. 

g15.Sa 207.0 ≅

00012.0)15.2( ≅
aSH
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Sa  =2.150.007
HSa(Sa       )=0.000120.007

Figure 2-8 - The spectral acceleration hazard curve. The hazard value for a spectral acceleration 

equal to, 2.15, is shown on the figure. 

 

Alternately we can use the analytical approximations. Using Equation 2-36 we can calculate the 

hazard for the spectral acceleration corresponding to the median drift capacity as: 
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This value together with the 1.50 value for the coefficient )
2
1exp( |

2
2

2

aSD
b
k β  calculated in Section 

2.5.7.3.1 are used to calculate the annual frequency of exceeding the limit state from Equation  

2-38 as follows: 
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It can be seen that in this example the randomness in the drift capacity and drift demand for a 

given spectral acceleration causes the limit state frequency to increase about a factor of 2 over the 

first order estimate of . 4102.1)( −×=C
a aS SH η
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2.5.7.5 Annual Frequency of Exceeding a Limit State, the IM-based approach 
 

In this section we are going to derive the annual frequency of exceeding a limit state, , by 

following an IM-based approach. The total probability theorem (TPT) is used to decompose the 

expression for the limit state frequency into (conditional) frequencies of exceeding the limit state 

for a given spectral acceleration (the adopted IM), and composing the results by integration over 

all spectral acceleration values: 

LSH
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where  represents the IM-based demand,  represent the limit state capacity also expressed 

in spectral acceleration terms, and 

aS CaS ,

ν  represents the seismicity rate (the reason for including it in 

the derivations is explained before for the displacement-based derivation). We have used 

Equation 2-12 in order to express the PDF of spectral acceleration in terms of the increment in the 

spectral acceleration hazard. We assume that the spectral acceleration capacity is a lognormal 

variable with the following statistical parameters: 
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We can observe that the first term in the integral  can be also interpreted as the CDF 

of the spectral acceleration capacity at S

][ ,Caa SsP ≥

xa = : 
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Since  is assumed to be a lognormal variable, the corresponding CDF can be expressed in 

terms of the standardized normal CDF: 

CaS ,
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In order to be able to integrate Equation 2-39, we use integration by parts and transform the 

equation into the following form: 
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Just as in Section 2.5.7.3., the derivative of the standard Normal CDF can be calculated as: 
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After the derivative of the Normal CDF in Equation 2-42 is substituted in Equation 2-41, and the 

hazard term is replaced by the power-law approximation from Equation 2-3: 
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If we substitute the expression for the Normal PDF in Equation 2-18 into the above equation: 
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Similar to the derivation in Section 2.5.7.3, we transform the integrand into a complete square 

term and take all the constant terms outside of the integrand: 
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The term inside the integral is itself the derivative for a standard Normal CDF: 
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Noting that the integral is equal to unity, the limit state probability can be derived as: 
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We can observe the power-law term outside the exponential is equal to the frequency of 

exceeding (i.e., hazard) a spectral acceleration equal to the median spectral acceleration capacity: 
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We can argue that ) (
,Caa SSH η  is a first-order approximation to the limit state probability and the 

exponential term exp(  is a magnifying factor that accounts for the sensitivity of the 

limit state probability to the randomness in the spectral acceleration capacity. If we compare the 

IM-based expression for the limit state frequency in Equation 2-48 to the displacement-based one 

in Equation 2-38, we can observe that the exponential term accounting for the dispersion in 

displacement-demand is missing. Also the slope parameter b that measures the gradient of the 

displacement-based demand with regard to spectral acceleration is absent. This is because the IM-

based approach, when applying TPT to derive the limit state probability, does not employ the 

displacement-based demand as (one of the) an intermediate variable(s). 

)2/22
,CaSk β⋅

 

2.5.8 Randomness and uncertainty as the sources of variability 
 

In previous sections, a closed-form expression for annual probability of exceeding a limit state 

(here, the collapse limit state) was derived. We saw that the hazard value for the load intensity 

measure corresponding to median drift capacity (i.e., the annual probability of exceeding the load 

intensity measure corresponding to median drift capacity) is a first-order approximation to the 

limit state frequency. This first-order approximation is multiplied by two second-order estimate 

coefficients accounting for the randomness in drift demand for a given spectral acceleration and 

the randomness in drift capacity itself.  

 

Our objective here is to derive the limit state frequency when there is both randomness and 

uncertainty in the design variables such as spectral acceleration hazard, drift demand given 

spectral acceleration and drift capacity. Our derivations are going to be based on the assumption 
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that to a first approximation we can represent all the epistemic uncertainty in variable X by the 

uncertainty in its median. The model becomes: 

 

49)-(2                     ˆ XXX εεη η ⋅⋅=  

where Xη̂  is the current point estimate of the median of X , the unit-median random variable ηε  

represents the epistemic uncertainty as to the true value the median of X , and the unit-median 

random variable Xε  represents the aleatory randomness of X . We are also going to assume that 

the deviation from median, ηε , can be properly modeled by a lognormal distribution. In general, 

of course, the epistemic uncertainty in Xβ  should also be taken into account. Also, the shape of 

the distribution of X  may not be lognormal. 

 

As in the previous section, we start by deriving the hazard values for the load intensity variable, 

spectral acceleration of the “first” structural mode. We use some probabilistic tools (e.g., TPT as 

explained previously) to derive the hazard values for the limit state variable, maximum inter-story 

drift, and then complete the derivation by obtaining the limit state probability PLS. Whenever 

possible we will make use of the results obtained in the previous part and generalize them to the 

case where there is both randomness and uncertainty in the design variables. 

2.5.8.1 Spectral Acceleration Hazard: 
 

The concept of hazard curves for the load intensity measure was introduced in the previous 

section. Our focus was on the spectral acceleration hazard curves which are normally provided by 

seismologists for a given site condition and its location with respect to a fault. The hazard curve 

estimation involves many scientific assumptions (see Kramer 1996). In other words there is 

uncertainty in the evaluation of a hazard curve. That’s why spectral acceleration hazard curves 

are normally provided as mean and 84th percentile hazard curves (As shown in Figure 2-9). Here 

we are going to take into account the uncertainty in the evaluation of the spectral acceleration 

hazard.  

 

In the previous sections, we found it advantageous to approximate the hazard curve by a power-

law relationship as proposed by Kennedy and Short (1994) and Luco and Cornell (1998): 
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where  and  are parameters defining the shape of the hazard curve. We are going to let an 

equation of the same form as the one above represent the median estimate of the uncertain hazard 

curve:   

0k k
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kxS kx
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−
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Further we introduce the random variable UHε  that represents the uncertainty in the spectral 

acceleration hazard, so that we have:  . 51)-(2        )(ˆ)( UHSS xHxH
aa

ε⋅=

 

Here we have assumed that UHε  is a lognormal random variable whose statistical parameters 

have the following characteristics: 
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where UHβ  reflects the degree of uncertainty in the PSHA estimation. We recognize the spectral 

acceleration hazard itself as an uncertain (random) variable, )(~ xH
aS

UH

, which can be represented as 

the median (“best”) estimate times this uncertain deviation, ε~ : 
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Note the use of a “tilda” to denote a random variable, when clarity is needed. Considering our 

assumption about UHε~  being log-normal, we can observe from the above equation that the hazard 

for any value of  itself is a lognormal random variable (i.e., instead of having a single 

deterministic value assigned to it, it has a probability distribution). We can write the spectral 

acceleration hazard as: 

aS
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Where )(~ xH
aS  is a lognormal random variable with its median equal to )(xH

aS
)

 from Equation  

2-50 and its dispersion measure (i.e., the standard deviation of the natural logarithm or fractional 

standard deviation) equal to UHβ . The mean hazard curve can be written as: 
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This equation is based on a property of the lognormal variables; their expected value is equal to 

the median times the exponential of half of the squared standard deviation (see Appendix A). 

Figure 2-9 shows the 16th percentile, median, mean and 84th percentile hazard curves for a 

California site that corresponds to a period of 1.8 seconds and damping ratio of 5%. Note that the 

median curve in the figure is the same hazard curve we used in the previous section. The 84th 

percentile is given by . UH
a

exH S
β⋅)(ˆ

 

HSa(x) =k0 (x)–keβUH84th 

HSa(x) =k0 (x)–keβ2
UH/2

HSa(x) =k0 (x)k 

 
Figure 2-9 - 16th, median and 84th percentile spectral acceleration hazard corresponding to a 

damping ratio equal to 5  and a structural fundamental period of 1.8 seconds. %
 

Figure 2-10 shows the basic components of drift hazard evaluation when there is uncertainty (due 

to limited knowledge and data) in the estimation of the spectral acceleration hazard )(~
aS sH

a
. The 

probability density for uncertainty in hazard is plotted with solid black lines. The two hazard 

curves on the graph correspond to the median estimate of hazard, , and hazard curve for a 

given value of deviation, 

)(ˆ
aS sH

a

UHε , in the estimation of hazard curve, , respectively. UHεaS sH
a

⋅)(ˆ
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2.5.8.2 Probability of Exceeding a Drift Demand value – Drift Hazard 
 

Recalling from the previous section, the drift demand variable (given a specified  level) was 

introduced as the median demand value times a random variable 

aS

ε  representing the random 

variation (e.g., record-to-record) around the median value. We assumed that ε  has a lognormal 

distribution: 

 

)562(                                   )( −⋅= εη xD D  

Randomness is assumed to be the only source of variability in the above expression. In general, 

the median drift demand is also an uncertain quantity. The uncertainty in the median drift demand 

is caused by the limited knowledge and data about modeling and analysis of the structural system 

especially in the highly non-linear range and/or exact numerical values of the parameters of 

structural model. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Maximum inter-story drift angle (Demand), D 

 
HSa(x).εUH 

LN(ηD, βD|Sa) 

ηD 

HSa(x) 

LN(HSa(x), βUH) 

Hazard HSa(.) 

Figure 2-10 - Basic components for the evaluation of drift hazard with uncertainty in the 

estimation of spectral acceleration hazard, )(~ xH
aS  

 

The uncertainty is also caused by using a finite number of non-linear analyses to estimate the 

median value. The scatter of the displacement-based response in Figure 2-2 indicating record-to-

record variability implies that the estimate of the median, )(ˆ xDη , can depend on the particular 

sample of records used and its size. In order to distinguish this type of uncertainty from the one 

that we considered in the previous section, we refer to it as epistemic uncertainty. The median 
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inter-story drift can be expressed as the product of its median estimate, )(ˆ xDη  and a random 

variable UDε  (UD stands for the uncertainty in evaluation of D) representing the uncertainty 

involved in the evaluation of )(xDη : 

)(D xη =

Dη

(ˆ= ηD x

UDε

)( UDD x ε⋅
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b
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Replacing )(x  in Equation 2-56 with its representation in Equation 2-57, the drift demand can 

be written as: 

 

  )582(                               ) −⋅⋅ εεUDD  

In order to be consistent with , we now subscript ε with RD, standing for the randomness 

(aleatory uncertainty) in drift demand evaluation. Finally the drift demand is represented as: 
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where ε  and UDε  are assumed to be independent and to have log-normal distributions with 

following characteristics: 
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Our objective in this section is to derive the probability that the drift demand D exceeds a specific 

value d. In order to minimize the calculation efforts, we’ll make use of the drift demand hazard 

that was derived in the previous section assuming that there was no variability due to uncertainty. 

The drift hazard or the annual frequency that the drift demand exceeds a specific value was 

derived from Equation 2-25 as: 
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The spectral acceleration hazard for a given value of deviation in its evaluation, UHε , can be 

found from Equation 2-54 as: 
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Replacing the above value for spectral acceleration hazard in Equation 2-25, we obtain the drift 

demand hazard for a given value of deviation in spectral acceleration hazard UDε : 
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In the next step, we derive the drift hazard function for a given value of deviation in spectral 

acceleration hazard, UHε , and the given value of deviation of the median drift demand, UDε  : 
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The term  must be interpreted as the median spectral acceleration hazard for the 

spectral acceleration that corresponds to drift d for a 

)(ˆ
|

d
aS sH

UDa ε

given value of deviation UDε  in the median 

drift evaluation:  
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In order to be able to calculate the above value, we need to find  or the spectral acceleration 

corresponding to drift d for a given value of deviation 

UDd
as ε|

UDε  in drift evaluation. The median drift 

demand for a given value of deviation UDε  can be found from Equation 2-57 as: 

 

UDDD xx εηη ⋅= )(ˆ)(  

At this stage we assume that )(ˆ xDη  has the same functional form as the one )(xDη  had in the 

previous part, stated in Equation 2-4, namely: 
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Substituting the value for )(ˆ xDη  from Equation 2-63 in Equation 2-57, the median drift demand 

can be evaluated as: 
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UDd
as ε|  or the spectral acceleration corresponding to drift d for a given value of deviation UDε  in 

drift evaluation can be evaluated by setting )(xDη  in Equation 2-64 equal to d and solving for 

. Hence, we can define  asUDd
as ε| UDd

as ε| 4: 
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The graphic interpretation of  can be seen from Figure 2-11. In simple words, this means 

that we find the corresponding  value from the median curve a : 
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as ε|

aS UD
bx ε⋅⋅

 

Maximum Interstory Drift Angle, D 
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  a

t  
 T

1   

d/εUD  

Sa d/εUD  

d 

η  = a x εUD  b 

 

D D η  = a Sa 
b 

Figure 2-11 - Spectral acceleration corresponding to the inter-story drift ratio value d for a given 

value of deviation of median drift, UDε  

 

Replacing the value for  from Equation 2-65 in Equation 2-61: UDd
as ε|
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)(ˆ / UHd
asH ε  can be calculated from Equations 2-65 and 2-50 as follows: 

 

67)-(2                                   )(ˆ
0

b
k

UD

d

aS a
dksH UD

a

−









⋅

⋅=
ε

ε  

                                                 
4 In fact  is nothing but the spectral acceleration corresponding to drift demand d which is being 

calculated from the median curve  instead of  . 

UDd
as ε|

UD
bxa ε⋅⋅ bxa ⋅

43 



 
CHAPTER 2           A TECHNICAL FRAMEWORK FOR PROBABILITY-BASED ASSESSMENTS 

Substituting the value of from Equation 2-67 in Equation 2-66 results in: )(ˆ / UHd
asH ε
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In short, we have an expression for the drift hazard conditioned on the spectral acceleration 

hazard and variables representing the uncertainty in drift, which is a simple analytical function of 

UHε  and UDε  the random variable representation of those two uncertainties. Recalling from the 

last section where the spectral acceleration hazard could be interpreted as an uncertain variable, 
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we can interpret the drift hazard itself as an uncertain (random) variable , which is a 

function of the uncertain spectral acceleration hazard 

)(~ dH D
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a
and uncertainty in drift 

prediction, UDε : 
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The product of independent lognormal random variables raised to powers, such as , is again a 

lognormal random variable (Benjamin and Cornell, 1970). Therefore, we can conclude that the 

drift hazard is also a log-normal random variable whose distribution parameters can be calculated 

based on the information about the distribution characteristics of 

bk /

UHε  and UDε  from Equations  

2-52 and 2-60: 
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Therefore, the drift hazard )(~ dH D is an uncertain quantity with median: 
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and fractional standard deviation: 

 

)712(                             2
2

2
2 −+= UDUHUH

b
k

D
βββ  

and, also mean value )(dH D  is equal to: 
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After substituting 
DUHβ  from Equation 2-69: 
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Note that the uncertainty in the hazard curve can be dealt with simply by using the mean estimate 

of the hazard curve. Similar to Figure 2-3, Figure 2-12 illustrates a graphical presentation of basic 

components for drift hazard evaluation, but in this case there is uncertainty both in the estimation 

of median drift curve Dη~  and spectral acceleration hazard )(~
aS sH

a
. In Figure 2-12, we have 

plotted, the median estimate, Dη̂

D

, of the uncertain median drift curve, the probability density 

reflecting the uncertainty in η̂  about that estimate, with a fractional standard deviation equal to, 

UDβ , the median drift curve for a given value of uncertainty UDε , a realization of median drift 

curve UDD εη ⋅ˆ  and the fractional standard deviation RDβ  due to record to record variability in the 

results of dynamic analyses around it. The median estimate for spectral acceleration hazard 

 and the spectral acceleration hazard for a given value of uncertainty in hazard evaluation 

 are shown in the same manner as in Figure 2-10. 
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Figure 2-12 - Basic components for the evaluation of drift hazard with uncertainty in the 

estimation of spectral acceleration hazard )(~
aS sH

a
and median drift Dη~  

 
2.5.8.2.1 Numerical Example 
 

Returning to our numerical example, we calculate the mean estimate of the drift hazard in the 

case where there is uncertainty in the evaluation of the drift demand. We have the maximum 

inter-story drift values resulting from 30 different nonlinear time history runs plotted in Figure  

2-2. Fitting a line in log-log space to the data points gives us the following information about the 

median inter-story drift and the dispersion around it: 
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ββ
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But strictly this is just the median estimate, )(ˆ xDη of the median drift curve. The uncertainty in 

the median estimate for the inter-story drift can be due to modeling errors and other 

approximations involved in the analysis procedure. Here we limit the consideration to the 

statistical uncertainty in the median due to the finite sample size (nsample=30). The statistical 

properties of the median inter-story drift can be estimated as (see Rice 1995 for the statistical 

parameters for the mean estimate): 
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Analogous to the previous section, we would like to evaluate the mean estimate of the probability 

that the maximum inter-story drift angle exceeds a specific value, say 2%, )02.0(DH . If we 

substitute 0.02 for d in Equation 2-73: 

 

UDRD

a

DUH
b
k

b
k

aS
b
k

DD eesHeHH
2

2

2
2

2

2
2

2

2

2
1

2
1

02.02
1

)()02.0(ˆ)02.0(
βββ

⋅⋅=⋅=  
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1
bd

a a
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= per definition: 
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The mean estimate for the spectral acceleration hazard can be evaluated as:  
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UHβ  here is assumed to be equal 0.50. With this assumption we can look up the value for 

from the spectral acceleration hazard curve in Figure 2-5, which is equal to 0.007. 

Hence, 
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)02.0(DH can be derived as: 
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Note that in the previous section where there was no uncertainty involved in the estimation of 

inter-story drift demand was equal to 0.0105. The net uncertainty here in the estimation 

of  is equal to: 

)02.0(DH

)02.0(DH
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The primary contribution is from the PSHA, but this can change if UDβ  increases to as large as 

0.15. If non-linear dynamic modeling errors are considered, this value is likely to be considerably 

larger than 0.15. 

2.5.8.3 Annual Probability of Exceeding a Limit State  
 
We would like to derive the probability that the drift demand exceeds the drift capacity or the 

limit state probability, or simply the limit state frequency, in the face of epistemic uncertainty. In 

the last section we derived the probability that the drift demand exceeds a specified value of drift 

demand also known as drift hazard. The uncertainties in the derivation of the spectral acceleration 

hazard and drift demand were considered in this derivation. Now we are interested in calculating 

the probability that the drift demand exceeds a drift capacity, which is an uncertain quantity. In 

the previous part the capacity was assumed to be a uncertain (random) variable whose variability 

was caused by aleatory elements, e.g., connection-to-connection variability in a to-be-built 

design, or record-to-record variability observed , as will be observed in Chapter 4 in global 

instability capacity. 

 

The drift capacity variable was introduced above as a median capacity value times a random 

variable Cε  representing the variation around the median value. We assumed that Cε  has a 

lognormal distribution: 

 

)742(                              −⋅= CCC εη  

In general, the median capacity is also an uncertain (random) variable. The uncertainty in the 

median capacity is caused by the limited knowledge and data about the for example, untested 

connection designs or the nonlinear structural modeling and/or analysis underlying global 

stability prediction. The median capacity variable can be expressed as the product of its median 

value, Cη̂  and a random variable UCε  (UC stands for the uncertainty in evaluation of capacity, C) 

representing the uncertainty involved in the evaluation of Cη : 
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Finally, we subscript ε with RD, standing for the randomness in drift demand evaluation: 
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RCε  and RCε  are assumed to be independent and to have log-normal distributions with 

following characteristics: 
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Our objective in this section is to derive the probability that the drift demand D exceeds the drift 

capacity C, recognizing all these uncertainty elements. Based on the expression derived for the 

limit state frequency in previous part, Equation 2-38: 
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We are going to use the above equation and combine it with our findings from the previous 

section for the drift hazard in order to derive the limit state frequency, . If capacity is a 

specific deterministic value, c, (i.e., there is no randomness nor uncertainty in the evaluation of 

capacity), the drift hazard function associated with exceeding drift level c (for a given value of 

uncertainty in spectral acceleration hazard, 

LSH

UHε , and uncertainty in drift demand, UDε ) can be 

derived based on the results of previous section from Equation 2-61, substituting c for d: 
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We would like to first find the limit state frequency conditioned on the uncertainties in spectral 

acceleration hazard, drift demand and drift capacity. The median capacity for a given deviation, 

UCε , of drift capacity median from its median estimator can be written as below based on 

Equation 2-75: 

 

)802(                                        ˆ  | −⋅= UCCC UC
εηη ε  

If we substitute the median capacity associated with this given deviation, 
UCC εη | , from Equation 

2-80 for  in Equation 2-79, the drift hazard conditioned on the uncertainties in spectral 

acceleration hazard, drift demand and drift capacity will be found as: 

c
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Substituting the conditional drift hazard term at 
UCC εη |  in the above equation into Equation 2-78, 

the limit state frequency for a given value of uncertainty in spectral acceleration hazard, drift 

demand and drift capacity can be found: 
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The above expression gives the limit state frequency conditioned on the spectral acceleration 

hazard, drift demand and drift capacity as an analytical function of UHε , UDε  and UCε  the 

random variables representing the above-mentioned uncertainties. Similar to what we did in the 

previous section for the drift hazard, here we can interpret the limit state frequency itself as an 

uncertain (random) variable . Recalling from Equation 2-54, the term,  LSH~
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is equal to )(~ ˆC
A aS SH η . Hence, the limit state frequency can be introduced as a random quantity 

that is a function of the uncertain hazard )ˆ(~
CSa

H η , the uncertainty in drift demand 

prediction, UDε  and the uncertainty in drift capacity prediction, UCε : 
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It can be observed that the limit state frequency is also a log-normal random variable whose 

distribution parameters can be calculated based on the information about the distribution 

characteristics of UHε , UDε  and UCε  from Equations 2-52, 2-60, and 2-77: 
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LSH~Therefore, the uncertain limit state frequency  is an uncertain quantity with median, 
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and fractional standard deviation equal to: 
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and, also the mean limit state probability LSH  is equal to: 
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Note that in this final form, the mean estimate of LSH~  looks like  without uncertainty 

(Equation 2-38) but now based on the mean estimate of 

LSH

)(~
aS s

a
H

)(

, and with increased in the 

capacity and demand (given ) exponential terms. Figure 2-13 illustrates a graphical 

presentation of basic components for evaluation of the limit state probability; there is uncertainty 

in the estimation of spectral acceleration hazard 

2β

aS

~
as

aSH , median drift demand curve Dη~  and 

median drift capacity Cη~ . In Figure 2-13, we plot together the median estimate, Cη̂

C

, of the 

uncertain median drift capacity, the probability density reflecting the uncertainty in η about that 

estimate, with dispersion, UCβ , median drift capacity for a given deviation, UCε , in the estimation 

of median drift capacity UCC εη ⋅ˆ , the probability density reflecting the randomness type of 

uncertainty (for example, specimen-to-specimen variability the estimation of capacity) in 

capacity about the median drift capacity C UCC εη ⋅ˆ , with dispersion, RCβ . 
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Figure 2-13 - Basic components for the derivation of the limit state probability when there is 

uncertainty in the estimation of the spectral acceleration hazard )(~
aS sH

a
, median drift demand 

Dη , and median drift capacity Cη . 

 
2.5.8.3.1 Numerical Example 
 

For our 3-story frame numerical example, we would like to calculate the mean limit state 

probability, when there is uncertainty both in the estimation of median drift demand and median 

drift capacity. Recalling from last section, the median drift and the dispersion of drift for a given 

level of spectral acceleration was estimated (by fitting a line in the log-log space to the data 

points obtained by performing 30 different nonlinear time history analyses) as: 
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We have also estimated the statistical properties of the uncertain median drift demand as: 
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The median and dispersion for drift capacity were given before: 
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Note that the dispersion parameter Cβ  is due to the randomness type of uncertainty in drift 

capacity. The statistical properties for the now uncertain median drift capacity we have estimated  

here as (for an assumed sample of size 4 as the number of tests upon which the estimate of the 

median connection capacity is based): 
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Equation 2-86 gives the mean limit state probability as: 
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Our next step is to calculate the median spectral acceleration hazard at a spectral acceleration 

corresponding to median drift capacity: 
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Assuming 5.0=UHβ , same as in the previous sections. We can also look up the value for 

from the spectral acceleration hazard curve from Figure 2-5, which is equal to 0.00012. 

Hence, the mean estimate of the limit state probability 
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LSH  can be derived as: 
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Note that in the first part of the document we calculated the limit state probability when the 

epistemic uncertainty in the estimation of median demand and capacity was not taken into 

account. The limit state probability in that case was equal to , whereas the mean 

estimate of the limit state probability calculated in the presence of uncertainty in the estimation of 

hazard, demand and capacity is  

4102.2 −×

41068.2 −×

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sa  =2.150.007 
HSa(Sa       )=0.00012 0.007 

Figure 2-14 - The median estimate for the spectral acceleration hazard curve. The hazard value 

for a spectral acceleration equal to 2.15 is shown on the figure. 

 

2.5.8.4 Annual probability of exceeding a limit state: the IM-based approach 
 
The annual probability of exceeding a limit state following the IM-based was derived in Section 

2.5.7.5, considering only the aleatory uncertainty (due to record-to-record variability) in demand 

and capacity. In this section we are going to follow the same approach in order to derive the limit 

state probability considering also the epistemic uncertainty. Similar to the previous sections, we 

assume that the median capacity variable can be expressed as the product of its median 

value,
CaS ,

η̂  and a random variable 
CaUS ,

ε  representing the uncertainty involved in the evaluation 

of 
Ca ,Sη : 
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Therefore, similar to the previous sections, we can represent the spectral acceleration capacity as: 
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where 
CaRS ,

ε  and 
CaUS ,

ε  are assumed to be independent and to have log-normal distributions with 

following characteristics: 
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where 
CaRS ,

β  and 
CaUS ,

β  are fraction standard deviations representing the randomness and 

uncertainty in the spectral acceleration capacity respectively. It can be shown (the procedure is 

similar to the one described for the displacement-based approach in detail) that the limit state 

frequency  is an uncertain quantity with median, LSH~
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and fractional standard deviation equal to: 
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and, also the mean limit state probability LSH  is equal to: 
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As with the limit state probability derived following the displacement-based case, the mean 

estimate of LSH~  looks like  without uncertainty (Equation 2-48) but based on the mean 

estimate of 

LSH

)(~
asSH

a
, and with increased in the spectral acceleration capacity due to the 

consideration of epistemic uncertainty. 

2β
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2.6 Summary 
 
A technical foundation for probabilistic seismic assessment of structures has been developed, 

taking into account the randomness (aleatory uncertainty) and uncertainty (epistemic uncertainty) 

in the seismic hazard, demand and capacity parameters. This foundation is based on a closed-

form analytical expression for the mean annual frequency of exceeding a limit state (limit state 

frequency in short). Two different approaches were presented for deriving the limit state 

frequency, namely, the displacement-based and the IM-based. Both approaches are based on 

simplifying assumptions regarding the shape of the hazard curve and the probabilistic models 

representing demand and capacity. This technical foundation forms an analytic basis upon which 

alternative design and assessment formats can be developed. These formats are discussed in the 

next chapter which is the second part to this report. 
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