Appendix A

The expected value of Y* where Y is a log normal random variable:

Assume InY is a normal random variable (i.e., Y is lognormal) with mean m and standard

deviation o. One can always write the following relationship for Y raised to a power, « :
Y = ealnY
InY can be transformed into a standard normal variable U,
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for which, the standard normal probability density function (PDF) at U=u is equal to:
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Based on the linear relation between InY and U (Equation A-I), and the standard normal PDF for

U (Equation A-II), the PDF for normal random variable InY at InY =x can be obtained as:
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where f(.) denotes the PDF function. The expected value for a function g(.) of a continuous
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random variable Z can calculated as:

He@)= ) f,(2)dz (A-IV)

Therefore, the expected value of g(Y)=Y“* can be written as (using Equations A-II, A-III and A-

V).
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APPENDIX A

After some algebraic operations, which involves adding and subtracting some(necessary) square

terms the following equation is obtained:
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We can recognize that the term inside the integral is nothing but the PDF for a normal variable
with a mean equal to m+a-o?, and a standard deviation equal to, o . Therefore, the resulting

integral (from —ooto o) is equal to unity. Hence, the expected value of Y“ is simplified to the

product of the following two terms:
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E[Ya] =E[ealnY]=ema.eza i

For a lognormal random variable, the mean of the logarithm of the variable is equal to the

logarithm of the median of the variable (see Benjamin and Cornell, 1970):
Inny = E[InY]

where 7(.) denotes the median. Hence, for normal random variable InY with mean m and standard

deviation o, the expected values of Y“ can be written as:
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Thus, the expected value of a lognormal random variable raised to a power « can be expressed as

the product of the median value raised to the power times a magnification factor, which is an

. . . . 1
exponential function of the variance of InY times Eaz .
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