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4.1 Abstract 
 
Demand and capacity factored design (DCFD) is a probability-based LRFD-like format used for 

seismic reliability assessment of structures. This format makes use of the results of nonlinear 

dynamic analysis in order to make probabilistic statements about the seismic reliability of a 

structure. This chapter discusses alternative methods for designing a program of nonlinear 

analyses and for applying the results of dynamic analysis in the framework of this demand and 

capacity factored design format, particularly as it relates to displacement-based demand 

estimation. These alternative methods are demonstrated through a comprehensive case study of 

an older reinforced concrete frame structure in Los Angeles. The dynamic analyses are performed 

on a set of ground motion records selected from a catalog of California events recorded on stiff 

soil. The spectral acceleration at the first mode period has been chosen as the representative 

ground motion intensity measure for the analysis, although the proposed methods are general with 

respect to the choice of the intensity measure. The methods are classified into narrow-range and 

wide-range methods, based on the range of spectral acceleration and displacement values for 

which they provide demand estimations. Single-stripe analysis and cloud analysis are two 

narrow-range methods discussed in this chapter. Wide-range methods employ rather extensive 

analysis efforts in order to provide estimations of displacement-based demand over a wider range 

of spectral accelerations. Multiple-stripe analysis and incremental dynamic analysis are examples 

of wide range methods. This chapter briefly addresses how incremental dynamic analysis method 

can also be used for displacement-based collapse limit state (capacity) estimation. The estimated 

displacement demand and capacity are compared -in the framework of DCFD in order to check 

the safety of the structure for the limit state of collapse. The uncertainty in the estimation of 

median displacement demand due to limited sample size, i.e., number of records, is also 

discussed. The procedure stated here can be used in practical applications: they are fully 

consistent with, for example, the FEMA/SAC (see FEMA 350-352) Guidelines although they 

address only the aleatory component of the demand factor. 

89 



 
CHAPTER 4                         ALTERNATIVE NON-LINEAR DEMAND ESTIMATION METHODS 

 

4.2 Keywords 
 
Probability-based seismic assessment, reinforced concrete frame structures, displacement-based 

demand, displacement-based capacity, ground motion intensity measure, spectral acceleration, 

seismic hazard, randomness, uncertainty. 

 

4.3 Introduction 
 
This chapter discusses alternative methods for the estimation of nonlinear dynamic structural 

displacement demand in the context of probabilistic seismic assessment. Demand estimation is an 

essential part of the demand and capacity factored design format for seismic assessment of 

structures. It is presumed here that a set of nonlinear dynamic analyses will be employed in order 

to make this estimation. One of the objectives here is efficient demand estimation, namely, 

finding procedures that estimate demand with acceptable accuracy and with minimum amount of 

analysis effort. Most of these methods are based on a simplified closed-form expression for 

demand and capacity factored design developed in Chapter 3 (Equation 3-12), which in turn 

stems from a closed-form derivation of annual frequency of exceeding limit state capacity 

developed in Chapter 2 (Equation 2-38). 

 

The following expression represents the collective efforts leading to the calculation of the annual 

frequency of exceeding a structural limit state capacity, LSλ 1: 
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The first factor within the sum is the probability that the random capacity is less than some 

displacement value y, the second factor is the probability that the displacement demand value is 

equal to y for a ground motion intensity level (e.g., here the first mode spectral acceleration, ) 

equal to x and the last factor is the annual frequency that the spectral acceleration is equal to x. 

aS

                                                 
1 Note that in the earlier chapters in this thesis we used the notation to refer to the annual frequency of 
exceedance, whereas, in this chapter and also the ones to follow we are going to use the notation 

(.)H

(.)λ instead. 
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The limit state probability is obtained by summing the product of these three factors over all the 

possible values of x and y. A corresponding integral representation will follow below.  

 

Assessment of the three factors in the above integrand (Equation 4-1) can be classified into 

capacity assessment, demand assessment and hazard assessment categories, respectively. This 

chapter focuses on the techniques that are available for demand assessment, that is, the estimation 

of probability distribution of demand for a given spectral acceleration. 

 

Several design and assessment formats have been developed based on various manifestations of 

the expression for annual frequency of exceeding the limit state capacity (Equation 4-1). The 

formats, as such, enable the designer to design new structures and also to assess the seismic 

performance of existing structures. One such format is the Demand and Capacity Factored Design 

(DCFD) format developed in the previous chapter, analogous to typical equations for Load and 

Resistance Factored Design (LRFD) specifications (see Galambos and Ravindra, 1978). This 

format is expressed in the form, LR γφ ≥ , where the factors φ  and γ  are applied to nominal 

resistance, R, and load, L. The Demand and Capacity Factored Design (DCFD) Format is based 

on the following representation of the expression for annual frequency of exceeding the limit state 

capacity: 

 

2)-(4                      factordemanddemandmedianfactorcapacitycapacitymedian ×≤×  

Where the median demand is associated with a spectral acceleration that has a mean annual 

frequency of exceedance equal to , an acceptable level for the limit state frequency (Figure  0P

3-3). As it will be shown below, the demand factor in Equation 4-2 depends on a (second 

moment) statistical parameter of the demand and also on a parameter reflecting the sensitivity of 

demand to changes in the hazard level. 

 

Once the probabilistic distribution parameters for demand (given spectral acceleration) are 

estimated, one can calculate the Factored Demand, defined as the product of median demand and 

the demand factor: 

 

3)-(4             factordemanddemandmedianDemandFactored ×=  

The formal equation for the factored demand will be discussed later in this chapter. 
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This chapter presents alternative methods for evaluating the factored demand. These methods will 

be introduced in the order of the amount of analysis effort they involve. 

 

As it is mentioned above, the median demand term in Equation 4-3 in fact a conditional median 

for a given spectral acceleration level (Equation 3-13). Hence, the methods presented in this 

chapter are classified based on the range of the spectral acceleration values they cover, in their 

estimation of factored demand. The narrow-range methods estimate the factored demand over a 

narrow range of spectral acceleration values, e.g., around the spectral acceleration corresponding 

to the hazard level,  (based on the formal equation for factored demand Equation 3-12). 

Single-stripe analysis and cloud analysis are two narrow-range methods that will be discussed in 

this chapter. Narrow-range methods involve a relatively small amount of analysis effort, at the 

price of providing only limited information about the factored demand. The wide-Range Methods 

tend to involve extensive analysis efforts and estimate the factored demand over a wider range of 

spectral acceleration values. These methods also permit limit state assessments over a wider range 

of spectral acceleration and limit state probability values. Multiple-stripe analysis and incremental 

dynamic analysis are the wide-range methods discussed in this chapter. This chapter will also use 

numerical integration to test the validity the analytical assumptions that form the basis of factored 

demand estimation.  

0P

 

4.4 A Comprehensive Assessment Example: An older reinforced concrete frame 
 
We have selected an older reinforced concrete frame structure in Los Angeles, as a 

comprehensive case study in probabilistic assessment of an earthquake-damaged existing 

structure. This structure is serving as a test-bed for the activities of the PEER center. This chapter 

is also an effort in summarizing and classifying the results of our analyses on a model frame from 

this building. 

 

For our probabilistic assessment purposes, the accuracy of the mathematical modeling of this 

particular building was not imperative. Nevertheless, we were interested in analysis software that 

would enable us to model the challenging issues of cyclic stiffness and strength degradation 

behavior in reinforced concrete. We employed DRAIN2D-UW that is a modified version of 

DRAIN2D that was produced by Professor Jose Pincheira’s research team in the University of 

Wisconsin (see Pincheira et al., 1999 and Dotiwala et al., 1998). 
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We modeled one of the transverse frames using DRAIN2D-UW. Figure 4-1 illustrates the 

mathematical model of the frame:  

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4-1 – A 7-story frame structure in LA: The modeling characteristics of a transverse frame 
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The members are modeled using a beam-column element. The degrading behavior is concentrated 

in two rotational springs at the two ends (flexure) and a translation spring somewhere in the 

middle of the element (shear). The hysteretic response of a beam-column element modeled by 

DRAIN2D-UW is shown in Figure 4-2. The degrading behavior observed in the plot reflects the 

degradation in both shear and flexure. 

 

Figure 4-2 - Hysteretic response of a beam-column to cyclic loading.  

The beam-column is modeled using DRAIN2D-UW  
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Onset of significant structural damage

Figure 4-3 - The Static Pushover Curve for the Structural Model. 

 

The static pushover curve for the structure is plotted in Figure 4-3. Note that it is plotted with 

respect, not to the customary roof rift, but to the response measure used here, maximum (over all 

stories) of the inter-story drift angle. The onset of significant structural damage (inter-story drift 

of 0.0075) in the frame is marked on the curve. It should be noted that the hysteretic model does 

not take into account a mode of axial of failure prompted by large shear forces in the columns, 

which is realistically expected to happen at drift values between 1-2% (see Moehle et al., 1994, 

Elwood and Moehle, 2002). Therefore, the analysis results in this chapter should be considered 

as, “conditioned on no other failure modes”. Meanwhile, consideration of other potential modes 

of failure would be a challenging test of the accuracy of the methods presented in this chapter. 

4.5 Record Selection 
 
For this exercise a set of 30 ground motion records were selected from the Silva Catalog (Silva, 

1998) for California Sites. These records were all California events recorded on stiff soil (Geo-

Matrix soils types C and D) and were selected from a moment magnitude- (closest) source-to-site 

distance range of: 

 
55..55  <<    MM  <<  77..55  
1155  <<    RR    <<  112200 kkmm   
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Addressing the current issues in ground motion selection is not the focus of this study. It is 

generally presumed that one should select records representative of the events that dominate the 

probabilistic hazard for the ground motion levels of interest, as determined informally or 

formally, e.g., by disaggregation (see McGuire, 1995 and Bazzurro and Cornell,1998). This 

magnitude range, 5 , is presumed to be representative of the events likely to cause 

severe ground motions at this site. With the exception of potential near-source and directivity-

influenced records, the most important record characteristics (e.g., spectral shape), other than 

general amplitude level, are comparatively insensitive to distance. In most cases in this study the 

records will be scaled relative to their recorded values; therefore the recorded amplitude is not 

directly relevant. Directivity issues (e.g., pulse-like records) are beyond the scope of this 

particular study (see, e.g. Alavi and Krawinkler, 2000; Luco and Cornell, 2001). Issues of 

nonlinear response sensitivity to magnitude and distance and record scaling are discussed by 

Shome et al. (e.g., Shome, et al., 1998; Shome and Cornell, 1999). Nonetheless the subject of 

site-specific record selection and modification for nonlinear demand estimation deserves, and is 

the subject of, further research. 

5.75. ≤≤ M

 

4.6 Probabilistic Framework for Design and Assessment of Structures 
 
Presented below is the continuous version of Equation 4-1 (and also Equation 2-2), with 

maximum inter-story drift angle denoted by maxθ ,,  as  the displacement-based demand..  This 

equation is based on the  assumption that capacity C  is statistically independent of and LS aS maxθ  

(see Section 2.5.7.4): 

 

  a)-4-(4        
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λ
λ θ  

Where: 

 

LSλ   Mean annual frequency of exceeding a limit state, LS 

LSC     Capacity for the limit state, LS in displacement terms 

maxθ   Demand in displacement terms 

aS   Intensity measure; here it is the first mode spectral acceleration 

LSCF   Cumulative probability density function of capacity  
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aSf |maxθ   Probability distribution function of the demand for a given level of  aS

aSλ  Spectral acceleration hazard, in terms of the mean annual frequency of 

exceedance 

x  A given value of  aS

y  A given value of maxθ  

 

While Equation 4-1 is very general with respect to the choice of ground motion intensity measure 

and demand variable, here, we have chosen to use the maximum inter-story drift angle within the 

structure, maxθ ,  as the demand variable in the design/assessment process. This is a particularly 

suitable choice for moment resisting frame structures, since it relates the global response of the 

structure quite directly to joint rotations where most of the inelastic behavior in the moment 

resisting frames is concentrated. We have used the spectral acceleration with the period of the 

fundamental mode of the structure, ,aS ,  as the intensity measure variable. Studies by Shome and 

Cornell (e.g., Shome, et al., 1998; Shome and Cornell, 1999) show that for moment-resisting 

frame structures with their first-mode period lying within the moderate range (e.g., around T=1.0 

sec), the spectral acceleration of first mode is sufficient for relaying the primary ground motion 

characteristics to the structural response. 

4.7 Drift Hazard - the Annual Frequency of Exceeding Drift Demand 
 

Equation 4-4-a can be re-written in the following manner: 
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where  is the (mean) annual frequency that drift demand, )(
max

yθλ maxθ , exceeds the value, y. 

)(
max

yθλ  can be calculated, using the same technique as the one used for the limit state frequency, 

from the expression below: 
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Where  is the conditional complementary cumulative density function (CCDF) of 

demand, 

)|(|max
xyG

aSθ

maxθ , for a given  value. We can derive the expression for aS dyyd )(
maxθλ  in Equation 

4-4-b by taking the derivatives of both sides of Equation 4-5-a with respect to y: 
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Where  is the conditional probability density function (PDF) of demand, )|(|max
xyf

aSθ maxθ , 

for a given  value. The above derivation is based on the relationship between the PDF 

and the CCDF of a probability distribution (Equation 2-12). There is a complete discussion 

of drift hazard and its derivation in Chapter 2. 

aS

 

4.8 Demand and Capacity Factored Design Format  
 

In order to derive a (codifiable) limit state safety checking format, we set the mean annual 

frequency of exceeding the limit state, , in Equation 4-4 to less than or equal to a selected 

tolerable level, . The following expression in Equation 4-6 is an explicit presentation of 

Equation 4-2, obtained upon making a series assumptions as discussed below. The derivation of 

Equation 4-6 is explained in detail in Chapter 3. 

LSλ

0P
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Where: 

 

aS|maxθη     Median demand maxθ  for a given spectral acceleration, (here in terms of the  aS

maximum inter-story drift angle) 

LSCη   Median capacity (here in terms of the maximum inter-story drift angle) 

aS|maxθβ   Dispersion measure for demand given the spectral acceleration level, S  a

LSCβ   Dispersion measure for capacity 

0P    Tolerable frequency of exceedance of the limit state 

a
P S0  The spectral acceleration associated with the annual frequency of exceedance 

equal to  0P
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a
P S0

max |θη   Median value of maxθ given a spectral acceleration equal to  a
P S0

k  The (log) slope of the hazard curve if it is approximated by a power-law function 

b  The (log) slope of the median displacement-demand versus spectral acceleration 

curve it is approximated by a power-law function 

bk /  A sensitivity factor reflecting the change in the probability with respect to the 

change in the displacement-based demand  

     
|max

2
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2
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|
aS

a
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b
k

S e
θβ

θη
⋅⋅

⋅ : 

Factored demand for an allowable (mean) annual frequency of exceeding the 

limit state capacity equal to . 0P  

 

The exponential factors in Equation 4-6 represent the capacity and demand factors in Equation  

4-2. A complete discussion of the assumptions made in the derivation of Equation 4-6 can be 

found in Chapter 2. Briefly, probability density functions for limit state capacity and the demand 

given spectral acceleration are assumed to be lognormal. The lognormal density function is 

defined by the median (the η  term) and by the standard deviation of the natural logarithm 

(denoted β ), called here the “dispersion measure” or the “fractional standard deviation”. This 

measure is approximately equal numerically to the coefficient of variation (COV), i.e., for values 

of COV less than 0.2, one can assume that COV  with less than 2% error in  (Benjamin 

and Cornell, 1970). These parameters will be estimated from the data in the examples to follow. 

22 β≈ 2β

 

Thus, the probability distribution for the capacity is defined by   and the 

probability distribution for demand given spectral acceleration is defined by .

),(
LSLS CCLN βη

( |max aSLN θη

S x
a
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kxk −⋅= 0

aS

.  

In order to carry out analytically the integrals presented above, and subsequently to derive 

Equation 4-6, it is presumed that spectral acceleration hazard curve and median demand-spectral 

acceleration relationship can be predicted, at least over a local region sufficiently wide to yield 

reasonable numerical accuracy, by power-law type expressions in the form of  

and , respectively. It should be noted that k and b are the slopes of b
aS Sa

a

  
|max

⋅=θη λln versus 

 and versus ln relationships. a max
ln θηSln aS

 

We now focus our attention on the terms that constitute the expression for factored demand 

(based on Equations. 4-3 and 4-6):  
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Verbally, the factored demand is equal to the product of the median demand, 
a

P S0
max |θη , for the 

motions within the given spectral acceleration level  and the demand factor or the 

exponential term, 

a
P S0

)
2
1exp( |

2
max aS

b
k

θβ⋅⋅ , which is a function of the sensitivity factor, ,bk / ,  and the 

standard deviation of (the logarithm of) the demand for a given spectral acceleration (dispersion), 

. Hence, the evaluation of factored demand consists of finding ways to estimate 
aS|maxθβ

a
oP S|maxθη ,,  

aS|maxθβ  and k .b/ .  Since the dispersion measure and the sensitivity factor are both in the power of 

the exponential, they assume secondary roles as compared to the median. 

  

Based on the same assumptions as discussed above, the drift hazard is derived as (the derivation 

of the following analytic form for the drift hazard can be found in Section 2.5.7.3): 
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Where  is denoted as the spectral acceleration that “corresponds” to a drift equal to x. More 

precisely,  is the inverse of , i.e., 

x
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spectral acceleration value that has (approximately) a 50% chance of causing a drift response 

equal to or greater than x.  is the spectral acceleration hazard value (the mean frequency 

of exceeding) for . It is interesting that the drift hazard in Equation 4-8 can be calculated as the 

spectral acceleration hazard at a spectral acceleration value, , times an exponential factor, 

)( x
aS S

a
λ
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2
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b
k

⋅ , closely resembling the one for the factored demand, both are functions of the 

sensitivity factor, ,,  and the dispersion in demand for a given spectral acceleration, . 
aS|maxθβ

 

In order to calculate the drift hazard from Equation 4-8, we need to estimate 
aS|maxθη ,,  

aS|maxθβ  and 

and the spectral acceleration hazard curve bk /
aSλ for all spectral acceleration levels. Thus, the 

alternative methods discussed in this chapter achieve a two-fold objective of estimating the 

factored demand as well as the drift hazard curve. 
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Recalling from Section 3.2.3.5 in Chapter 3, factored demand happens to be the drift value that 

corresponds to the hazard level  on the drift hazard curve. We will see later in this chapter that 

this particular relationship is going to be very useful for the calculation of factored demand in 

cases where there are no closed form solutions available for factored demand. One such example 

is when numerical integration is used to calculate the integrals in Equations 4-4 and 4-5 for drift 

hazard and the annual limit state frequency.  

0P

 

The methods discussed in this chapter estimate the three quantities above in alternative ways. 

Being a characteristic of the hazard rather than the structural response, the k value is estimated in 

a similar manner in all the methods. Hence, it suffices for each method to estimate 
a

oP S|maxθη ,,  

aS|maxθβ  and b ..    

4.9 Site Specific Hazard Curve: Estimation of k Value 
 

The k value can be estimated from a site-specific or mapped regional basis spectral acceleration 

hazard curve, provided by earth scientists. A spectral acceleration hazard curve provides the mean 

annual frequency of exceeding a particular spectral acceleration for a given period and damping 

ratio. In order to estimate k, we fit a power-law type of expression to the hazard curve in the 

region of spectral acceleration values of interest as proposed by for example by development 

underlying Department of Energy Standard 1020 (see Kennedy and Short, 1994, and Luco and 

Cornell, 1998): 

9)-(4                                 ][)( 0
k

aaaaS sksSPs
a

−
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Where k and are the fit parameters. 0 k
 

Figure 4-4 shows a firm soil site-specific hazard curve calculated for Van Nuys, CA, at T = 0.85 

sec, T being the first natural period of the structure, plotted in a two-way logarithmic scale. The 

figure also shows the line fitted to the hazard curve in the region of interest, i.e., a power-law 

approximation in the arithmetic scale calculated around an annual frequency of about 1/1000. The 

(absolute value of) slope of the fitted line is the k value in the region of interest. 

4.10 Evaluation of Factored Demand by Numerical Integration 
 

So far, we have talked about approximate methods for demand estimation. Inevitably, the 

question arises as to how we can get a “true” estimate of the factored demand.  
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As mentioned before, the closed form solution for the factored demand is valid as long as the 

underlying assumptions hold. However, we can evaluate the integrals in Equations 4-4 and 4-5 by 

numerical integration even when those assumptions stop to be valid. Here, we have calculated the 

expression for drift hazard (Equation 4-5) by numerical integration and have plotted it versus the 

spectral acceleration in Figure 4-4. 

 
 
 

k= 2.6 

 
Figure 4-4 -Site Specific Hazard Curve, Van Nuys CA . Approximating the Hazard curve 

with a line in the region of interest. 

 

We estimated the conditional complementary cumulative density function of demand for a given 

spectral acceleration, G in Equation 4-5-a, by the ratio of the demand values that 

exceed the value, y, for a spectral acceleration equal to x (also known as Empirical Distribution, 

see Efron and Tibshirani, 1993). This is also an approximation in that the sample size is limited. 

The spectral acceleration hazard curve used is that in Figure 4-4, which is obtained by performing 

conventional probabilistic seismic hazard analysis (PHSA). 

)|(|max
xy

aSθ

 

As we have mentioned previously, the factored demand for a tolerable probability level, , can 

be calculated from the drift hazard curve. Therefore, we are going to find the factored demand 

using the drift hazard calculated by numerical integration. 

0P
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Figure 4-5 – The drift hazard curve derived by numerical integration. The factored demand 

corresponding to 0084.00 =P  is also shown on the plot. 

 
As illustrated in Figure 4-5, we can use this curve to estimate the factored demand for a tolerable 

probability level, . This is a probability level that we believe is associated with the 

spectral acceleration levels that drive the structure to the verge of collapse (this particular 

probability level has been chosen merely for demonstration purposes). Therefore it is a severe test 

of the analytical approximation, permitting us to demonstrate its limitations under certain 

approaches. Later in the chapter, we are going to introduce another  level that is associated 

with the onset of damage in structural members, 

0084.00 =P

0P

03.00 =P . At this level the analytical 

approximations will be found to be quite robust. In order to be consistent, we have used the same 

two values for  throughout the chapter.  0P

 

For a tolerable probability level of 0084.00 =P , the drift hazard curve yields a factored demand 

of, 0.02 (Figure 4-5), which corresponds to a ductility of 2 relative to the onset of significant 

structural damage. 

 

In this chapter, we are going to refer to this quantity as the “true” factored demand for the 

tolerable probability . We are going to use this “true” factored demand as a measure 

for gauging each method’s accuracy in factored demand estimation. Recall that the “true” value is 

0084.00 =P
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in itself an estimate because a sample size of “only” 30 records has been used to estimate  

in Equation 4-5-a, and the hazard curve itself is an estimate.  

aSG |maxθ

 

4.11 Narrow Range Methods 
 
Narrow range methods estimate the factored demand over a comparatively small neighborhood of 

spectral acceleration values. They require a relatively small number of analysis runs, at least 

compared to the methods that estimate the factored demand over wide ranges of  values. aS

 

However, these methods have a limited scope of application. They are especially effective in 

estimating probabilistic demand parameters that appear in the closed-form expression for the 

DCFD design format, e.g., Equation 4-6, over a targeted range of probability, ground motions, 

and displacements of interest.  

 

4.11.1 Single-Stripe Analysis 
 
The single-stripe analysis, as its name suggests, is a procedure that involves a structural dynamic 

analyses for a set of records scaled to a common spectral acceleration value. 

 

The output of the single-stripe analysis, which is scattered along a stripe of constant spectral 

acceleration value, provides estimates for the median and dispersion of the inter-story drift 

demand conditioned on the spectral acceleration level of the stripe. The first question is what the 

appropriate spectral acceleration level for single-stripe analysis is. The answer depends on the 

criteria that are going to be satisfied.  

 

The results of the single-stripe analysis are particularly well suited for estimating the factored 

demand, which is expressed as a function of or the spectral acceleration corresponding to the 

tolerable probability level P

a
P S0

aS00 . This makes a potential candidate for the spectral acceleration 

level to which the ground motion records are scaled. Figure 4-6 illustrates how  is calculated 

for an acceptable probability level of P

P

a
P S0

0 =0.0084. The probability level, P0, is marked on the 

hazard axis and its corresponding spectral acceleration value, , is calculated by finding the 

value that corresponds to a hazard level, P

a
P S0

aS 0 , via the hazard curve. 
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Figure 4-6 - The Spectral Acceleration Corresponding to an acceptable 

 

PP00== 00..00008844  

SSaa==00..7700 gg
PP00

k= 2.6 

Probability Level of 0  0034.
 

After choosing the spectral acceleration level of interest, in this case, , the ground 

motion records are all scaled to this value. The scaled ground motions are then applied to the 

structure and the maximum inter-story drift demand values are calculated. 

gSa
P 70.00 =

SSaa== 00..7700  gg
PP00  
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Figure 4-7 - “Stripe” response obtained by applying the selection of ground motion records scaled 

to the spectral acceleration of the stripe, P , to the model structure. gSa 70.00 =
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The “stripe” response of the model frame in Figure 4-1, subjected to the selection of ground 

motion records, is plotted against spectral acceleration in the logarithmic scale (Figure 4-7). 

 

The statistical parameters of the “stripe” response can now be used to estimate the median and 

dispersion at the spectral acceleration level, . Here we use the sample parameters denoted by 

 and  called, respectively, the “counted median” and the “counted standard 

deviation” of the “stripe” response for a given spectral acceleration level. In order to obtain the 

“counted” statistical parameters of a data set, the data is first sorted in the ascending order. The 

counted median is the 50th percentile of the sorted data. The counted standard deviation is 

estimated by the average of 

a
P S0

aS|max
ˆθη aS|max

ˆ
θβ

)5084 thth θθln(  and )1650 thth θθ

Sa
P0

ln(  respectively. The counted median 

and standard deviation for a spectral acceleration level, , are calculated as 0.0183 

and 0.49, respectively. These quantities are shown in Figure 4-8 (again in the logarithmic scale). 

We can observe that the displacement-based response is well into the strength degrading regime, 

explaining the comparatively large value .  

g70.0=

aS|max
ˆ
θβ

SSaa==00..7700  gg
    PP00  

0183.0ˆ 70.0|max
==aSθη

49.0ˆ
70.0|max

==aSθβ
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Figure 4-8 - Estimated Statistical Parameters for the “Stripe” Response 

 

Once the statistical properties of the drift stripe response are calculated, they can be used as 

estimates of 
aSD|η and 

aSD|β (the method of moments can often be used as well, but difficulties 

will ensue if one encounters dynamic runs in which numerical convergence is not obtained, 
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and/or if very large, unrealistic displacements are computed.). The single stripe output does not 

provide displacement versus spectral acceleration slope information, i.e., the b parameter 

appearing in the expression for factored demand (Equation 4-7). As a preliminary estimate, we 

assume that the b value is equal to 1, implying that  and S
aSD|η a have a proportional relationship 

in arithmetic space. Elastic behavior and the “equal displacement rule” (see Veletsos and 

Newmark, 1960) are special cases of this condition. The factored demand estimate using the 

estimates of 
aSD|η and 

aSD|β obtained for single-stripe analysis method, is:  

SP0

.3

)
8

8

=

aSD|β

           0.025366.10183.0e0.0183 ..
2

|max
2

0
max

)49.0(
1
6.2

2
1

2
1

| =×=×=⋅=
⋅⋅⋅⋅ aS

a
P

b
k

S eDF
θβ

θη

 

We can see that the single-stripe prediction for factored demand is equal to 0.025, which is much 

larger than the “true” factored demand, F.D.=0.02, in the previous section. In this case, because 

aSD|β  is relatively large, the demand factor is sensitive to the value of b and the single-stripe 

method with a default value of  produces a very conservative estimate of the factored 

demand. This brings up the question of how much extra analysis effort is required in order to 

enhance the results of single-stripe analysis method.  

1=b

 

Next, we consider the efficiency of a double-stripe method, because the minimum number of 

stripes necessary for getting information about b value is two. As its name suggests the double-

stripe method consists of two separate single-stripe analyses, the original single stripe analysis 

plus an additional stripe somewhat close to the original stripe at . In this example we 

place the second stripe at . The b value is estimated as the slope of the line on a log-

log plot, that connects the medians of the two stripes: 

gSa
P 70.00 =

ga 80.0=

 

6
)

7.0
8.0ln(

ln(
.0|max

.0|max

= =

=

aS

aS

b
θ

θ

η

η

 

 

It should be noted that the estimates for and are the same as those obtained for the 

single stripe analysis above, i.e., the second stripe plays an auxiliary role for the purpose of 

estimating the b value. The results of a double-stripe method are plotted in Figure 4-9. The 

factored demand in this case is equal to:  

aSD|η
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0.02009.10183.0e0.0183..
2)49.0(

6.3
6.2

2
1

=×=×=
⋅⋅

DF  

The answer is very close to the “true” factored demand estimated by numerical integration. We 

should however note that the position of the second stripe, with respect to the original one- plays 

a critical role in estimation of the b value. If the second stripe is too far, the estimated b value 

may not be representative of the local slope around the original stripe. If it is too close, the 

estimated b value may fail to represent the general trend in spectral acceleration versus demand 

curve. Thus, the accuracy of a double-stripe analysis is dependant on the analyst’s judgment in 

choosing the spacing between the stripes. A suggestion is to choose the second  stripe to be 

above the original value by a fraction (of that value) equal to 

aS

4
1 or 

2
1  of 

aSD|β  (i.e., 

). 1
|

12
1 aSDaa SfractionSS
a
⋅⋅+= β

bb==33..66

SSaa==00..8800

SSaa==00..7700
PP00  
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Figure 4-9 - Estimation of factored demand using two stripes,  03.080.0|max
==aSθη

 

4.11.2 Cloud Analysis 
 
The cloud analysis is a procedure in which a structure is subjected to a set of ground motion 

records of different first-period  values. In contrast to the single-stripe method, this method 

provides a “cloud” rather than a stripe of response values as shown in Figure 4-10. 

aS
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This “cloud” response method provides estimates of the two statistical parameters of demand 

given the spectral acceleration,  and , as well as the b value. In its simplest form, 

the “cloud” response is obtained by applying original ground motions (as recorded) to the 

structure. If the ground motion records are taken from a bin (like the record selection in this 

chapter), they can represent an earthquake scenario defined by (M

aS|maxθη aS|maxθβ

bin, Rbin), the magnitude and 

distance representative of the bin. 

 

Once the ground motion records are selected, they are applied to the structure and the resulting 

maximum inter-story drift angles are calculated. This provides a set of drift values that are the 

basis for cloud-method calculations. The response of the model frame when subjected to the set 

of  (as recorded) ground motions is plotted in Figure 4-10. 
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Figure 4-10– The “Cloud” Response of the Structure Subjected to a set of Ground Motion 

Records  (plotted in the Logarithmic Scale). 

 
In order to estimate the statistical properties of the “cloud” response, conventional linear 

regression (using least squares) is applied to the “cloud” response in the natural 

logarithmic scale, the standard basis for the underlying lognormal distribution model. 

This is equivalent to fitting a power-law curve of the form, , to the “cloud” b
aSa ⋅
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response in the original (arithmetic) scale. This results in a curve that predicts the median 

drift demand for a given level of structural acceleration: 

10b)-(4         ( lnˆ)ˆ( ln))(ˆln(

or           10a)-(4                               ˆ)(ˆ

)|

ˆ
|

aaSD

b
aaSD

sbas

sas

a

a

⋅+=

⋅=

η

η
 

 

where and  are linear regression constants. Detailed information about the 

estimation of the linear regression constants can be found in any applied statistics 

reference, such as, Benjamin and Cornell, 1970, or Rice, 1995. The results of such 

prediction can be used to estimate the median demand for a given spectral acceleration, 

)ˆln(a b̂

aSD|η , for a specified spectral acceleration equal to . The standard deviation of 

regression measuring the second moment of data points around the predicted curve can be used to 

estimate the dispersion measure, 

a

P
S0

aSD|β : 

 

   11)-(4      
2

))ˆln()(ln(ˆ
2ˆ

,
| −

⋅−
= ∑

n

sad b
iai

SD a
β  

 

Where and  are the drift demand and the corresponding spectral acceleration for record 

number i within the “cloud” response set and n is the number of records.  

id ias ,

 

The standard deviation of regression, , as introduced in Equation (4-11), is presumed 

constant with respect to spectral acceleration over the range of spectral accelerations in the cloud. 

We will see later in this chapter that the dispersion measure, 

aSD|β̂

aSD|β , tends to increase for the larger 

values of spectral acceleration. Thus, assuming  is constant, may be un-conservative in 

certain cases. This stresses the importance of performing linear regressions locally, i.e., in a 

region of spectral acceleration values of interest. 

aSD|β

 

Figure 4-11 shows the median, 
aSD|η̂ , the dispersion, , and the b value, estimated (by fitting 

the cloud response) by linear regression. We can estimate the b value by the slope of the fitted 

aSD|β̂
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line in the logarithmic scale. The estimated b value here is in fact somewhat less than one, a 

phenomena commonly observed in the mild ductility region for moderate-period structures.  

 

SSaa==00..7700
PP00
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Figure 4-11 – The statistical properties of the “cloud” response. The parameter estimates for the 

median, 
aSD|η , and dispersion measure, , are shown on the figure. 

aSD|β̂

The estimated 
aSD|η̂ , and b values are finally used in to calculate the factored demand 

corresponding to  or : 

aSD|β̂

0084.00 =P gSa
P 70.00 =

           0.01212.1011.0e0.011 ..
2

|max
2

0
max

)28.0(
88.0
6.2

2
1

2
1

| =×=×=⋅=
⋅⋅ aS

a
P

b
k

S eDF
θβ

θη

 

 

Recalling from the previous sections, the “true” factored demand was calculated as 0.02, which is 

much larger than the prediction given by cloud analysis, 0.012. Thus, the cloud analysis is 

underestimating the drift demand in this case. This is can be due to the fact that the ground 

motion records used for the cloud analysis are not strong enough to properly represent the 

displacement-based response for spectral accelerations close to . gSa
P 70.00 =
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4.11.3 Cloud Analysis Scaled 
 

It is not easy to (a priori) find a selection of records that is representative of the displacement-

based response in the vicinity of a given spectral acceleration level. for the cloud analysis 

method. Sometimes the records are not strong enough to represent the structural response in the 

region of displacement demands that we are interested in. In this example, we are interested in 

ground motions with a first-mode spectral acceleration around 0.70g, yet the set of ground motion 

records, as recorded, have a median  of only 0.27g. The median drift response, about 0.0045, 

corresponds to a ductility of only one with respect to the onset of significant structural damage. In 

order to get a more accurate estimate of the nonlinear response in the region of our interest, we 

have scaled the same collection of records by a factor of 2. We anticipate that the scaled cloud 

will more successfully capture the structural response in the range of  values around 

. 

aS

aS

gSa
P 70.00 =
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Figure 4-12– The scaled “cloud” response of the structure subjected to the selection of records, 

scaled by a factor of two. 

 

As we can see in Figure 4-12, scaling has moved the cloud further up and to the right. Now that 

that the “cloud” response has become nearly centered around , we expect the 

statistical information to be more representative of the demand level of interest we are estimating. 

The estimated statistical parameters for demand given spectral acceleration are plotted in Figure 

gSa
P 70.00 =
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4-13. As before, we have used linear regression to estimate the statistical properties of demand 

for a given spectral acceleration. 
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Figure 4-13 – The statistical properties of the “scaled cloud” response. 

 

The estimated , and b values – obtained from scaled cloud analysis - are incorporated 

below in the formula for factored demand:  

aSD|η̂
aSD|β̂
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We see that in this case the scaled cloud method is still not capable of providing a highly accurate 

estimate for the factored demand for this  level. The factored demand estimate provided by 

this method is equal to 0.024, while the factored demand calculated by numerical integration is 

equal to 0.020. It is clear that it has produced adequate estimates of ,  (compared to the 

locally more accurate results obtain from the stripe analysis) but its estimate of b remains too low; 

given the large value of the factor is in this case quite sensitive to b. As we shall see, b is 

changing in this range of  values and the regression can only provide a gross estimate. 

Nevertheless, this does meet to our preliminary expectation that, since the scaled ground motions 

aS

aSD|η
aSD|β

aSD|β

aS

 112



 
CHAPTER 4                         ALTERNATIVE NON-LINEAR DEMAND ESTIMATION METHODS 

have spectral acceleration values closer to , the scaled cloud would enhance the 

factored demand estimation. 

gSa
P 70.00 =

Sa 00 =

P

g40.0=

gSa
P 40.00 =

gSa 40.0=

 

4.11.4 Narrow-Range Methods for a Lower Spectral Acceleration  gSa
P 40.00 =

 

We learned in the previous sections that, for P , the single-stripe analysis over 

predicted factored demand by 25%. We also learned that for the same  level of 0.70g, the 

single cloud analysis under predicted factored demand by 40%. Although the two methods are 

approximate, we know from closer inspection that their lack of accuracy here has been magnified 

by significant nonlinear behavior in  levels as high as  and resulting irregularities 

in the response. In the next chapter we shall apply a scheme, introduced by Shome et al., 1998, in 

order to take into consideration the effect of having large displacements in the response.  

g70.

Sa
0 =

aS

aS g70.0

 

In order to confirm this presumption, we have performed the two narrow-range methods, single-

stripe analysis and single cloud analysis, for a lower spectral acceleration level. Thus, we have 

chosen a spectral acceleration equal to , corresponding to a mean frequency level of 

 or a return period of 33 years from the hazard curve in Figure 4-4. We can estimate 

the k value by the slope of the line fitted to the hazard curve in Figure 4-4, in the vicinity of 

 This exercise yields a k value equal to 1.75.  

Sa
P0

028.00 =P

028.00 =P

 

Using the numerically integrated drift hazard curve in Figure 4-5, we can estimate the “true” 

factored demand, corresponding to a mean frequency level 028.00 =P . The so-called “true” 

factored demand is equal to 0.0080, which lies in the region of significant structural damage in 

the frame, with a ductility ratio around 1.0 (Figure 4-3). This roughly means that  

induces deformation and ductility levels that are approximately 40% of those of 

investigated as the primary example. 

gSa
P 40.00 =

gSa
P 70.00 =

 

Single-Stripe Analysis on a Lower Stripe  - The results of single-stripe analysis 

for a spectral acceleration level equal to are plotted in Figure 4-14. The statistical 

parameters for the “stripe” response are also illustrated on the figure. We have plotted this lower 

stripe on the same plot as the higher stripe of  presented earlier. Assuming that the b 

P0

gSa
P 70.00 =
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value is equal 1, and incorporating the estimated k value of 1.75, we have calculated the factored 

demand for below: gSa
P 40.00 =

..
max |= PDF θη
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Figure 4-14 – “Stripe” response obtained by applying the selection of ground motion records 

scaled to the spectral acceleration of the stripe, , to the model Structure. a
P S0

 

This is very close to the “true” factored demand by numerical integration, 0.0080. This confirms 

our presumption that the narrow range methods provide more accurate estimates for lower 

spectral acceleration and deformation levels. Among other factors the lower levels of 
aSD|β (e.g. 

0.35 versus 0.49) make the exponential term closer to unity and less sensitive to b, k and 
aSD|β . 

 

Cloud Analysis for  - We can observe that the original “cloud” response in Figure 

4-10 is roughly centered on spectral acceleration, . Thus, we are going to use the 

original “cloud” response in Figure 4-10 in order to estimate the factored demand for a spectral 

acceleration of . This provides the following estimates for , and b: 

g40.0=

g

gSa
P 40.00 =

40.0| =aSDη aSD|β
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These are the same b and  values as for the , since the b and estimates 

provided by the single cloud analysis are constant for all spectral accelerations. We have 

calculated the factored demand below: 

aSD|β̂ gSa
P 70.00 =

aSD|β̂
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This is within 10% of the “true” factored demand by numerical integration, . 0080.0.. =DF

4.12 Wide-Range Methods  
 

Estimation of factored demand parameters over a wide range of spectral acceleration values 

requires relatively computation-intensive analysis efforts. This section presents a number of 

methods capable of estimating probabilistic demand parameters over such a range of spectral 

acceleration values. These methods have a larger scope of application compared to the narrow 

range methods. The wide range methods can map out the behavior of the system with respect to 

the range of possible future ground motions and a range of limit states probabilities. Thus, they 

can be used not just to check whether the failure probability is less than a specific tolerable level, 

, but further, as will be shown, for the calculation of the limit state probability in cases where 

closed form solutions are not applicable. 

oP

 

Multiple-stripe analysis (MSA) is a collection of single-stripe analyses performed at multiple 

levels of the spectral acceleration. This will provide estimates of 
aSD|η , for each stripe as 

well as local estimates of the b value. This method is also helpful for calculating the frequencies 

of exceeding multiple structural limit states by numerical integration of Equation 4-4-a. 

aSD|β

 

Incremental Dynamic Analysis is in essence the re-compilation of the results of multiple-stripe 

analysis into a collection of random entities known as the IDA curves. In other words, each 

ground motion record is successively scaled to multiple spectral acceleration levels and the 

resulting maximum inter-story drift angles are calculated in each case. The IDA curve connects 

the resulting inter-story drift angles corresponding to each ground motion record.  
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The IDA method also has the capability of extracting probabilistic information regarding the 

global  instability collapse limit state. This feature will be employed for the evaluation of factored 

capacity of the collapse limit state, a step that completes the design/assessment process for this 

limit state. 

 

4.12.1 Multiple-Stripe Analysis (MSA) 
 

Scattered along multiple stripes of constant spectral acceleration, the results of multiple-stripe 

analysis can provide statistical information about the demand over a wide range of spectral 

acceleration values. Multiple “stripes” of response are obtained by applying to the structure a set 

of ground motion records that are scaled to multiple levels of spectral acceleration. The statistical 

properties of each stripe are obtained in the same way as the single-stripe analysis. 

 

Figure 4-15-a illustrates the result of multiple-stripe analysis when the model structure is 

subjected to the same selection of the ground motion records mentioned before. 
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Figure 4-15 – Multiple-Stripe Analysis  

(The same selection of records described in the beginning of the chapter) 

 
The lines connecting the (counted) 16th, 50th and 84th   percentiles of the stripes are also shown in 

Figure 4-15-a. Figure 4-15-b illustrates the same results in the logarithmic scale.  
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The median demand for a given spectral acceleration; 
aSD|η , can be estimated by the 50th 

percentile curve. Also, the dispersion measure, 
aSD|β , can be estimated ( as a function of spectral 

acceleration) with the average band width created by 16th, 50th and 84th  percentiles in the 

logarithmic plot. Finally, the b value can be estimated as the local/tangent slope of the (log-log) 

median curve for a given spectral acceleration value.  

 

The multiple-stripe method provides a much more complete picture as to how both the general 

trend (median) and the dispersion of the response evolve under gradually increasing ground 

motion levels. Between about 0.80g and 1.1g, the median of the response “softens” rapidly and 

the dispersion increases markedly. The large dispersions beyond 1.0g imply that the median 

cannot be well determined even with 30 records. 

 

Figure 4-16 illustrates the application of multiple-stripe analysis in the estimation of factored 

demand for a spectral acceleration equal to . The factored demand at a spectral 

acceleration equal to , can be calculated using the estimates for 

gSa
P 70.00 =

gSa
P 70.00 =

aSD|η̂ , and b 

values as shown in Figure 4-16: 

aSD|β̂
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Comparing the result with the “true” factored demand calculated before, , it is clear 

that MSA method estimates the factored demand very closely. The only difference between using 

single stripe analysis and MSA here is local estimation of b value in the latter case. This 

emphasizes the importance of estimating the slope information, b value, in the region of interest, 

at least when is large, causing the factor to differ significantly from unity. It should be noted 

that the estimate for b value here is “more local” than from the one obtained from the double-

stripe method. 

020.0.. =DF

aSD|β

 

It is possible to obtain accurate results more efficiently by performing MSA first with broader 

spacing and then filling in extra stripes where the b value is found to be changing comparatively 

rapidly. Also, as will be discussed further below, it would be advantageous to use more records 

when the dispersion is large and fewer records when dispersion is small. 
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Figure 4-16 - Evaluation of factored demand by multiple-stripe analysis. 

 

We have used the multiple-stripe analysis and the analytical approximations for factored demand 

to get the factored demand for different tolerable limit state frequencies.  

 

The results of the multiple-stripe analysis and the analytical factored demand estimate for 

multiple levels of spectral acceleration are plotted in Figure 4-17 below versus the probability 

corresponding to these levels, yielding an estimate of the drift hazard curve. The figure also 

illustrates the “true” factored demand as it is obtained by numerical integration. We can see that 

for drift values less than or equal 0.03, the MSA method prediction of factored demand is very 

close to the “true” factored demand calculated by numerical integration. 

aS

 
4.12.2 Incremental Dynamic Analysis  
 

As described above, each IDA curve corresponds to a particular ground motion record and passes 

through maximum inter-story drift results obtained for the record scaled to multiple levels of 

spectral acceleration. Figure 4-18 illustrates individual IDA curves for two different records. 
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Figure 4-17 - Factored Demand predicted by Multiple-stripe Analysis (MSA) for Multiple Limit 

State Frequency Values, , and the Drift Hazard Curve Obtained by Numerical Integration. oP

 

As it can be seen from Figure 4-18 below, the IDA curve gives a “richer” picture of how structure 

responds to different records, e.g., the “benign” nature of some records (Figure 4-18-b), and the 

“aggressive” nature of others (Figure 4-18-a). 

 

a) IDA curve with “aggressive” behavior b) IDA curve with “benign” behavior 

Figure 4-18- Individual IDA Curves 

 

One can use curve fitting routines such as “the spline fit ” in order to get smooth IDA curves (see 

Vamvatsikos and Cornell, 2002). With the IDA’s, the percentiles of response can now be 

calculated as continuous curves, e.g., the median IDA curve or the 84th IDA curve (Figure 4-20). 
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In contrast to MSA method which is constructed by a collection of spectral acceleration stripes, 

the IDA curve can be constructed by scaling the records to arbitrary spectral acceleration values. 

This feature is useful when one is exploring different choices of Intensity Measures (IM) based 

on the same analysis runs. On the other hand, one can use different record sets for different levels 

in the MSA method, reflecting for example higher magnitudes at higher levels. 
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                 a) Plot in arithmetic scale   b) Plot in logarithmic scale 

Figure 4-19 – Results of the Incremental Dynamic Analysis when the model structure is subjected 

to the selection of ground motion records. 

 

The application of IDA method in factored demand evaluation is illustrated in Figure 4-20. 

Factored demand can be calculated using the estimated values for 
aSD|η , 

aSD|β and b value 

showed in Figure 4-20: 
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As expected, the results are identical to those of MSA method. Similar to MSA analysis, IDA 

method provides a good estimate of the factored demand. 
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Figure 4-20 - Evaluation of the factored demand using the results of incremental dynamic 

analysis. 

4.12.2.1 Capacity Estimation Using the Results of Incremental Dynamic Analysis- 
 

The IDA method can also be used to obtain global instability (capacity) information about the 

structure. By global stability we mean a mode of collapse that is indicated by global dynamic 

instability in displacement response, i.e., the displacements increase an arbitrarily large amount 

for arbitrarily small increases in ground motion intensity. This particular mode of collapse can be 

captured from the results of an IDA. Following the definition in the FEMA/SAC Guidelines (see 

FEMA 2000), we have implemented this notion by marking the onset of this failure mode below 

(Figure 4-21) by a point where the local slope of the IDA curve decreases to a “certain 

percentage” of the initial slope of the IDA curve in the elastic region. This certain percentage is a 

more or less arbitrary value that represents the point where the IDA curve becomes “flat” enough; 

here, as in the FEMA/SAC Guidelines, we have chosen it to be equal to 20%. We can clearly 

observe the scatter in the capacity points for the different records in Figure 4-21. 

 

 

 121



 
CHAPTER 4                         ALTERNATIVE NON-LINEAR DEMAND ESTIMATION METHODS 

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Incremental Dynamic Analysis − Holiday Inn, Van Nuys

Maximum Interstory Drift Angle, θ
max

S
pe

ct
ra

l A
cc

el
er

at
io

n 
of

 "
fir

st
" 

m
od

e,
 S

a [g
] s

1
2 3

4

5

6

7

8

9 10

11

12

13

14

15

16

17

18

19

20

2122

23

25

26

27

28

29

30

24 

 
Figure 4-21 - “Collapse Points” marked on the IDA curves. 

 

 

The statistical properties of the so-called collapse points are shown in Figure 4-22. Similar to 

factored demand estimation, this information can be used for estimating the factored capacity as: 

2

2
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 .. LSC
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b
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C eCF
β

η
⋅−

⋅=  

Note that we have used the b value here equal to 4, which is the local slope of the median curve in 

the vicinity of the drift capacity, 0278.0ˆ =
capθη . Alternatively, the value associated with the level 

 may be used. a
P S0
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Now that we have calculated the factored capacity, we can compare it with the factored demand 

that is estimated by multiple-stripe analysis or incremental dynamic analysis. Multiple-stripe 

analysis estimated the factored demand to be equal to, 0.020, which is smaller than the factored 

capacity, 0.026. This, according to DCFD design format (Equation 4-6), means that the annual 

frequency of collapse is less than the selected target value of 0.0084. 
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Figure 4-22 - Evaluation of the factored capacity using the results of incremental dynamic 

analysis (IDA) 

 

4.12.3 Evaluation of Factored Capacity by Numerical Integration 
 

For comparison we can also use numerical integration to estimate the factored capacity. First, we 

calculate the annual frequency of exceeding the global collapse limit state, LSλ , by numerical 

integration (Equation 4-4-a). We have estimated the cumulative distribution function of collapse 

limit state, , in Equation 4-4-a by the ratio of the capacity values that exceed the value, y, 

in the sample of capacity values obtained in the previous section (i.e., by the empirical 

distribution). The rest of the integration procedure is very similar to the calculation of drift hazard 

by numerical integration in the beginning of this chapter. 

)(yF
LSC

 

Now we need to transform the annual frequency of exceeding the collapse limit state into factored 

capacity format. According to the DCFD format, at the onset of collapse limit state, the factored 

capacity is equal to factored demand, i.e. the inequality in Equation 4-2 becomes equality. 

Therefore, the factored capacity is equal to the factored demand corresponding to a  level 

equal to the limit state frequency, 

0P

LSλ . This means finding the drift value that corresponds to, 

LSλ , from the drift hazard curve in Figure 4-5.  
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The annual frequency of exceeding the collapse limit state, LSλ , which is calculated by numerical 

integration, is equal to 0.0063. This corresponds to a (factored) drift value equal to, 0.026, from 

the drift hazard curve in Figure 4-5. Thus, the “true” factored capacity is equal to factored 

demand for  from the drift hazard curve, 0.026. Similar to the factored demand 

calculated by numerical integration, the accuracy of the numerical integration can be increased by 

using larger number of records and by choosing broader integration limits. We can also recall that 

the factored capacity estimated by incremental dynamic analysis method was equal to 0.026. 

0063.00 =P

4.13 Number of Records  
 

In this chapter we have investigated alternative methods for demand estimation. All the methods 

were based on the original sample of 30 records. In this section, we discuss the effect of the 

sample size, e.g., the number of records for the single-stripe method. The effect of sample size for 

the other methods can be studied in the same manner. 

 

We have conducted the single-stripe method with 30 ground motion records at . 

This selection of 30 records can also be regarded as a sample of 30 earthquake scenarios, 

magnitude and distance pairs, that we have chosen out of the set of all possible earthquake 

scenarios for a given site. Here, we have conducted a bootstrap procedure (Efron and Tibshirani, 

1993) on the sample in order to estimate the uncertainty in the estimation of median demand for a 

given spectral acceleration as a function of the sample size. 

gSa
P 70.00 =

 

We generated numerous (n=500) replications, also known as boot strap replications, of sub-

samples of size n (n is less than or equal to 30) by re-sampling with replacement. Each replication 

provides an estimate for the median drift for the given spectral acceleration level. The median and 

standard deviation of these median estimates were calculated for all the bootstrap replications for 

each sample size n. Figure 4-23-a illustrates the 500 observed median estimates from the 

bootstrap replications for each sub-sample size n (number of records). We can observe that the 

estimates of the median are more scattered (individually less reliable), as the number of records 

gets smaller. This reflects the typical sample size concern. 

 

The standard deviation of the median of the bootstrap replications measures the uncertainty in the 

estimation of the median drift demand for a given spectral acceleration. Figure 4-23-a also 

illustrates the 16th, 50th and 84th percentiles of estimate of the median drift for a given spectral 
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acceleration (obtained by bootstrap analysis) as a function of the number of records used in order 

to estimate the median. The standard deviation of the median of the bootstrap replications can be 

presented by the width of the band created by the 16th and 50th and 50th and 84th percentiles 

(Figure 4-23-b). 

 

As we mentioned above, the standard error in the estimation of the median is a measure of 

uncertainty in median due  to limited sample size, i.e., number of ground motion records. We can 

observe that the standard error in the estimation of median drops with the increase in the sample 

size. This increase is (roughly) inversely proportional to square root of the number of records, as 

one would expect from simple statistical theory. Further, as a fraction of the median, the standard 

error of estimation is equal to 
n

aSD |β
 (Rice, 1995). The results shown are for  when 

is 0.49. We see that in this case to reduce the standard error of the estimate of median to less 

than 20% will require a sample size of 12 or more.  

gSa
P 70.00 =

aSD|β
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Figure 4-23-a) Median and standard error of the estimates of the median response as a function of 

the sample size (number of records). The straight line is the median response for each sample 

size. The 84th and 16th percentiles of the estimator of median response are also plotted in the 

figure. 
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Figure 4-23-b) The (fractional) standard error of the estimates of median response as a function of 

the sample size (number of records). 

 

4.14 Summary and Conclusions 
 

Estimation of the engineering demand parameter (here, the displacement-based demand) is an 

essential part of the Demand and Capacity Factored Design (DCFD) procedure. This chapter 

presents alternative methods for the estimation of the factored demand, a displacement-based 

demand measure in the context of the DCFD format. These methods employ the results of non-

linear dynamic analysis for displacement demand estimation. The methods are presented through 

a comprehensive case study of an existing reinforced concrete 7-story frame structure in Los 

Angeles. This structure represents an older reinforced concrete structure with degrading behavior 

in nonlinear range. The dynamic analyses are performed on a set of ground motion records 

selected from a catalog of California events recorded on stiff soil. The spectral acceleration of the 

first mode has been chosen as the representative ground motion intensity measure. The methods 

were divided into narrow-range and wide-range, with respect to the range of spectral acceleration 

values for which they provide estimations for the factored demand. The factored demand 

calculated by numerical integration, also referred to as the “true” factored demand, was used as a 

basis for comparison of the alternative methods, which are based on analytical integrations. 

 

Single-stripe analysis and cloud analysis were the two narrow range methods presented in this 

chapter. 
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Single-stripe analysis method provided accurate estimations of the median displacement demand 

for a given spectral acceleration, 
a

oP S|maxθ
η ,,  and the dispersion measure for the displacement for a 

given spectral acceleration, 
a

P S0|maxθ
β . However, it was unable to provide an estimate of the b 

value. While this estimate was satisfactory at lower ductility levels it led to a significant error at 

near collapse ductility levels. The factored demand was estimated assuming a default b value of 

1. The estimated factored demand was much larger than the factored demand calculated by 

numerical integration because both 
a

P S0
max|θ

β and b are large in such cases.  

 

In order to enhance the factored demand estimation by single-stripe analysis, the double-stripe 

analysis method was introduced. This method consisted of performing another single-stripe 

analysis “sufficiently close” to the original stripe in order to provide a reasonable estimate of the 

log-log slope b value. For the near capacity ground motion level ( ), the factored 

demand that was calculated using the estimated b value became much closer to the factored 

demand calculated by numerical integration. The improvement in the estimation of factored 

demand can be totally attributed to a fairly accurate estimation of the b value in the double-stripe 

method. At the higher levels of 

gSa
P 70.00 =

aS|maxθβ  associated with high ductility levels, the factored demand 

is much more sensitive to any error in b. This stresses the importance of estimating the b value in 

the region of interest. As seen in Figure 4-14-b the log-log slope changes at higher ground 

motions. 

 

Cloud analysis using the ground motions “as recorded”, while accurate at the lower deformation 

level, provided an estimate for the factored demand that was much smaller then the factored 

demand calculated by numerical integration for the higher  level. It failed to estimate the 

median demand well and underestimated 

aS

aS|maxθβ . 

 

In order to make the cloud response nearly centered on the spectral acceleration of 0.70g, the 

ground motion records were scaled by a factor of two. The cloud analysis using the scaled ground 

motions provided conservative estimate of the factored demand. Nevertheless, scaling the ground 

motions did enhance the factored demand estimation to some extent. The median, 
aS|maxθβ  and b 

values are all closer to the more extreme values at . Cloud analysis by its very nature 

cannot provide good local estimates of those parameters when they are changing rapidly. 

gSa 70.0=
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As wide-range methods, multiple-stripe analysis and incremental dynamic analysis were studied 

in the chapter. 

 

Multiple-stripe analysis provided an accurate estimate of the factored demand for the extreme 

spectral acceleration of 0.70g. Comparing the multiple-stripe analysis and single-stripe analysis 

procedures for estimating the factored demand, it can be observed that everything is similar 

except for the estimation of the b value. Like the double-stripe analysis, the multiple-stripe 

analysis estimated the b value equal to the slope of the line connecting the median values for two 

adjacent stripes close to the spectral acceleration of 0.70g. Whereas, the single-stripe method 

could not provide an estimate of the b value. An accurate estimation of the b value may be 

essential for getting an accurate estimation of factored demand, especially if 
aS|maxθβ is large.   

 

Multiple-stripe analysis was applied to estimate the factored demand for multiple limit state 

levels, i.e., multiple spectral acceleration levels. Generally, multiple stripe analysis provided 

accurate estimates of the factored demand. The resulting factored demand estimations drifted 

away from the “true” factored demand when the (estimated) median demand became 

(unrealistically) non-smooth. In the next chapter, we will address these issues more carefully. 

 

Incremental dynamic analysis provided results virtually identical to that of the multiple-stripe 

analysis. Compared to multiple-stripe analysis, the incremental dynamic analysis carries 

additional information about individual ground motion records by means of the IDA curves. The 

IDA curves follow the structural response to individual records as the spectral acceleration 

increases. These curves can be used to mark the onset of global instability for each ground motion 

record.  

 

The onset of global dynamic instability (collapse) for each record, i.e., the collapse point,  was 

marked on the corresponding IDA curve. The criteria for determining this threshold may change 

(see Vamvatsikos and Cornell, 2002). 

 

The factored capacity, a displacement capacity measure in the context of the DCFD format, was 

estimated using the collapse points extracted from the IDA curves.  The estimated factored 

capacity was found to be equal to the factored capacity as calculated from the numerical 
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integration. The estimated factored demand for a spectral acceleration of 0.70g was smaller than 

the estimated factored capacity for global dynamic instability (collapse) limit state. Therefore, 

according to DCFD format, annual failure probability is confirmed to be less than 0.0047. 

 

In the final section of this chapter, the issue of uncertainty in the estimation of median drift due to 

limited sample size, i.e., n=number of records, was briefly discussed. The Bootstrap procedure, 

based on the original selection of records, was used to estimate the standard error in the 

estimation of the median drift that was provided by the single-stripe analysis. 

 

It was confirmed that in fractional terms the standard error in the estimation of median drift 

provided by single-stripe analysis is approximately equal to n
aS /|maxθβ . Therefore the required 

sample size to achieve a pre-set “accuracy” in the median demand (and roughly, the factored 

demand) is dependent on 
aS|maxθβ which in turn tends to increase with ductility level. 
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