
CHAPTER 3 
 

Probability-based Demand and Capacity Factor Design 
(DCFD) Seismic Formats 

 
 

F. Jalayer and C. A. Cornell (2003). RMS Report No. 43- Part II Seismic Design Format 

3.1 Introduction – Format development 

Chapter 2 was dedicated to developing an analytical foundation for the probability-based seismic 

assessment of structures. The final product of this foundation development was the mean annual 

frequency of exceeding a limit state or the “limit state frequency” in short. Limit state frequency 

 was calculated taking into account the uncertainty in various elements involved in the 

seismic assessment and design of the structural system. An analytical framework for calculating 

the limit state probability is helpful for seismic assessment of the structures, e.g., calculating the 

limit state probability for an existing structure and checking to see if its design falls within the 

acceptable region. However, in a design problem, the actual structural members and connections 

are not known beforehand. They are , rather, the end product of the design process.  Conversely, 

the performance objective for the design is usually set beforehand and can be expressed in terms 

of the limit state probability. From a designer’s point of view, the structure can be designed to 

satisfy a specified performance objective. 

LSH

 

This part of the report addresses problems similar to the following: “how to assess a proposed (or 

existing) design for a structure for a known collapse limit state frequency of, say, 0.04 percent per 

annum?” or “how to address the uncertainty (due to limited knowledge) involved in evaluation of 

the design parameters?”. This uncertainty is usually stated through questions such as, “how to 

design a structure for a known mean annual collapse limit state frequency of 0.04% with a 

confidence interval level of 95%?”. 

 

We shall discuss various alternative design formats that stem from the probability-based 

foundation developed in the first part of this document. These formats are in general suitable for 

guidelines and code implementation. A major class of these formats are analogous in form to 

(linear, static, force-based) Load and Resistance Factored Design (LRFD) procedures (AISC 

LRFD code). However, these formats are based on generic, random (usually) displacement-based, 

non-linear dynamic response variables: “demand” and “capacity”, and they are therefore referred 
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to as Demand and Capacity Factored Design (DCFD). The DCFD format can also be formulated 

in terms of spectral acceleration-based (referred to as IM-based in Chapter 2) generic demand and 

capacity variables. Fragility-hazard format is another IM-based format discussed in this chapter, 

which is useful for designing/assessing the global behavior of a structure or a class of structures. 

 

Unlike the foundation, which is unique, the formats are numerous. They are just various 

representations of a common foundation. In other words, the choice among these alternative 

formats is subjective. It is to be made on grounds such as familiarity, practicality, etc. 

3.2 Randomness: The only source of uncertainty 
 

Similar to the foundation development, the alternative design formats discussed in this chapter are 

also presented in two parts. The probability-based foundations developed in this section are based 

on the assumption that randomness is the only source of uncertainty, and hence, they are based on 

the expression for limit state frequency derived in the first part of Chapter 2 (Equations 2-38 and 

2-48). 

 

Recalling from Equation 2-38 in Chapter 2, the limit state probability, expressed in displacement-

based terms, was derived as: 
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where denotes the mean rate of exceedance in general)(⋅H 1. We are going to re-arrange the above 

equation into alternative forms, also known as “DCFD design formats”. The purpose for this re-

arrangement is to present this probability-based formulation in a way that is easy to be 

implemented in the design practice. The basic components of Demand and Capacity Factored 

Design Format (DCFD) are outlined in the following equation, 
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where 
a

P sD 0|η  is the median drift demand for a given spectral acceleration, , corresponding to 

hazard levels in the proximity of an acceptable limit state probability, . 

a
P s0

C0P η  is the median drift 

                                                 
1 Later in this thesis we shall use the notation (.)λ  to represent mean annual rate of exceedance. 

 58



 
CHAPER 3                                                  PROBABILITY-BASED SEISMIC DESIGN FORMATS 

capacity, )
2
1exp( |

2
aSD

b
k β⋅⋅ is the Demand Factor, and )

2
1 2

C
b
k β⋅⋅−exp( is the Capacity Factor. 

Equation 3-2 offers an alternative presentation of the formal foundation equation (Equation 3-1), 

and is obtained by re-arranging Equation 3-1. We shall go through the re-arrangement step-by-

step below. 

 

The Fragility-Hazard Format is another format discussed in this chapter. This format is derived 

by re-arranging the  presentation of the foundation equation in Chapter 2 (Equation  basedSa −

2-48): 

 

3)-(3                   
2

2
2

|20 2
1 

2
1

C
C

aSD b
k

a
b
k

a
P eses

β
η

β ⋅⋅−⋅⋅
⋅=⋅  

 

where is the spectral acceleration with a Hazard level equal to an acceptable limit state 

probability, , and  is the spectral acceleration with a Fragility of 50%. Each format will be 

developed and discussed in detail in the corresponding section. Before proceeding to the details 

of the derivations, we are going to define or overview a few parameters (variables) that are going 

to be very helpful in our future format presentations. 

a
P s0

0P C
asη

 

3.2.1 Spectral acceleration  corresponding to a displacement-based demand equal to d d
as

 
d
as  or the spectral acceleration corresponding to displacement-based demand value, , is defined 

as the spectral acceleration corresponding to the value, d, from the median displacement-based 

curve as a function of the spectral acceleration, i.e., as the inverse of that function: 

d
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Recalling from the last chapter, the median displacement-based demand was approximated as a 

power-law function of the spectral acceleration, . Based on this approximation, 

 or the spectral acceleration corresponding to the displacement-based response d can be 

expressed as: 
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Displacement-based demand, D 
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Figure 3-1 - Spectral acceleration corresponding to a displacement-based demand equal to d. 

d
as  is illustrated graphically in Figure 3-1. In simple words, s  represents the spectral 

acceleration value corresponding to a given demand value d from a median curve approximated 

as, . 

d
a

b
aSa ⋅

 

3.2.2. Spectral acceleration P  for a hazard level equal to  as0
0P

 

a
P s0  is the spectral acceleration with a mean annual frequency of being exceeded (hazard, 

defined in Chapter 2) equal to : 0P
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In which we make sue of the fact that (Chapter 2) the mean annual frequency of exceeding a 

given spectral acceleration value (also known as the spectral acceleration hazard curve) can be 

approximated (at least locally) by the power-law function, . Figure 3-2 

illustrates the graphical presentation of . The spectral acceleration  corresponding to a 

drift demand equal to d is also plotted on the same figure. 
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Displacement-based demand, D 
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Figure 3-2 - Spectral acceleration for a hazard level equal to  0P

 

3.2.3  DCFD Format 
 

DCFD format is analogous in form to the Load and Resistant Factored Design (LRFD) 

procedures (see AISC design procedures, 1994). As the name suggests, this format is constituted 

of demand and capacity multiplied by their respective factors. The same as LRFD procedures, the 

DCFD format can be used to design a building against a certain factored demand by finding a 

factored capacity. The probabilistic demand and capacity factors for the DCFD format are very 

similar in concept to the partial safety factors applied to the load and resistance in LRFD design 

procedures.  

 

This format stems directly from the expression for limit state probability (Equation 3-1) after 

some re-arrangements. It should be noted that the same simplifying assumptions that led to the 

derivation of the closed-form foundation equation in the previous chapter are implicit here in the 

derivation of the DCFD format. In order to develop a design format, we first need to set a design 

criteria. One certain criteria is to design a structure so that the mean annual frequency of 

exceeding a certain limit state (limit state frequency in short) is less than or equal to the allowable 

annual probability 0P 2: 

 

                                                 
2 Note the mixing of the usage of the terms “mean annual frequency” and “annual probability”. Although 
the more precise term to be used in this derivations is “mean annual frequency”, for the type of rare events 
that we are interested, the corresponding values are virtually numerically identical. 
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6)-(3                 0PH LS ≤  

 

where the equality holds at the onset of the limit state. Recalling from the previous chapter, the 

limit state frequency can be expressed through a closed-form relationship (Equation 2-38 or 3-1). 

This closed-form expression can be substituted for  in Equation 3-6: LSH
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where  is the hazard value (mean annual frequency of exceedance) for a spectral 

acceleration equal to s  (i.e., the spectral acceleration corresponding to the median capacity 
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After re-arranging the above equation in order to solve for median capacity, Cη , we get the 

following expression for the median capacity required so that the limit state frequency  is 

less than or equal to the allowable probability : 

LSH

0P
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The expression in the parenthesis ( ) kkP 1
00

−  is nothing but the spectral acceleration , having 

a hazard value equal to the allowable probability  as given in Equation (3-5). Substituting 

a
P s0

0P

( ) kkP 1
00

−  with  in Equation 3-10 will make it look more simple: a
P s0
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where is in turn equal to the median drift demand ( b
a

P sa 0 )
a

P SD 0|η for a given spectral acceleration 

of  (Equation 2-4). Thus, Equation 3-11 can be further simplified by replacing with a
P s0

a
P S0|

( b
a

P sa 0 )
Dη : 
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Finally we transfer the capacity-related exponential term, )
2
1exp( 2

C
b
k β⋅⋅ , to the other side of the 

equation changing the sign of the exponent: 
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Equation 3-12 represents the DCFD format in its final form. The right-hand side or the “capacity 

side” of the equation is called the “factored capacity”, parallel to LRFD’s factored resistance. In a 

similar manner, the left-hand side of the equation or the “demand side” is called the “factored 

demand for the allowable probability ”, parallel to LRFD’s factored load. It should be noted 

that the factored demand (the equivalent to factored load) is a function of the allowable 

probability level, , whereas the factored capacity does not depend on . In contrast to the two 

factors in the AISC LRFD, where neither the demand nor capacity factor depends on . The 

DCFD format offers an alternative and equivalent statement for the design criterion, according to 

which the factored demand for the allowable probability  should be less than or equal to the 

factored capacity. This implies that at the onset of the limit state, the factored demand for the 

allowable probability  is equal to the factored capacity. One of the main advantages of the 

DCFD design format is that the probabilistic design criteria can be stated in terms of familiar 

displacement-based response parameters. This makes the DCFD format compatible with existing 

(deterministic) design procedures. 

0P

0P 0P

0P

0P
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The following sections are going to discuss in more detail the components of the DCFD format 

(Equation 3-12). 
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3.2.3.1 Displacement-based demand, 
a

P SD 0|η  

a
P SD 0|η is the median displacement-based demand for a spectral acceleration equal to spectral 

acceleration, , (i.e., spectral acceleration with a frequency of exceedance equal to the 

allowable probability, ). We may also refer to it as the median demand for a given ground 

motion intensity  in short. Adopting the analytical development above this median demand 

was shown to be equal: 

a
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But Figure 3-3 illustrates a graphical presentation of 
a

P sD 0|η  that demonstrates its more general 

applicability. Looking at the figure, we can see that 
a

P sD 0|η can be calculated in two simple steps. 

Step 1 is to find the spectral acceleration  that has a frequency of exceedance (i.e., hazard) 

equal to the allowable probability, , from the hazard curve for the spectral acceleration. Step 2 

is to find the displacement-based demand 

a
P s0

a
P sD 0|

0P

η  that corresponds to a spectral acceleration equal 

to  from the median demand curve. Note that in application neither the hazard curve nor the 

median demand curve need to be in analytical form to evaluate  and 

a
P s0

a
P s0

a
P sD 0|η . This fact will be 

exploited in applications that follow. 

Displacement-based demand, D λSa(sa) =  λ [Sa > sa ] 

S
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Figure 3-3 - Graphical presentation of median demand
a

P sD 0|η  for a spectral acceleration 

equal to  a
P s0
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3.2.3.2 Displacement-based capacity, Cη  

 

Cη  is the median displacement-based capacity for the structure. Figure 3-4 illustrates the median 

drift demand 
a

P sD 0|η and capacity Cη  on the same graph.  

3.2.3.3 Demand factor )
2
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|
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b
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2
aSD

b
k β⋅⋅  or the displacement-based demand factor is a magnifying factor that takes into 

account the randomness in the displacement-based demand. The randomness represented by the 

factored demand is usually due to record-to-record variability. 
aSD|β , a dispersion measure for 

the displacement-based demand, is equal to the standard deviation of the (natural) logarithm of 

displacement-based demand for a given spectral acceleration. Typical values for 
aSD|β , in the 

non-linear range, are about 0.30 to 0.60. In the special case (e.g., a linear SDOF oscillator) where 

there is no dispersion in demand (given ), the demand factor will be equal to unity. aS bk  can be 

interpreted as the sensitivity of probability to a the change in the displacement-based demand; 

which means that a factor of x  change on the displacement scale will cause a factor of  

change on the probability scale. 

bkx /−

 

Displacement-based demand, D λSa(sa) =  λ[Sa > sa ] 
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Figure 3-4 - Graphical presentation of median drift capacity Cη   
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Similar to the LRFD design procedures, the demand factor )
2
1exp( |

2
aSD

b
k β⋅⋅ is also denoted by 

γ . Clearly, γ  is always greater than or equal unity (an exponential raised to a nonnegative 

power). Thus, the “design” displacement-based demand is always greater than or equal to the 

median demand due to the randomness-type of uncertainty in displacement-based demand.  

 

3.2.3.4 Capacity factor )
2
1 2
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Cb
k β⋅⋅−  or the factored capacity is a reduction factor that takes into account the 

randomness type of uncertainty in the displacement-based capacity. It is an exponential term 

raised to a non-positive power and hence is always smaller than one. Therefore, the “design” 

capacity is always less than or equal to the median capacity due to the randomness-type of 

uncertainty. The dispersion term in the exponential power, , is the standard deviation of the 

(natural) logarithm of the displacement-based capacity. Also 

Cβ

bk  is a factor reflecting the 

sensitivity of the probability to a change in displacement-based capacity. Similar to the LRFD 

design procedures, the capacity factor )
2
1 2

Cb
k β⋅⋅−exp(  is also denoted by φ . 

 

3.2.3.5 Factored demand and demand hazard 
 
In the following, we are to present an alternative interpretation of factored demand. This 

alternative derivation relates the factored demand to the demand hazard (mean frequency of 

exceedance).In DCFD format, the factored demand (FD) was derived as: 
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Replacing back the analytic expression for 
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P sD 0|η from Equation 3-13: 
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We can solve the above equation for : 0P
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Realizing that (according to Equation 3-8) the term  is equal to the hazard value 

for a spectral acceleration corresponding to a (median) demand value equal to FD: 
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Replacing the term  in Equation 3-14 with its equivalent from Equation 3-15: bkaFDk /
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We can observe that right side of the above equality is equal to (demand) hazard for a demand 

value equal to FD (Equation 2-25): 
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Conversely, the factored demand can be written as the inverse of the hazard function at value : 0P
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The above equation states that the factored demand for an allowable probability  is equal to the 

(displacement-based) demand with a mean annual frequency of exceedance (hazard) equal to . 

This alternative interpretation for the factored demand is going to be helpful later in Chapters 4 

and 5 where we need to evaluate the factored demand for more general cases (i.e., the analytic 

assumptions underlying the derivation of DCFD have not been employed). 

0P

0P

3.2.3.6 General Form for the DCFD design format: 
 

We have already discussed the derivation of the closed-from for DCFD format (Equation 3-12), 

which resulted from re-arranging the expression for limit state probability in Equation 3-1: 
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However, it should be kept in mind that this format is based on the same simplifying assumptions 

that we made for the foundation derivation in Chapter 2. The general form for the DCFD design 

can be introduced based on the format we derived in Equation 3-12, but replacing 
a

LSP SD|
η with3 

D, Cη  with C, )
2
1exp( |

2
aSD

b
k β⋅⋅ with γ , and )

2
1exp( 2

Cb
k β⋅⋅−  with φ : 
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where D and C refer to a demand and capacity displacement-based parameters and γ and φ  are 

their corresponding factors. It can be noted that the DCFD format presented in its general form as 

in Equation 3-19 looks similar to the LRFD format presentation. Another alternative general way 

to present the DCFD format is by simply comparing the factored demand to factored capacity: 

 

20)-(3          .. . CFF.D ≤  

The benefit of this alternative representation is that factored demand and factored capacity can be 

defined in a different manner from the DCFD format. A generalized definition for factored 

demand is already discussed in the previous section. According to this definition the factored 

demand is the demand value has a mean annual frequency of exceedance equal to the allowable 

probability . Generalized definitions for factored demand and factored capacity are going to be 

discussed in Chapters 4 and 5. 

0P

 

3.2.3.7 Numerical Example: (Performance Evaluation for an Existing Building) 
 

Returning to the numerical example presented in Chapter 2, now we can assess the performance 

of an existing 3-story frame for the collapse limit state for an allowable probability of 

(2% in 50 years). Based on the DCFD design format, we are going evaluate and 

compare the factored demand for the allowable probability  and the factored capacity 

for the collapse limit state. 

4
0 104 −×=P

4
0 104 −×=P

 

 

                                                 
3 Despite their capital letter designation, D and C do not represent stochastic variables in this DCFD 
context. (They do typically represent stochastic variables in Chapters 2and 3). Here, they are just referring 
to some generic displacement-based demand and capacity parameter. 
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Factored Demand         γ⋅D  
 

Evaluation of the factored demand consists of two parts, a) calculating the median drift demand 

aSD 0004.0|
η for a spectral acceleration with a hazard equal to 4 , and b) calculating the demand 

factor. The median demand 

410−×

aSD 0004.0|
η  itself can be calculated in two steps. The first step is to 

calculate the spectral acceleration 0  with a hazard equal to 4 . This can be done either 

by using Equation 3-5 or more generally by simply finding the spectral acceleration 

corresponding to  from the hazard curve. The advantage of the second approach is 

that the hazard curve does not necessarily need to be a power-law. This approach will be used 

extensively in Chapters 4 and 5. Here, we are going find  both analytically and 

graphically. 0  can be calculated from Equation 3-5 for : 

as0004.

4

410 −×

as0004.0

4104 −×

0 104 −×=P

as0004.
0 =P

 

k
a k

s
1

0

0004.0 )0004.0(
−

=  

Recalling from the first part of the numerical example in the previous chapter, the parameter 

estimates for and  were equal to: 0k k

  03.3
00124.00

=
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k
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Finally,  can be calculated as: as0004.0

[g]  1.458)
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1
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Graphically,  is estimated by the spectral acceleration corresponding to the hazard value 

equal to 0  from the spectral acceleration hazard curve. The hazard curve with parameters 

and  (listed above) is plotted in Figure 3-5. It can be observed that a hazard value 0.0004 

corresponds to  equal to 1.45. After the  is calculated (estimated), the next step is 

to find the median displacement-based demand that corresponds to this spectral acceleration. 

Again, the median demand can be either calculated from the power-law approximation, 

, or estimated graphically from the median displacement-based demand curve 

that is plotted versus spectral acceleration. 
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Figure 3-5 - The hazard curve for %)2,1( == ξTSa  

 

Sa =1.45
0.0004

λSa(sa)=0.0004 

 

The median demand corresponding to a spectral acceleration equal to  can be 

calculated from the power-law relation as: 

][458.10004.0 gsa =
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b
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Recalling from the previous chapter, the parameter estimates for a and b were equal to: 
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Finally,  can be calculated as: )( 0004.0
| aSD s

a
η

 

( ) ( )  0.047 1.4580325.0   0325.0)( 002.1002.10004.00004.0
| =⋅=⋅= aaSD ss

a
η  

We can also estimate  graphically by finding the median demand value 

corresponding to a given spectral acceleration of or 1.45 [g] from the median demand 

curve. In this example we have chosen the maximum inter-story drift angle (the “absolute” 

maximum of the response time-history over all the stories in the structure) as the displacement-

based demand parameter. The maximum inter-story drift angle is plotted versus spectral 

acceleration in Figure 3-6 below. In Chapter 4, we shall explore other ways to evaluate this 

)( 0004.0
aD sη

as0004.0
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median drift, e.g., by simply making a small set of non-linear dynamic runs with all input records 

scaled to the single level, . gsa 45.10004.0 =

aSD|lnσ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ηD=ηD|Sa(sa) 

Maximum inter-story drift, D 

ηD|Sa(         sa)= 0.047 

sa =1.45 0.0004 

0.0004

Figure 3-6 - Spectral acceleration plotted versus maximum inter-story drift angle, and fitted 

power-law relation (a line on the two-way logarithmic paper) 

 

The next step is to calculate the demand factor or )
2
1

|
2

aSD
b
k β⋅⋅exp( . As mentioned in Section 

3.2.3.5, 
aSD|β  is equal to the standard deviation in the (natural) logarithm of the demand given 

spectral acceleration denoted by . This can be approximated by the reported 
aS|ln maxθσ  on 

the graph in Figure 3-6 (it should be noted that the maximum inter-story drift angle, maxθ , is in 

fact the demand parameter used in this example) that is approximately equal to 0.3. The hazard 

slope parameter k is reported on Figure 3-5 as 3.0. Also the median demand-spectral acceleration 

slope factor b is equal to 1.0 (Figure 3-6). Now that are the parameter estimates are obtained, we 

are ready to calculate the demand factor or )
2
1exp( |

2
aSD

b
k β⋅⋅ : 
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Finally, the factored demand is calculated by multiplying the median demand 

and the demand factor 047.0)( 0004.0
| =aSD s

a
η 144.1

|
2

2
1

=
⋅⋅ aSD

b
k

e
β

: 
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Factored Capacity φ⋅C   
 

As it was mentioned before, this numerical example demonstrates the assessment of structural 

performance for the limit state of collapse, using maximum inter-story drift angle as the 

displacement-based parameter. Therefore, the displacement-based capacity is represented by 

maximum inter-story drift angle at the onset of the collapse limit state. Similar to factored 

demand estimation, the estimation of factored capacity consists of two parts, a) calculating the 

median capacity Cη  for the collapse limit state, and b) calculating the capacity factor. Recalling 

from the previous parts of this numerical example in Chapter 2, the median (drift) capacity Cη  

for the collapse limit state and its dispersion parameter Cβ  (i.e., the standard deviation of the 

natural logarithm of maximum inter-story drift angle capacity values) were estimated to be equal 

to: 

20.0
07.0

=
≅

C

C

β
η

 

Hence, the capacity factor or )
2
1exp( 2

Cb
k β⋅⋅−  can be calculated as: 
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Finally, the factored capacity is calculated by multiplying the median capacity 07.0=Cη  by the 

capacity factor 94.0)
2
1exp( 2 =⋅⋅− Cb

k β : 
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Comparing the factored demand from Equation 3-21 and factored capacity from Equation 3-22, 

we can observe that: 

      0.0658   0.0538 =⋅≤=⋅ φγ CD  
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As we can see, the structure satisfies the design criteria in Equation 3-19 for an allowable 

probability equal to 0.0004 (i.e., 10% in 50 years) corresponding to the collapse limit state. This 

conclusion implies that the actual structure’s limit state frequency (probability of failure) is less 

than 0.0004 per annum. 

 

3.2.4 Fragility/Hazard Format – An IM-based probabilistic format 
 

In the previous sections, we outlined in detail the main components of DCFD format, which is a  

displacement-based probabilistic design format. Here, we are going to discuss fragility/hazard 

format, a design format that stems from the IM-based framework equation in Chapter 2. One 

main advantage of an IM-based design format is that design and/or assessments are performed in 

the level of spectral acceleration and do not involve explicitly the displacement-based response. 

 

The fragility/hazard format (see e.g., DOE 1020, 1994, and Kennedy and Short, 1994) is a 

graphical design format in which the design criterion involves comparing “fragility” curves to 

“hazard” curves. The hazard curves represent the probabilistic ground motion intensity or in 

general terms the “loading” characteristics, whereas the “fragility” curves represent the 

probabilistic structural capacity or in general terms the structural “resistance. 

 

The same as the DCFD design format, the first step in developing a format is to set the design 

criteria. In the case of the fragility/hazard format the IM-based design criterion can also be stated 

as in Equation 3-6 for a given allowable annual probability, :  0P                 0, PH basedSLS a
≤−

 

Where the limit state frequency is calculated from the IM-based expression for the limit state 

probability in Chapter 2 (Equation 2-48): 
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The expression for the IM-based limit state frequency can be substituted in the design criterion 

(Equation 3-6):  
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where  is the IM-based random variable representing the limit state capacity (or spectral 

acceleration capacity in short) and k is the parameter reflecting the steepness of the hazard curve 

for spectral acceleration. It will be demonstrated in the next chapter how to estimate the statistical 

properties (i.e., median, 

CaS ,

CaS ,
η , and standard deviation of the natural logarithm, CaS ,

β ) of this 

random variable using non-linear dynamic analysis procedures such as Incremental Dynamic 

Analysis (see Vamvatsikos and Cornell, 2001). Recalling from Chapter 2, the spectral 

acceleration hazard can be approximated (at least locally) by a power-law relationship: 
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k

S xkx
a

−⋅=λ  

Therefore, )(
,Caa SS ηλ , or the mean annual frequency of exceeding the median spectral 

acceleration capacity can be calculated from the above expression and then substituted in 

Equation 3-24: 
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After some simple re-arrangements with the objective of separating the “load” and “resistance” 

sides, Equation 3-26 would take the following form: 
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Recalling from Equation 3-5, the right-hand side of the equation is in fact the indicator spectral 

acceleration  for a hazard level equal to the allowable probability  (or indicator spectral 

acceleration for allowable probability in short): 

a
P s0

0P
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⋅⋅−
⋅≤  

 

This is the expression for the fragility/hazard format. A similar expression, with the exponential 

term (with a positive sign) applied to  has been used in the current draft of ISO seismic 

criteria for offshore structures (Banon et al. 2001). It will be shown below how this expression 

a
P s0
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relates to the fragility and hazard curves. Similar to the DCFD format, the left-hand side of the 

expression represents the “factored demand for the allowable annual probability ”, and the 

right-hand side represents the “factored capacity”. However, if compared to the expression for the 

DCFD format in Equation 3-12, one can observe that the demand factor representing the 

dispersion in displacement-based demand is missing in the demand side of the expression. 

Nonetheless, the factored capacity looks similar to that of the DCFD format except for the fact 

that the b value is missing from the capacity factor. This is to be expected since the b value 

represents the (log) slope of the displacement-based demand parameter versus spectral 

acceleration; and the fragility/hazard format does not explicitly involve the displacement-based 

demand. Therefore, the design criterion based on the fragility/hazard format can be stated in 

terms of the IM-based factored capacity being less than or equal to the IM-based factored demand 

for a given allowable annual probability, . The following sections are going to discuss fragility 

and hazard curves and how they can be employed in order to make parameter estimates for the 

fragility/hazard format in Equation 3-28. 

0P

0P

 

3.2.4.1 Hazard curves 
 
The hazard function, , for a given spectral acceleration value, , can be defined as the 

mean annual frequency of exceeding the spectral acceleration value, . The hazard function 

is discussed in more detail in chapter 2. Figure 3-7 illustrates a schematic hazard curve. 

As it is mentioned before, the hazard curve is approximated by a power-law relation, 

 in the derivation of the framework equations in Chapter 2, where the 

parameter k represents the steepness of the hazard curve. It is shown only schematically in Figure 

3-7. In fact it is strictly the slope of the power-law hazard curve on a two-way logarithmic scale 

graph. It will be discussed in Chapter 4 that the slope parameter k can be estimated as the local 

slope of the hazard curve (Figure 3-7) in the region of hazard/spectral acceleration values that are 

of interest.  

)( aS sH
a as

as

)( aS sH
a

aS sH
a

)( k
ask −⋅= 0

 

In the context of the fragility/hazard format, the hazard curve represents the probabilistic 

characteristics of “load” or demand. It is demonstrated in Figure 3-7 how the “factored demand 

for the allowable probability ” in the fragility/hazard format, , can be derived from the 0P a
P s0
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hazard curve. As it is shown in the figure,  is the spectral acceleration with a mean annual 

frequency of exceedance (hazard) equal to . 

a
P s0

0P

] == as

as

ln((Φ=

aS ,

]

)
,

,

Ca

Ca

S

S

η

η

3.2.4.2 Fragility curves 
 

The structural fragility for a limit state is defined as the conditional probability of exceeding the 

limit state capacity for a given level of ground motion intensity (conditional probability of failure 

in short). If the ground motion intensity is represented in terms of the spectral acceleration, the 

fragility can be expressed as: 

 

)293(                    ][|[)( ,, −≤≥= aCaaCaaaLS sSPSSSPsF  

where  is the structural fragility at spectral acceleration s  for the limit state LS. It can be 

observed from the above equation that the fragility is expressed as the probability that the random 

variable  is less than or equal the value . Therefore, the fragility can also be stated as the 

cumulative distribution function of the random capacity, . If it is assumed that the 

probability distribution of the spectral acceleration capacity, , is lognormal with median, 

)( aLS sF

CaS ,

a

CaS ,

aS ,C

CaS ,
η , and standard deviation of the natural logarithm, CaS ,

β , the fragility can be expressed in 

terms of the widely tabulated “standardized” Gaussian distribution function: 
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η
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It can be observed from the above equation that the structural fragility for a given limit state can 

be plotted as a function of spectral acceleration. For a certain limit state, a monotonically 

increasing “fragility curve” can be plotted. A schematic fragility curve is shown in Figure 3-7. 

The median spectral acceleration capacity  is marked as the spectral acceleration that 

corresponds to a fragility of 50%, since according to Equation 3-30: 

C

 

       0.50(0) )ln(()(
,,

=Φ=Φ=
CaCa SSLSF βη  

Also the standard deviation of the (natural) logarithm of  is marked as the difference 

between the spectral accelerations (on the logarithmic paper) corresponding to fragility values 

16% and 50%, since again according to Equation 3-30: 

CaS ,

 76



 
CHAPER 3                                                  PROBABILITY-BASED SEISMIC DESIGN FORMATS 

 

)16.0(ln)50.0(ln  ln  

0.16(-1) ))ln(()(

11

,

,
,

,

,
,

,
,,

,

−−

−

−
−

−=
⋅

−=

=Φ=
⋅

Φ=⋅

LSLS
S

S
S

S
S

S
SLS

FF
e

e
eF

Ca

CaS

Ca

Ca

Ca
Ca

CaS

CaCaS

Ca

η

η
β

β
η

η
η

β

β
β

 

The fragility curve for a certain limit state represents the probabilistic characteristics of structural 

resistance or capacity for that limit state. Once the fragility curve is available for a limit state, the 

“factored capacity” according to the fragility/hazard format, )
2
1exp( ,,

2
CaCa

SS k βη ⋅⋅−⋅ , can be 

calculated based on the parameter estimates for, , k
CaS ,

η , and 
CaS ,

β  from the hazard and 

fragility curves (Figure 3-7).  

Figure 3-7 – A schematic plot of the hazard and fragility curves. The main parameters of 

hazard/fragility format are also shown on the figure. 
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3.2.4.3 The IM-based limit state frequency in terms of the fragility and hazard functions 
 
It was demonstrated in the previous sections that fragility and hazard curves are very helpful 

graphic tools for estimating the IM-based factored demand and capacity. Moreover, it will be 

shown in this sections that the fragility and hazard curves can also be used in order to calculate 
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the limit state frequency. The IM-based limit state frequency is derived from the following 

expression (Equation 2-39): 

 

)313(                      )(][ ,, −⋅≥= ∫− xdHSxPH
aa SCabasedSLS  

where the first term in the integrand is nothing but the fragility  at a spectral acceleration 

equal to  from Equation 3-29. Therefore, the limit state frequency in Equation 3-31 can also be 

written as: 

)( aLS sF

as

 

)323(                            )()(, −⋅= ∫− xdHxFH
aa SLSbasedSLS  

Where the IM-based limit state frequency is derived in terms of fragility and hazard. This 

equation states that the limit state frequency can be calculated as the area under the product of the 

structural fragility curve for the limit state multiplied by the (absolute value of) the increment in 

the hazard. 

 

3.2.4.4 Numerical Example: (Performance Evaluation for an Existing Building) 
 

In the numerical example presented earlier for the DCFD format, we assessed the performance of 

an existing 3-story frame for the collapse limit state for an allowable probability of 

(2% in 50 years). Here, we are going to use the same example in order to 

demonstrate probabilistic assessments based on the fragility/hazard format. Based on the 

fragility/hazard design format, we are going evaluate and compare the IM-based factored demand 

for the allowable probability  and factored capacity for the collapse limit state. 

4
0 104 −×=P

4
0 104 −×=P

 

Factored demand: The IM-based factored demand for a given probability  is equal 

to  (Equation 3-28). Back in Section 3.2.3.7, the spectral acceleration with  

frequency of exceedance was found to be equal to . Therefore the factored 

demand for an allowable probability  is equal to: 

4
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Factored capacity: In order to calculate the factored capacity for fragility/hazard format, we 

assume that the (random variable) spectral acceleration capacity has median and (fractional) 

standard deviation equal to: 

 

][ 15.2
,

g
CaS ≅η  

20.0
,

≅
CaSβ  

The slope parameter k for the spectral acceleration hazard curve is reported to be equal to 3 on 

Figure 3-5. Now that we have the parameter estimates for estimates for, , k
CaS ,

η , and 
CaS ,

β , we 

can calculate the factored capacity: 
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Comparing the factored demand for the allowable probability  that was calculated 

above with the factored capacity, we can observe that: 

4
0 104 −×=P

 

       ][2..][ 45.1).(. 0  g CFgPDF =≤=  

 

Therefore, we can conclude that the collapse limit state fragility/hazard design criterion is 

satisfied for an allowable annual probability of  (i.e., 10% in 50 years). However, it 

should be noted that the parameter estimates used in this section for the spectral acceleration 

capacity are only for the sake of demonstration. In practical applications, non-linear dynamic 

analysis procedures (see Chapter 4 or Vamvatsikos and Cornell, 2001) can be implemented in 

order to build the structural fragility curve(s). Then the factored capacity can be calculated using 

the structural fragility curve as it is shown in Section 3.2.4.2. 

4
0 104 −×=P

3.3 Randomness and uncertainty, the sources of uncertainty 
 
The design/assessment formats introduced so far only considered the randomness (or aleatory) 

type of uncertainty in the estimations for demand and capacity. This type of uncertainty is 

normally caused by record-to-record variability in the demand and capacity. However, it is of 

interest to include the uncertainty due to incomplete knowledge (epistemic uncertainty) in the 

estimations for parameters related to hazard, demand, and capacity. As seen in Chapter 2, 

consideration of the uncertainty due to incomplete knowledge affects the mean estimate of the 
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limit state frequency and/or the confidence statements that can be made about bounds on 

estimates of that probability. confidence in the probabilistic assessments. Therefore, it is desirable 

to measure the epistemic uncertainty involved in the estimation of the parameters, and also to 

represent such uncertainty in the design or the assessments. One way to do this is to simply 

replace  in the previous section (3.2) everywhere by its mean estimate, LSH LSH . As per Equation 

2-86 in Chapter 2: 
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In which 
aSH  is the mean estimate of the hazard curve,  and  are the 

total aleatory and epistemic uncertainty variances in demand and capacity , respectively. Then it 

is clear comparing this to Equation 3-1, that both of the DCFD formats introduced in Section 3.2 

can be “up-graded” to include epistemic uncertainty by simply replacing  by its mean 

estimate 

22
UCRC ββ + 22

RCRD ββ +

LSH

LSH

2β

 and the aleatory uncertainty variances,  for demand ( ) and capacity by 

their total ’s, i.e., the total aleatory and epistemic variances. For example, Equation 3-2 

becomes: 

2β aSD |
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where it is understood that the spectral acceleration  is obtained from the mean estimate of 

the hazard curve at . It is implied that the tolerable limits state frequency is specified in terms 

of its mean estimate. While not in this same format, DOE 1020 is based in using such a mean 

estimate approach with combined or total (aleatory plus epistemic) variances used for the demand 

and capacity. In this section we chose to outline a hybrid scheme. The DCFD format is extended 

to account for the epistemic uncertainty in the demand and capacity parameter estimations by 

associating a level of confidence with the frequency of exceeding a certain limit state. This format 

has recently been  implemented for performance evaluation of existing steel moment-resisting 

structures in FEMA 351. 

a
P s0

0P

 

The DCFD format presented in this section mainly features consideration of epistemic uncertainty 

in the structural demand and capacity parameter estimations. However, it does implicitly take into 

account the epistemic uncertainty in the seismic hazard estimations by incorporating the “mean” 

estimate for the hazard instead of the “median” estimate. 
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3.3.1 A confidence-based DCFD format  
 

In Chapter 2, the frequency of exceeding a limit state was derived by taking into account the 

uncertainty due to both aleatory and epistemic uncertainty. In such derivations, the limit state 

frequency was not a single quantity but a range of possible values represented by a central value 

(median) and a dispersion measure (standard deviation of the natural logarithm): 
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Where  is the median estimate for the limit state frequency and  is the median estimate 

for the spectral acceleration hazard. 

LSĤ (.)ˆ
aSH

LSλβ  is the dispersion measure (standard deviation of the 

natural logarithm) for the limit state frequency; and it contains the epistemic uncertainty-related 

dispersion terms for hazard, demand and capacity. We note that these could be used to develop 

one or more DCFD formats that treat epistemic uncertainty in hazard, demand, and capacity 

uniformly. Here, however, we chose to develop the hybrid scheme introduced above. Suppose we 

assume that there is no epistemic uncertainty in the estimation of the median spectral acceleration 

hazard (i.e., 0=Hβ ), the dispersion term 
LSλβ  in Equation 3-35 would be simplified to: 
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where UTβ  is the dispersion measure representing the total epistemic uncertainty in the 

displacement-based demand and capacity parameters. In order to account for the epistemic 

uncertainty in the estimation of hazard, we substitute the “median” estimate of the spectral 

acceleration hazard, , in Equation 3-35 by “mean” estimate of the spectral acceleration 

hazard, 

LSĤ
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H2

1exp( β⋅ˆ
S A

H

"LS

. The resulting median estimate for the limit state probability is denoted 

by "  (in order to distinguish it from the median hazard  in Equation 3-35: Ĥ LSĤ
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where the bar “–“ represents the mean estimate; and (parallel to UTβ ) RTβ  is the dispersion 

measure representing the total aleatory uncertainty in the displacement-based demand and 

capacity parameters. It should be noted the hazard curves provided by the seismologists are 

usually in terms of the mean estimates of the annual frequency of exceedance, or “mean hazard” 

in short.  

 

Now, we can build a confidence interval around the “median” estimate for the limit state 

frequency reflecting the epistemic uncertainty in the estimation of the demand (given ) and 

capacity parameters. The limit state frequency corresponding to the confidence level, x, denoted 

by, , can be expressed as: 

aS

x
LSH
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where  is the standard Gaussian variate associated with the probability x of xK not being 

exceeded.  can be found in standard probability tables under the Normal distribution as a 

function of the number of standard deviations above or below the mean. Substituting the 

“median” estimate for the frequency of exceeding the limit state from Equation 3-37 into 

Equation 3-38, one obtains the upper x% confidence limit  on the limit state frequency: 

xK

x
LSH
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Recalling from Chapter 2 and earlier sections in this chapter, the mean annual frequency of 

exceeding (hazard) the spectral acceleration corresponding to median displacement-based 

capacity can be estimated by power-law approximations: 
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Clearly this result represents a theoretically inconsistent treatment of the total epistemic 

uncertainty, as that in hazard, Hβ , is incorporated in H , while that in capacity and demand 

(given ) is treated via the confidence factor . The objective is to focus on the structural 

epistemic uncertainties. More precisely, one should say that this represents an x% confidence 

limit on  given the mean hazard curve.  
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LSHxKe β⋅
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After substituting the estimate for )( C
a aS SH η  from Equation 3-40 into Equation 3-39,  or the 

limit state frequency corresponding to the confidence level x is derived as: 

x
LSH
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Parallel to the derivation of the DCFD format in Section 3.2.3 (Equation 3-6), the design criterion 

can be stated by comparing the limit state frequency  corresponding to a confidence level x 

to an allowable probability, : 

x
LSH

0P
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Substituting the expression for  from Equation 3-41 into the design criterion in Equation 3-

42 above: 
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Similar to the derivation of the DCFD format in section 3.2.3, we next make some re-

arrangements mainly in order to separate the “demand” and “capacity” sides: 
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Based on the relationship between the dispersion measure for the limit state frequency and the 

one measuring the total epistemic uncertainty in Equation 3-36: 
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Therefore, Equation 3-44 is simplified to: 
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⋅≥⋅⋅ ββ

η  

Now, we multiply both sides of the inequality in )
2
1exp( 2

UT
b
k β−  (in order to make this format 

look similar to DCFD): 
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After further simplifications noting that:  
k
b

a
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SD k
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−









⋅=

0

0
| )( 0η , and also breaking up the total 

variance terms into the corresponding demand and capacity variances: 
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Equation 3-48 already resembles the DCFD format. Now, we can define the demand and capacity 

factors as: 

49)-(3               
22

22

2
1

2
1

2
1

2
1

UCRC

UDRD

b
k

b
k

UR

b
k

b
k

UR

ee

ee

ββ

ββ

φφφ

γγγ

−−
⋅=⋅=

⋅=⋅=
 

Also the confidence factor corresponding to the confidence level, x, denoted by xλ  can be defined 

as: 

50)-(3           
)

2
1( UTxUT b

kK
x e

ββ
λ

−−
=  

After the demand, capacity, and confidence factors are substituted from Equations 3-49 and 3-50 

into Equation 3-48: 
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⋅

⋅
 

This is the final form for the DCFD format taking into account both aleatory and epistemic 

uncertainty. This looks very similar to Equation 3-12 for DCFD format considering only the 

aleatory; except for the confidence factor xγ  and also the fact the demand and capacity factors in 

Equation 3-51 also include the effect of epistemic uncertainty. As it was mentioned before, this 

format is implemented in FEMA 351 for the purpose of the performance evaluation of the 

existing steel moment-resisting structures. If Equation 3-51 is satisfied, one can say that the 

probability of failure is less than  with confidence x%.  0P
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It is also interesting to re-arrange Equation 3-51 in terms of the ratio of the factored demand to 

factored capacity related to aleatory uncertainty (according to Equation 3-49): 

 

53)-(3      
)(

..
).(. 0

|0 UTXa K

RC

Ra
P

SD e
s

CF
PDF β

φη

γη ⋅−≤
⋅

⋅
=  

or: 

54)-(3     .. ).(. 0 CFePDF UTXK ≤⋅ ⋅β  

 

Which is the equivalent design criterion for the DCFD format taking into account the epistemic 

uncertainty. It should be noted that the factored demand and capacity in Equation 3-54 take into 

account only the aleatory uncertainty and are identical to those of Section 3.2.3. 

 

The design criterion in Equation 3-53 can also be implemented in order to assess the level of 

confidence in an existing design for an allowable probability , by following the steps outlined 

below: 

0P

 

1. Calculate the factored demand for an allowable probability  and also the factored 

capacity from Equation 3-12 taking into account only the aleatory uncertainty. 

0P

2. Find the ratio of the calculated factored demand to factored capacity. 

3. Estimate the dispersion measure 22
UCUDUTβ ββ +=  accounting for the total 

uncertainty in the estimation of the demand and capacity factors; examples appear in 

DOE 1020, FEMA 351, etc. 

4. Solve the equation, 

55)-(3      
..

).(. 0 UTXKe
CF
PDF β⋅−=  

 

in order to find the corresponding Gaussian variate . Note that Equation 3-55 is a 

special case of the design criteria in Equation 3-54 at the onset of the limit state. 

xK

5. Find the corresponding confidence level x for the existing design 
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3.3.1.1 Numerical Example 
 
The procedure outlined above for finding the confidence level corresponding to an existing 

design can be applied to the numerical example in Section 3.2.3.7 where the factored demand for 

an allowable probability of and factored capacity for the collapse limit state where 

calculated. The ratio of the factored demand to factored capacity is equal to: 

0004.00 =P

 

0.817
0658.0
0538.0

..
)0004.0.(.

==
CF

DF  

 

We have used the tables in FEMA 351 guidelines in order to estimate UTβ . For a 3-story (low-

rise) structure, the tables recommend the value 15.0=UDβ  representing the uncertainty involved 

in the estimation of the displacement-based response using non-linear dynamic procedures for the 

collapse prevention limit state. Also the guidelines recommend the value 15.0=UCβ  associated 

with the uncertainty in the estimation of the global dynamic capacity for a low-rise structure. 

Therefore, UTβ  can be estimated as: 

212.0)15.015.0( 2
1

22 =+=UTβ  

 

The next step is to calculate the Guassian variate  from Equation 3-55: xK

 

212.0817.0
..

)0004.0.(. ⋅−== XKe
CF

DF  

which implies that: 953.0=xK  

 

Hence, the corresponding confidence level for 953.0=xK  can be found from a normal table: 

 

83.0)953.0( =Φ=x  

Therefore, we can conclude that the confidence that associated with the existing design of this 

structure is 83%. Precisely the same conclusion would be reached following the SAC-like format 

with definitions in Equations 3-49 and 3-50. The factored demand and capacity would differ in 

value as would their ratio, but the numerical confidence calculated via 3-50 would be the same. 
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3.4 Summary and conclusions 
 
A probabilistic framework for the assessment of the performance of structures under seismic 

excitations was developed in the previous chapter. This chapter discusses several of many 

possible alternative design and assessment formats that stem from this probabilistic framework. 

The design formats discussed can all be traced back to a general probabilistic design criterion, 

which is satisfied when the frequency of exceeding a certain limit state is less than or equal to an 

allowable probability . A design format usually offers equivalent displacement-based or 

spectral acceleration-based criteria parallel to the general design criterion. The advantage of these 

equivalent criteria is that they are expressed in terms of structural response parameters and hence 

the resulting format can be incorporated more easily into the existing design codes. 

0P

 

These formats can be categorized based on the types of uncertainty involved in the parameter 

estimations. The first category takes into account the randomness, also known as the aleatory 

uncertainty, in the assessment of the demand and capacity. The second category takes into 

account both the randomness (aleatory uncertainty) inherent in the estimation of the demand and 

capacity and also the uncertainty due to limited knowledge (epistemic uncertainty) in the 

estimation of the hazard, demand and capacity parameters. 

 

Within the first category, the Demand and Capacity Factored Design (DCFD) format was 

discussed. This format is a (displacement-based) design format analogous to the LRFD 

procedures that stems directly from the expression for the frequency of displacement-based 

demand exceeding capacity for a certain limit state. The DCFD format offers a displacement-

based design criterion in which the factored (displacement-based) demand (representing “load”) 

for the allowable probability  should be less than or equal to the factored (displacement-based) 

capacity (representing “resistance”) for a certain limit state. Another format discussed under the 

first category is a spectral acceleration-based format known as the Fragility/Hazard format, in 

which the fragility curves represent the structural “resistance” and the hazard curves represent the 

seismic “load”. This format offers a design criterion in which the spectral acceleration with a 

hazard value (i.e., frequency of exceedance) equal to the allowable probability , is less than or 

equal to the factored capacity expressed in spectral acceleration terms. Each fragility curve is 

specific to a certain limit state and provides the necessary parameter estimates for the calculation 

of the factored capacity for that limit state. The fragility/hazard format has been implemented for 

0P

0P
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the design and evaluation of energy facilities (e.g., nuclear power-plants) in the DOE 1020 

guidelines and for offshore structures in ISO guidelines. 

 

Within the second category of the design formats, a more general form of the displacement-based 

DCFD format is discussed. This format associates a level of confidence with the estimated 

frequency of exceeding a limit state. This confidence level represents explicitly the epistemic 

uncertainties involved in the estimation of the demand and capacity parameters and implicitly 

(and approximately) the epistemic uncertainty in the hazard estimation. The displacement-based 

design criterion offered by this format is similar to that of the DCFD with aleatory uncertainties 

except for an additional factor that reflects the level of confidence in the estimation of the limit 

state frequency. The DCFD format can be used for both designing a building with a certain level 

of confidence and also determining the level of confidence associated to an existing design. This 

format is implemented in the guidelines for the performance evaluation of existing and 

earthquake damaged buildings in FEMA 351. 

 

As a final note, it should be mentioned that there are numerous ways to transform the 

probabilistic design criterion into design criteria that are suitable for code implementation. This 

chapter only manages to discuss the most commonly-used of these formats. Nevertheless, the 

fundamentals used for deriving these formats can be applied towards developing new alternative 

formats. 
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