
Appendix A 
 

The expected value of Yα  where Y is a log normal random variable: 
 
Assume lnY is a normal random variable (i.e., Y is lognormal) with mean m and standard 

deviation σ. One can always write the following relationship for Y raised to a power, α : 

 
YeY lnαα =  

 

lnY can be transformed into a standard normal variable U, 
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for which, the standard normal probability density function (PDF) at U=u is equal to: 
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Based on the linear relation between lnY and U (Equation A-I), and the standard normal PDF for 

U (Equation A-II), the PDF for normal random variable lnY at lnY=x can be obtained as: 
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where f(.) denotes the PDF function. The expected value for a function g(.) of a continuous 

random variable Z can calculated as: 
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Therefore, the expected value of  can be written as (using Equations A-II, A-III and A-

IV): 
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After some algebraic operations, which involves adding and subtracting some(necessary) square 

terms the following equation is obtained: 
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We can recognize that the term inside the integral is nothing but the PDF for a normal variable 

with a mean equal to , and a standard deviation equal to, 2σα ⋅+m σ . Therefore, the resulting 

integral (from to ) is equal to unity. Hence, the expected value of Y  is simplified to the 

product of the following two terms:  
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For a lognormal random variable, the mean of the logarithm of the variable is equal to the 

logarithm of the median of the variable (see Benjamin and Cornell, 1970): 

 

   ][lnln Y YE=η  

 

where (.)η denotes the median. Hence, for normal random variable lnY with mean m and standard 

deviation σ , the expected values of  can be written as: αY
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Thus, the expected value of a lognormal random variable raised to a power α  can be expressed as 

the product of the median value raised to the power times a magnification factor, which is an 

exponential function of the variance of lnY times 2

2
1α . 
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