
1 INTRODUCTION 
Hydro-meteorological or climate-related hazards, 

such as storms, droughts, floods and landslides, 
transform into natural disasters when they hit vul-
nerable areas. In the last decades, climate-related 
disasters alone accounted for between 70-90 percent 
of the natural disasters around the globe (Hoyois and 
Guha-Sapir, 2012). On the other hand, the rapid rate 
of urbanization leads to an increase the exposure to 
risk in urban areas. It is sufficient to highlight that 
around half of the world’s population lives in urban 
areas at present; by 2050, this ratio is estimated to 
rise up to around 70% (UN-HABITAT, 2010). There 
is increasing evidence in the favor of a correlation 
between the climate change and extreme weather-
related phenomena (Khan and Kelman, 2011). In 
this regard, assessment and prediction of the adverse 
effects of climate change scenarios on the frequency 
and/or intensity of extreme weather-related events 
and delineation of the potentially vulnerable areas 
are important steps in an integrated climate change 
adaptation strategy. 

 
In the recent years, increasing attention is focused 

on flooding risk assessment. In fact, several publica-
tions discuss the consequences of flooding, such as 
loss of life (Jonkman et al., 2008), economic losses 
(Pistrika and Tsakiris, 2007), and damage to build-
ings (Smith, 1994, Kelman, 2002, Kang et al., 2005, 
Schwarz and Maiwald, 2012). These research efforts 

have many aspects in common, such as a direct link 
between the flooding intensity and the incurred 
damage, and that they are based on real damage ob-
served in the aftermath of the flooding event. On the 
other hand, many research efforts are starting to gal-
vanize in the direction of proposing analytical mod-
els for flood vulnerability assessment taking into ac-
count the many sources of uncertainties. For 
instance, Nadal et al. (Nadal et al., 2009) propose a 
stochastic method for the assessment of the direct 
impact of flood actions on buildings. 

 
This work presents a probabilistic performance-

based procedure for predicting the flooding risk for 
the structures in a portfolio of spatially-distributed 
structures in a detailed micro-scale taking into ac-
count both observed and projected rain-fall ex-
tremes. This procedure is developed in the context of 
the European FP7 project Climate Change and Ur-
ban Vulnerability in Africa (CLUVA). The probabil-
ity-based methodology presented herein is devel-
oped for flood risk assessments for the informal 
settlements in the African urban settings/contexts. 
This procedure has a modular structure and consists 
of climate modeling/flood hazard assessment, port-
folio vulnerability assessment and risk assessment. 
The flood risk assessment is done for alternative 
one-year time windows, namely, 2010-2011 (based 
on observed rainfall data) and 2050-2051 (based on 
observed rainfall data and rainfall projections).  
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ABSTRACT: Assessment and prediction of the adverse effects of the climate-related events, quantification of 
the vulnerability of the affected areas and risk assessment are important steps in an integrated climate change 
adaptation strategic decision-making procedure. This work presents a probabilistic performance-based proce-
dure for flood risk assessment for the structures in a portfolio of spatially-distributed structures in a detailed 
micro-scale. This methodology has its starting point in the down-scaling of global climate projections for a 
prescribed climate scenario and historical data as far as it regards the rainfall intensity, duration and frequen-
cy. The risk is expressed in terms of the annual rate (and probability) of exceeding a structural limit state, ex-
pected replacement cost and expected number of people endangered by the flooding (hypothesis of no evacua-
tion). This procedure is described through an application for Suna, a subward of Magomeni in Dar es Salaam 
City (Tanzania), located in the Msimbazi river basin, having a high concentration of informal settlements. 



The application of this methodology is presented 
for the informal settlements in a flood-prone neigh-
borhood in Dar es Salaam (DSM), Tanzania, Africa. 

2 CLIMATE MODELING AND FLOOD 
HAZARD ASSESSMENT 
Flood hazard is expressed herein as the annual 

probability of exceeding a specific flooding height 
(hf). In the first place, the rainfall probability curve 
or the rainfall Intensity-Duration-Frequency (IDF) 
curve is extracted from the historical data or from 
down-scaling of regional climate projections. The 
IDF curve is employed next as the input of a catch-
ment rainfall-runoff model in order to determine the 
hydrograph and the peak discharge. This infor-
mation, together with detailed cartography of the 
zone and a digital elevation model is used as input 
into the hydraulic model in order to calculate the in-
undation profile. The results can be presented in 
terms of the annual rate/probability of exceeding a 
specific value of flooding height and flooding veloc-
ity for the nodes of a lattice covering the interest 
zone. 

 

2.1 Historical rainfall data 

The riverine flooding events are strictly connect-
ed to rainfall patterns. Therefore, the rainfall data 
time-series are essential pieces of information for 
determining the total flooding discharge. They can 
be obtained as pluviometric time-series from gov-
ernmental organizations and/or internet sources 
(e.g., www.tutiempo.net and www.knmi.nl). It is de-
sirable that the pluviometric data are available as 
precipitation extremes (maxima) recorded over a 
range of time intervals. The rainfall maxima record-
ed for different intervals are used in order to con-
struct the rainfall IDF curve (described in detail lat-
er). The rainfall time-series can be also used to 
evaluate the antecedent soil moisture condition 
(AMC). In hydrological modeling, antecedent mois-
ture condition is usually associated with the pre-
storm soil moisture deficit. This latter has a signifi-
cant effect on the amount of rainfall drained by the 
river network and finally on the flooding potential of 
a rainstorm.  

 

2.2 Climate projections 

Future climate patterns may manifest adverse ef-
fects on the frequency and/or intensity of extreme 
weather-related events such as floods.  

In compliance with the Intergovernmental Panel 
on Climate Change (IPCC) scenarios (Alley et al., 
2007), climate projections are generally evaluated 
using General Circulation Model (GCM). A GCM is 
a mathematical model that simulates the general at-
mospheric and oceanic circulation using a specific 

formulation of the Navier-Stockes equations, discre-
tized with spatial resolutions in the order of 100 km.  

Ideally, GCMs can be used to produce long-term 
simulations to be used for catastrophe modeling. 
However, for a realistic simulation of precipitation 
patterns, representing the vertical structure of the 
atmosphere as well as the effect of the terrain on at-
mospheric circulation, a model must have a resolu-
tion less than 100 km. This is not practical since the 
calculation time increases exponentially. Therefore, 
using a GCM for direct simulation of precipitations 
is not feasible. Moreover, the GCMs are based on 
simplified microphysics and may not provide a solid 
representation of precipitation in the mountainous 
areas (Bellucci et al., 2012).  

The application of a Regional Climate Model 
(RCM) with horizontal spatial resolution of about 10 
km can be useful for the description of the climate 
variability in the local scale. A RCM depends on the 
definition of boundary conditions that can be ob-
tained based on the results of a GCM. Finally, 
through statistical downscaling it is possible to ob-
tain climatological data for finer spatial resolutions, 
in the order of 1 km. This provides the precipitation 
data necessary for comprehensive flood modeling.  

The climate projections used in this work are 
provided by the CMCC (Centro Euro-Mediterraneo 
sui Cambiamenti Climatici). They have been ob-
tained by following the IPCC 20C3M protocol for 
the 20

th
 Century, and using RCP4.5 and RCP8.5 

radiative forcing emission scenarios developed in 
the framework of the 5

th
 Coupled Model 

Intercomparison project (WCRP, 2008). 
CMCC has performed a set of climate simula-

tions over the time period 1950-2050 with the global 
model CMCC-MED (Gualdi et al., 2013) (spatial 
resolution 80 km) in the context of the FP7 project 
CLUVA. The initial conditions have been obtained 
from an equilibrium state reached by integrating the 
model for 200 years with constant greenhouse gas 
(GHG) concentrations corresponding to 1950's. 
Once the climate model reaches equilibrium with the 
prescribed constant radiative forcing (GHG and aer-
osol concentrations), the simulations have been con-
ducted by increasing the GHG and aerosol concen-
trations in line with observed data. These 
simulations have been downscaled to a spatial reso-
lution of 8 km with the non-hydrostatic RCM 
COSMO-CLM (Rockel et al., 2008), developed con-
sidering the spatial extent covered by the urban area 
of interest. The results were further downscaled to a 
spatial resolution of 1 km by using a stochastical 
downscaling technique (Rebora et al., 2006) in order 
to render them suitable for modeling of precipitation 
patterns.  

In this work, the climate projections based on the 
RCP8.5 scenario and downscaled to 1km resolution 
are taken into account. This may be considered a 



worst-case scenario in terms of gas emissions and 
temperature increase. 

 

2.3 Rainfall curve: historical data and climate 
projection 

Climate modeling constitutes the first step in de-
veloping a probabilistic inundation model. Its output 
is usually expressed in terms of rainfall scenarios for 
various return periods (TR), also known as the rain-
fall curves or the Intensity-Duration-Frequency 
(IDF) curves. The IDF curves are normally used, in 
lieu of sufficient data for direct probabilistic dis-
charge modeling, in order to evaluate the peak dis-
charge. In particular the IDF curves present the 
probability of a given rainfall intensity and duration 
expected to occur in a particular location. The rain-
fall curve is calculated herein based on both histori-
cal data and a specific climate projection scenario. 
The historical rainfall data (H) span from 1958 to 
2010 and the climate projection (CC) is provided 
from 2010 to 2050. 

The historical rainfall data is obtained from a sin-
gle meteorological station located in the DSM Inter-
national Airport at 55 meter altitude from the sea 
level, 6°86’ latitude and 39°20’ longitude. For con-
sistency, the projection data are calculated for the 
same point. 

Rainfall height hr is calculated as the maximum 
rainfall depth in millimeters calculated in a time-
window of duration d. 

The annual rainfall extremes are then calculated 
for various time window durations. Figure 1(a) and 
(b) shows the two rainfall height maxima time-series 
used herein for d=24hr. 

 

 
Figure 1. The annual rainfall height maxima (a) H 

and (b) CC for a duration of 24 hours (DSM, Airport 
Station). 

 

 The first time-series depicted in Figure 1(a) is 
based on historical data only (hereafter referred to as 
H, 1958-2010). The second time-series shown in 
Figure 1(b), and hereafter referred to as CC, consists 
of (H, 1958-2010) plus climate projections for 
(2011-2050). A Gumble extreme-value distribution 
is used to describe the annual rainfall height maxima 
in both cases CC and H (Figure 2). 

 

 
Figure 2. Probability density function for the maximum rainfall 
height for a duration of 24 hours. 

 
It is worth noting that considering the climate 

change effects leads to a reduction of 14% in the 
mean rainfall height. 

 

2.4 Rainfall curve based on incomplete records 

The maximum annual rainfall data for a specific 
duration are not always available. In such cases, 
available data could be disaggregated to the desired 
durations. This involves generating synthetic se-
quences of rainfall for smaller time windows (e.g., 
10’, 30’, 1h, 3h, 6h, 12h), with statistical properties 
equal to that of the observed daily rainfall. In this 
work, two alternative downscaling techniques are 
used in order to generate maximum rainfall values 
for the desired time windows. The short-time inten-
sity disaggregation method (Connolly et al., 1998) 
has been used for simulation of smaller time win-
dows (i.e., 10’, 30’, 1h) and the random cascade-
based disaggregation method (Güntner et al., 2001, 
Olsson, 1998) has been used for larger time win-
dows (i.e., 3h, 6h and 12h). 

 

2.5 The results for DSM 

The IDF curve obtained based on historical data 
(H) is characterized by the following relationship: 

ms-its:C:/DOCUME~1/utente/IMPOST~1/Temp/Rar$DI00.047/CRA.Clima.Rain_help.chm::/Time-varying_generation.html#Short-time#Short-time
ms-its:C:/DOCUME~1/utente/IMPOST~1/Temp/Rar$DI00.047/CRA.Clima.Rain_help.chm::/Time-varying_generation.html#Short-time#Short-time


  0.25, 36.44
Rr R Th d T K d    (1) 

where hr(d,TR) is the maximum annual rainfall 
height measured over a time-window of duration d, 
corresponding to a return period of TR; KTR is the 
growing factor and is a function of the coefficient of 
variation for the corresponding Gumbel probability 
distribution. The projected IDF curve (CC) is ob-
tained through the same procedure, based on the 
climate change projection for scenario RCP8.5 
(which is a worst-case scenario reflecting increased 
emissions of greenhouses gasses in the atmosphere) 
with a spatial resolution of 80 km, spatially 
downscaled to a resolution of 1 km. It is character-
ized by the following relationship: 

  0.26, 31.70
Rr R Th d T K d    (2) 

Table 1 reports the values of the growing factor KTR 
for various return periods based on the historical da-
ta (H) and climate projections (CC). 

 
Table 1. Growing factors for the different return pe-
riods  
TR 2Ys 10Ys 30Ys 50Ys 100Ys 300Ys 

H 0.95 1.42 1.70 1.83 2.01 2.29 

CC 0.94 1.50 1.84 2.00 2.21 2.41 

 
The rainfall curves for CC and H for 2 different 

return periods are plotted in Figure 3.  
 

 
Figure 3. IDF curves related to return period of 2 Years and 
300 Years for CC and H. 

 
It is possible to observe that for DSM city, this 

climate scenario leads to a decrease in terms of rain-
fall intensity. In fact, the IDF curves that take into 
account the climate projection (the dotted lines in 
Figure 3) are lower than those evaluated based on 
historical data series (the solid line in Figure 3). 
Nevertheless, although the flooding intensity con-
sidering the projections decreases with respect to the 

historical data, the growing factor demonstrates a 
slight increase (Table 1). As mentioned before, the 
growing factor is a function of the coefficient of var-
iation for the extreme value distribution. Having a 
higher coefficient of variation (with constant mean 
or central value) leads to higher probability for ex-
treme rainfall events (i.e., in the tail of the distribu-
tion). 

 

2.6 Antecedent Moisture Conditions 

Antecedent Moisture Condition (AMC) is the 
relative moisture of the pervious soil surfaces prior 
to the rainfall event and reflects the level of soil 
moisture in a five day interval preceding the rainfall 
extreme event. Antecedent Moisture is considered to 
be low when there has been little preceding rainfall 
and high when there has been considerable preced-
ing rainfall prior to the extreme event. Determina-
tion of antecedent soil moisture content and classifi-
cation into the antecedent moisture classes AMC I, 
AMC II and AMC III (Table 2), representing dry, 
average and wet conditions, is an essential matter for 
the application of the curve number procedure de-
scribed next.  

 
Table 2 Rainfall limits for AMC in growing sea-

son (Mockus, 1972). 

AMC class 
Total 5-day antecedent rainfall (mm): 

Growing season 

I Less than 36 

II 36 to 53 

III More than 53 

 

 
Figure 4. The histogram of the AMC classes for the growing 
season. 

 
The rainfall time-series (both CC and H) are both 

post-processed in order to obtain the histogram of 
AMC classes calculated for the data series available. 



Figure 4 illustrates such histogram calculated based 
on both H and CC. 

No significant change in AMC can be observed 
between the two time-series. In this work, we con-
sidered watersheds to be AMC II, which is essential-
ly an average moisture condition, even if there is a 
slightly higher likelihood for class III (Figure 4).  

 

2.7 The hazard curves 

The case-study neighborhood for micro-scale 
flood risk assessment is part of the Suna subward 
(Figure 5) in the Kinondoni District. Suna, located 
on the western bank of the Msimbazi river with an 
extension of about 50 ha, is a historically flood-
prone area. The Msimbazi river flows across Dar es 
Salaam City from the higher areas of Kisarawe in 
the Coastal region and discharges into the Indian 
Ocean. 

 

 
Figure 5. The case study area and the portfolio of the buildings 
studied. 

 
The case-study area drains water from three dif-

ferent catchment areas (of about 250 km
2
). The 

characteristics of the three catchments identified, the 
land-use and geological maps are described in detail 
in (DeRisi et al., unpubl.). 

The peak flow in the three catchments is estimat-
ed by employing the Curve Number (CN) method 
(Mockus, 1972), with reference to six different re-
turn periods (e.g., 2, 10, 30, 50, 100 and 300-yr) 
based on both historical data (H) and climate projec-
tions (CC). The CN is representative of the catch-
ment runoff capacity. If the terrain is moderately 
permeable and only a small portion of the water 
flows as run-off (e.g., the case of bare land and 
green areas), a CN corresponding to an AMC II 
(CN2) is usually used. If there is a high degree of 
urbanization (e.g., paved roads and high density of 
construction), the water over-flow can easily reach 
the main channel, a higher value of CN may be as-
signed (e.g., the CN corresponding to AMC III). In 
the following, the present condition is represented 
by CN2 (corresponding to AMCII). Meanwhile, 

CN3 (corresponding to AMCIII) is used to describe 
the future territorial situation, based on a hypothetic 
urban expansion in the catchment area. 

The inflow hydrographs (flooding discharge at 
the catchment's closing point) for catchment 1, that 
is the biggest among the three catchments, corre-
sponding to two return periods (2 and 300-yr) and 
for two Curve Numbers (CN2 and CN3) are illus-
trated in Figure 6. It is possible to observe that for 
the same CN, the CC hydrographs are lower than 
those based on historical data (H). Changing the CN 
class there is a substantial increase in the discharge 
respect to the historical data of about 3.5 times for 
TR=2 Ys and 2 times for TR=300 Ys. 

 

 
Figure 6. Hydrographs evaluated for catchment 1 (TR= 2 and 
300 years) with and without CC effects, for different CN clas-
ses. 

 
The hydrographs are used next to obtain the in-

undation profile in terms of flood height and veloci-
ty for the nodes within the lattice for each return pe-
riod TR. The software FLO-2D was used for a bi-
dimensional simulation of the flooding volume 
propagation (based on the calculated hydrographs 
and a digital elevation model, DEM) assuming a 45 
hours simulation time (i.e., the total duration of the 
hydrograph). The detailed results for the specific 
case study in terms of inundation maps are shown in 
(DeRisi et al., unpubl.). 

Starting from the inundation profile, using the 
procedure illustrated in (DeRisi et al., 2013) it is 
possible to obtain the hazard curves. These curves 
can be extracted for the centroid of each structure 
within the portfolio. The hazard curves, plotting the 
mean annual rate of exceeding various flooding 
heights (i.e., inverse of the return period), can be ob-
tained based on CC and H. As a central statistics of 
the hazard curves for the portfolio of structures, the 
median hazard curve is calculated for each of the 
following three cases, namely, H CN2, CC CN2 and 
CC CN3 (Figure 7).  



It is possible to observe that, for the same CN, the 
median hazard curves obtained based on historical 
data are very similar to those obtained considering 
the climate projections. Vice versa, considering the 
CN3, the hazard values obtained considering the 
climate projections are substantially larger (~one or-
der of magnitude) with respect to the hazard curve 
calculated based on historical data only. 

 

 
Figure 7. The mean annual rate of exceedance of a specific 
flood height (the median curves calculated over the entire lat-
tice). 

3 PORTFOLIO VULNERABILITY 
ASSESSMENT 

 
In this work, a novel simulation-based and analyt-

ic methodology has been adopted for flood vulnera-
bility assessment (DeRisi et al., unpubl., DeRisi et 
al., 2013). This methodology employs the Bayesian 
parameter estimation for calculating the structural 
fragility for a class of structures, by characterization 
of building-to-building variability and other sources 
of uncertainty based on a limited number of in-situ 
field surveys and remote-sensing. The portfolio of 
structures considered herein are a group of informal 
settlements located in Suna Subward, Dar es Salaam 
City. The following flooding actions are considered: 
hydrostatic pressure, hydrodynamic pressure and ac-
cidental debris impact. 

The informal settlements located in this neigh-
borhood reveal similar characteristics. For instance, 
they are all one-storey buildings, use cement stabi-
lized bricks as wall material, and have a roof system 
made up of corrugated iron sheets and wooden 
beams. Moreover, the houses in this neighborhood, 
have similar geometrical patterns (the so-called 
Mozambique-style housing). As common adapting 
strategies, a significant portion of the inhabitants 
tend to build a barrier in front of the door or to build 

the house on a raised foundation (platform). The 
windows and doors are generally not water-tight. 

 

3.1 The fragility assessment for the class 

The fragility curves derived herein correspond to 
the Collapse limit state, defined as the critical flood-
ing height in which the most vulnerable section of 
the most vulnerable wall in the building is going to 
break. The critical water height for structural col-
lapse is calculated by employing structural analysis 
taking into account the various sources of uncertain-
ties in geometry, material properties and construc-
tion details 

For a prescribed limit state, the simulation proce-
dure leads to a set of critical water height values. 
These critical water height values are used then as 
data in order to calculate, using Bayesian parameter 
estimation (Box and Tiao, 1992), the posterior prob-
ability distribution for the parameters of prescribed 
analytic fragility functions. Note that this posterior 
probability distribution can be interpreted as degrees 
of belief in the analytic fragility model that is de-
fined based on a specific set of parameters. A large 
set of plausible analytic fragility curves can easily be 
simulated based on the posterior probability distribu-
tion derived. The set of simulated fragility curves 
can then be used in order to calculate various per-
centile fragility curves. Figure 8 below illustrates the 
16

th
, 50

th
 and 84

th
 percentile fragility curves obtained 

for the Collapse limit state related to H with CN2. 
Note that the interval between the 16

th
 and 84

th
 per-

centile can be considered as a proxy for plus/minus 
one standard deviation confidence interval. The fig-
ure also illustrates the 50

th
 percentile fragility curves 

for CC CN2 and CC CN3. 
In fact, the fragility curves based on historical da-

ta only and the climate projections for different CN 
classes are not identical. This can be explained by 
the fact that velocity-dependent flooding action such 
as hydro-dynamic pressure and accidental debris 
impact are taken into account. However, as it can be 
observed, CC CN2 and CC CN3 fragility curves are 
contained within the confidence interval for H CN2. 

4 FLOOD RISK ASSESSMENT 
 

The flooding risk ls expressed as the mean annu-
al rate of exceeding a given limit state ls can be cal-
culated as: 

   |

f

ls f f

h

P ls h d h    (3) 

where hf denotes the flooding height at a given 
point in the considered area. P(ls|hf) denotes the 
flooding fragility for limit state ls expressed in term 
of the conditional probability of exceeding the limit 



state threshold given flooding height. Point estimates 
of the flooding risk can be obtained by integrating 
the robust fragility for the class of structures consid-
ered and the flood hazard in Eq. (3).  

The annual probability of exceeding a limit state 
P(ls), assuming a homogeneous Poisson process 
model with rate ls, can be calculated as: 

   1 exp lsP ls     (4) 

The exposure to risk can be quantified by calcu-
lating the total expected loss or the expected number 
of people affected for the portfolio of buildings. 

 

 
Figure 8. The fragility curves for the CO limit state (based on 
20 simulations). 

4.1 Estimating the exposure 

The expected repair costs (per building or per unit 
residential area), E[R], can be calculated as a func-
tion of the limit state probabilities and by defining 
the damage state i as the structural state between 
limit states i and i+1: 

     1

1

lsN

i i i

i

E R P ls P ls R



      (5) 

where Nls is the number limit states that are used 
in the problem in order to discretize the structural 
damage; Ri is the repair cost corresponding to dam-
age state i; and P(lsNls+1) = 0. The expected number 
of people affected by flooding can also be estimated 
as a function of the limit state probabilities from Eq. 
(5) replacing Ri by the population density (per house 
or per unit residential area).  

 

4.2 Results 

Figure 9 illustrates the expected value of the 
number of people endangered by flooding per year 
and per house-hold, taking into account only the col-

lapse limit state probabilities in Eq. 5 (based on only 
historical data, CN2 class). 

 

 
Figure 9. The house-hold risk map: number of people affected 
(CO limit state only). 

 
Table 3 reports the total annual expected re-

placement costs (collapse limit state only) normal-
ized to the total replacement cost for the entire port-
folio, considering both the historical data H and the 
climate change projections CC, based on two differ-
ent land-cover scenarios (CN2 and CN3). It can be 
observed that CC and the CN3 class (un-controlled 
urbanization) might lead to an increase of about 30% 
in the expected annual replacement costs. 

 
Table 3. Expected losses (CO)  
 F -  F F +  

H    CN2 36% 33% 30% 

CC CN2 30% 28% 25% 

CC CN3 66% 63% 60% 

5 CONCLUSION 
A performance-based analytic procedure for mi-

cro-scale flood risk assessment for a portfolio of in-
formal settlements in DSM is presented. This proce-
dure has a modular structure and consists of, climate 
modeling (based on climate projections and histori-
cal data), flood hazard assessment, portfolio vulner-
ability assessment and point-wise risk assessment. It 
can be observed that assuming the same land-cover 
characteristics between present and the future (with-
in around 50 years), the effect of climate change for 
DSM is not significant for the particular climate 
scenario considered (RCP8.5). However, pairing up 
the climate projections with a un-controlled urban 
expansion scenario for the city (i.e., a much more 
impervious terrain), leads to around 30% increase in 
overall exposure to flooding in the neighborhood 
studied (assuming that the buildings' characteristics 
are going to remain the same).  
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