ESERCITAZIONE DEL 29 NOVEMBRE 2017

1. Scrivere la dimostrazione del teorema della permanenza del segno (per le successioni) nel caso del limite negativo.

Dimostriamo che $a_n \to a < 0 \Rightarrow \exists \nu \in \mathbf{N} : a_n < 0 \ \forall n > \nu$

Posto $\varepsilon = -\frac{a}{2}$, poiché a < 0 risulta $\varepsilon > 0$ e quindi, essendo $a_n \to a$, $\exists \nu \in \mathbb{N} : a - \varepsilon < a_n < a + \varepsilon \ \forall n > \nu$. In particolare per tutti gli $n > \nu$ risulta $a_n < a + \varepsilon = a - \frac{a}{2} = \frac{a}{2} < 0$, da cui la tesi.

2. Scrivere la dimostrazione del primo corollario del teorema della permanenza del segno nel caso delle successioni non positive, ovvero dimostrare che $a_n \to a \in \mathbf{R}$, $a_n \le 0 \ \forall n \in \mathbf{N} \ \Rightarrow \ a \le 0$.

Per assurdo sia a > 0. Per il teorema della permanenza del segno $\exists \nu \in \mathbf{N} : a_n > 0 \ \forall n > \nu$, il che é assurdo, essendo per ipotesi $a_n \leq 0 \ \forall n \in \mathbf{N}$.

3. Scrivere la dimostrazione del teorema dei carabinieri nel caso del limite $-\infty$:

$$a_n \leq b_n \ \forall n \in \mathbf{N}, b_n \to -\infty \ \Rightarrow \ a_n \to -\infty$$

Fissiamo M>0. Poiché $b_n\to -\infty, \ \exists \nu\in \mathbf{N}: b_n<-M\ \forall n>\nu;$ essendo per ipotesi $a_n\leq b_n\ \forall n\in \mathbf{N}, \ si\ ha\ anche\ che\ \exists \nu\in \mathbf{N}: a_n\leq b_n<-M\ \forall n>\nu, \ da\ cui\ la\ tesi.$

- **4.** Scrivere la definizione di $\lim_{x\to x_0} f(x) = l$ nei seguenti casi (non si chiede di dimostrare la validitá dell'uguaglianza, ma solo di scrivere cosa si intende per " $\lim_{x\to x_0} f(x) = l$ " per le funzioni f assegnate e per i valori di x_0 e l indicati).
- $(1) \lim_{x \to 2} x^3 = 8$

Risposta: $\forall (x_n), x_n \in \mathbf{R}, x_n \neq 2 \,\forall \, n \in \mathbf{N}, x_n \to 2, \text{ risulta } x_n^3 \to 8.$

(2) $\lim_{x \to -1} \arcsin x = -\frac{\pi}{2}$

Risposta: $\forall (x_n), x_n \in]-1,1] \forall n \in \mathbb{N}, x_n \to -1, risulta \operatorname{arcsen} x_n \to -\frac{\pi}{2}.$

(3) $\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$

Risposta: $\forall (x_n), x_n \in \mathbf{R}, x_n \to +\infty, risulta \arctan x_n \to \frac{\pi}{2}.$

 $(4) \lim_{x \to -\infty} e^x = 0$

Risposta: $\forall (x_n), x_n \in \mathbf{R}, x_n \to -\infty$, risulta $e^{x_n} \to 0$.

 $(5) \lim_{x \to 0} \frac{1}{\sqrt{x}} = +\infty$

Risposta: $\forall (x_n), x_n > 0 \ \forall n \in \mathbb{N}, x_n \to 0, \ risulta \ \frac{1}{\sqrt{x_n}} \to +\infty.$

 $(6) \lim_{x \to +\infty} x^3 = +\infty$

Risposta: $\forall (x_n), x_n \in \mathbf{R} \ \forall n \in \mathbf{N}, x_n \to +\infty, \ risulta \ x_n^3 \to +\infty.$

 $(7) \lim_{x \to -\infty} \left(\frac{1}{2}\right)^x = +\infty$

Risposta: $\forall (x_n), x_n \in \mathbf{R} \ \forall n \in \mathbf{N}, x_n \to -\infty, \ risulta \left(\frac{1}{2}\right)^{x_n} \to +\infty.$

5. Utilizzando unicamente i grafici delle funzioni elementari, determinare i limiti seguenti:

 $(1) \lim_{x \to +\infty} x^6 = +\infty$ $(2) \lim_{x \to -\infty} x^8 = +\infty$ $(3) \lim_{x \to +\infty} x^5 = +\infty$ $(4) \lim_{x \to -\infty} x^5 = -\infty$ $(5) \lim_{x \to +\infty} 4 - x = -\infty$ $(6) \lim_{x \to -\infty} 3x - 7 = -\infty$ $(7) \lim_{x \to +\infty} |x| = +\infty$ $(8) \lim_{x \to -\infty} |x| = +\infty$ $(9) \lim_{x \to +\infty} x^{\sqrt{2}} = +\infty$ $(10) \lim_{x \to -\infty} x^{-1} = 0$ $(11) \lim_{x \to +\infty} x^{-\sqrt{3}} = 0$ $(12) \lim_{x \to -\infty} e^x = 0$ $(13) \lim_{x \to +\infty} e^x = +\infty$ $(14) \lim_{x \to -\infty} \left(\frac{1}{5}\right)^x = +\infty$ $(15) \lim_{x \to +\infty} \left(\frac{1}{5}\right)^x = 0$ $(16) \lim_{x \to 0} \log_{\frac{7}{4}} x = -\infty$ $(17) \lim_{x \to +\infty} \log_{\frac{3}{4}} x = -\infty$ $(18) \lim_{x \to 0} \log_{\frac{1}{6}} x = +\infty$ $(19) \lim_{x \to +\infty} \log_{\frac{5}{3}} x = +\infty$

(20) $\lim_{x \to 1} \arccos x = 0 \quad (21) \lim_{x \to -\infty} \arctan x = -\frac{\pi}{2}$