Microfluidics techniques to design encapsulated ingredients

Fabrizio Sarghini
DIIAT – University of Naples Federico II, Italy

Naples, October 11, 2012
The design of novel food micro-structures aimed at the quality, health and pleasure markets will probably require unit operations where the scale of the forming device is closer to the size of the structural elements (i.e., 1–100 μm).

One particular technique to provide bioavailability of nutraceutical or controlled release of active principles is encapsulation.
Encapsulation is the packaging of small particles of solid, liquid or gas, also known as the core, within a secondary material, also known as the shell or coating, to form small capsules.

Microcapsules are usually classified into:

- Nanocapsules (less than 100 nm)
- Microcapsules (in the order of microns)

In the past, encapsulation was used to mask the unpleasant taste of certain ingredients and also to simply convert liquids to solids.
All three states of matter (solids, liquids, and gases) may be microencapsulated. This allows liquid and gas phase materials to be handled more easily as solids.

Microencapsulation may be achieved by a myriad of techniques, with several purposes in mind.

Substances may be microencapsulated with the intention that the core material be confined within capsule walls for a specific period of time.

Alternatively, core materials may be encapsulated so that the core material will be released either gradually through the capsule walls, known as controlled release or diffusion, or when external conditions trigger the capsule walls to rupture, melt, or dissolve.
Ingredients in foods are encapsulated for several reasons.

Historically, the most important application was flavoring.

Most flavorings are volatile; therefore encapsulation of these components extends the shelf-life of products by retaining within the food flavors that would otherwise evaporate out and be lost.

Some ingredients are encapsulated to mask taste, such as nutrients added to fortify a product without compromising the product’s intended taste.
Alternatively, flavors are sometimes encapsulated to last longer, as in chewing gum.

The amount of encapsulated flavoring required is substantially less than liquid flavoring, as liquid flavoring is lost and not recovered during chewing.

Flavorings that are comprised of two reactive components that, when encapsulated individually, may be added to the finished product separately so that they do not react and lose flavor potential prematurely.

Some flavorings must also be protected from oxidation or other reactions caused by exposure to light.
Morphology of Microcapsules: the morphology of microcapsules depends mainly on the core material and the deposition process of the shell.

1- Mononuclear (core-shell) microcapsules contain the shell around the core.

2- Polynuclear capsules have many cores enclosed within the shell.

3- Matrix encapsulation in which the core material is distributed homogeneously into the shell material.

In addition to these three basic morphologies, microcapsules can also be mononuclear with multiple shells, or they may form clusters of microcapsules.
MICROENCAPSULATION

- Microcapsule
 - Mononuclear
 - Polynuclear
 - Matrix
MICROENCAPSULATION
1- Microorganism and enzyme immobilization.

Enzymes have been encapsulated in cheeses to accelerate ripening and flavor development.

The encapsulated enzymes are protected from low pH and high ionic strength in the cheese.

The encapsulation of microorganisms has been used to improve stability of starter cultures.
2-Protection against UV, heat, oxidation, acids, bases (e.g. colorants and vitamins). e.g. Vitamin A / monosodium glutamate appearance (white) protection (water, T, light).

3- Improved shelf life due to preventing degradative reactions (dehydration, oxidation).

4- Masking of taste or odours.

5- Improved processing, texture and less wastage of ingredients.
 - Control of hygroscopy
 - Enhance flowability and dispersibility
 - Dust free powder
 - Enhance solubility
6 - Handling liquids as solids

7 – Growing demand for nutritious foods for children which provides them with much needed vitamins and minerals during the growing age. Microencapsulation could deliver the much needed ingredients in children friendly and tasty way.

8 - Enhance visual aspect and marketing concept.
9 – Pharmaceutical controlled and targeted release of active ingredients.
Many varieties of both oral and injected pharmaceutical formulations are microencapsulated to release over longer periods of time or at certain locations in the body. Aspirin, for example, can cause peptic ulcers and bleeding if doses are introduced all at once. Therefore aspirin tablets are often produced by compressing quantities of microcapsules that will gradually release the aspirin through their shells, decreasing risk of stomach damage.
10- Microencapsulation allows mixing of incompatible compounds.
Coating material properties:

- Stabilization of core material.
- Inert toward active ingredients.
- Controlled release under specific conditions.
- Film-forming, pliable, tasteless, stable.
- Non-hygroscopic, no high viscosity, economical.
- Soluble in an aqueous media or solvent, or melting.
- The coating can be flexible, brittle, hard, thin etc.
Coating materials:

- **Gums**: Gum arabic, sodium alginate, carageenan.

- **Carbohydrates**: Starch, dextran, sucrose

- **Celluloses**: Carboxymethylcellulose, methycellulose.

- **Lipids**: Bees wax, stearic acid, phospholipids.

- **Proteins**: Gelatin, albumin.
Protection of the active ingredients against:

- pH
- Oxygen
- Osmotic Pressure
- High temperature
- Shear stress
- Enzymatic activity

- Improved handling of the active ingredients
- Possibility to introduce hydrophilic ingredient in hydrophobic food matrix and vice versa
Control over the release kinetic.

As results:

- Improved Shelf life of the active ingredient
- Increased biodisponibility
Main Technologies

- Coacervation
- Solvent evaporation
- Thermal gelation
- Supercritical fluid
- Extrusion
- Gelation
- Interfacial polycondensation
- Droplet gelation
- Polymerization
- Droplet freezing
- Spray drying
- Fluidized bed

Microencapsulation Technologies
<table>
<thead>
<tr>
<th>Physico - Chemical Processes</th>
<th>Physico - mechanical Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coacervation (2 – 1200 um)</td>
<td>Spray-drying (5 – 5000 um)</td>
</tr>
<tr>
<td>Polymer-polymer incompatibility (0.5 – 1000 um)</td>
<td>Fluidized- bed technology (20 – 1500 um)</td>
</tr>
<tr>
<td>Solvent evaporation (0.5 – 1000 um)</td>
<td>Pan coating (600 – 5000 um)</td>
</tr>
<tr>
<td>Encapsulation by supercritical fluid</td>
<td>Spinning disc (5 – 1500 um)</td>
</tr>
<tr>
<td>Encapsulation by Polyelectrolyte multilayer (0.02 – 20 um)</td>
<td>Co-extrusion (250 – 2500 um)</td>
</tr>
</tbody>
</table>
Increased number of encapsulation’s research every year in all fields.

Limits of traditional technologies

- Size control
- Cost
- Encapsulation’s rate

- coacervation
- spray drying
- nanoencapsulation
- spinning disk
- RESS
- liposome entrapment
- spray cooling
- fluidized bed
- extrusion

Years

55-59 60-64 65-69 70-74 75-79 80-84 85-89 90-94 95-99 00-05
Microfluidics — the science of designing, manufacturing, and operating devices and processes that deal with small amounts of fluids (10^{-6} to 10^{-9} l) — has the potential to significantly change the way of processing dispersed food systems.

Microfluidic devices can be identified by the fact that they have channels with at least one dimension smaller than 1 mm. The devices themselves have dimensions ranging from millimeters down to micrometers.
Main features:

- Small device
- Small volume used
- Cheap device

- Low Reynold’s number → laminar flow
- Viscous forces overwhelm inertial forces
- No mixing in microchannel;

➢ The scaling-up’s question
The behaviour of dispersed phases, either gas–liquid (foams) or liquid–liquid (emulsions), common in many macroscopic food systems is relatively well understood.

At levels below the micrometer scale, some effects negligible at the macroscopic level become important; for example, those related to surface tension, energy dissipation and fluidic resistance.

Moreover, different from the macro-scale, a special attention must be paid to the wetting phenomena of the fluid on the substrate.
• Alginate
• Droplet formation depends by flow rates.
• Rule of the Ca^{++}

- Soft-litography technique
• T-Junction and Cross Junction
• T-Junction and Cross Junction movies
The concepts of soft lithography have been developed by Whitesides et al. at Harvard. Soft lithography is so called because it utilizes cast-moulded stamps made from flexible materials.

1) The process begins with the creation of a master.
2) The master is made by etching a blank—normally a silicon wafer—with a negative photoresist. This gives a raised pattern of nanometer-sized features on the silicon wafer that corresponds with the required channels in the polymer stamp.
3) A liquid polymer is then poured on top of the silicon wafer mould. The polymer usually used is the transparent elastomeric PDMS.
4) The polymer is heat cured and peeled off the mould.
SOFT LITHOGRAPHY

Younan Xia and George M. Whitesides
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138; e-mail: gwhitesides@gmwgroup.harvard.edu

KEY WORDS: patterning, microfabrication, nanofabrication, elastomers, self-assembled monolayers
Capillary microfluidics presents a way to controllably generate drops of one liquid in another immiscible liquid in devices that consist of coaxial assemblies of glass capillaries.

Schematic of co-flow microcapillary devices for making emulsion droplets

Schematic of flow focusing microcapillary devices for making emulsion droplets
Dripping and jetting condition in microfluidic devices

- In the co-flow geometry when the fluids flow at low rates, individual mono-disperse drops are formed periodically at the tip of the capillary orifice, in a process termed dripping.

 Image of drop formation at low flow rates (dripping regime)

- If we increase the flow rate of either fluid beyond a certain critical limit, the result is a jet, a long stream of the inner fluid with drops forming downstream.

 Image of a narrowing jet generated by increasing the flow rate of the continuous fluid above a threshold value, while keeping the flow rate of the dispersed phase constant.

 Image of a widening jet generated by increasing the flow rate of the dispersed fluid above a threshold value, while keeping the flow rate of the continuous phase constant.
One of the inherent advantages of these devices is that their wettability can be easily and precisely controlled by a surface reaction with an appropriate surface modifier.

Microcapillary glass are gently placed in a siliconizing solution (dimethyldichlorosilane in chloroform) and left dry overnight and transferred in an oven at 60-80 °C.
The principle of drop formation in microfluidic devices can be explained using a water faucet as an example. If we turn on a faucet at a low flow rate, water drips out one drop at a time. The drop size is a result of the balance between the surface forces of the hanging drop and its weight, and therefore depends on the surface tension of the fluid and the size of the faucet.
Design and Fabrication

Inner glass tip tapered (ID=1 mm)

Junction

Outer glass capillary (ID= 2.0 mm, OD= 2.4 mm)

Syringe pump (refined olive oil)

W/O emulsion

Syringe pump (Water)
Established the conditions that allow the dripping. It’s possible by varying the flow rate of the continuous phase observe drop formation of different size.

Mono-disperse droplets formed using a co-flow microcapillary device.

<table>
<thead>
<tr>
<th>Test</th>
<th>Flow rate (Q_c) (ml/min)</th>
<th>Frequency (N.gocce/min)</th>
<th>Radius (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>171</td>
<td>223.2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>214</td>
<td>207.1</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>240</td>
<td>199.3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>342</td>
<td>186</td>
</tr>
<tr>
<td>5</td>
<td>2.5</td>
<td>400</td>
<td>168.4</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>460</td>
<td>160</td>
</tr>
<tr>
<td>7</td>
<td>3.5</td>
<td>500</td>
<td>156.3</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>643</td>
<td>143.46</td>
</tr>
<tr>
<td>9</td>
<td>4.5</td>
<td>750</td>
<td>136</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>806</td>
<td>133.4</td>
</tr>
<tr>
<td>11</td>
<td>5.5</td>
<td>961</td>
<td>125.7</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>1059</td>
<td>121.6</td>
</tr>
<tr>
<td>13</td>
<td>6.5</td>
<td>1090</td>
<td>120.5</td>
</tr>
<tr>
<td>14</td>
<td>7</td>
<td>1300</td>
<td>113.4</td>
</tr>
<tr>
<td>15</td>
<td>7.5</td>
<td>1380</td>
<td>111.45</td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td>1440</td>
<td>109.8</td>
</tr>
<tr>
<td>17</td>
<td>8.5</td>
<td>1506</td>
<td>108.2</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>1634</td>
<td>105.3</td>
</tr>
<tr>
<td>19</td>
<td>9.5</td>
<td>1728</td>
<td>103.53</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>1946</td>
<td>99.22</td>
</tr>
<tr>
<td>21</td>
<td>12</td>
<td>2410</td>
<td>92.55</td>
</tr>
<tr>
<td>22</td>
<td>13.5</td>
<td>2760</td>
<td>88.46</td>
</tr>
<tr>
<td>23</td>
<td>14</td>
<td>3020</td>
<td>85.8</td>
</tr>
</tbody>
</table>
EMULSIONS FORMATION IN A CO-FOCUSED MICROFLUIDIC DEVICES
1. preparation of single emulsions
2. preparation of monodisperse O/W/O double emulsions
3. gelation reaction

Focusing device creation:
- borosilicate
- micropuller
- microforge
Controllable Monodisperse Multiple Emulsions

Liang-Yin Chan, Andrew S. Uekusa, Ramesh K. Shah, Jin-Weong Kim, and David A. Weitz
Encapsulation in food fields is becoming even more important for his many applications. In fact microfluidic’s encapsulation allow an encapsulation:

• Effective
• Cheaper
• With capsules’s size of the order of tens micron

Nevertheless some issues related to the scaling-up procedure of the tecnology, microfluidic’s encapsulation suggest the ability to connect food fields with the health’s one, and provide to food technologist an additional important tool for ensure food’s quality and safety as well.