Transparency Of RObots Scale (TOROS) - English Version

Georgios Angelopoulos $^{1,*,+}$, Dimitri Lacroix $^{2,**,+}$, Ricarda Wullenkord 2 , Alessandra Rossi 1 , Silvia Rossi 1 , and Friederike Eyssel 2

Instructions

Contextualized instructions for participants:

The following statements are about the robot, its behaviors, and its functioning. Please indicate the degree to which you disagree or agree with these statements (from 1 "Strongly disagree" to 7 "Strongly agree").

Not-contextualized instructions for participants:

Please indicate the degree to which you disagree or agree with the following statements (from 1 "Strongly disagree" to 7 "Strongly agree").

Instructions for scoring:

By default, this questionnaire is a 7-point Likert scale (labels based on 1,2).

1	2	3	4	5	6	7
Strongly disagree	Disagree	Somewhat disagree	Neither agree or disagree	Somewhat agree	Agree	Strongly agree

The scale can be converted as a 5-point Likert scale using the following scaling.

1	2	3	4	5
Strongly disagree	Disagree	Neither agree or disagree	Agree	Strongly agree

The authors, however, strongly recommend not to do so, as 7-point Likert scales present the best balance between ease of use, adjustment to memory span, and accuracy¹.

Instructions for administration:

The order of the presented items should be ideally randomized.

Instructions for scoring:

Subscale (dimension) scores are calculated by averaging the ratings of the items of each subscale. A composite score of transparency can be calculated with the average of the three subscales.

The items:

¹Interdepartmental Center for Advances in Robotic Surgery - ICAROS, University of Naples Federico II, Naples, 80131, Italy

²Center for Cognitive Interaction Technology - CITEC, Bielefeld University, Bielefeld, 33619, Germany

^{*}georgios.angelopoulos@unina.it

^{**}dimitri.lacroix@uni-bielefeld.de

^{*}these authors contributed equally to this work

Factors	Items		
Illegibility	The robot's overall functioning is a mystery to me.		
	It is hard to make sense of the robot's general functioning.		
	It is difficult to get a clear picture of the robot's overall operations		
	I am confused about the robot's general objectives.		
	I am unsure what the robot does.		
	I cannot comprehend the robot's inner processes.		
	I cannot explain the robot's behavior.		
	It is impossible to know what the robot does.		
	It is clear to me what the robot does.		
	I have a clear understanding of how the robot operates in general.		
	I feel like the robot's explanations are useful.		
Explainability	The robot explains complex tasks in a way that is easy to understand.		
	The robot provides detailed explanations of its actions.		
	The robot provides clear explanations for its actions.		
	The robot's explanations for its actions are straightforward.		
	I feel informed about the robot's activities.		
	The robot conveys its overall state effectively.		
Predictability	It is easy for me to foresee the robot's future actions.		
	The robot's behavior is predictable.		
	I feel confident in predicting the robot's next moves.		
	It is easy to anticipate what will follow the robot's behavior.		
	It is difficult for me to tell what the robot will do next.		
	The robot's next steps are clear to me.		
	The robot's actions are obvious.		
	The robot provides cues that help predict its next actions.		
	The robot's behavior does not help predict what it will do next.		

References

- **1.** Taherdoost, H. What is the best response scale for survey and questionnaire design; review of different lengths of rating scale/attitude scale/likert scale. *Hamed Taherdoost* 1–10 (2019).
- **2.** Wade, M. V. *et al.* Likert-type scale response anchors. *Clemson international institute for tourism & research development, department parks, recreation tourism management. Clemson Univ.* 4–5 (2006).