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ABSTRACT: In the context of seismic risk assessment as per the performance-based earthquake engineering 

paradigm, a probabilistic description of structural vulnerability is often obtained via dynamic analysis of a non-

linear numerical model. It typically involves subjecting the structural model to a suite of ground-motions that are 

representative, as a sample, of possible seismic shaking at the site of interest. The analyses’ results are used to 

calibrate a stochastic model describing structural response as a function of seismic intensity. The sample size of 

ground motion records used is, nowadays, usually governed by computation-time constraints; on the other hand, 

it directly affects the estimation uncertainty which is inherent in risk analysis carried out in this way. Recent studies 

have suggested methodologies for the quantification of estimation uncertainty, to be used as tools for determining 

the appropriate number of records for each application on an objective basis. The present study uses one of these 

simulation-based methodologies, based on standard statistical inference methods and the derivation of structural 

fragility via incremental dynamic analysis, to investigate the accuracy of the risk estimate (e.g., the annual failure 

rate) vs the size of ground motion samples. These investigations consider various scalar intensity measures and 

confirm that that the number of records required to achieve a given level of accuracy for annual failure rate depends 

not only on the dispersion of structural responses, but also on the shape of the hazard curve at the site. This indicates 

that the efficiency of some frequently-used intensity measures is not only structure-specific but also site-specific. 

1. INTRODUCTION 

 

Performance-based earthquake engineering 

(PBEE; Cornell and Krawinkler 2000), entails the 

probabilistic quantification of structure-specific 

seismic risk. This risk can be quantified by the 

annual rate of earthquakes able to cause the 

structure to violate a seismic performance 

objective, which can be simply termed the failure 

rate, 
f , given by Eq. (1): 

  f im

im

λ P f im dλ        (1) 

where the conditional probability term P f im    

represents what is often known as a fragility 

function, which provides the probability of failure 

for various values of a seismic intensity measure 

(IM), while im  is the annual rate of earthquakes 

exceeding the value of shaking intensity im  and 

therefore constitutes a measure of seismic hazard 

at the site.  

The state-of-the-art in PBEE is to analytically 

estimate structure-specific fragility functions by 

means of procedures that require multiple 

dynamic analysis runs of a numerical model of the 

structure. These analyses typically use a multitude 

of acceleration records as input motion, in order 

to map the record-to-record variability of inelastic 

structural response (Shome et al. 1998). On the 

other hand, the evaluation of im  for various 

intensity levels, which is known as the hazard 

curve, is usually obtained by means of 
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probabilistic seismic hazard analysis (PSHA; e.g., 

McGuire 1995), which typically employs 

empirical ground motion prediction models 

(GMPMs) to account for the attenuation of 

shaking intensity. 

In modern practice, the number of records 

used for non-linear dynamic analysis of a 

structure is typically limited due to the large 

computation times required for running intricate 

structural models at high non-linearity levels. 

However, this number of records determines the 

sample-size of seismic structural responses that is 

used for fragility estimation and, eventually, the 

failure rate. Since these descriptors of seismic 

fragility and risk are inferred from finite-size 

samples, they are only estimates of the 

corresponding true values, and are therefore 

affected by estimation uncertainty (Iervolino 

2017). In fact, the estimator of 
f , obtained using 

a specific sample of ground motions and denoted 

using a hat symbol as f̂  , can be regarded as a 

random variable (RV) whose distribution is a 

function of the sample size. In other words, 

computing f̂  over and over for a number of 

times using different sets of accelerograms (equal 

in number to the first one and equivalent in 

characteristics) would lead to a different value for 

the estimator each time around. Although 

GMPMs are also based on samples of recorded 

ground motion, these datasets are extensive 

enough to allow the assumption that the 

estimation uncertainty underlying f̂  is only due 

to the fragility portion of Eq. (1). 

Estimation uncertainty present in parametric 

fragility models fitted from dynamic analysis 

results has also been highlighted by other past 

studies (Eads et al. 2015; Gehl et al. 2015; Jalayer 

et al. 2015): in fact, a quantitative measure of the 

effect of this uncertainty on the failure rate, can be 

obtained according to Eq. (2):  

   
f

f

λ̂

f

ˆVAR λ
CoV

ˆ nE λ


 
 

 
 
 

   (2) 

where the notation 
fλ̂

CoV  indicates the coefficient 

of variation of f̂ ,  
 f
ˆVAR λ  and  

 f
ˆE λ  denote its 

variance and expected value, respectively, n  is 

the sample size of accelerograms used to estimate 

the fragility function and   is a parameter that 

depends on the so-called efficiency of the IM 

chosen to express structural fragility and also on 

the shape of the site-specific hazard curve.  

The objective of the present article is to 

employ a simulation-based methodology for the 

quantification of estimation uncertainty, which 

was recently proposed as part of a broader-in-

scope study (Baltzopoulos et al. 2018a) and 

investigate the efficiency of some commonly-

used scalar IMs, directly in terms of the ground 

motion sample size required to contain the mean 

relative estimation error, rather than in terms of its 

frequently-used proxy; i.e., the dispersion of 

response. This methodology is based on 

incremental dynamic analysis (IDA; Vamvatsikos 

and Cornell 2001) and involves using a relatively 

large set of accelerograms to run dynamic 

analyses for an assortment of simple inelastic 

structures. The results of these analyses are then 

used to fuel a procedure based on Monte-Carlo 

simulation, where fragility estimates at various 

limit states and using alternative IMs are 

generated and statistics of the estimator of the 

failure rate, f̂  , are extracted. 

The structure of this article follows this 

order: first there is a brief presentation of the 

methodology for estimating structural fragility via 

an IM-based procedure and of that for obtaining 

statistics of the estimator of failure rate. Then 

specific applications are given, considering 

single-degree-of-freedom (SDOF) and simple 

frame structures exposed to a variety of seismic 

hazard conditions. Finally, the issue of record 

sample size vs estimation uncertainty in the 

estimate of the risk metric is discussed, in 

conjunction with the choice of IM used as 

interfacing variable, followed by some 

concluding remarks. 
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2. METHODOLOGY 

 

In order to investigate the issue of ground 

motion sample-size vs estimation uncertainty, 

fragility is derived via dynamic analysis using the 

so-called IM-based approach using IDA. IDA 

consists of running a series of analyses for a non-

linear structure, using a suite of accelerograms 

that are scaled in amplitude in order to represent a 

broad range of IM levels. At each IM level, a 

measure of structural response is registered 

generically named an engineering demand 

parameter (EDP). An exception to this are cases 

where response approaches numerical instability, 

which translates to lack of convergence in the 

computer model (Shome and Cornell 2000). Thus, 

at the conclusion of the dynamic analyses at an 

adequate number of IM levels, a quasi-continuous 

EDP-IM relationship is obtained, termed an IDA 

curve (Figure 1). 

 
Figure 1: IM-based derivation of seismic fragility via 

incremental dynamic analysis. Set of generic IDA 

curves and intersections of each curve with a vertical 

line passing from the failure threshold (a); 

parametric (lognormal) and non-parametric 

representations of the fragility function derived from 

the IDA results (b). 

It can be assumed that violation of some limit 

state of seismic performance (i.e., failure) occurs 

whenever the EDP response exceeds a certain 

threshold value, denoted as 
fedp . In this context, 

IM-based fragility entails the introduction of an 

additional RV, 
fIM , which is the lowest seismic 

intensity that a record has to be scaled to, in order 

to cause  fEDP edp . Thus, 
fIM  may be viewed 

as the seismic intensity that causes structural 

failure and, consequently, the fragility function 

can be defined as the complementary cumulative 

distribution function of 
fIM  i.e., 

       fP f im P IM im  . 

In the context of IDA, the lowest IM value 

for each record that causes the structure to reach 

the performance threshold, can be calculated by 

finding the height, 
,f iim , where the i-th IDA curve 

intersects the vertical line  fEDP edp , 

 1,2,...,i n , n being the total number of 

records), as shown in Figure 1a. These values can 

be considered as a sample of realizations of 
fIM

and, consequently, well-known statistical 

methods (e.g., Baker 2015) can be used to fit a 

parametric probability distribution model to that 

sample. One frequently-used distribution is the 

lognormal (Figure 1b), which is completely 

defined by two parameters: the logarithmic mean 

and standard deviation, whose point estimates 

based on one sample, 
fIMη̂  and 

fIMβ̂  respectively, 

are given in Eq.(3): 
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n
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n

IM f ,i IMi

ˆˆP f im log im η β

η̂ n im

ˆ ˆβ n log im η

  (3) 

where 
,f iim  is the i-th record’s (lowest) scaled IM 

value causing failure and  Φ   is the standard 

(cumulative) Gaussian function. A non-

parametric alternative is to assume that the 

observed sample values approximate the fragility 

by defining a stepwise function, according to 

Eq.(4): 

      
 

1

1




          
f ,i

n

f im im
i

P f im P IM im I
n

  (4) 

where 
 f ,iim im

I  is an indicator function that returns 

1 if f ,iim im  and 0 otherwise. In either case, once 

the fragility function has been estimated, the point 

estimate of the failure rate f̂ can be obtained via 

Eq. (1). 

1.00.50

(b)(a)

edp fEDP

IM

Single-record IDA curve

imf,i  , intersection with  edp
f

Lognormal fit

Non parametric fragility

  P f im
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As already mentioned, the estimation 

uncertainty inherent in deriving the fragility from 

a finite sample of structural responses is 

propagated to the estimator of seismic risk f̂ , 

which should be therefore regarded as a RV and a 

function of the sample: assuming that one were to 

perform a number of different IDAs, using each 

time a set of accelerograms of the same size but 

with different records than the previous ones, it is 

to be expected that the estimated fragility curve 

will differ from time to time, thus leading to 

different estimates of the failure rate (i.e., 

different realizations of the RV f̂ ). 

One way of quantifying the estimation 

uncertainty of f̂  is by means of the mean relative 

estimation error, 
fλ̂

CoV , which can be regarded as 

the coefficient of variation of the estimator. In the 

case of IM-based fragility via IDA, the 

relationship between 
fλ̂

CoV  and the ground 

motion sample size n  can be approximated by 

means of Monte-Carlo simulation (Baltzopoulos 

et al. 2018a). This procedure begins with a 

reference IDA that uses a relatively large amount 

of records ( 200n  is used herein) to derive a 

reference fragility function, which can be either 

lognormal or non-parametric. The simulation 

entails randomly sampling s  times from this 

reference distribution of 
fIM  for different 

sample sizes  2 3 200n , ,...,  (in the case of non-

parametric, empirical fragility, this translates to 

resampling with substitution). At the next step in 

the procedure, either new lognormal fragility 

curves are fitted to each extracted sample 

according to Eq.(3), or Eq.(4) is mustered to 

directly express the fragility function. In either 

case, integrating the fragility with a hazard curve, 

according to Eq.(1), leads to a point estimate of 

the failure rate at the j-th simulation, denoted f , jλ̂

. As a last step, after s  simulations have been 

concluded at any given record sample size n , 

̂ 
 fE  and ̂ 

 fVAR  can be approximated via 

the first two moments of the Monte-Carlo-

generated sample of point estimates. By 

substituting these values into Eq.(2), one obtains 

Eq.(5): 

  

2

1 1

1

1 1

1

1

 



 
   

  




 


f

s s

f , j f ,k

j k

ˆ sλ

f , j

j

ˆ ˆλ λ
s s

CoV

λ̂
s

  (5) 

which provides the simulation-based 

approximation for 
fλ̂

CoV . 

3. APPLICATIONS 

 

The methodology outlined in the previous 

sections is applied to an assortment of simple 

inelastic structures, which are assumed to be 

located at three Italian sites that can be considered 

representative of varying levels of seismic hazard 

severity. The three sites considered are in the 

vicinity of the cities of L’Aquila (representative 

of a high seismic hazard site), Naples (medium 

hazard levels) and Milan (low hazard) and are all 

assumed to be characterized by firm soil 

conditions. At each of the three sites a yielding 

single-degree-of-freedom system is considered, 

with natural vibration period 0.7 sT  and 

viscous damping ratio 0.05  . Additionally, at 

the L’Aquila site a four-story steel moment-

resisting frame is considered, with first mode 

period 1 1.82 sT .  

Hazard curves were calculated at these sites, 

in terms of several different scalar IMs, using the 

software REASSESS (Chioccarelli et al. 2018) 

employing the seismic source model from Meletti 

et al. (2008). Hazard was obtained at all three sites 

for spectral pseudo-acceleration at the SDOFs’ 

period,  0.7 sSa T , and also for peak ground 

acceleration (PGA) and  1.8 sSa T  at 

L’Aquila. Also considered, were two more 

advanced IMs that implicitly account for spectral 

shape (Bojórquez and Iervolino 2011; Eads et al. 

2015), namely average spectral acceleration 
avgS  

and 
NpI , given by Eqs.(6) and (7), respectively: 
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   
1

   
T

T

n

n
avg i

i

S Sa T   (6)  

    
0 40

1 1
    

.

Np avgI Sa T S Sa T   (7) 

where Tn  is the number of periods, iT , that are 

used in the definition of 
avgS . Hazard curves in 

terms of 
avgS  and 

NpI  are obtained at all three 

sites using  0.7s, 1.0s, 1.5siT  for the seismic risk 

assessment of the SDOF structures and at 

L’Aquila, using  0.6s, 1.8s, 2.5s, 4.0siT  for that of 

the steel frame. These hazard curves are shown in 

Figure 2. 

 

Figure 2: Annual exceedance rates (hazard curves) 

at the three Italian sites for all IMs considered; 

hazard curves used for seismic risk assessment of the 

SDOF structures (above) and for the four-story steel 

frame presumed at L’Aquila (below). 

In order to construct reference fragility 

functions for all of the structures considered, via 

IDA, a set of two-hundred records was selected 

from the NESS flatfile (Pacor et al. 2018), 

avoiding records that were likely affected by near-

source effects such as rupture directivity or by site 

effects due to deformable soil deposits.   

3.1. SDOF structures 

 

The simplest structures used in this 

application are yielding SDOF systems that 

follow a peak-oriented hysteretic rule (Lignos and 

Krawinkler 2011) that also considers in-cycle 

strength degradation by including a softening, 

negative-stiffness post-peak branch in their 

monotonic pushover (backbone) curve, thus 

permitting explicit consideration of the collapse 

limit state in the numerical analyses. The yield 

threshold and backbone characteristics of the 

three SDOF oscillators have been tweaked to 

render them ostensibly risk-equivalent; i.e., they 

were determined so that each structure at its 

presumed site exhibits the same estimated annual 

collapse rate ( 4ˆ 3.6 10  f ) when fragility at 

collapse is calculated from the IDA flat-lines 

(Vamvatsikos and Cornell 2004) with 200n  

records, using 
avgS  as IM. The numerical model 

of the oscillators and IDA analyses were set up in 

the OPENSeeS analysis platform (McKenna 

2011) using the DYANAS interface 

(Baltzopoulos et al. 2018b). Both lognormal 

models and non-parametric representations are 

considered for collapse fragilities. 

In Figure 3, the resulting values of the 

relative mean estimation error 
fλ̂

CoV from the 

Monte-Carlo simulation procedure – i.e., from 

Eq.(5) – are plotted against record sample size n  

for all combinations of IM, structure-site pairing 

and fragility model (eighteen cases in total), also 

reporting the point estimates of ̂ f  at 200n  in 

the legend. It is clear that these two-hundred-

record estimates shift when switching IM, but this 

is mainly an effect of how sensitive structural 

response is to seismological parameters when 

records are scaled (Luco and Cornell 2007), and 

not directly related to ground motion sample size 

and estimation uncertainty. The figure also reports 

the number of records required to limit 
fλ̂

CoV  to 
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20% and 10% for some cases. The most 

immediate observation emanating from Figure 3, 

is that, for risk-wise nominally equivalent 

structures that express fragility in terms of the 

same IM, the shape of the hazard curve makes a 

difference on the number of records required to 

limit estimation uncertainty to a desired level, as 

verified also analytically in the past (Baltzopoulos 

et al. 2018a). The parameter  , that summarizes 

the combined effect of the shape of the hazard 

curve and IM efficiency on the coefficient of 

variation of ̂ f  according to Eq. (2), can be 

evaluated by means of a least-squares fit of that 

equation to the simulation data and is given in 

Table 1. 

 

Figure 3: Mean relative estimation error, 
fλ̂

CoV , 

calculated via Monte Carlo simulation for the three 

SDOF structures considered, plotted against ground 

motion sample size n  . 

3.2. MDOF steel frame structure 

 

For the MDOF structure, that is the steel 

moment-resisting frame presumed built at the 

higher-hazard-level location of L’Aquila, the 

same procedure was followed as for the three 

simpler SDOF systems. In this case, a center-line, 

non-linear finite-element model of the structure 

created in the OPENSeeS environment was used 

to run IDA using the same two-hundred record 

set. Differently from the previous applications, 

the collapse limit state was not considered; 

instead, fragility was derived for two generic limit 

states whose violation can be conventionally 

defined by exceedance of some threshold in terms 

of maximum inter-story drift ratio,  IDR : 

1.5%IDR  was considered for the first limit 

state and 2.5%IDR  for the second. As in the 

previous case, the simulation-based values of 

fλ̂
CoV  were calculated for  2,3,..., 200n  using 

all four IMs for which hazard curves had been 

derived and the results are plotted in Figure 4. The 

corresponding   values, i.e., the site-and-

structure-specific parameter that allows the mean 

relative estimation error to be expressed as a 

function of record sample size as 
̂


f

CoV n , 

is also reported in Table 1.  

3.3. Discussion of the results 

 

A cursory examination of the results from the 

two examples, already reveals that adoption of a 

traditional IM such as PGA, can be inadequate for 

risk analysis of a flexible structure, since the 

number of records required to limit 
fλ̂

CoV to an 

(arbitrary) value as low as 10% verges on the 

impracticable. In certain cases, such as the case of 

estimating annual collapse rate and especially at 

low-seismicity areas, the same can be said even 

for first mode spectral acceleration  1Sa T ; in 

fact, even for these simple inelastic structures, the 

number of records required to limit the mean 

relative estimation error below 10% exceeds fifty. 

Finally, it is interesting to compare the 

relative efficiency of the geometric mean spectral 

acceleration avgS  vs NpI , the weighted geometric 

mean; i.e., compare their ability to reduce 

estimation uncertainty for a fixed record sample 
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size. From the calculated   values, it can be 

observed that, for these specific applications, NpI

is somewhat more efficient than avgS  at limit 

states corresponding to lower level of inelasticity, 

while avgS  overcomes NpI  in efficiency near 

collapse. More elaborate discussion of the issue 

can be found in the article from which this study 

was inspired (Baltzopoulos et al. 2018a). 

 
Figure 4 : Mean relative estimation error, calculated 

via Monte Carlo simulation for the steel frame  

assumed at L’Aquila, plotted against ground motion 

sample size n  . 

Table 1: Dispersion of intensity causing failure 

and site-/structure- specific parameter   of the mean 

relative estimation error (
̂


f

CoV n  ),provided for 

each site, structure, IM, limit state and assumption 

about the fragility function (LogN – lognormal, Emp 

- empirical). 
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4. CONCLUSIONS 

 

The introduction of ever more realistic, and 

thus complex, numerical structural models in 

probabilistic seismic risk analysis, renders the 
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efficient IMs, tends to keep the mean relative 

estimation error at 10% or below. The higher end 

of that range is needed for cases that combined 

limit states corresponding to larger inelastic 

excursions with site subjected to lower hazard 

levels. It became apparent that the so-called 

efficiency of seismic intensity measures, i.e., their 

ability to keep estimation uncertainty to the 

desired levels using smaller-size samples of 

ground motions, is in fact site- and structure-

dependent, as recent research has shown.  
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