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Abstract—In this paper, we present a complete framework to
support the monitoring of natural and man-made disasters by
means of synthetic aperture radar (SAR) images. The fractal
geometry is the most appropriate mathematical instrument in
describing the irregularity of a natural observed scene, by means
of few effective and reliable parameters. Therefore, fractal con-
cepts can be used to model and identify geometrical changes
that occurred in areas hit by disasters. We present an overall
framework employing fractal-based models, algorithms, and tools
to support the identification of natural area changes due to natural
or man-made disasters. Such a framework includes an algorithm
used to extract fractal parameters from a 2-D signal, a fractal
interpolation tool, and a SAR raw-signal simulator. The combined
use of these tools provides an innovative instrument for disaster
monitoring applications. In this paper, we implement the fractal
framework to obtain a relation between the fractal parameters of
a SAR image and those of the relative imaged area. In addition, a
case study is discussed, showing the potentiality of our framework
for flooding detection.

Index Terms—Change detection, fractals, synthetic aperture
radar (SAR).

I. INTRODUCTION

HUMAN BEINGS live in an environment in continuous
evolution, with a large number of physical phenomena

which are potentially dangerous for their lives. Remote-sensing
tools provide a great amount of data to be used in disaster
prevention, risk evaluation, damage estimation and aid orga-
nization. However, practical use of these data is often limited
by the lack of efficient, possibly unsupervised, tools for the
retrieving of effective information to be employed in the crisis
and postcrisis phases.

Several approaches devoted to define instruments and tools
for data interpretation were presented in literature, showing, at
least in principle, the potentiality of satellite and aerial tech-
nique for the monitoring and eventually prevention of natural
(flooding [1], [2], volcanic risk [3], landslides [4], etc.) and
human-made disasters (oil spills [5], fires [6], etc.). Most of
these approaches are based on empirical analyses of remote-
sensing data, essentially driven by user needs. These analyses
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are generally supervised, and to be effective, it is often required
that the supervisor holds a remarkable level of competence with
reference both to the remote sensors (and data) and to the effects
of different disasters on the environment.

Among the remote sensors, the imaging ones take the ad-
vantage of generating synoptic views of the area under obser-
vation; in this case, the rationale for the feature identification
techniques is generally based on the concepts of image texture
analysis. Textures on remotely sensed images are related to
morphological and geological features, land use, and social
organization of the observed scene. An expert user can identify
significant classes of human signatures, as ordered patterns
which are well described within the classical geometry, and
distinguish them from natural features that conversely hold self-
similar characteristics, thus being governed by fractal laws [7].
When a disaster occurs, the scenario of the observed scene
dramatically changes, and remote-sensing instruments should
be, at least in principle, able to detect the changes in the scenes.
As a matter of fact, man-made structures can be damaged thus
(partially) loosing their classical-geometry properties; alterna-
tively, some natural features can be modified, thus changing
the characteristics of their fractal statistics. An example for
the first happening is provided by images of urban areas
stricken by earthquakes, where some chaotic textures appear
and classical geometrical patterns are mixed with self-similar
fractal ones. Examples for the second happening are provided
by images of a flooding in rural areas or a volcano eruption;
these natural disasters modify (according to different rules) the
surface profile from scales smaller than the sensor coverage, but
comparable to the sensor resolution, up to scales comparable to
the electromagnetic wavelength.

Then, a fundamental aid in managing postcrisis analysis can
be given by unsupervised or semiunsupervised tools for the in-
terpretation of geometrical features in remotely sensed images:
to develop these tools, it is crucial to introduce appropriate
models to understand and quantitatively describe the physical
phenomena that govern the modification of the scenario tex-
tures, thus providing a fundamental background to plan any
powerful instruments to retrieve the information of interest.

As far as the models are under concern, the fractal geometry
has the required characteristics in managing the problem at
hand, because it simply accounts for geometrical irregularity
of the observed objects. Therefore, fractal-based instruments
are appropriate candidates for the retrieval of the significant
physical parameters from remotely sensed images.

We focus our attention on synthetic aperture radar (SAR)
sensors, because they are particularly effective in monitoring
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disaster events. From one side, the all-weather all-time char-
acteristics of microwave images guarantees the monitoring of
the scene where the disaster occurred; for instance, monitoring
via optical images is dramatically reduced by the presence of
clouds during flooding or of dust and smoke during volcano
eruption. From the other side, in comparison with optical
instruments, the microwave frequencies employed by radar
instruments and the obtained geometric resolutions are better
tailored to exploit the geometrical features of the area under
survey: as already stated, these features exhibit the major
changes whenever disasters take place.

In this paper, we present a novel fractal framework, based on
direct and inverse models, to facilitate the disaster monitoring
from SAR images. In particular, we propose the combined
use of an appropriate SAR raw-signal simulator with fractal-
based models and tools, according to the rationale described in
Section II.

As for the direct chain, fractal geometrical models are em-
ployed to correctly represent the imaged surfaces [7]–[10],
and fractal scattering models are employed to evaluate the
reflectivity function of the natural scene under observation [11].
The evaluation of the scattering requires the knowledge of
the fractal parameters of the area. Some techniques have been
reported in the open literature for the retrieval of the fractal
parameters from a given 2-D data set, most of them relying
on the fractional Brownian model (fBm) [12]. In Section III,
the fBm is described together with the main concepts which
allow the development of the fractal inverse geometrical tool
(IGT) and the fractal interpolation tool (FIT), whose details are
discussed in [21].

The reflectivity function is employed to simulate the SAR
raw signal and the relative SAR image, as described in
Section IV. Simulated SAR images provide an extremely useful
support for the interpretation of actual SAR signal formation
mechanisms as well as for testing retrieving techniques.

As for the inverse chain, in the open literature, most of
the change detection algorithms are based on ratioing and
differencing of the magnitude of the signal return between pre
and postcrisis scenario [14], [15]. Fractal tools of Section III
could be employed in retrieving SAR properties of the SAR
images and in developing change detection algorithms based
on differencing and ratioing between the fractal parameters.
Anyway, these techniques have been mainly proposed with
reference to fractal surfaces; thus, they quite conveniently apply
to digital elevation model (DEM); conversely, their use, in
case of images of the fractal surface, is sometimes question-
able. However, these methods present a major problem for
remote-sensing applications: the estimation is effective only
in the presence of data equally sampled in both directions.
In Section V, a solution for the problem is proposed.

Such an approach calls for an appropriate discussion on
the SAR image fractal parameter dependence on the observed
scenario fractal parameter. No analytical solution was found
so far to the problem. Anyway, the availability of direct and
inverse models allow their combined use in creating a set of
experiments to get an empirical relation between the fractal
properties of the observed scene and those of the corresponding
SAR image. The study is presented in Section VI.

Section VII is devoted in placing our models in the context
of the actual data. A comparison between the SAR raw-signal
simulator and actual images allows the validation of the whole
direct chain. In addition, the direct chain is used to create canon-
ical disasters in order to develop ad hoc solutions for a flooding
test-bed. In Section VIII, we draw the final conclusions.

II. FRACTAL FRAMEWORK

The rationale for the overall fractal framework is presented
in this section. The framework makes use of some tools which
are here described in terms of input and output data, as well as
of employed models and algorithms. The employed models and
algorithms are discussed in detail in the following sections.

Monitoring of each type of possible disaster calls for an
appropriate remote-sensor coverage, temporal and spatial res-
olution scales, and sensitivity.

Sensor coverage and sensitivity are somehow dual concepts.
Sensor coverage allows focusing on the entire area involved
in the disaster, so that large-scale phenomena can be mon-
itored. Sensor sensitivity is here referred to the employed
electromagnetic wavelength and can be related to the scene
spatial scales that mainly affect the remotely sensed data, thus
providing information on the small-scale phenomena. Temporal
resolution fixes the time for obtaining postcrisis data and the
average temporal lag between pre and postcrisis data. Spatial
resolution allows the monitoring of the disaster at a significant
scale with respect to the observed feature. This scale is set at
an intermediate level between the sensor coverage and electro-
magnetic wavelength.

With respect to the aforementioned parameters, spaceborne
and airborne SAR data provide a unique tool in monitoring
several types of disasters. SAR coverage allows imaging earth
at a regional scale, which is typical of most of possible disasters.
SAR sensitivity depends on the backscattering properties at
microwaves, thus being related to the geometrical properties
of the scene under survey at centimetric and metric scales.
The acquired SAR data exhibit a spatial resolution that can
be employed to monitor the geometrical properties at scales
ranging from 1 m to 1 km. Finally, the new generation of space-
borne sensors is conceived to reduce the temporal resolution
from days to hours, just as required for an efficient monitoring
(and support controlling) of major natural and human-made
disasters. Then, SAR images, with respect to optical ones,
exhibit an emphasized dependence on the observed geometrical
features on spatial scales ranging from several kilometers to
some centimeters.

This short and general discussion provides the major moti-
vation to propose a fractal framework for the study of disasters
by means of SAR images. Fractal geometry provides the ap-
propriate “environment” in dealing with geometric features that
extend in such a wide range of scales. The fractal framework we
propose is then based on the following tools.

1) A fractal IGT to retrieve the fractal parameters from the
surface profile of the scene under analysis: Input of this
tool is an (original) DEM of the scene under analysis.
This DEM can be acquired by aereophotogrammetric
campaigns or interferometric SAR data; it should be
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relevant to the entire area under analysis and should be
sampled with a spacing as close as possible to the SAR
resolution. In general, a coarse version of these DEMs can
be provided by the data from the Shuttle Radar Topog-
raphy Mission. These outputs of this tool are the maps
containing the fractal parameters evaluated in each point
of the original DEM of the scene. The tool we propose
is based on the fBm for the DEM, whose details are
provided in Section III. The employed algorithm is based
on the variogram analysis and is detailed in Section V.

2) A FIT to obtain the surface profile sampled according
to the resolutions of the considered SAR sensor and
stochastically described at the scales comparable to the
employed wavelength: The input for this tool are the
original DEM and the maps of the fractal parameters
evaluated by the tool described at point 1). Output is a re-
alization of the macroscopic DEM at the SAR resolution
scale. At the microscopic scale, only the fractal parame-
ters are required by the scattering models, and the fBm
model is employed to fix these fractal parameters equal
to those estimated at the original scale, thus performing a
stochastic interpolation of the scene profile up to the scale
typical of the electromagnetic wavelength.

3) A SAR simulator (SARAS) that makes use of fractal
direct scattering formula to generate raw signals and
images relevant to the scene under analysis: Main inputs
of this tool are the realization of the fractal profile of
the scene sampled at the SAR resolution scale and the
fractal parameters at the SAR wavelength scale. This tool
evaluates for each portion of the scene the backscattering
via a direct scattering formula and projects this result
onto the azimuth-slant range coordinate systems. This
tool employs an fBm model for the surface (see Sec-
tion III); algorithms for the SAR sensor are based on
what is reported by the study in [13] and summarized in
Section IV. The tool can alternatively employ physical
optics (PO) or small perturbation method (SPM) fractal-
based solutions for scattering, whose fundamentals are
reported under Section IV.

4) A fractal inverse tool (ITR) to retrieve the fractal para-
meters from the simulated images: Inputs of this tool are
the simulated SAR images of the area. The outputs of
this tool are the maps containing the fractal parameters
evaluated in each point of the simulated images. The tool
we propose is based on the fBm for the simulated images
(see Section III). The employed algorithm can be based
on the variogram analysis and is detailed in Section V.
An assessment of this tool is required: this is given in
Section VI, thus showing the algorithm performances
whenever SAR images are considered and some disasters
occur.

III. FRACTAL MODELS FOR IGT AND FIT

Fractal models are widely considered the most appropriate
to quantitatively describe natural surfaces [7]–[10]. Fractal
geometry is able to simply account for the nonstationarity of
natural surfaces, as well as for their self-affinity. The most used

fractal model is the fBm [16], [17], whose realizations can be
also obtained by employing the Weierstrass–Mandelbrot (WM)
function, which is a continuous but not differentiable function
[18]–[20]. The fBm is defined in terms of the probability
density function of its height increments: a stochastic process
z(x, y) is an fBm surface if, for every x, y, x′, y′, it satisfies the
following relation:

Pr
{
z(x, y)−z(x′, y′)<ζ̄

}
=

1√
2πsτH

ζ̄∫
−∞

exp
(
− ζ2

2s2τ2H

)
dζ

(3.1)

where τ is the distance between the points (x, y) and (x′, y′),
and the two parameters that control the fBm behavior are as
follows:

• H : the Hurst coefficient (0 < H < 1), related to the
fractal dimension D by means of the relation D = 3− H;

• s : the standard deviation, measured in [m(1−H)], of
surface increments at unitary distance, a real parameter
related to an fBm characteristic length, the topothesy T ,
by means of the relation s = T (1−H).

For a given surface, the structure function (variogram) V (τ)
is defined as the mean-square increment of elevation points
placed at distance τ

V (τ) =
〈
(z(x, y)− z(x′, y′))2

〉
. (3.2)

The variogram of an fBm surface can be evaluated in terms
of the parameters H and s as

V (τ) = s2τ2H . (3.3)

Equation (3.3) can be written in logarithmic form as

log V (τ) = 2 log s + 2H log τ (3.4)

which defines in a log–log plane a linear behavior with slope
2H and ordinate intercept 2 log s.

It has been demonstrated [7]–[9] that the spectrum S(k) of
an isotropic fBm process exhibits a power law behavior

S(k) = Sok
−α (3.5)

wherein the spectral and spatial domain parameters are related
[11] by the following relationships:

α =2 + 2H = 8− 2D (3.6)

S0 = s222H2πH
Γ(1 + H)
Γ(1− H)

(3.7)

with Γ(·) being the Gamma function. From the inequalities 0 <
H < 1, we get 2 < α < 4, which defines the range of allowed
values for the spectral slope α. Note that also the spectral
law (3.5) provides a linear relation in a log(S)–log(k) plane,
with parameters related to those of the log–log representation
introduced for the variogram.

Based on the fBm model, the IGT can be developed by
exploiting the linear dependence in the log–log plane of the
spectrum and the variogram, recovering the H and s values
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Fig. 1. Canonical fractal surface with fractal dimension D = 2.3 and s =
0.1 m0.3.

TABLE I
s AND H MEAN VALUES AS A FUNCTION OF THE WINDOW DIMENSION

by performing a linear regression over the log–log plots of
measured values of V (τ) or S(k) [11]. In addition, the FIT
can be developed exploiting the fBm definition, as discussed
in detail in [21].

IV. SARAS

The interpretation of SAR data is often difficult, due to the
fact that SAR images are related by nonlinear relations with the
scene parameters. Therefore, it is crucial to have efficient tools
able to predict the SAR data behavior as a function of the scene
parameters. A SAR raw-signal simulator was developed and
tested [13], [21]; its use provides an added value information
for SAR data interpretation and a support for SAR processing
techniques (for instance, image classification, identification of
flooded areas, and so on).

Let x and r be the independent space variables, standing, re-
spectively, for azimuth and range. By using primed coordinates
for the independent variables of the SAR raw signal s(x′, r′),
this can be expressed as [13]

s(x′, r′) =
∫∫

dxdrγ(x, r)g(x′ − x, r′ − r; r) (4.1)

where γ(x, r) is the reflectivity pattern of the scene and g(x′ −
x, r′ − r; r) is the unit impulse response of the SAR system
[13], [21]. Evaluation of the reflectivity pattern requires a
description of the observed surface as well as a model for their
interaction with the electromagnetic fields radiated by the SAR
antenna [13].

The presented simulator was developed by assuming that
the observed surfaces could be modeled as pure Gaussian
functions. Theoretical [7]–[9] and experimental [22] studies
suggest that the use of fractal models improve the scattering
method results. In this paper, we used the fBm fractal model
for describing the surface roughness and the SPM as scattering

Fig. 2. (a) Fractal dimension of the SAR image as a function of the fractal
dimension of the scene for s = 0.01 m0.3 (continuous line), s = 0.1 m0.3

(long dashed line), and s = 0.5 m0.3 (short dashed line)—the short dashed
and the continuous lines are overlapped. (b) s parameter of the SAR image
as a function of the s parameter of the scene for H = 0.9 (continuous line),
H = 0.8 (long dashed line), and H = 0.7 (short dashed line).

model for evaluating the reflectivity pattern. Accordingly, the
radar cross section σ0

pq required for the γ(x, r) evaluation can
be written as

σ0
pq = 8k4 cos4 ϑ|βpq|22π

S0

(2k sinϑ)α
(4.2)

where βpq is a function accounting for the field polarization
[11], ϑ is the local incident angle, and k is the electromagnetic
wavenumber.

Note that (4.2) diverges at a normal incidence. Such a
condition does not allow the implementation of the model in
practical cases. Therefore, in order to overcome this problem,
we make use of a transition function for low incidence angles,
based on the PO solution to the Kirchhoff approach for fBm
surfaces [16].

Comparison between simulated and actual SAR data was
presented in [21], with respect to image single point normalized
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Fig. 3. (a) Three-dimensional representation of the Maratea area, as seen by the ERS-1 SAR sensor (near range is on the bottom). (b) Grayscale representation
of the interpolated 17.464 × 56.641 km2 DEM of the Maratea area, with 3.99 × 19.93 m2 pixel spacing.

Fig. 4. (a) Fractal dimension and (b) s parameter maps relative to the interpolated 17.464 × 56.641 km2 DEM of the Maratea area, with 3.99 × 19.93 m2

pixel spacing.

moments and autocorrelation function, thus assessing the sim-
ulator reliability. In those comparisons, the fractal parameters
employed for the macroscopic DEM were assumed to be
variable at the macroscopic scale (SAR resolution). In this
case, the extension we propose allows considering also for the
microscopic scale (up to the electromagnetic wavelength scale)
the fractal parameters estimated from the available DEM, so

that, in order to compute the reflectivity function, we use fractal
parameters varying over the scene.

V. RETRIEVING OF THE FRACTAL PARAMETERS (ITR)

A disaster brings significant changes in the geometrical
properties of the affected scene. As an example, the roughness
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Fig. 5. (a) Simulated 2 × 10 multilook ERS-1 C-band SAR image relative to the area of Maratea (near range is on the left) with 39.86 × 15.81 m2 azimuth-slant
range resolution, corresponding to a 39.86 × 37.58 m2 azimuth-ground range resolution. A comparison between (b) simulated and (c) actual ERS-1 SAR image
(only in the area where both data are available).

of a flooded area is usually lower than before the event, while
an inhabited area affected by an earthquake will lose the or-
dered organization typical of built-up quarters. As presented
in Section III, fractal geometry accounts for the irregularity of
the surfaces; therefore, its use is widely suggested for change
monitoring [7]–[10].

In the following, we present a new technique for extracting
fractal parameters of an observed scene and a possible algo-
rithm for identifying zones affected by a disaster.

For a 2-D fBm process f(x, y), it is possible to write the
mean value of the increments over a fixed distance τ as

E [|f(x +∆x, y +∆y)− f(x, y)|] · τ−H = C (5.1)

where the constant C can be obtained from (3.1)

C =
2√
2π

s. (5.2)

Equation (5.1) is equivalent to

logE [|f(x +∆xy +∆y)− f(x, y)|]− H log τ = logC.
(5.3)

Therefore, the plot of E[|f(x +∆x, y +∆y)− f(x, y)|] as
a function of τ on a log–log plane lies on a straight line of slope
H and whose intercept with the log E[|f(x +∆x, y +∆y)−
f(x, y)|] axis is logC. Our algorithm retrieves the H and s
values by fitting a straight line to the computed fractal data.

In the case of 2-D fBm processes, such a procedure can
be used in retrieving the fractal parameters, provided that the
considered surface is isotropic. In this case, we can use a sliding
window, whose movements cover the whole surface, and we
can evaluate the absolute values of the increments over all the
possible couple of points with the same distances. Such an
approach is applicable if, in the considered surface, there is no
preference directionality.

In this paper, we extended the Yokoya’s method [12] to
deal with not equally spaced data. Note that, if the data are
nonequally spaced, the number of points with the same relative
distances is smaller than the equally spaced case, causing a
decreased reliability of the statistics. In order to reduce this
effect, we performed a linear regression using the points in
the fractal plot, weighting them through an uncertainty function
varying according to the number of increments over which we
computed the expected value.
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VI. FRAMEWORK ASSESSMENT: STUDIES ON

FRACTAL CANONICAL SURFACES

A SAR image is the result of nonlinear phenomena involving
the physical parameters of the observed scene: electromagnetic
scattering, ground to slant range mapping, shadowing, etc. In
the open literature, a closed-form expression for the relationship
between SAR image and scene fractal parameters cannot be
found. In order to shade light on the very involved dependence
of the image characteristics on the scene parameters and to test
the retrieval algorithm, we present, in this section, a quantitative
analysis of the approach described in Section II for a canonical
fractal surface, i.e., a synthesized fractal surface with fixed
fractal parameters.

We synthesized the canonical fractal surface by means of the
WM stochastic function [8], [18], [22]: the fractal parameters
are fixed to H = 0.7 and s = 0.1 m0.3, which are typical values
for natural surfaces [23]. The surface shape is presented in
Fig. 1. According to our framework, the obtained DEM is
provided as an input of the SARAS once it is sampled at the
scales of the resolution of the ERS-1 C-band SAR sensor we
selected for the test.

The fractal parameters of the scene can be retrieved via the
IGT of Section V. To implement that algorithm, it is prelim-
inarily required to choose sliding window dimension for the
fractal parameters retrieval procedure. Therefore, we tested the
dependence of the algorithm results on square sliding windows
whose dimensions ranged from 5 to 11 pixels. The obtained
average H and s mean values are presented in Table I. As
expected, the higher the window dimensions, the closer is the
value of the estimated fractal parameters to the actual ones.
Such an improvement of the results is paid in terms of com-
putation complexity and, as a consequence, of processing time.
In particular, the time elapsed for elaborating a 200 × 200 pixel
image with a 1.9-GHz personal computer moves from 3 s if we
employ a 3 × 3 pixel window, to 153 s with a 11 × 11 pixel
window. A larger window can be employed if computational
time is not a critical issue, and this is the case for a canonical
surface. However, in actual cases, the fractal dimension can
change across the considered area; in these cases, the larger
the sliding window dimensions, the higher is the correlation
for the fractal parameters estimated at adjacent points, thus the
lower the spatial resolution of the fractal parameters estimation
process. The latter implying that smaller fractal features can be
lost. In the following, both for the canonical and actual fractal
surfaces, we set the sliding window dimension to 9 × 9 pixels:
this value represents a convenient tradeoff between precision
and spatial resolution (and, obviously, processing time) for the
actual cases considered in this paper.

Once the window dimension has been chosen, it arises the
need of understanding how the fractal parameters are accounted
for in the SAR images. In the following, as far as the micro-
scopic scale is concerned, we present the dependence of the
algorithm results on their values. Therefore, we used the sam-
pled WM canonical fractal function as an input for the SARAS,
in accordance with point 3) of the framework presented in
Section II. The SAR image was then obtained via standard
SAR raw data processing, and the fractal parameters of the

Fig. 6. (a) Fractal dimension and (b) s parameter maps relative to the sim-
ulated SAR image of the precrisis scenario with 39.86 × 15.81 m2 azimuth-
slant range resolution.

images are retrieved in accordance with the fractal inverse tool
referred to at point 4) (Section II). To obtain multilook images,
a spatial averaging of 2 × 8 pixels was employed. We repeated
the SAR simulation for different values of the canonical surface
fractal parameters. In Fig. 2, we plot the fractal parameters
Dout and sout values estimated on the SAR signal versus the
input fractal parameters of the canonical profiles Din and sin.
In particular, in Fig. 2(a), it is shown that the fractal dimension
of the SAR image does not significantly change as a function of
the scene fractal dimension. Conversely, the sout values of the
SAR image increase almost linearly with the parameters sin of
the observed scene.

Such a result is particularly relevant because it allows ob-
taining an empirical relationship between SAR images and the
scene fractal parameters, extremely useful for the interpretation
of SAR images in a crisis scenario, as shown in the following
section.

VII. ACTUAL CASE STUDIES

The overall framework presented in the previous sections
form a core, whose implementation can be tailored for several
applications. In this section, we present some case studies with
a twofold objective: a comparison of our techniques with actual
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Fig. 7. (a) Three-dimensional representation of the Maratea region after the flooding, as seen by the ERS-1 SAR sensor (near range is on the bottom). Flooded
area is marked in the black oval. A close up of the area hit by the flooding (b) before and (c) after the event.

cases and the demonstration of its potentiality for working in
actual disaster monitoring.

A. Comparison With Actual SAR Images

The region of interest is the area of Maratea
(39◦59′N 15◦42′E), south of Italy, a coastal area surrounded
by steep mountains. A DEM of a 20× 20 km2 area, with a
20× 20 m2 pixel spacing was available for the considered
area, as well as an ERS-1 C-band SAR image, acquired in
descending orbit on January 30, 1996, with a view angle
of 24.88◦.

First, we used our DEM as input for the SARAS simulator,
in order to compare the simulated with the actual ERS-1
image. The DEM was interpolated via the FIT procedure on
a 3.99× 19.93 m2 spaced grid, in accordance with the ERS-1
acquisition geometry. A pictorial view of the interpolated DEM

is shown in Fig. 3(a), with an observation angle of 24.88◦, so
that it reproduces the scenario seen by an observer on the ERS-1
satellite.

In Fig. 3(b), the DEM grayscale representation is provided.
Note that the highest mountain (corresponding to the brightest
area) has a top altitude of 1506.45 m. Columns of the image
represent equi-azimuth pixels.

In order to use the presented DEM as input for the SARAS,
the description of the scales at the order of the incident wave-
length (5 cm for ERS-2 sensor) is needed. The fractal parame-
ters of a natural surface are independent of the scale at which
we measure them [11]; therefore, we retrieved the microscopic
fractal parameters from the DEM via the IGT. We present
the fractal dimension D and the s parameter estimated by the
reference DEM in Fig. 4(a) and (b), respectively. Note that the
s map allows an identification of topographical characteristics,
like rivers or mountains.
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Once the long- and short-scale characterization is provided,
it is possible to perform the SARAS simulation of the image
generated by the ERS-1 sensor.

The image obtained from the simulated raw signal via stan-
dard processing is presented in Fig. 5(a). The image is averaged
with a 2 × 10 multilook, so that its resolution in azimuth-slant
range is 39.86× 15.81 m2, which corresponds to an azimuth-
ground range approximately square pixel (39.86× 37.58 m2).

In Fig. 5(b) and (c), we present the simulated and the actual
ERS-1 images, respectively. A portion of the image was cut in
order to depict the region where both the data were available. A
visual comparison shows that the simulator is able to reproduce
the main characteristics of the SAR image, suggesting the use
of the SARAS as support for SAR actual image interpretation.
Note that the main differences between the two images are in
the sea and in presence of inhabited regions. This is due to the
fact that, in the presented simulation, we did not use an ocean
surface nor a city model.

As presented in the point 4) of Section II, we can estimate
the fractal parameters of the SAR image with a fractal inverse
tool (ITF), obtaining the maps of the fractal dimension and
of the s parameter for the SAR image presented in Fig. 6(a)
and (b), respectively. The presented results suggest the use
of the SARAS for simulating canonical scenarios to be used
as test-bed for the validation of change detection techniques.
Therefore, we simulated a crisis scenario relative to a flooding
of the area adjacent to the highest mountain of the region of
interest. The previous simulation is considered as the precrisis
scenario, and it is used as reference for fractal change detection
approaches, as detailed below.

B. Flooding

In the following, we present the potentiality of our frame-
work applied to the monitoring of flooding. We modified the
original DEM by creating a river’s spate in the valley pinpointed
by the black oval in Fig. 7(a). The mean difference between the
pre and postcrisis DEM in that area is about 30 m. A closeup
of the flooded region before and after the disaster is presented
in Fig. 7(b) and (c), respectively.

In order to appropriately simulate the presence of water in the
flooded region, we modified the microscopic roughness and the
dielectric parameters as well. As far as the microscopic fractal
parameters are concerned, in the areas affected by the flooding,
we set H to a typical value for the water surface (H = 0.75),
and we set s to one half of the value in the precrisis scenario.
As for the dielectric characterization, the area affected by the
flooding is assumed to have a dielectric constant of 20ε0 and a
conductivity of 1 S/m, which are typical values for extremely
wet terrain; the surrounding area is assumed to have a dielectric
constant of 4ε0 and a conductivity of 10−3 S/m, which are
typical of terrains with low water content [24].

The SARAS simulated image corresponding to the postcrisis
scenario is presented in Fig. 8. A visual comparison with
Fig. 5(a) shows that the user can visually recognize the area
hit by the flooding. Anyway, for actual cases, a quantitative
technique to identify the area involved in the phenomenon is
required, and its implementation is discussed in the following.

Fig. 8. Simulated 2 × 10 multilook ERS-1 C-band SAR image relative to
the postflooding scenario (near range is on the left) with 39.86 × 15.81 m2

azimuth-slant range resolution.

Therefore, the use of classical and fractal techniques is in
order. A quantitative comparison is possible if a ground truth
is available. Therefore, in order to define a reference map, we
exploited the SARAS facilities of simulating the SAR image in
the absence of speckle. Such an approach allows the definition
of the “ground truth” in the SAR image by differencing pre
and postcrisis intensity images in the absence of speckle and
the creation of the reference mask of Fig. 9(a), where flooded
regions are identified by white pixels.

Then, we tested the classical change detection technique
based on the differencing between SAR intensity pre- and post-
crisis images, obtaining a binary mask presented in Fig. 9(b).
A visual comparison between Fig. 9(a) and (b) shows that the
flooded area is well identified by the technique (we estimated
that the hit rate is 97.2%), but this is paid with an excessive false
alarm rate (11.2%) due to the fact that the multiplicative random
noise due to the speckle in correspondence of layover areas can
significantly change from a realization to another. Note that,
due to the peculiar distribution of the misclassified pixels, it is
not trivial to improve the technique performance via classical
postprocessing algorithms.

Then, we implemented a change detection technique based
on the fractal framework presented in the previous sections. In
particular, we used the ITF to retrieve the fractal parameters of
the pre and postcrisis scenario. In Fig. 9(c), we show a clas-
sification map obtained by the difference between the fractal
dimensions of pre and postcrisis scenes. Again, it is possible to
identify the flooded area with a good hit rate (83%), but again,
the false alarm rate is extremely high (15.4%).

Anyway, by observing Fig. 9(b) and (c), we note that the
distribution of misclassified pixels is completely different due
to the different causes that generate it. In fact, the image
intensity difference is very sensitive to the signal magnitude
changes; therefore, most of the misclassified pixels are grouped
in the layover areas (it is consistent with the fact that SAR
signal decorrelation increases in layover areas). Conversely, the
fractal dimension is more sensitive to gradients of the signal;
therefore, most of the noise is gathered in correspondence
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Fig. 9. (a) Reference classification map (“ground truth”). Classification maps obtained by (b) magnitude differencing, (c) fractal dimension differencing, and
(d) combined technique.

of the grazing angle areas, where the differences between
the side lobes of the layover areas create steep gradients.
Above considerations suggest to combine the obtained results
in order to get a significant improvement on the detection
performances.

A simple multiplication of the obtained masks allows delet-
ing most of the misclassified pixels, causing a strong reduction
of the false alarm rate. Such a combined technique leads to a
hit rate of 81.1%, with a false alarm rate reduced to 0.5%. A
further low-complexity processing can consist in a smoothing
devoted to throw out isolated misclassified pixels, obtaining an
improvement of the hit rate to 90.2%, paid with a false alarm
rate raised to 0.6%, corresponding to the classification mask
presented in Fig. 9(d). Fig. 9(d) suggests that the residual false
alarm error can be further reduced via simple postprocessing
algorithms.

Note that, by changing the thresholds used for the classifica-
tion maps, the results can slightly change. Anyway, the choice
of the thresholds is beyond the scope of this paper; it can be
done in accordance with the specific application, and it does
not change the essence of above-presented results.

In addition, note that the s information was not used because,
in this peculiar case, it does not bring a significant classifica-
tion improvement. This is mainly due to the fact that, due to
the particular topography, the s data and the image intensity
information are highly correlated.

VIII. CONCLUSION

Fractal geometry proved to be a powerful instrument in
representing natural surfaces, and its use in all the related
applications is quickly increasing. Earthquakes, floodings, and
volcanic eruptions change the geometrical properties of the
involved area. Identification of the affected areas requires in-
struments sensitive to geometrical properties. The SAR signal
is sensitive to both the resolution and the wavelength scales;
therefore, it is a good candidate for the scope.

In this paper, we presented how fractal concepts can be
used both for describing the formation of the SAR signal and
for extracting information from it. An overall framework was
presented, providing a flexible procedure whose implemen-
tation can be tailored on several disaster monitoring cases.
The combined use of direct and inverse chain gives scientists
involved in the extraction of information from SAR images a
powerful instrument. In particular, in this paper, main attention
was focused on applications related to the monitoring of areas
affected by a disaster.

The appropriate use of the framework permitted finding an
empirical relation between fractal parameters of a given surface
and its image. Such a result provides a great added value in
the interpretation of actual SAR images. As an example, it
can be possible to identify the area affected by a disaster by
discriminating the fractal parameters of the postcrisis scenario,
performing a SAR image classification.
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In this paper, the development of a change detection tech-
nique was provided. It is based on the use of a SAR raw-
signal simulator, whose outputs were compared with actual
case images with encouraging results. Then, a change detection
approach for the identification of a flooded area was presented
by combining the classical signal magnitude differencing tech-
nique and an innovative fractal technique, based on the differ-
encing of the fractal parameters of the pre- and postcrisis area.
The obtained results showed that the proposed combined tech-
nique leads to a significant performance improvement because
it exploits the complementary information extracted by the two
methods.

The presented framework is modular, and it allows quick tai-
loring of the algorithms to a specific situation; therefore, its use
in monitoring disasters is particularly attractive. The presented
studies are just examples of the potentiality of such a framework
to give added value products for disaster monitoring. The
tools presented in Section II can be appropriately combined in
different ways according to each peculiar situation, giving the
user the most adequate instrument, tailored on his needs.
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