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Abstract—In this paper, a model for radar images of fractal
(topologically 1-D) profiles is introduced. A twofold approach is
followed: on one hand, we analytically solve the problem whenever
small-slope profiles are in order; on the other hand, we present
a partly analytical and partly numerical setup to cope with the
general-slope case. By means of the analytical approach, we eval-
uate in closed form both the structure function and the power
density spectrum of the radar signal. An appropriately smoothed
(physical) fractional Brownian model (fBm) process is employed;
its introduction is justified by the finite sensor resolution. A fractal
scattering model is employed. It is shown that for a fractal profile
modeled as an fBm stochastic process, the backscattered signal
turns out to be strictly related to the associated fractional Gaussian
noise process if a small-slope regime for the observed profile can
be assumed. In the analytical–numerical framework, a profile with
prescribed fractal parameters is first synthesized; then, fractal
scattering methods (applicable to wider slope regimes with respect
to the previous case) are employed to compute the signal backscat-
tered toward the sensor. Finally, the power density spectrum of
the acquired radar image is estimated. The obtained spectra are
favorably compared with the theoretical results, and a parametric
study is performed to assess the overall method behavior.

Index Terms—Electromagnetic scattering, fractals, synthetic
aperture radar, radar, radar imaging.

I. INTRODUCTION

IN THE past decades, remote sensing instruments and corre-
sponding data-processing techniques have been remarkably

developed: a huge amount of remote sensing data relevant to
any part of the globe is now available. The new generation of
imaging sensors provides high-resolution data that could lead to
extract very valuable information; value-added products from
data obtained by remote sensing platforms can be of key rele-
vance for key applications in agriculture [1], [2], rural and urban
planning [3], and disaster monitoring and assessment [4], [5].
As a matter of fact, man-made objects can be identified on
radar data with spatial resolution of few meters or less [6], [7];
conversely, as far as geophysical applications are concerned, the
retrieval from microwave remote sensing data of reliable and
meaningful parameters relevant to observed natural surfaces is
an open issue of key importance.

In this paper, we model the microwave imaging process in
terms of the natural surface parameters (direct problem); the
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model is mostly developed in analytical form so that it can also
be employed to support the corresponding inverse problem, i.e.,
the automatic extraction of natural parameters from acquired
radar data, or, at least, to assess whether an image-processing
technique would preserve the information included in the ac-
quired data. Among different remote sensors, we focus on
the imaging ones, which generate synoptic views that provide
textural information on the sensed area; this is recognized
as valuable information being related to morphological and
geological features, land use, and social organization of the
observed scene.

The models that we introduce in this paper are based on the
fractal geometry. Indeed, it was proved that the fractal geometry
is the most appropriate mathematical environment to describe
the shape of natural scenes; in addition, this fractal description
is provided by employing a minimum number of indepen-
dent parameters [8], [9]. Among the fractal stochastic surface
models, the fractional Brownian model (fBm) provides the
best choice for the geometrical description of natural surfaces
[8]–[11]. However, fBm mathematical surfaces [9] present a
major disadvantage: they are strictly not differentiable. This
operation plays a fundamental role in almost any scattering
evaluation method, being the scattering process related to the
surface slope rather than to the surface height. Hence, to effec-
tively define the derivative of this class of surfaces, we need
to introduce physical fractals. The description of the fractal
models used throughout this paper is provided in Section II.
For the sake of simplicity and clarity, two (reasonable) major
assumptions are made in this paper, as discussed in the follow-
ing two paragraphs.

In this paper, we focus our attention on the (topologically)
1-D problem, assuming an fBm geometrical model for the
observed profile: this simplified environment allows us to
present our approach and emphasize the obtained results with-
out hampering the mathematical issues. As a matter of fact, the
extension to the (topologically) 2-D case is not straightforward:
isotropy issues on fractal surfaces should be taken into account,
thus making the mathematical framework quite involved; any-
way, this extension is the subject of current investigation by the
authors of this work.

The speckle effect is an important peculiarity of microwave
images and, more generally, of each coherent imaging system;
it is originated from the constructive and destructive interfer-
ence effects between individual plane waves reflected in each
resolution cell, and claims for a specific discussion whenever
fractal models are in order [12], [13]. However, in this paper,
we focus on the ideal (canonical) case of an infinite number of
looks so that the speckle effect can be ignored. This canonical
situation is quite well approximated, upon request of popular
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applications, by employing modern very high resolution sen-
sors that can provide, through appropriate averages on the
single-look products, nice radar images with a very high num-
ber of looks. Anyway, we are also working to consider the
single look case, which is the nice step to reach a complete
modeling of the microwave imaging process relevant to fractal
profiles.

In the open literature, the more exhaustive discussion on the
imaging of fractal surfaces is provided in [14] and [15], where
the imaging of fBm surfaces is investigated. The approach
therein presented is based on a linear approximation of the
image intensity as a function of the partial derivatives of the sur-
face: the underlying hypothesis is that the slopes of the observed
surface can be assumed to be small. However, in these previous
studies, a Lambertian scattering behavior is postulated. But the
choice of the electromagnetic scattering model used to compute
the field backscattered from a random rough surface must be
related to the geometric model used in describing the surface it-
self and to the wavelength of the incident electromagnetic field.
In particular, theoretical and experimental results [9], [16], [17]
demonstrated that the use of adequate scattering fractal models
strongly improves the accuracy in the evaluation of the signal
backscattered from fractal surfaces at microwaves frequencies.
Hence, in this work, appropriate fractal electromagnetic models
are used [9], and to the best of our knowledge, this is the only
work that present a completely fractal framework to study the
imaging of fractal objects.

In particular, we here present a twofold approach that pro-
vides, in the small-slope regime, an analytical closed-form
solution to the imaging problem; conversely, a model-based
numerical setup is used to analyze the general-slope case. In
Section III, we present the fractal electromagnetic model used
in this paper. In Section IV, we make a very short review of
what was already presented in the literature on the imaging
of fractal profiles and compare it to our approach. Concerning
our approach, we present some relevant results regarding the
characteristics of the radar image relevant to a fractal (fBm)
profile in the small-slope regime, showing how any radar image
can be related to a fractional Gaussian noise (fGn) process
[18], which is associated with the fBm process used to describe
the profile under analysis. Some notes on the extraction of
the profile fractal parameters from one radar image are also
presented.

Summarizing, the logical sequence dictating the develop-
ment of the first part of this paper is given as follows.

1) Solve the problem of the nondifferentiability of the fBm.
2) Find the resulting derivative process power density spec-

trum, and verify if it exhibits any power-law behavior.
3) Discuss via the power density spectrum if the radar image

can be considered as a fractal process to be linked with the
profile one.

4) Find the relation between the profile and the image power
density spectra. This relation can be exploited for retriev-
ing from the radar data the value of the fractal dimension
D relevant to the natural profile.

Finally, in Section V, we introduce a numerical setup that
is largely based on models and tools that have been recently

presented by the same authors [19]; this setup is first used to
positively validate the theoretical results we obtained in the
small-slope regime. Furthermore, in the general-slope case, the
proposed framework is shown to be a very powerful tool to
perform some relevant parametric studies on the validity of
the proposed approach. Concluding remarks are reported in
Section VI.

II. FRACTAL MODELS

Fractals are widely considered the most appropriate models
to describe natural surfaces [8]–[11]. Within this framework,
the fBm stochastic process is the most used surface frac-
tal model [10], [16], [20]; under some circumstances, fBm
realizations can be conveniently obtained by employing the
Weierstrass–Mandelbrot (WM) function, which is a continuous
but nondifferentiable function [9], [21], [22]. The fBm is de-
fined in terms of the probability density function of its height
increments: a stochastic 1-D process z(x) is an fBm profile if,
for every x and x′ it satisfies the following relation:

Pr
{
z(x) − z(x′) < ζ̄

}
=

1√
2πsτH

ζ̄∫
−∞

exp
(
− ζ2

2s2τ2H

)
dζ

(2.1)

where τ = |x − x′|. Equation (2.1) states that the increments of
an fBm exhibit a (stationary) Gaussian distribution with zero
mean and sτH standard deviation. Then, in the space domain,
the two real parameters that control the fBm behavior are given
as follows:

1) H , the Hurst coefficient (0 < H < 1), which is related
to the fractal dimension D by means of the relation D =
2 − H;

2) s, the incremental standard deviation, measured in
[m(1−H)], i.e., the standard deviation of the profile incre-
ments at unitary distance.

The fBm is not stationary, and its autocorrelation is given
by [9]

R(x, x′) = 〈z(x)z(x′)〉 =
s2

2
(
|x|2H + |x′|2H − |x′ − x|2H

)
(2.2)

where 〈·〉 stands for the statistical mean.
For a stochastic process with stationary increments, the struc-

ture function V (τ) depends only on the lag τ and is defined
as the mean square increments of elevation points placed at
distance τ , i.e.,

V (τ) =
〈
(z(x) − z(x′))2

〉
. (2.3)

The structure function plot is termed the variogram. By
employing (2.1), the structure function of an fBm profile can
be expressed in terms of the fractal parameters H and s as
follows:

V (τ) = s2τ2H (2.4)
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that in logarithmic form leads to

log V (τ) = 2 log s + 2H log τ. (2.5)

Thus, in a log–log plane, a linear behavior is obtained for the
structure function, with the slope being equal to 2H and the
ordinate intercept to 2 log s.

Evaluation of the fBm power density spectrum is defini-
tively not straightforward due to the fBm nonstationarity [9];
a convenient way to proceed would preliminarily require us-
ing appropriate space–frequency or space-scale analysis tech-
niques [9], [23]. The former approach is based on the use of
the Wigner–Ville spectrum, which provides a space-dependent
spectrum that is subsequently averaged over a suitable space
interval; the latter method is based on a wavelet space-scale
analysis, which provides a scale-dependent spectrum that is
subsequently averaged over a suitable scale interval. Indepen-
dently from the employed method, the same result for the fBm
power density spectrum S(k) is obtained, i.e.,

S(k) = Sok
−α (2.6)

where the spectral domain parameters are related to those
of the spatial domain by means of the following relation-
ships [9], [24]:

α = 1 + 2H = 5 − 2D (2.7)

S0 = s2 πH

cos(πH)
1

Γ(1 − 2H)
(2.8)

Γ(·) being the Gamma function. From 0 < H < 1, we get
the constraint 1 < α < 3, which defines the range of allowed
values for the fBm spectral exponent α. Note also that the
fBm spectral dependence (2.6) provides a linear plot in a
log(S)− log(k) plane, whose parameters are related to those
of the log–log representation introduced for the variogram.

Then, exploiting the linear dependence in the log–log planes
of the fBm power density spectrum S(k) and variogram V (τ),
we can, at least in principle, recover H and s by simply
performing a linear regression [19].

The fGn is (formally) defined as the derivative process of
the fBm: for the particular case of H = 0.5, we obtain the
derivative of the Brownian motion, i.e., a white Gaussian noise.
The mathematical fBm is strictly nondifferentiable, implying
that the definition of its derivative process claims for special
attention. To this end, a simple approach consists of smoothing
the fBm by means of an appropriate kernel and of discarding
the high-frequency contributions that are responsible for the
fBm nondifferentiability [18]. Hence, starting from the standard
fBm process z(x), we consider the functional zϕ(x), which is
described as follows:

zϕ(x) =

∞∫
−∞

z(x′)ϕ(x − x′) dx′ (2.9)

where ϕ is a test function. In particular, by assuming that ϕ ∈
C∞

0 (Ω), with Ω ⊆ R, is an open set, the functional defined by

(2.9) can be seen as a distribution, and the kth derivatives of zϕ

can be rigorously computed as follows [25]:

z(k)
ϕ (x) = (−1)k

∞∫
−∞

z(x′)ϕ(k)(x − x′) dx′. (2.10)

However, an infinitely differentiable kernel is not necessary,
for our purposes; hence, for the sake of simplicity, we select
ε > 0 and pick the following test function:

ϕ(x) =
{

1
ε , if x ∈ [0, ε]
0, otherwise.

(2.11)

We incidentally note that at this stage of our presentation,
the parameter ε is measured in meters, it can be arbitrarily set,
and it has a clear mathematical meaning; the choice of its value
becomes clear whenever its physical meaning is discussed in
the following sections.

By substituting (2.11) into (2.10) and computing the first
derivative of the process, we can write the derivative of the
smoothed process as

z′(x; ε) = ε−1 [z(x + ε) − z(x)] . (2.12)

Hence, the derivative of the smoothed process can be recog-
nized as a finite difference over the original fBm process. This
result should not be regarded as the usual finite difference ap-
proximation of the derivative, largely employed in engineering
applications: in fact, in the majority of cases, its use is justified
by the fact that the considered function is regular so that the
value of the finite difference is a good approximation of the
exact value of the function derivative; conversely, in the case of
interest, no exact value of the function derivative exists, with
the function being nondifferentiable. Accordingly, (2.12) is not
an obvious result and exhibits some useful properties. First, the
z′(x; ε) process turns out to be a stationary Gaussian process,
with μ = 0 and σ = sεH−1, as can be easily argued from the
pdf in (2.1). Moreover, we can evaluate the autocorrelation
function as the correlation between two increments of the
original fBm process, i.e.,

Rz′(τ ; ε) = 〈z′(x; ε)z′(x + τ ; ε)〉
= ε−2 〈z(x + ε)z(x + τ + ε) − z(x + ε)z(x + τ)

− z(x)z(x + τ + ε) + z(x)z(x + τ)〉 . (2.13)

The four terms in the brackets can be evaluated by using the
expression of the original profile autocorrelation [see (2.2)];
simple algebra shows that in this case, the terms in (2.2),
depending on the position cancel out, and the autocorrelation
of the process derivative turns out to be

Rz′(τ ; ε) =
1
2
s2ε2H−2

[(
|τ |
ε

+ 1
)2H

− 2
∣∣∣τ
ε

∣∣∣2H

+
∣∣∣∣ |τ |ε − 1

∣∣∣∣
2H

]
. (2.14)

Authorized licensed use limited to: Universita degli Studi di Napoli. Downloaded on July 16,2010 at 10:40:36 UTC from IEEE Xplore.  Restrictions apply. 



DI MARTINO et al.: IMAGING OF FRACTAL PROFILES 3283

It is interesting to verify that this function of the space
lag asymptotically exhibits an appropriate power-law behavior
whenever lags much greater than ε are taken into account. In
fact, for (τ/ε) 	 1, by expanding, up to the second order, the
first and the last term in the square brackets of (2.14), we obtain

Rz′(τ) ∼= s2H(2H − 1)|τ |2H−2. (2.15)

For a stationary isotropic stochastic process, the structure
function can be derived from the autocorrelation function [9];
in our case, we get

Vz′(τ ; ε) = s2ε2H−2

[
2 −

(
|τ |
ε

+ 1
)2H

+ 2
∣∣∣τ
ε

∣∣∣2H

−
∣∣∣∣ |τ |ε − 1

∣∣∣∣
2H

]
(2.16)

whose asymptotic behavior for large lags can, again, be empha-
sized by considering (τ/ε) 	 1, i.e.,

Vz′(τ ; ε) ∼= 2s2
[
ε2H−2 − H(2H − 1)|τ |2H−2

]
. (2.17)

With z′(x; ε) being a stationary process, we can evaluate
its spectrum, by employing the Wiener–Kintchine theorem, as
the Fourier transform (FT) of the following autocorrelation
function:

Sz′(k; ε)=
1
2
s2ε2H−2

∞∫
−∞

[(
|τ |
ε

+1
)2H

− 2
∣∣∣τ
ε

∣∣∣2H

+
∣∣∣∣ |τ |ε −1

∣∣∣∣
2H

]
e−ikτ dτ. (2.18)

It is very informative (and useful) to evaluate this spectrum
in closed form. However, this spectrum does not fall within the
class of functions whose FT is known in the Hilbert space of
square-summable functions L2(Ω), where Ω ⊆ R is an open
set. However, to compute the integrals in (2.18), it is possible to
use the generalized FT; in particular, the generalized FT of the
second term in (2.18) is given by [9], [26]

∞∫
−∞

∣∣∣τ
ε

∣∣∣2H

e−ikτ dτ = −ε−2H2Γ(1 + 2H) sin(πH)
1

|k|1+2H
.

(2.19)

Using basic FT properties (which are also valid for the
generalized FTs), we can easily evaluate the first and third terms
in (2.18). Substituting these results into (2.18) and using the
Euler formula, we finally get the power density spectrum of the
derivative process of the smoothed surface profile, i.e.,

Sz′(k; ε)=2s2ε−2Γ(1+2H) sin(πH) (1−cos(kε))
1

|k|1+2H
.

(2.20)

It is interesting to consider how this function asymptotically
behaves whenever spatial lags much greater than ε (i.e., kε �

2π) are taken into account. In this asymptotic case, (2.20) takes
the following relevant form:

Sz′(k) ∼= s2Γ(1 + 2H) sin(πH)
1

|k|2H−1
. (2.21)

Analysis of (2.20) and (2.21) leads to meaningful results.
First, by comparing the spectral exponent in (2.21) to that in
(2.6), it turns out that the fGn can be formally assumed to
be, asymptotically, a fractal with H ∈ [−1, 0], thus confirming
the intuitive remarks obtained in [27]; this formal assumption,
although tempting, is not mathematically acceptable because
if H /∈ [0, 1], an associated stochastic process whose fractal
dimension is D = 2 − H cannot be straightforwardly defined
[10], [18]. Accordingly, we only conclude that the proposed
fGn is a stationary Gaussian process and that it is self-affine
of parameter H [10]; due to the obtained H value range, a
Hausdorff–Besicovitch fractional dimension for this class of
processes cannot simply be defined. Furthermore, the process
whose spectrum has been evaluated in (2.20) only asymptot-
ically (i.e., for sufficiently low spatial frequencies) exhibits a
spectral power-law behavior. As a matter of fact, as soon as the
spatial frequency is of the order or greater than 2π/ε, the power
density spectrum oscillating behavior begins to dominate.

However, as we have quantitatively shown in this section,
the fGn process (which in the following is related to the radar
data) somehow inherits the fractal parameters of the original
fBm employed to describe the profile. In Section V, starting
from the above presented results, we discuss an imaging model
that makes use of the fGn process, and we provide some hints
on the retrieving of the fBm parameters from the corresponding
radar amplitude data.

III. SCATTERING MODELS

We note that the Lambertian scattering model is not always
adequate to describe the electromagnetic scattering from nat-
ural surfaces at microwaves: this statement was also proven
by theoretical and experimental studies [9], [17]. More specif-
ically, in most of the works available in the literature and
dealing with this subject, a heuristic function is used to describe
the scattering from an fBm surface [28], [29]. We believe
that each surface geometrical model calls for an appropriate
scattering method; hence, if an fBm model is assumed for the
observed surface, then we have to use appropriate fractal-based
scattering methods for the evaluation of the scattering, e.g., the
small perturbation method (SPM) approximation, the Kirchhoff
approach, or the extended boundary condition method [9], [16];
in any case, these fractal scattering methods exhibit a better
accuracy, with respect to classical methods, in the evaluation
of the field scattered by natural surfaces [9], [17].

Among the fractal-based scattering models available in the
literature, we select the SPM because it provides a very sim-
ple relation between the physical parameters (H and s) of
the observed surface and the field backscattered from it. The
SPM method is based on the Rayleigh hypothesis and on
a surface field series expansion; it can be used for surface
height variations that are small compared to the electromagnetic
wavelength [30]. A detailed discussion on the validity limits of
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this scattering model is beyond the scope of this work, and it
can be found in [9]: we are here mainly interested in using the
SPM model.

A monostatic radar is considered, thus, the normalized radar
cross section (NRCS) is evaluated. Using the SPM in conjunc-
tion with the fBm power density spectrum in (2.6), we obtain
the following expression for the NRCS of the profile [24]:

σ0
mn = 4k3 cos4 ϑ|βmn|2

S0

(2k sin ϑ)1+2H
(3.1)

where ϑ is the local incidence angle, k is the electromagnetic
wavenumber, and βmn are functions of the surface electromag-
netic properties and account for polarization issues with respect
to the transmitting and the receiving antennas.

Note that the fractal parameters S0 and H used in (3.1)
rigorously refer to the microscopic description of the profile,
i.e., they are those relevant to spatial scales smaller than the
radar resolution. As a matter of fact, some natural surfaces
may present different fractal parameters at different observation
scales (multifractals); this is physically recognized as an effect,
at different scales, of different formation mechanisms on the
Earth’s roughness [8] (wind or sea erosion, tectonic move-
ments, and so on). For the sake of simplicity, in this paper, we
focus on fractal profiles presenting the same fractal parameters
at every scale. However, some more considerations on this issue
will be provided in the following section.

IV. FRACTAL IMAGING MODEL

In this section, we present a model for the imaging of fractal
profiles whose geometric description is detailed in Section II.
The expression for the image intensity can be approximated as
done in [15], i.e.,

i(x, y) ∼= a0 + a1p(x, y) + a2q(x, y) (4.1)

where p(x, y) and q(x, y) are the partial derivatives of the
surface with respect to the range and azimuth directions, respec-
tively, and a0,1,2 are the coefficients of the Mac–Laurin series
expansion of i(x, y) in terms of p(x, y) and q(x, y). However,
p(x, y) and q(x, y) nowhere exist for fractal surfaces, and only
a formal use of the partial derivatives of the surface can be
proposed [15].

Alternatively, a sufficiently smoothed approximation of the
sensed fBm surface, allowing the existence of the partial deriv-
atives, is called for. In remote sensing applications, but more
generally, in all engineering matters, the use of the smoothed
process is not only desirable, but also necessary. Two different
parameters establish the scales of interest for the definition of
the physical fractal, i.e., of the considered smoothed process.
The first parameter is the wavelength λ of the electromagnetic
field used to sense the scene: as a matter of fact, objects with
size lower than a fraction of this wavelength do not contribute
significantly to the generation of the backscattered signal [9],
[24]. Accordingly, we can introduce a first smoothing on the
surface, where the value of ε to be included in (2.11) is set
equal to a fraction of λ. However, to set the small scale limits
as well, the sensor resolution Δx must be taken into account:

as a matter of fact, the observed scene is filtered according to
the sensor impulse response, and scales smaller than that of
the resolution do not significantly contribute to the formation
of the final mean intensity image, with their overall effect
being apparent only via the speckle effect. This allows us to
conveniently employ the fBm smoothed process presented in
the Section II: the smoothing process finds here a physical
counterpart in the band-limiting operation introduced by the
role of both the signal wavelength and the radar resolution. In
particular, if Δx 	 λ as it is the case for radar remote sensing,
we can directly work on the following process:

z(x;Δx) =

∞∫
−∞

z(x′)ϕ(x − x′) dx′ (4.2)

where ε in (2.11) has been set equal to the sensor resolution cell
size Δx.

If we assume that the slopes of the observed profile are
adequately small, we can expand the SPM expression of the
backscattering coefficient (3.1) into a Mac–Laurin series. Then,
taking into account the above reported considerations on the
sensor resolution and the fact that we are considering a (topo-
logically) 1-D profile, we get

i(x;Δx) ∼= a0 + a1p(x;Δx) (4.3)

wherein, thanks to the results presented in the previous sections,
we can state that p(x;Δx) is the process z′(x;Δx) defined
in (2.12). Equation (4.3) states that the image inherits the sto-
chastic behavior of this process, i.e., it is Gaussian distributed,
with μ = a0 and σ = a1sΔxH−1, as can easily be argued by
combining the results obtained in Section II with (4.3). It is
interesting to note that the expression in (4.3) allows us also
(if it is the case) to introduce a two-scale fractal model, based on
two different sets of fractal parameters, at the microscopic and
macroscopic scales, respectively. As a matter of fact, derivation
of (4.3) shows that while p(x;Δx) is dependent on the fractal
parameters at radar resolution scale, the constants a0 and a1

depend on the fractal parameters of the surface at scales lower
than the resolution one, as anticipated in Section III. Note that
the presented model, if required, can be used in combination
with any scattering diagram: however, only in the fractal case
will the coefficients a0,1 directly depend on the fractal parame-
ters of the observed profile.

In addition, a combined use of the expression in (4.3) with
the results presented in Section II provides the following ex-
pressions for the structure function VI and the power density
spectrum SI of the image intensity:

VI(τ ;Δx) = a2
1Vz′(τ ;Δx) (4.4)

SI(k;Δx) = a2
1Sz′(k;Δx). (4.5)

These expressions can be rendered in closed form (both in
the spatial and the spectral domains) by employing results that
we obtained in the previous sections for the structure function
and power density spectrum of the derivative of the smoothed
profile. In particular, (2.16) and (2.20) must be substituted
into (4.4) and (4.5) to get the radar image structure function
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Fig. 1. Log–log variogram of the mathematical fractal profile (full line) and
of the derivative of its physical counterpart (dashed line). H = 0.95; s =

0.01 m(1−H); Δx = 5 m; and a1 = 10.

Fig. 2. Log–log plot of the power density spectrum of the mathematical fractal
profile (full line) and of the derivative of its physical counterpart (dashed line).
H = 0.95; s = 0.01 m(1−H); Δx = 5 m; and a1 = 10.

and spectrum, whereas (2.17) and (2.21) must be substituted
to get their asymptotic (for large lags or small wavenumbers)
counterparts.

Log–log plots of the structure function and power density
spectrum of the image are shown in Figs. 1 and 2, respectively;
for reference purposes, in each figure, the plots of the corre-
sponding function relevant to the profile are also reported.

A comparison with already existing results is in order. As
far as the parameter regulating the power density power-law
decay of the image is concerned, we observe that the result
shown in (4.5) is analogous to the one obtained in [15] only
under the asymptotic limit (small spatial frequencies, i.e., large
scales), where Sz′ is provided by (2.21). As a matter of fact,
the formal use of the surface derivatives in [15] allows working
by rigorously setting ε = 0: the discussion we introduced leads
to easily recognize that this setting implies to be always under
the regime of validity of the aforementioned asymptotic expres-
sions. In any case, also in the asymptotic limit, we here get a
different value, with respect to [15], for the other parameter (the
multiplicative constant) characterizing the power density.

More precisely, by looking at (4.5) and (2.20), we can affirm
that the spectral behavior of a radar image is, in general, no
longer a power-law one and only the case of spatial frequencies

for which it is possible to consider (2.21) would suggest a
Hurst coefficient of the image HI equal to HT − 1, with HT

being the Hurst parameter relevant to the observed scene. As
already mentioned in Section II, this asymptotic result is also in
agreement with the observation made in [27], suggesting that
the Hurst parameter, upon differentiation, is decreased by one.
Nevertheless, as we already argued above, the possibility of
defining a fractal dimension for such a process is questionable.
Moreover, evaluating the image structure function and power
density spectrum allows defining what can be obtained by
applying to the radar image any algorithm designed to estimate
the fractal parameters of a fractal profile.

Some considerations on the retrieval of the fractal parameters
of the observed profile from the image are now in order. As a
matter of fact, we can conveniently make use of the relations
(4.4), (4.5), (2.16), (2.17), (2.20), and (2.21). As shown in
Section II, the fractal parameters estimation techniques for an
fBm are based on one linear regression on log–log plots of
the variogram or of the power density spectrum. This simple
technique cannot be directly used on the image. In particular, it
is evident that if we use the general expressions obtained from
(2.16) and (2.20), a linear regression in the log–log plane is
no longer possible. Anyway, very often for popular radar data,
the asymptotic expressions obtained from (2.17) and (2.21) can
be used: in this case, the structure function does not exhibit a
power-law behavior, while the power density spectrum exhibits
this type of behavior for low wavenumbers, which turns out to
be the band of interest to recover the fractal parameters via a
standard, and simple, linear regression procedure applied in the
log–log plane.

V. NUMERICAL SETUP

In this section, a numerical framework based on reliable
direct geometric and electromagnetic models is used to analyze
the imaging process of a generic 1-D fractal profile without the
need of assuming any particular hypothesis on its slope. In this
elaboration chain, some models and tools recently presented by
the authors are also used [19].

The first step is the generation of the fractal fBm profile. This
is achieved by using the WM function as detailed in [9], [21],
and [22]. The WM function can be seen as a superposition of
an infinite number of sinusoidal tones, i.e.,

z(x) = B

∞∑
p=−∞

Cpν
−Hp sin(k0ν

px + ϕp) (5.1)

where B (in meters) is an overall amplitude scaling factor,
k0 (in units per meter) is the wavenumber of the fundamen-
tal component, ν is the seed of the geometrical progression
accounting for spectral separation of consecutive components
of the surface, Cp and ϕp regulate the amplitude and phase
behavior, respectively, of the pth tone, and H is the Hurst
coefficient. In order to obtain a random WM function, the
coefficients Cp and ϕp have to be random, and the usual choice
is a normal distribution for Cp and a uniform distribution in
[−π, π) for ϕp.

The WM random function is a predictable random function,
and this greatly simplifies the profile synthesis that can be
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TABLE I
LIST OF THE PARAMETERS USED IN THE SIMULATIONS AND SUMMARY OF RESULTS

performed by acting on the WM random parameters. The
connection between WM functions and fBm processes can be
established by equating the spectral power of the WM and of the
fBm in appropriate spectral intervals [9]. Furthermore, to obtain
a physical WM, it is mandatory to limit the summation extent
in (5.1) to a finite number of tones, dictated by the minimum
and maximum scales of interest, as discussed in Section IV
(see also [9]).

Once a realization of the profile has been synthesized, we
evaluate its reflectivity. We approximate the profile through
facets whose projection on the ground is equal to the sensor
resolution Δx, and for each facet, we evaluate the backscattered
signal by using (3.1). As previously mentioned, the geometrical
model used in this section is based on the assumption that the
observed profile shows the same fractal parameters at all the
scales of interest and, in particular, at scales greater or lower
than the radar resolution. The inputs for the profile reflectivity
evaluation are given in terms of sensor resolution, sensor height,
antenna beamwidth, and radar look angle: through these para-
meters, the simulation software is able to evaluate the extension
of the scene and the number of facets.

The final step is the estimation of the power density spectra
of the original profile and of the computed backscattered signal;
these spectra must be compared with the analytical results
presented in closed form in the previous sections. Note that
the evaluation of these power-law spectra is not a trivial issue
because they are subject to extreme leakage and high variance
problems [31]. Among the techniques used to effectively re-
trieve this type of spectra, we chose the Capon filtering [32].
Nevertheless, the very high and low frequency regions of the
estimated spectra cannot be reliably evaluated [32]. The main
results of this analysis are presented in the following.

In Table I, we report the parameters used in all the sim-
ulations presented hereafter. In all these simulations, the VV
polarization case has been assumed: for the employed values of
the fractal parameters, any change of the polarization does not
significantly affect the obtained results. In all the subsequent
figures presenting the simulation results, the plots are appro-
priately normalized to simplify the comparison of the spectral
slopes.

The first elaboration is relevant to a case in which we can
safely adopt the small-slope hypothesis [9], [16]. Fig. 3 shows
that the profile simulation technique that we employed is a
reliable one and that the fit between the estimated and the
theoretical spectrum of the image is very good. Similar good

Fig. 3. Theoretical spectra of the surface (long dashed) and of the image (full
line) versus the estimated ones (dotted and dash dot, respectively). See case 1
of Table I for the employed parameters.

results hold for different profiles whose corresponding plots are
not reported here.

In Figs. 4–6, some relevant simulations for different values
of the fractal parameters are reported: in these simulations,
the small-slope hypothesis is no longer strictly satisfied [9],
[16]. Accordingly, a mismatch between the experimental and
theoretical results now appears.

A major result of our paper is to provide the theory that
allows retrieving the fractal profile spectral slope by directly
working on its microwave image. Within this framework, re-
sults in Table I are able to provide quantitative indicators of the
agreement between theoretical and experimental results; note
that the slope of the obtained spectra is here estimated via a
simple linear regression algorithm. Furthermore, in Table I, the
goodness of fit between the experimental image power density
spectrum and its linear fitting is provided: this is defined as the
square distance between the experimental and the fitted curve
and can then be interpreted as a quantitative measure of the
degree of linearity of the retrieved spectra.

In Figs. 7 and 8, we investigate the role of radar resolution in
the imaging process. The lower Δx is, the higher the standard
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Fig. 4. Theoretical spectra of the surface (long dashed) and of the image (full
line) versus estimated ones (dotted and dash dot, respectively). See case 2 of
Table I for the employed parameters.

Fig. 5. Theoretical spectra of the surface (long dashed) and of the image (full
line) versus estimated ones (dotted and dash dot, respectively). See case 3 of
Table I for the employed parameters.

deviation of the slope process will be (i.e., σ = a1sΔxH−1,
where the exponent of Δx is always negative), where this
behavior is more evident for lower values of H . Hence, in
the two last columns of Table I, we report results obtained for
H = 0.55. Comparison of the goodness of fit values relevant to
cases 4, 5, and 6 confirms that the higher the radar resolution is,
the more evident the nonlinear behavior exhibited by the image
power density spectra will be.

Fig. 6. Theoretical spectra of the surface (long dashed) and of the image (full
line) versus estimated ones (dotted and dash dot, respectively). See case 4 of
Table I for the employed parameters.

Fig. 7. Theoretical spectra of the surface (long dashed) and of the image (full
line) versus estimated ones (dotted and dash dot, respectively). See case 5 of
Table I for the employed parameters.

VI. CONCLUSION

Fractal geometry and scattering models were widely proved
to be powerful instruments to represent natural surfaces and
their scattering behavior, and their use in all the related appli-
cations is quickly increasing.

In this paper, we have presented a mathematical model for
microwave imaging of fractal profiles. The model has been
obtained in closed form for small-slope profiles, whereas a
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Fig. 8. Theoretical spectra of the surface (long dashed) and of the image (full
line) versus estimated ones (dotted and dash dot, respectively). See case 6 of
Table I for the employed parameters.

partly numerical approach has been employed to present the
general case.

In particular, the logical sequence, and its main outcome,
followed in the first part of this paper is given as follows.

1) To solve the problem of the nondifferentiability of the
fBm, we introduced a smoothed version of the imaged
profile; this version, with the kernel considered in the
filtering step, leads to a finite-difference derivative.

2) We demonstrated that the resulting derivative process
shows a power-law spectrum only asymptotically, for low
spatial frequencies.

3) With the spectral exponent being out of the range of
allowed values for fractal profiles, we obtained that a
fractal dimension for the derivative process cannot be
defined in a simple way, i.e., linking it to the value of
the Hurst parameter of the profile.

4) We found the relation between the Hurst parameter of
the profile H and the spectral exponent relevant to its
derivative process. This relation can be exploited for the
retrieving of H .

To study the general-slope case, we developed and presented
a numerical framework based on reliable direct geometric and
electromagnetic fractal models, which allows the simulation of
any fractal profile of prescribed fractal parameters along with
the evaluation of the signal backscattered to any prescribed
microwave radar. From this numerical study, it turns out that
the spectral behavior of the backscattered signal is no longer a
power-law one, a definition of the image fractal dimension is
not straightforward, and in any case, it cannot be analytically
related to the fractal dimension of the sensed profile. This
numerical framework also allowed us to validate the theoretical
results that we presented for the small-slope case.

The twofold approach that we presented leads to the con-
clusion that the self-affine parameter H of radar images is
constrained in a range of values that do not allow a simple
fractal dimension evaluation. However, a relation between the
fractal parameters of the original profile and the obtained image
exists, and in the small-slope case, it was analytically obtained
in closed form. Finally, in Section IV, we discussed how the
obtained formula can be used in the definition and design of
appropriate inversion techniques.

In conclusion, the models and the mathematical framework
presented in this paper have provided a background to enhance
the understanding of natural features behavior in radar data and
to develop in the near future new model-based applications on
remote sensing data relevant to natural scenes.
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