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Abstract
In this paper an innovative technique for the extraction of natural surfaces geomorphologic 
parameters from SAR data is presented and applied for volcano monitoring purposes. The 
observed surface is modeled as a fractal two-dimensional stochastic process. A theoretical 
framework for the analysis of the SAR imaging process is outlined. An algorithm founded 
on this imaging model is presented, allowing the retrieving of the point by point fractal 
dimension of the imaged surface. Significant results regarding the application of the 
proposed technique to the case study of the Somma-Vesuvius volcanic complex are shown, 
along with preliminary comments regarding the comparison with ground truth maps of the 
surface fractal dimension.
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Introduction
The analysis of Synthetic Aperture Radar (SAR) images of natural surfaces is becoming more and 
more relevant thanks to the development of remote sensing systems in the last few years. The new 
generation of sensors marked a huge increase in the resolution of microwave images of the Earth. 
TerraSAR-X and COSMO-SkyMed are providing SAR data with the remarkable resolution of 1 
x 1 m2 in the high resolution spotlight operational mode. Owing to this development of remote 
sensing systems, new possibilities arise with regard to the extraction of geomorphologic surface 
parameters from SAR images. In particular, as for natural surfaces, until now it was only possible 
to identify macroscopic topological features (mountains, rivers, seas, etc.) of the observed areas, 
roughly distinguishing them from urban ones: with the new generation sensors the extraction of 
meaningful stochastic parameters of the observed surface at microscopic level is now in order. 
In this paper we present an innovative technique for the analysis and interpretation of SAR 
images of natural areas. The observed natural surface is modeled as one realization of a fractal 
two-dimensional stochastic process [Mandelbrot, 1983; Falconer, 1990]: for such a process, the 
key parameter to be estimated from the image is the fractal dimension D of the imaged surface. 
In fact, this parameter is strictly related to the roughness and geomorphologic characteristics of 
the surface and its knowledge can be of key importance for a wide range of applications as 
the prevention and monitoring of environmental disasters, land classification, the rural and 
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urban planning and so on [Turcotte, 1997], [Peitgen and Saupe, 1988]. In the open literature, 
fractal models and tools are gradually spreading throughout the SAR community. A pioneering 
work on such a type of modeling was afforded for the optical case in [Kube and Pentland, 
1988]. In [Di Martino et al., 2008] some of the authors proposed a change detection technique 
based on the variogram analysis applied to simulated SAR images. In this case, however, the 
SAR image parameters retrieving was performed in an heuristic way. From that work the need 
to develop an analytical model to link the fractal surface parameters directly to the SAR image 
characteristics arose. The modeling of the radar imaging of a topologically one dimensional 
(1-D) fractal profile was proposed in [Di Martino et al., 2010] and its extension to the two-
dimensional case was outlined in [Di Martino et al., 2009; Di Martino et al., 2010a]. It is worth 
stressing that extension from the 1-D to the 2-D case is definitively not trivial: as a matter of fact, 
SAR images - due to the particular side-looking radar acquisition system - exhibit an intrinsic 
asymmetry in the range and azimuth directions. In this paper we present a novel technique for 
the retrieval of the fractal dimension D of the observed surface based on an appropriate spatial 
filtering of the amplitude SAR image, whose theoretical rationale was presented by the authors 
in [Di Martino et al., 2010a]. Moreover, the application of such a type of processing to an 
actual SAR image of a volcanic complex is presented for the first time; the same type of fractal 
analysis is performed on the DEM (Digital Elevation Model) of the area of interest and the 
fractal dimension maps relevant to the SAR image and to the DEM are compared. This type of 
analysis is here performed for the first time on actual data.
In the following sections we present the theoretical framework and the methodological setup 
of the proposed approach. Furthermore, a completely automatic SAR image processing aimed 
to the extraction of the point by point fractal dimension of the observed scene is detailed. The 
retrieving algorithm is applied to a TerraSAR-X image of the Somma - Vesuvius volcanic 
complex and a map of the fractal dimension of the observed scene is obtained. Moreover, in the 
final section of the paper a comparison with the results obtained performing the same type of 
fractal analysis on the ground truth (DEM) data relevant to the area of interest is presented for 
the first time. The performed analysis, besides providing geomorphologic information useful for 
the study of geodynamic phenomena, shows the reliability of such a type of fractal processing 
that could be used also to verify and improve the accuracy of Digital Elevation Model generation 
procedures.

Theoretical Framework
It is widely recognized that fractal models represent the best way to describe the irregularity 
of natural scenes [Mandelbrot, 1983; Franceschetti and Riccio, 2007]. Among this kind 
of models, we choose the regular stochastic fBm (fractional Brownian motion) process 
that completely describes natural surfaces by means of two independent parameters: the 
Hurst coefficient, H (which is linked to the fractal dimension by the simple relation D=3-H) 
and the standard deviation of surface increments at unitary distance, s [m1-H]. The process 
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The power density spectrum of the isotropic two dimensional fBm process exhibits an 
appropriate power-law behavior [Mandelbrot, 1983; Falconer, 1990; Franceschetti and 
Riccio, 2007]:

S k S k 30= -a 6 @^ h
where in S0 and α are functions of the fractal parameters.
In order to retrieve the fractal dimension of a natural scene from its SAR image we 
need a model which describes the relation between the surface and its final amplitude 
image. This kind of imaging model was presented by the authors in [Di Martino et al. 
2009]. The proposed model is based on the assumption of a small slope regime for 
the observed surface: if this is the case, the image intensity comes out to be a linear 
function of the partial derivative of the surface evaluated along the range direction.
The expressions of the autocorrelation functions of the SAR image and of the Power 
Spectral Densities (PSDs) of two cuts of the image in the range and azimuth directions 
respectively, have been evaluated by the authors in [Di Martino et al., 2009]. The PSDs 
of the azimuth and of the range cut of the SAR image show very different behaviors, 
thus highlighting an intrinsic asymmetry in the structure of SAR data, which is also 
intuitively referable to the particular acquisition geometry typical of a side looking 
mono-static radar. In particular, the spectrum of the image range cut, in an appropriate 
range of sufficiently low spatial frequencies, presents a power law behavior - thus 
showing on a log - log plane a linear behavior with a slope related to the Hurst coefficient 
H of the observed surface. In fact, the expression of the PSD of the range cut of a SAR 
image, for adequately low wavenumbers, turns out to be [Di Martino et al., 2009]:
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where ky is the wavenumber of the range cut of the image and �(�((·) is the Euler Gamma 
function. Note that the expression in Equation 4 is in accordance with the PSD obtained 
in [Di Martino et al., 2010] for the image of a one-dimensional fractal profile, where 
analogous hypothesis were assumed about the surface slopes and the considered range of 
spatial frequencies.
Comparing Equation 4 with the expression of the PSD of the surface in Equation 3, it can 
be inferred that the slope of the spectrum relevant to a range cut of a SAR image is equal 
to that of the imaged surface, assuming that the Hurst coefficient is decreased by one.

Methodological Setup
In order to retrieve the fractal parameters starting from a SAR image, we can perform the 
analytical inversion of the presented theoretical model.
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In particular, starting from Equation 4, it is possible to implement linear regression 
algorithms on the spectrum of range cuts of the image in a log - log plane, thus retrieving 
the fractal dimension, according to the scheme presented in Figure 1. 

Figure 1 - Block diagram of the extraction of the fractal dimension.

In order to implement the proposed procedure, we developed a software that, by means of a 
sliding window spanning the entire image, provides the corresponding fractal map, i.e. a matrix 
of the point by point fractal dimension relevant to the observed surface.
The implemented algorithm extracts the local fractal dimension of the imaged surface working 
on homogenous patches of the SAR image and iterating the procedure on the whole image, 
through a moving window, whose dimension can be set by the user according to its specific 
needs, resulting from a trade-off between accuracy and resolution of the output fractal dimension 
map. In particular, the algorithm selects in each window a fixed number of range cuts that are 
sufficiently spaced from each other to be considered uncorrelated. Then the spectra of these 
cuts (whose number can be again chosen by the user, as a trade-off between accuracy and 
computation time) are evaluated using a Capon estimator [Austin T. et al., 1994]. Finally, these 
spectra are averaged and a linear regression is performed on this mean PSD. The question of the 
spectrum estimation is not a trivial one: as a matter of fact, power-law spectra introduce unique 
difficulties in the spectral estimation as they suffer leakage effects and high variance problems, 
yielding a spectral estimate which can deeply modify the original spectral slope. The Capon 
estimator strongly reduces the above-mentioned negative effects and is particularly well suited 
when facing short data records: this characteristic is particularly important in our case, in which 
the number of samples for the spectral estimation is limited by the sliding window dimension. 
The goal is to reduce as much as possible the sliding window dimension in order to improve the 
resolution of the final map, preserving at the same time the accuracy of the estimation. To this 
aim, an experimental analysis to find the best values for the Capon estimator parameters (filter 
length and range of frequencies to use) has been performed. For a sliding window shortened 
up to 35x35 pixel the best Capon filtering length is found to be equal to 0.3*N (where N is the 
number of considered samples which in this case is equal to 35) and the frequency cut is done at 
the Nyquist frequency [Di Martino et al., 2011].
The final result of the proposed elaboration is a map of the fractal dimension of the observed 
scene: the resolution of this map depends on both the resolution of the input image (the higher  
the resolution of the image, the better the resolution of the map) and the dimension of the 
estimation window. 
Finally, some comments about the speckle phenomenon, which is responsible for the well-known 
salt and pepper effect on SAR amplitude images, are in order. As a matter of fact, for the fractal 
case of interest the spatial scales involved by the speckle are mainly those of the order 
of the sensor resolution, hence in the wavenumber domain the high frequency range of 
the image spectrum is degraded. In fact, looking to the PSD in Equation 4 it is easily 
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recognized that in this region of the spectrum the power of the signal is significantly 
lower than in the low frequency region. However, our algorithm performs the linear 
regression in a range of spatial frequencies in which the spectrum is not significantly 
affected by the speckle.
By means of such a type of filtering different applications can be carried out. In the next 
section, an interesting study case relevant to the Somma- Vesuvius volcanic complex 
area is shown. In fact, concerning this natural scenario, both a TerraSAR image and 
a Digital Elevation Model (DEM) of the Somma - Vesuvius volcanic complex are 
available. Therefore, it is possible to apply to the SAR image the described algorithm in 
order to retrieve the fractal map of the area and compare it to the fractal map obtained 
from the DEM. 

The case study: the Somma - Vesuvius volcanic complex area
In this section the results of the application of the processing described in the previous section to 
a SAR image of the Somma - Vesuvius volcanic complex (close to Naples in Italy) are presented, 
together with the comparison with the relevant ground truth. This second task is not a trivial one: 
as a matter of fact, the geometrical differences (resolution and scene orientation) between the 
SAR image and the DEM of the area of interest should be taken into account. Furthermore, the 
presence of artifacts in the DEM, probably due to the particular interpolation technique used for 
its generation, significantly complicates the analysis.
 
Application to the TerraSAR Image of Somma - Vesuvius volcanic complex
In order to show the potentialities of the innovative SAR image electromagnetic and fractal 
based post-processing proposed in this paper, in the following paragraph the algorithm is applied 
to a TerraSAR image of the Somma - Vesuvius volcanic complex area.

Figure 2 - TerraSAR Image of the Somma-
Vesuvius volcanic complex.

The characteristics of the starting stripmap SAR image (Fig. 2) are the following: dimensions 
3251x2820, resolution 3m x 3m, VV polarization. As said in the previous section, the choice 
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of the sliding window dimension used for the spectral estimation arises from a trade-off 
between the resolution of the final map, the accuracy of the fractal dimension (D) estimation 
and the computational complexity. In this case, being the resolution of the TerraSAR image 
high, the sliding window dimension is set equal to 51x51 pixel, i.e. not very small, in order 
to guarantee the accuracy of the estimation of D. 
Some considerations about the obtained fractal map (Fig. 3) are in order.

Figure 3 - Fractal Map relevant to the Somma-
Vesuvius volcanic complex.

In Figure 3 the fractal map relevant to the SAR image of the Somma - Vesuvius 
volcanic complex (Fig. 2) is shown. It contains the point by point estimated D values. 
The fractal map present a range of values of the fractal dimension equal to 1.56 < D 
< 2.48 and a mean value equal to Dmean= 2.2 with a standard deviation equal to 0.08. 
As seen in the first section, a fractal object has a fractal dimension D: 2 < D < 3, but 
natural surfaces usually show a persistent behavior that is 2 < D < 2.5 [Franceschetti 
and Riccio, 2007]. Therefore, the estimation of D is consistent with the theoretical 
assumptions. Concerning the inferior limit, in some areas of the fractal map D presents 
values smaller than 2 (in the grey level palette of Figure 3 the grey levels associated 
from the minimum D value to the maximum D value are reported and a white line is 
set in correspondence to D=2). This can be explained considering that, as we can see 
in Figure 2, some layover effects are present in the TerraSAR image. Obviously, this 
phenomenon generates non-fractal features on the amplitude image, and, accordingly, 
in these zones the algorithm recognizes non fractal areas. Moreover, at the left upper 
corner of the fractal map, also some buildings, that in the SAR image appear as brilliant 
points, are identifiable as dark spots on the fractal map. In other cases, the areas where 
the fractal dimension D is less or equal to 2 could be also interpreted as the surface 
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signature of particular tectonic processes as faulting or caldera structural formation. So, 
the occurence of different fractal dimensions could be used as an indicator in order to 
discriminate the occurrence of different geodynamic processes during the natural evolution 
of a volcanic complex.

Comparison with the ground truth
In order to compare the fractal map obtained from the TerraSAR image with the ground 
truth relevant to the scene under survey, a Digital Elevation Model (DEM) of the Somma 
- Vesuvius volcanic complex area is used.
The DEM, obtained through aerophotogrammetry, has a resolution of 5mx5m and is a 
mosaic of 4 pieces with dimensions 711x564 pixel.
The first task consists in matching the TerraSAR image and the DEM. To this end, the 
TerraSAR image (already cut out so that the covered geographic area is the same) must 
be rotated and resampled. The rotation is deduced from the geographic coordinates, while 
for the sampling is used the nearest neighbor method, as other interpolation algorithms 
could significantly invalidate the fractal features of the image. Finally, the modified SAR 
image has the same resolution of the DEM. To this one, our post-processing is applied first 
with the same statements of the previous case (same sliding window dimensions and same 
filtering) in order to compare the results and then with a smaller sliding window in order to 
obtain a finer resolution for the fractal map.

Figure 4 - Factal map relevant to the resampled 
SAR image of Somma-Vesuvius volcanic com-
plex with a sliding windows of 51x51 pixel.

Figure 5 - Fractal map relevant to the resam-
pled of Somma-Vesuvius volcanic complex with 
a sliding windows of 35x35 pixel.

The fractal statistics of the map in Figure 4 are: 1.8 < D < 2.67, Dmean=2.3, standard deviation 
equal to 0.1. Comparing the last ones with those of the previous case, it can be deduced 
that a small variation of the fractal features of the SAR image is present, because of the 
geometrical transformation carried out. In Figure 5 the fractal map obtained using a smaller 
sliding window (35x35 pixels) is shown. As the resolution is better and the fractal statistics 
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remain essentially the same (1.83 < D < 2.59, Dmean=2.3, standard deviation equal to 0.1), 
leading us to use this last dimension of the sliding window for the comparison with the 
ground truth. 
The presented fractal dimension estimation algorithm is applied to the DEM (Fig. 6), taking 
into account that the regression in this case is done on the spectrum in Equation 3. Hereafter, 
the obtained fractal map of the DEM is presented together with some considerations.

Figure 6 - DEM of the Somma-Vesuvius volcanic 
complex.

Figure 7 - Fractal relevant to the previous 
DEM.

The fractal map shown in Figure 7 presents, in some points, characteristics rather different 
from those obtained from the SAR image and from those that it would have if the DEM 
were perfectly fractal. This can be explained considering that the DEM is not fractal 
everywhere: the interpolation used in the DEM generation process is not known, but several 
artifacts (perfectly flat areas) are clearly recognizable. In particular, especially in the areas 
of large height variations, the fractal map in Figure 7 presents an anomalous dotted effect, 
whereas the variation of D should be smoother. Viewing the spectra relevant to those points, 
they appear definitely non fractals and the estimation seems to be strongly unstable. This 
confirms the presence of artificial features in the DEM. 
The range of values of the fractal dimension of the DEM fractal map is: -0.7 < D < 3.5. 
In Figure 7 is shown the relevant map with values set between: 1 < D < 3. The mean 
value of the map of  Figure 7 is Dmean=1.7 and the standard deviation is equal to 0.4. This 
confirms that the non-fractal characteristics of the DEM significantly alter the retrieved 
fractal statistic.
In order to demonstrate that the estimation problem is due to the particular technique used 
to obtain the DEM, the algorithm has been applied to a canonical artificial fractal DEM. 
As a matter of fact, if this kind of DEM is considered, the algorithm perfectly works. In 
[Di Martino et al., 2010a] the authors presented the application of such a processing to a 
canonical simulated SAR image obtained by means of the SARAS [Franceschetti et al., 
1992]. Moreover, hereafter  the fractal map relevant to a DEM of a canonical fractal surface 
of parameters s = 0.1 m0.2, D = 2.2 is presented. The surface is synthesized using the Weierstrass-
Mandelbrot function [Franceschetti and Riccio, 2007] and is represented in Figure 8.
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Figure 8 - DEM of a canonical fractal surface with parameters.

In Figure 9 the map of the fractal dimension D (computed with a sliding window of dimension 
35x35 pixels) of the considered canonical surface is shown.
The range of values for D is: 1.8 < D < 3, with a mean value Dmean=2.24 and a standard deviation 
equal to 0.1: in this case the D mean value properly matches with the fractal dimension of the 
surface, thus confirming the effectiveness of the proposed algorithm. 
Currently, some studies are in progress in order to exactly identify the artifacts present in the 
DEM of the Somma - Vesuvius volcanic complex. The idea is to recognize, from the behavior 
of the spectrum, the points of DEM presenting these artifacts in order to adequately process 
the DEM, thus obtaining in the fractal map the correct values of the fractal dimension. Fractal 
interpolation techniques [Yokoya et al., 1989] are possible candidates to obtain this goal. 

Figure 9 - Fractal map relevant to the previous DEM.
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Conclusion
In this paper an innovative fractal based post-processing of SAR images of natural 
surfaces has been presented, along with its application to the case of volcano monitoring. 
The proposed technique is based on a complete imaging model developed by the authors: 
fractal models are employed for the description of the surface. This sound theoretical 
foundation allows the development of an automatic algorithm for the retrieval of 
significant geomorphologic parameters of the observed surface from its SAR image. In 
particular, maps of the point by point fractal dimension of natural scenes can be obtained 
using SAR data. The description of the proposed processing has been presented together 
with its application to the case of study of the Somma - Vesuvius volcanic complex. The 
presented fractal maps are suitable for geomorphologic interpretation. The occurrence of 
different fractal dimensions could be utilized as indicator to discriminate the presence of 
different geodynamic process active during the natural evolution of a volcanic complex. 
In this context, for example, the areas where the fractal dimension D is less or equal to 
2 could be also interpreted as the surface expression (signature) of particular tectonic 
processes as faulting or caldera structural formation. Moreover, the comparison with the 
ground truth (represented in this case by the fractal map of the DEM of the observed 
area) highlighted the presence of artifacts and non-fractal characteristics on the available 
DEM. This issue will be object of future investigation regarding the development of 
adequate processing techniques to obtain DEM suitable for comparison with SAR data.
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