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ABSTRACT

A complete theoretical model for SAR imaging ofurat surfaces is introduced in this paper.

The topography of the natural scenes is describadmodels derived from fractal geometry;

scattering evaluations are performed via fractattedng models appropriate to the employed
fractal scene description. Scattering contributiame combined according to the SAR image
impulse response function. The power spectral tewdiappropriate cuts of the SAR image are
evaluated in closed form in terms of the surfaeetal parameters.

Our theoretical model is here conceptually assessealytically derived, graphically validated,

numerically verified and also tested on simulat&dR$mages.

The introduced model allows defining innovative tfgoocessing inverse techniques to retrieve
fractal parameters directly from SAR images.

.  INTRODUCTION

Analysis of microwave images of natural surfacesaitopic of increasing interest as a
consequence of recent developments in remote geggatems. Modern radars continuously supply
us with high-resolution images of the Earth; moexpvhey are also unveiling details of other
planets and moons in the solar systems that werer maonitored before by any other remote
sensing tool. This scenario suggests developingteelniques to analyze radar images of natural
areas. As a matter of fact, by means of low-resmiutmages it was only possible to identify large
scale features of an observed scene (e.g., presémoeuntains and shape of reliefs); conversely,
by means of high-resolution images it is not godgsible to improve the resolution at which we
monitor the environment, but, at least in principlee are now able to extract value added
information of natural areas, presenting a muchenymecise physical meaning, thus providing
physical-based information that cannot be triviglgduced from the input data. This activity can be

very useful for a wide range of applications, ggevention and monitoring of environmental



disasters [1], [2], land classification (extractiohmorphological features, land use etc.) [3]atur
planning, and so on.

In this paper we deal with the fundamental issueeobvering value added information from
the analysis of the behavior of single amplitudgtdBAR images of natural scenes; thus, our
method is conceived for supporting almost real-tapelications in Earth monitoring and analysis
from any interplanetary mission. We propose an ydical method for estimation of surface
roughness fractal parameters based on the powetrapgensity behavior of SAR images along the
range direction. Such a method uses both relialdetremagnetic-based scattering models and
radar models to get the value added informatiomftiee SAR images.

In the existing literature there is a general latkalgorithms allowing the estimation of
meaningful topographical parameters of naturalas@s$ from their radar image. This is due to the
absence of a reliable direct model for microwavaging of natural surfaces. A candidate direct
model should originate automatic inverse procedureg should not require supervision of a SAR
expert. In addition the inverse procedure shouldyémeral-purpose, i.e. applicable to any type of
SAR images, thus coping with the new generationS&R sensors (e.g. Cosmo-SkyMed,
TerraSAR-X) that exhibits extremely varied chargstes in terms of resolutions, configurations
and operational modes (strip-map, spot-light, segnsherefore, the available images can be each
very different, making the information extractionropedure not immediate nor trivial.
Consequently, none of the existing approachesd@tbblem can be assumed to be reliable for a
general-purpose application [4]. More specificathgst of the already published works proposing a
theoretical approach to this argument suffer fromreadequate choice of the scattering functions
used to describe the electromagnetic phenomenounesiled by the irradiation diagrams of
heuristic type that are usually considered [5]-[8]ternatively, some works adopt empirical
approaches to retrieve significant parametersebtiserved surface starting from the texture of the
relevant radar image; but the lack of a physicallyital model of SAR images to be used for
inversion purposes leads these works to lose iergéty and applicability, requiring supervision
on behalf of an expert [9], [10]. Other works modle®¢ image formation mechanism via a non
minimal number of multiple-scale parameters andosae more, are not definitively well suited as

a basis for the development of inversion techniqigk [12].

The main objective of this paper is to provide, iatural surfaces, a radar imaging model,
which is stochastic and analytical. As a mattefagt, the SAR image of any natural area can be
seen as the image of an element of the ensemiplarijaular realization) of the stochastic process
describing the observed surface: this viewpointasvenient because we are mainly interested in

the knowledge of compact statistical parameters ofatural surface, i.e. the parameters of the



stochastic process to which the surface belonganaslement of the ensemble, rather than in its
complete deterministic behavior, which is specticthe particular realization of the stochastic
process of interest. In other words, for many aapions involving spatial scales not very large
with respect to the image resolution, it is moreeliesting to know some compact parameters
(dimensional numbers) describing the surface roaghrfe.g., fractal dimension and topothesy, or
standard deviation and correlation length) more titgdeterministic point-by-point behavior (i.e.,

a function of two independent variables). To acclishghis task, we need to evaluate the statistical
characterization of the acquired image and retate that of the observed surface. In this paper th
second order statistics of the image are evaluatetbsed form, thus providing the basis for the
enforcement of inversion techniques, leading toabk#mation of the surface parameters directly

from the radar image.

A reliable radar image modeling requires apprderidescriptions for both the observed
surface and the backscattered field. Fractal modeswidely recognized as the best ones to
gualitatively and quantitatively describe the getrsnef natural surfaces with a minimum number
of independent parameters [13]-[15]. In additiontihese geometrical models, fractal scattering
models have been developed in order to properlyesemt the interaction between the
electromagnetic signal and the fractal surface-[18]. Therefore, we use a completely fractal

approach for both geometrical and electromagnssigss.

In the next section we present the rationale efitaging model, i.e., we derive the relation
linking the SAR image to the radar reflectivity atadthe electromagnetic backscattered field. In
particular, we find that the reflectivity, in thenall slope regime for the surface, is linearly
dependent only on the ground range partial dexigadif the surface. Therefore, in Section Il, the
link between the SAR image and the derivative efithaged surface is provided. In Section Ill the
geometrical and electromagnetic models used irp#per are introduced. We describe the model
used for the observed surface, i.e. the fracti@ralvnian motion (fBm) fractal model, and we
evaluate the analytical expression of its topogi@gbrivative process relevant to the ground range
direction. Then, we evaluate in closed form the @owpectral densities of this topographic
derivative process of two cuts of the surface dea@cespectively along azimuth and ground range
directions. Finally, we deal with the electromagn@troblem, presenting the fundamentals of the
adopted scattering model, the fractal Small Peatish Method (SPM), and, exploiting the general
results obtained in Section I, we evaluate thdectivity function as a function of the partial
derivatives of the considered surface in the SPBecén Section IV, by exploiting the results
obtained in the previous sections, we presentdihgptete imaging model: we provide the complete



statistical characterization of the SAR image mmig of the surface fractal parameters. In partigula
we find that the power spectral density (PSD) efdgihound rangeut of the amplitude SAR image
exhibits, in an appropriate range of spatial fremies, a power law behavior, while that of the
azimuth cut has a more involved expression. Keysiclemations about the retrieving of the fractal
parameters directly from the amplitude SAR image also presented. In order to validate the
theoretical results a large numerical setup isemesl in Section V. In particular, a completely
fractal elaboration chain, that makes also us@aistpreviously developed by some of the authors
of this paper [19], is worked out: a canonical fahcsurface of controlled fractal parameters is
generated to provide the input to a SAR simula®®].[ The simulator supplies the relevant SAR
raw signal, which, after standard processing, gevithe simulated SAR image. We consider both
the case of absence of speckle and the case dflspamages. To all these images we apply an
algorithm, based on a linear regression on the easpectrum of the image, to retrieve the
topographic fractal dimension of an observed regiéxperimental results, obtained under the
hypotheses formulated in the theoretical sectishew a very good agreement with the analytical
ones. Furthermore, several fractal maps obtainedximacting the local fractal dimension from a
canonical simulated SAR image are presented indevt Significant conclusions are reported in
Section VI.

Il IMAGING MODEL

The direct imaging model links the morphologicadtiees (topography at a wide range of
scales) and the dielectric properties of a surfagrits) to the relevant SAR image (output).

In this section we present the direct imaging mddela SAR sensor. We split the overall
model into two major elements. The first elemenkdithe SAR image to the scene reflectivity; the
second element links the reflectivity to the scpammeters via a scattering model. In this se@ion
continuous representation for the SAR image israsslufor the first part of the following analysis:
this (formal) choice is done to emphasize our mbedlavior and stress the meaning of the obtained
results. Then, the sampled counterpart of actuidlmited) SAR images is discussed.

In order to attain an analytical direct model fbe tfirst element, we consider a linear
relationship for the SAR imagg,that is a filtered version of the reflectivitynfction depending on

the resolutions of the sensor [21]:

i(x',r") = ff y(x,r)sinc [An_x (x' — x)] sinc [% (r' — r)] dxdr, (2.1)



wherex andr, as well a<’ andr’, represent azimuth and slant-range, respectiyéhy;r) is the
two-dimensional reflectivity pattern of the sceaead includes the phase factsp (—j%”r); Als

the electromagnetic wavelength, aftid andAr are the azimuth and slant-range SAR geometric
resolutions, respectively.

Equation (2.1) is computed by employing the slamige coordinate. It is convenient to
reconsider it by means of its ground-range couatérp. Let us define the reflectivity map in the
cylindrical coordinate systenx (r, #). Assuming that the local incidence angle coingiddéth the
sensor look anglej,, the ground range coordinate and the ground raegelution can be
calculated by simple trigonometric computations: r * sin 6, andAy = Ar/sin 6, (see Fig. 1),
[21].

Ground Range Plane Ay ¥

Fig. 1: Slant range vs. ground range resolutions.

Hence, in order to provide the statistical chamazation of the SAR image, it is convenient
to rewrite the analytical link in terms of both tineage and reflectivity autocorrelation functions:

Ri(Tx,: Ty,) — (i(xl’yl)i*(xl + Tx’;y, + Ty,)) —
el ol b
= sz e sm@o sinc o x" — x)|sinc Ay sin? 6, y —y)laxay
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smc [A_ (x"+ 15 — x) sinc [m (y' + Ty — y)] dxdy) =
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s
sinc [A_ X' —x+714— Tx)] sinc l
X

where the substitutions= 7, + x andy = 7,, + y have been considered and the stationarity of
(that will be proved in the next section) has bassumed.

Assuming:

j dé sinc[a (¢’ — &)]sinc[a(é' — & + Ty — T¢)| = Ryinc|a(re — Té)], (2.3)

where, in order to obtain the expression at thersgenember, a substitution of variable has been

performed. Hence we get:

. 1 T T ,
Ri(rx , Ty ) = M—[ dt,dt, R, (Tx,ﬁ) Rgine [E (T — Tx)]

T
Rginc [M (ty — Ty)] (2.4)

Equation (2.4) provides the link, expressed in atifground-range coordinates, between
the autocorrelation of the SAR image and the autetation of the continuous reflectivity function.
Some considerations are now in order:

- the image autocorrelation function is expressedniegns of convolution integrals, so it is
convenient to work in the wavenumber domain;

- in this way, since we demonstrate in the next sacthat the reflectivity is wide sense
stationary, the Fourier transform of Eq. (2.4), ethiis the SAR image PSD, can be
expressed as the reflectivity PST) X multiplied by the Fourier transforms Bf;,;

- the Fourier transforms df,;,,. functions in Eq. (2.4) are rectangular functionattdepend
on the sensor resolutions: so we can directly cemsa version of,, filtered by means of
the aforementioned rectangular functions (see @et).

The second element of our model, the reflectivigttgrny, taking into account the
scattering mechanism relevant to the surface, desex specific comment. The rationale to get Eq.
(2.1) is based on a linear model postulating sugstipn of radar returns (reflectivity) for each

point of the surface. However, the scattering pgeds not a point-wise one; it could be seen as a



point-wise phenomenon only under some very specdiaitions, e.g., Geometrical Optics, whose
approximations do not generally hold for microwaneges. Actually, in SAR images the radar
returns pertaining to the same resolution cellmeeged as dictated by the SAR impulse response,
whereas those from different resolution cells agasated. Therefore, it is convenient to consider
the contributions backscattered from different hatson cells as independent from each other, and
the reflectivity pattern evaluation can be perfodrseparately for each resolution cell.

Accordingly, we express the reflectivity patterntémms of the Radar Cross Section (RCS)

g, as [21]:

o

2 _ — 40

whereing?, the backscattering coefficient or Normalized Radross Section (NRCS), represents
the value ofe normalized to the SAR resolution area.

Whatever the electromagnetic model used to evathatbackscattering coefficient is, some
general results can be obtained. The backscatteaafficient expression is linked to the surface
slope via the local incidence angld.e. the angle between the observation direciwhthe normal
to the local mean plane approximating the consdaisteface within the resolution cell [6], [17].
Then:

vyl =Va® = f(6(p,q)), (2.6)

where the functiorf takes a different form depending on the select#dtisn to the scattering
problem. Letg andp be the partial derivatives of the surface height y) along the two directions

elected by the SAR sensor, azimuth and ground-rargpectively andy:

0z(x,

q(x,y) = Z(a);y), (2.7)
0z(x,

p(x,y) = Zg;y), (2.8)

The local incidence angle can be formally expressed function of the partial derivatives
andg, in fact its cosine can be evaluated as the spatatuct between the propagation unit vector

and the surface normal unit vector, i.e.:



_ _, (P sinb, + cos b,
6 = cos ( T . (2.9)

In the hypothesis of a small slope regime fordghdace, a McLaurin series expansion of the
functionf (6(p,q)) in Eq. (2.6) with respect tp andq can be performed: to the first order, we
obtain a linear function of the partial derivatp®nly; as a matter of fact, from Eq. (2.9), it isar
that the derivative of with respect ta is proportional tay itself, implying that the linear term o
of the McLaurin expansion is zero.

Therefore, the modulus of the reflectivity functigy(x,y)|, is, in a first order

approximation, linearly linked only to the partddrivativep of the surface:

lyCoy) = (0, @) = ap + a;p(x,y) + o(p,q), (2.10)
Af (6(p,
a,=f(0(p=0,q=0)) a, = w e’ (2.11)
q=0

a, anda, being the coefficients of the McLaurin series exgan, whose expressions depend on
the specific scattering model that is adopted drtigular, these coefficients are function of thek
angle of the sensor, which is then an importardupater for the determination of the validity limits
of the proposed linear model. Finally, we note tihat obtained result highlights a key property of
SAR - and, more in general, of side-looking radarsmaging behavior, showing a clear
mathematical definition of a preferential imagingedtion due to their particular acquisition
geometry.

The result in Eq. (2.10) is valid independentiytied selected scattering functip(d(p, q)),
hence it holds for whatever electromagnetic modgli¢h can be evaluated analytically in closed
form) is chosen and it presents reasonably a gewalidity, given the small slope regime for the
observed surface. In Section 111.2, the coefficseot the McLaurin series expansien,anda, are
evaluated in closed form for a specific scattefungction, the SPM one.

The above reported analysis can be assumed asraarié valid foundation to assess the
statistical characterization of the image. Usudlys characterization must be derived from a gingl
amplitude SAR image and we cannot set aside thekipehenomenon, the multiplicative noise
affecting SAR images: for the sake of a theoretaradlysis, we can consider the speckle as part of
the reflectivity. As a matter of fact, radar singggek images hold small scale spatial properties

(corresponding to high wavenumber spectral prop@rtidominated by the speckle effect. A



theoretical and quantitative analysis of the spedkinot the objective of this paper, and it wil b
one of the main future developments of this workyway, some hints are provided in Section V.2.
Now a comment about the bandwidths of the refl@gtiand of the SAR acquisition system is in
order.

Due to the scattering mechanism, the reflectivitiyction holds a finite (spatial frequency)
bandwidth: the minimum wavenumber being relatethto (inverse of the) size of the illuminated
area, the maximum one being related to the (invefrsiee) electromagnetic wavelength. Due to the
role played by the SAR system, the SAR image haldfifferent but still finite bandwidth: the
minimum wavenumber being related to the (inversethaf) size of the considered area, the
maximum one being related to the (inverse of th&R Sresolution. Therefore, the image
autocorrelation function depends on the SAR reswist so we look for the analytical relationship
between the reflectivity function (sampled accogdio SAR resolutions) and the parameters of the
observed surface. Hence, we ought to work with@dwale model for the surface description: the
observed surface is locally approximated by sqpkee facets with dimension equal to that of the
resolution cells; over these plane facets a miamscroughness is superimposed so that the
electromagnetic field backscattered from each wt®wml cell can be evaluated. Hence, the
individual returns from each resolution cell aretadied by the microscopic scale (below resolution
cell) roughness, while the overall image textureretated to the macroscopic scale (above

resolution cell) roughness.

[l. FRACTAL MODELS

In order to obtain the spectral behavior of thiteotivity pattern as acquired by a sensor of
prescribed resolution, it is fundamental to descriimth the geometry of the surface and the
electromagnetic field backscattered from it.

l1l.1 Geometrical model

It is widely recognized that fractal geometryhs best candidate to describe the irregularity
and the roughness of natural scenes. Among theafratodels, we make use of the regular
stochastic fractional Brownian motion (fBm) procéssdescribe natural surfaces [13]-[17]. It can
be defined in terms of the corresponding increnpeotess: the two-dimensional stochastic process
Z(x, y) describes an isotropic (mathematical) fBm suricder everyx, y, X', y, all belonging tR,
the increment proceztx, y) — z(X, y') satisfies the following relation:



_ 1 ¢ €
Priztuy) = 2(y) < Q= e | ew (—W> 4,

(3.1)

T=Vxr-x)?+ -y

whereinH is theHurst coefficien{0 <H < 1) andsis the incremental standard deviation of surface,
measured in [A1)], i.e. the standard deviation evaluated for ineeta at unitary distance. The
parametess is related to a characteristic length of the fBunface, calledopothesy Tm] by the
relations=T"*. Topothesy is the distance over which chords fmjrpoints on the surface have a
root mean squaréms) slope equal to unity.

The Hurst coefficient, is related to the fractal dimension through theression:
D=3-H (3.2)

Note that, while the fBm process is non-station#img, increment process is wide sense stationary
[17].

The PSD of the topographic two-dimensional isatrofBm process - in spite of the
complexity of the derivation of its expression, ahwing the evaluation of the spectrum of a non-
stationary process, for instance obtained througgm@ér-Ville or wavelet analysis [17], [22], [23] -

exhibits an appropriate power-law behavior:
S(k) = Sok™*, (3.3)

whereink = /kZ + k} is the wavenumber arid. andk,, are its components along the azimuth and

ground range directions respectiveByanda are the spectral parameters, related to the spats

by the following relationships [17]:

So = 2H*112(1 + H) sin(mH)s? (3.4)
@=2+2H=8—2D (3.5)

I'(-) being the Gamma function.
The PSD of a topographic one-dimensional fBm peoffthat coincides with a one-

dimensional cut of an fBm surface) is also introetit



S(k) = S)k™«, (3.6)

whereink is the wavenumber arfy anda’ are the spectral parameters in the one-dimensoasa!:

o = mH 1 ) 37
0= Cos(mH)T(1— 2H)" (3.7)
@' =1+2H =5-2D. (3.8)

Note that the spectra of natural surfaces presgoieer-law behavior over a wide range of spatial
scales [24]-[26].

Therefore, the application of the model to obsde/ajuantities (surfaces), leads us to use
physical (bandlimited) fBms. By definition for phgal (bandlimited) fBms the above relationships
are still valid in the corresponding spatial scalespectral bandwidths.

In Section Il we have shown that the stochasticadtarization of the SAR image involves
use of the partial derivatives of the sensed sarfadde formal derivative of an fBm profile is
defined as fractional Gaussian noise (fGn) [23]][2nd its power spectral density is proportional
to that of the fBm profile multiplied bk [23], [27]:

1

However, SAR images present a finite spatial exaewk are discretized according to a non-
zero lag sampling. Hence, application to SAR imageguires the definition of bandlimited
stochastic processes, whose analytical form depamdlse specific bandlimiting procedure applied.
In order to get a closed form expression for theRSfage power spectrum, it is mandatory to
consider the role of the resolution cell; thisameenient also because it allows working with a-two
scale model for the surface. In this context, watwa study the canonical case of a fractal surface
with the same fractal parameters, at all the saaflesterest for the sensor. In fact, a SAR sensor
discriminates between scales lower and greater tte@mesolution cell size. Therefore, in our case
the surface description within the resolution ¢glintroduced as a microscopic fractal roughness
superimposed to a plane facet (having the dimerwidine resolution cell) approximating the scene
of interest; the macroscopic surface descriptiothatresolution cell scale, which is related to the
applied bandlimiting procedure, is then requiredrider to evaluate the PSD of interest.

Actually, to cope with the non-differentiabilityf the fBm process, a smoothed version of

the original fBm process can be introduced [27is ik a filtered version of the original surface,



obtained by multiplying it by a differentiable tesinction, ¢: the test function support is, for the
time being, set equal to [8] X[0, &), &x andey being related to the SAR resolutions in azimutth an

ground range, respectively. Thus, we set:

1
o if (x,y)€|0,&.|X%X]0,¢
O s f (63) € 0,61 X [0,)]
0 otherwise

1

ExEy

f’“ fy z(x',y)dx'dy".  (3.10)

29 i) = || 2G 0=y = y)dxdy' =
— x—gx Jy—gy

A comment on the relevance of the partial derivestiof the observed surface in imaging
theory is in order. These are of clear physicalmren providing information on the asymmetry in
the SAR data structure with respect to thendy directions, intuitively consistent with the
existence of a preferential direction of sight &fRSsensors.

In fact, as we have seen in the previous sectlom, réflectivity function, in a first order
approximation, depends only on the partial densaidf the surface with respect to the ground
range coordinate, as can be seen from Eq. (2.10)ed¢er, we note that the functiongl(x, y)
presented in Eqg. (3.10) can be seen as a distibyfi7]. Hence, for our surface the partial
derivative with respect to the ground range dicect'zp(x, v; sy), can be defined using the theory
of distributions, i.e. moving the derivation froletprocess(z, y) to the test functiow(x, y) [28],

thus obtaining:

9z(x,y) ® ., 09 ) IN At At
Zp(x, Y€y, 60) 2 ay ff_mZ(x,y)@(x—x Yy —yldx'dy’ =
1 X [oe]
=— f j z(x,y)[6(y—y) —b6(y — &, —y')|dy'dx’ =
x X—Ey —00
1 X
- f [2(x',y) — z(x',y — &,)] dx’ (3.11)
ExEy o2

Hencez,(x,y; &,) is linearly related to the fBm increment process @ is, for this reason,
wide sense stationary. Therefore, the autocoroglatunction of the partial derivative process

z,(x,y) can be evaluated starting from the correlation betwtwo increments of the fBm original



process:

R, (72, Ty; sy) =(zp(%,Y;6))Zp,(Xx + T2,y + Ty5 8y))=
X

X
f [z(x',y) — z(x',y — ey)] dx' j [z(x" + 1y + Ty) —z(x" + T,y + T, — ey)]
(ngy) X—Ey X—Ey

1
=

dx") =

( ) f f ([Z(x y)z(x” + 1,y + ‘L'y) —z(x', y)z(x” + T,y + Ty, — ey) +
Ex&y X—Ex X—Ey

—Z(x’,y — ey)z(x” + 7,y + Ty) + Z(x’,y — ey)z(x” + Ty + 1) — ey)]) dx' dx" = (3.12)
whereint, and 7, are space lags in the azimuth and ground-rangettin, respectively:
Ty=x—xD%; 1,={—-y)? (3.13)
Considering that the autocorrelation of an fBmiigeg by [17]:

2(1-H)

(z(r)z(r")) = (rlP" + ' |2 = | = r|?7) (3.14)
substituting Eq. (3.14) in Eq. (3.12) we get:

Rzp (Tx, Ty; sy) =

( ) f f |rx+(ry+gy)| +|Tx+(‘[y—8y)| + — z|rx+ry| dx' dx" =
Ex&y X—Ex X—Ey

= s%g;”? [|T,ZC + (1, + ey)2|H + |2 + (z, — ey)2|H — 2|2 + TJZ,|H]. (3.15)

The autocorrelation function in Eq. (3.15) allows theakation of the two-dimensional
power spectrum. However, in imaging theory (andparticular for a SAR sensor which is
characterized by different spatial resolutions glazimuth and range), a more meaningful role is

played by the power density spectra of cuts (alamgnuth and ground range) of the image.



Analytical expressions for these spectra are heatyacally evaluated via a Fourier Transform of
the azimuth and ground range cuts of the two-dimoaas autocorrelation function reported in Eq.
(3.15): as a matter of fact Eq. (3.15) shows thats wide sense stationary and the Wiener-
Kintchine theorem can be applied.

- For a ground-range cut, from Eq. (3.13) we get:

2H
oy

+ (% _ 1)2Hr (3.16)

2H
Rp(ry; ey) = Rzp(rx =0,7y; ey) = %szeyZH‘z [(@ + 1) -2

&y &y

leading to [29], [19]:

1

Sp(ky; gy) = zszgy—1+2H I'(1+4 2H) sin(nH)[l — COS(lkylé‘y)]W .
Yty

(3.17)

In this case, the autocorrelation functiéy, and the PSDS,, of the derivative process match
exactly with those introduced for a one-dimensiqrafile [19].

Moreover, it is interesting and useful, to evalutelefined as the limit o, for ke, —» 0:

3 1
Sy(ky) = s?T'(1 + 2H) sin(nH)W. (3.18)

y

In EqQ. (3.18)§p(ky) provides an asymptotic evaluation and is amenableneaningful
interpretation and application: for evetyit is analytically obtained by reducing the suppar
the test function; alternatively, for evesy i.e., for actual radar resolutions, it approxiesathe

low spatial wavenumbers regime of the estimated.PSD

- For the azimuth cut, from Eqg. (3.15) we get:
_ H
R,(te:8y) = Rzp(rx,ry =0;¢,) = s%g, 72 [|T§ +e2|" - ITxIZH]. (3.19)

Evaluation of the corresponding PSD was never d@fiere and is introduced hereafter in this
paper. Also in this case, it requires resortinggémeralized Fourier Transforms; for the first
term of Eq. (3.19) we get [29]:



H+§
f 7,2 +&,2| emthatxdr, = e ) (3.20)
and for the second term we obtain [29], [19]:
f ITxIZHe_ikxTx =2T (1 + ZH)Sll’l(T[H)lkxlw (321)

Thus, we can evaluate in closed form the PSB(&fy) for an azimuth cut of the surface:

[2(%+H)\/EKH+%(|kx|€y);lH —I
- (lkxley)2 . 1
Sp(kx; gy) = Szé‘y 1+2H[ qam Y +20I'(1+ 2H) sin(rtH) WJ (3.22)

where K() is the modified Bessel function of second typ&actional ordew.
In order to point out the asymptotical spectralénedr of the aforementioned spectrum, we can

express the functiok , 1(|k,|e, ) through a power series expansion around the vglue 0
H+E y

stopped to the first order [29]:

(Ikxley)? F( 1 )

3 1
=227H 2tH ———
KH+%(|kx|£y) 2727 (|kyley) [1+(6+4H) S —H
1 1 (lkyley)? 1
272 |k 2H | 22| (— H). 3.23

Therefore, substituting Eq. (3.23) in Eq. (3.22) wlgain the following expression of the

spectrum:



[ (-3-n) (-3 -n)
['(—H) 2(2H)T(—H)

Sy(kys &y) = s2e, 21~ (lkyxley)?
1
VI (Z4H) g

+ (1-2H)T(—H) (|kx|€y)2H_1

VT 21+2HT (% +H)

+ + 2[‘(1 + ZH)Sll’l (TI.'H) 2 H+1(* (324)
F(=H) (lkxlgy)
Expression (3.24) can be simplified by considethmg [29]:
1
VAT (3 + H)
W = —Z_ZHF(l + ZH) Sil’l(T[H), (325)
so Eq. (3.24) can be written as:
~ Er(-yom) var(-3-n)
Sy(ky &y) = s?e, 21 (Ikxley)?
I'(—H) 4HT(—H)
2T (1 + 2H) sin(mH) 1
- 2—4H (lkx|£y)2H_1 ' (3.26)

The introduced formulas deserve some significamsiclerations. First of all, differently
from the case of the ground-range cut, the spectriutime partial derivative process for the azimuth
cut does not show a power law behavior, not evgmptotically.

Owing to the radar preferential direction of sigimt the case of a range profile we are
considering the derivative along the same directbrihe performed cut; this implies that the
spectrum of the derivative process inherits theatation properties of successive increments of the
fBm profile. Conversely, for an azimuth profile suconsiderations are not valid anymore: in this
case we are considering the derivative in the giaamge direction whereas the profile originates
from an azimuth cut of the surface, so the properbif the derivative process is not directly linked

to the profile behavior.

[1l.2 Electromagnetic model



In order to evaluate the reflectivity pattgrnwe need an appropriate scattering model taking
into account the specific geometrical characteonatised for the observed scene. Hence, we must
consider the interaction between the electromagtietid and the fractal surface by means of an
appropriate fractal scattering model tailored te tase at hand. The candidate scattering model
should lead to a closed form solution for the mflety function (and for the backscattering
coefficient). For rough surfaces only approximaikitons are available, each solution being valid
under appropriate roughness and illumination cambt [16]-[18]. In this paper we use the SPM
which provides the simplest expression for the NR@8 shows a range of validity adequate to
SAR applications.

The NRCS for the SPM model in the fractal cad&6$, [17]:

So
(2 ksin §)2+2H’

02, = 4K3 cos* 0 | Brn|? (3.27)

whereink is the electromagnetic wavenumbgy,,,, accounting for the incident and reflected fields
polarization, is a function of both the dielecttmnstant of the surface and the local incidencéeang
0 [17]; S andH are the surface fractal parameters introducedierfitst part of this section. Note
that with the considered model we are able to delgl with the co-polarized case.

Now, it is possible to use the results presenteSection Il in order to obtain an expression
of the reflectivity function as a function of therpal derivatives of the surface. In particular,
substituting the expression ais 6 provided in EQ. (2.9) and the corresponding exqioesofsin 6,
into Eq. (3.27) and, taking into account that thert|s,,,|? can be considered constant wittin

the angular interval of interest in the co-poladizase, the NRCS can be then expressed as:

(cosfy + p sindg)?\” ((siny — p cosb,y)® + g\
o0 = 2 b 1 (3.28)
\ prrgr+1 Tt Tt , .
wherein
S K1—2H 2
p = Sk 1Bl 520

22H

Thereforely(x, y)|, which is related ta® by Eq. (2.5), can be evaluated as:



lyGe | = (6, ) =

—(1+H)

cosfy + p sinf,)? sinf, — p cosBy)? + g%\ 2
=\/A_0 ( 20 PZ 0) ( 0 Zp : 0) q . (3.30)
p-+q-+1 pc+qc+1

Performing the McLaurin series expansion of theresgion in Eqg. (3.30) we obtain the

coefficientsa, anda, (see Eg. 2.10) relevant to the SPM scatteringtionc

ly (e, y)| = ap + arp =
= JAo{cos?8, sin~(*H)g, + cosBy sinH6,[2 + (1 + H)cos?8, sin~26,]lp},  (3.31)

whereinp is characterized in the first part of this sectidierefore, in the case of interest, the
coefficientsag and a;, and in turn the validity limits of the proposedodel, depend on the

considered look angle and on the fractal paramefetse observed surface.

IV. STOCHASTICCHARACTERIZATION OF THESARIMAGE

Exploiting the results obtained in the previousct®ns, the complete statistical
characterization of a SAR image is presented mghction.

According to the theoretical results presentedhia previous sections, provided that the
slopes of the surface are sufficiently low, the geas linearly dependent on the partial derivative
processz, whose expression is given in Eq. (3.11). Henceirthege inherits the same statistical
characterization of the procesggx,y), i.e. it is Gaussian distributed with= a, ando = a;sAy,
as we can deduce combining Eq. (2.10) and (3.11).

A discussion is now in order on the rolesgiindey, defining the support of the kernel
mentioned in the previous section, which formallgtetmines the effective bandwidth of the
imaging system whenever applied to the fractalem@$. As far as the bandwidth is concerned, our
model implies dealing with two, somehow implicitara-limiting procedures that can be
conveniently formalized as two filtering steps thveg¢ now explicitly discuss. First of all, the
electromagnetic field impinging on the rough suef@erforms a low-pass filtering on the surface
according to the electromagnetic wavelendgthThen, the obtained smoothed process is filtered
according to the sensor impulse response Eq. @natl) spatial scales lower than the resolution one
are discarded. In our case, assumigdy as coordinates, in azimuth and ground-range damrext

respectively, andix andA4y as the corresponding sensor resolutions, we casidar, beingix, Ay



>> }, directly the second filtering step and we caretglande, coincident with the azimuth and
ground-range resolutions.

Considering the expression of the SAR image autelaion function (see Eq. (2.2)), and
applying the Wiener-Kintchine theorem, we can noavjgle the power density spectra for a range,

Si(ky), and an azimutts; (k,), cut of the image in closed form:

A ysin?9 kyl
el (4.1)

Si(ky) = a?S,(ky; Ay)rect[

Axk
Si(ky) = a$S,(ky; Ay)rect[ ; xl (4.2)

Recalling that for the closed form expression at®diin the previous section for the power
density spectrss,(k,; Ay) and S,(k,; Ay) in Egs. (3.17), (3.22) and for their asymptotic
formulations in Egs. (3.18), (3.26) a meaningfubeiedence on the fractal parameters of the
observed surface was found, we can now draw sogméisant considerations. As a matter of fact,
image range cuts — in an appropriate range of &eges, i.ek, Ay < 2m — exhibit spectra with a
linear behavior in a log-log plane, as shown in B918), thus allowing implementation of linear
regression techniques to retrieve the fractal patara of the observed scene directly from the
corresponding radar image. In particular, by conmgaEq. (3.18) with the expression of the PSD
of a one-dimensional cut of the surface in Eq.)(3M infer that, in the log-log plane, the sloge o
the range spectrum of a SAR image is equal toahtite imaged surface whereas the surface Hurst
coefficient is decreased by one.

Conversely, for azimuth cuts, as we infer from g326), also for very low frequencies, the
above discussion does not hold any longer; the @whinmage spectrum is quite involved and the
retrieving techniques should be non linear ones.

For a visual inspection of the obtained theoattresults, in Figs. 2-5 the azimufttash-
dot line) and range (continuous line) spectra ofraage are shown in a Idg(- log(|SK)|) plane,
where the same values 0.1 m* anda;=1 and differenH values (marked in the captions) are
considered; for comparison purposes, also the l@ha¥ the spectrum of a cut of the original
surface relevant to Eq. (3.6) (dashed line) is ntgygoin the same graphs. In order to compare the
spectra behaviors wavenumbers are normalized teallne of the considered resolution.
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Fig. 2: Theoretical log-log plots of range (continuousline) and azimuth (dash-dot line) image cuts PSD; the dashed line
representsthe surface cut PSD. All the graphs arerelevant to H=0.9.
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Fig. 3: Theoretical log-log plots of range (continuousline) and azimuth (dash-dot line) image cuts PSD; the dashed line
representsthe surface cut PSD. All the graphs arerelevant to H=0.7.
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Fig.4: Theoretical log-log plots of range (continuousline) and azimuth (dash-dot line) image cuts PSD; the dashed line
representsthe surface cut PSD. All the graphs arerelevant to H=0.5.
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Fig.5: Theoretical log-log plots of range (continuousline) and azimuth (dash-dot line) image cuts PSD; the dashed line
representsthe surface cut PSD. All the graphs arerelevant to H=0.3.

The provided figures show clearly the differencethe behaviors orange and azimuth



image cuts PSDs. The behavior of the range cut BSiDear in the logf) - log(|S¢)|) plane for
sufficiently low spatial frequencies, presentingl@pe equal to that of the range cut PSD (dashed
lines) decreased by two (compare Eqg. (3.18) ar@))(onversely, the plot of the azimuth cut PSD
presents a more complex behavior that is, actuadiyat all a power-law one.

V. NUMERICAL SETUP

V.1 Theoretical framework validation

In this section experimental results validatihg theoretical framework developed in the
previous sections are presented. In particulaoyder to compare the theoretical spectra with those
relevant to SAR images of fractal surfaces haviagtmlled and known fractal parameters, we
make use of the SARAS, a SAR data simulator [20].

First of all an fBm surface of controlled paramstes synthesized using the Weierestrass-
Mandelbrot function [17], [30], [31]:

P-1
z(x,y) =B Z Cyv~HP sin[kovp(x cos¥, + ysin ‘Pp) + CDp], (5.1)
p=0

wherein B [m] is the overall amplitude scaling factgp; is the tone indexk, [m™1] is the
wavenumber of the fundamental component (correspgnob p = 0); v > 1 is the seed of the
geometric progression that accounts for spectqahrsgion of successive tones; 0H<< 1 is the
Hurst exponent; and,,¥,, ®, are random coefficients accounting respectively dmplitude,
direction, and phase of each tone. By opportunkbosing the parameteBandv [17], [31], the
obtained Weierstrass-Mandelbrot surface is a gguioximation of the required fBm surface: in
Fig. 6 an fBm surface of parameters=0.8, s=0.1 nf? synthesized through a Weierstrass-
Mandelbrot function is shown.

The obtained surface is used as input Digital &iem Model (DEM ) to SARAS. The type
of sensor to be simulated and the scattering fanctiust be then set. Let us note that, in this,case
we work in the hypothesis that the observed surshosvs the same user-defined fractal parameters
at all the scales of interest (i.e., both at mamwpg and microscopic scales). We simulated an
Envisat image Ax = 3.986, Ay = 19.928) that allows analyzing the case of extremely diffiére
resolutions in azimuth and range and, as antigipateSection Il, we choose an SPM fractal
scattering model consistent with the fractal mafethe surface with a VV polarization. Note that

use of an HH polarization does not significantlaepe the obtained results, as previously stated in



Section II.2.

The PSD estimation from the obtained SAR imag®oisa trivial issue. As a matter of fact,
we deal with power-law (or power-law like) spedinat introduce unique difficulties in the spectral
estimation as they suffer from both the leakageotffthat yields a spectral estimate that is
insensitive to the spectral slope, and the highanae problem [32]. Among the spectral estimators
available in literature, we use the Capon estimgtd}, [32], [33] that is both suitable to avoicdeth
leakage, measuring the surface spectrum accuratetihas a reduced variance, thus being very
appropriate for short data records, which is theeaa some of our applications. In particular, the
Capon estimator performs a filtering of the speutraonsisting in discarding the low spatial
frequencies (those that mainly contribute to ttekdge phenomenon) and smoothing the spectrum
shape in order to minimize the variance [24]. Theege filtering and smoothing operations can be
both controlled acting on the filter length. Moreoysince a spectral estimate derived from sampled

data suffers from aliasing, if the sampled prodess spectral components at frequencies greater

than the Nyquist frequency, we discard all the iapdtequencies greater th&nyAx (or 1/2Ay

depending on the considered cut). As an exampleign7, a non-filtered PSD is shown where the
vertical axes enclose the range of wavenumbers tmedstimation. In this figure the image
estimated spectrum (continuous line) is compareth whe theoretical one (dash-dot-dot line)
computed substitutingd=0.8 in Eq. (3.17) and the dashed and dash-dos Imark the limit
theoretical spectra, i.e. those presenti¥.999 andH=0.001, respectively. Note, that beyond the
range of values dfl equal to ]0,1[ the surface is not a fractal swefas stated in Section Il when
the fBm process was introduced.

In order to compare the theoretical PSDs of a @aagd an azimuth cut of the image
evaluated in Section Il (Eqg. (3.17) and (3.22) pessively) with those estimated from the SAR
image, it must be taken into account that the #t&xal spectra are averaged spectra. Hence, for
each direction, we perform on the image severa sufficiently spaced one from each other to be
considered uncorrelated, we estimate the spectthesk profiles using the Capon estimator and,
finally, we average these spectra in order to ohta¢ estimated PSD. In particular, we considered
1000 sample profiles and the length of the Caplber fivas set equal to 250 (a quarter of the total
number of samples, as suggested in the literaturine subject [24]). Some significant results for
the values of andH in Table | are presented hereafter.

Moreover, by exploiting the considerations présénn the previous section concerning the
PSD of a range cut of the image, a linear regrassidmplemented on the estimated spectra in
order to retrieve the Hurst coefficient of the atved surface. In Table | such estimated values are

presented together with the actual valuebl af the observed surface. The analysis of thesdtsesu



shows that, as far as the hypothesis of small slogpehe surface is valid, the performance of the
retrieving technique is definitely good, while itags to get worse when the aforementioned
hypothesis begins to fail. More precisely, the iesing techniques are efficient because the
estimatedH values are so close to the actual ones to allevdigcrimination of slightly different (in
terms ofH) surfaces from their radar images. The resultsgmed in Table | refer to the spectra
shown in Figs. 8-12, which have been evaluatedgutsia Capon filter; in these figures the image
estimated spectra are compared with the theoretivad, as was done in Fig. 7 for a non-filtered
spectrum. Moreover, in Figs. 13 and 14 two exampfdbe behavior of estimated azimuth spectra
for two different values dfl are provided and compared with the theoretical one

It is worth stressing that in this case the esiiomatand the regression operations are
performed on profiles of 1000 samples, so thatfi@guency components can be easily estimated.
This is not always the case when the analysis nfahSAR images is in order: in fact, in actual
images, we may not have so many samples over anpaesenting the same fractal parameters.

Some observations about this issue are providéteinext subsection.

Tablel
LIST OF THEPARAMETERSUSED IN THESIMULATIONS AND SUMMARY OF RESULTS
Figure number S H Estimated value dfl
Fig. 8 0.1 0.9 0.89
Fig. 9 0.1 0.8 0.82
Fig. 10 0.1 0.7 0.75
Fig. 11 0.1 0.6 0.64
Fig. 12 0.1 0.5 0.58
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Fig. 6: Fractal surface of parameter s=0.1 m®?, H=0.8 synthesized through a Weierstrass-M andelbr ot function.
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Fig. 7: Mean PSD of range cuts of the image before applying the Capon filtering (continuous line) compared with the
theoretical one (dash-dot-dot line) for a fractal surface with H=0.8; the estimated value of H is 0.86. The theoretical spectra
for H=0.999 (dashed line) and H=0.001 (dash-dot line), which represent the limit of H for which a surface holds a fractal
behavior, arereported. Thetwo vertical axes mark the wavenumber s beyond which the spectrum is cut.
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Fig. 8: Mean PSD of range cuts of the image after the application of the Capon filter (continuous line) compared with the
theoretical one (dash-dot-dot line) for a fractal surface with H=0.9; the estimated value of H is 0.89. The theoretical spectra
for H=0.999 (dashed line) and H=0.001 (dash-dot lin€), which represent the limit of H for which a surface holds a fractal
behavior, arereported. See Table| for the employed parameters.
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Fig. 9: Mean PSD of range cuts of the image after the application of the Capon filter (continuous line) compared with the
theoretical one (dash-dot-dot line) for a fractal surface with H=0.8; the estimated value of H is 0.82. The theoretical spectra
for H=0.999 (dashed line) and H=0.001 (dash-dot line), which represent the limit of H for which a surface holds a fractal
behavior, arereported. See Table| for the employed parameters.
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Fig. 10: Mean PSD of range cuts of the image after the application of the Capon filter (continuous line) compared with the
theoretical one (dash-dot-dot line) for a fractal surface with H=0.7; the estimated value of H is 0.75. The theoretical spectra
for H=0.999 (dashed line) and H=0.001 (dash-dot line), which represent the limit of H for which a surface holds a fractal
behavior, arereported. See Table| for the employed parameters.
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Fig. 11: Mean PSD of range cuts of the image after the application of the Capon filter (continuous line) compared with the
theoretical one (dash-dot-dot line) for a fractal surface with H=0.6; the estimated value of H is 0.64. The theoretical spectra
for H=0.999 (dashed line) and H=0.001 (dash-dot lin€), which represent the limit of H for which a surface holds a fractal
behavior, arereported. See Table| for the employed parameters.
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Fig. 12: Mean PSD of range cuts of the image after the application of the Capon filter (continuous line) compared with the
theoretical one (dash-dot-dot line) for a fractal surface with H=0.5; the estimated value of H is 0.58. The theoretical spectra
for H=0.999 (dashed line) and H=0.001 (dash-dot lin€), which represent the limit of H for which a surface holds a fractal
behavior, arereported. See Table| for the employed parameters.
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Fig. 13: Mean PSD of azimuth cuts of the image after the application of the Capon filter (continuous line) compared with the
theoretical one (dash-dot-dot line) for a fractal surface with H=0.8. The theoretical spectra for H=0.999 (dashed line) and
H=0.001 (dash-dot line), which represent the limit of H for which a surface holds a fractal behavior, arereported.
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Fig. 14: Mean PSD of azimuth cuts of the image after the application of the Capon filter (continuous line) compared with the
theoretical one (dash-dot-dot line) for a fractal surface with H=0.6. The theoretical spectra for H=0.999 (dashed line) and
H=0.001 (dash-dot line), which represent the limit of H for which a surface holds a fractal behavior, arereported.

V.2 An algorithm for the estimatiani the fractal dimension from a SAR image

In order to apply on actual SAR imagthe fractal retrieving technique described in
previous subsection, somensideration about the extentfdhe imaged area and so on the nun
of samples which can be used for the spectrum astn are requiredNote that, only for the sak
of an easier comprehension of the physical rol¢heffractal parameter at stake, in the pre
subsection, instead oktrieving the Hurst coefficienH, we extract, from the SAR imagthe
fractal dimensionD of the observed sce. The retrieving ofD andthat of H are completely
equivalent, being the two parameters related thrabg Eq.(3.2). The valus of D, nevertheless,
make intuitively more immediate the recognition of tharface roughness, as it expi the
topographic fractadlimension of thesurface of interest.

In Section V.1 in order t« validate the theoretical resultsmsilatec profiles of 1000
samples, holding the same fractal dimension as@dles, have been considerObviously, an
actual SAR image of a natural area can preseneajgme variations of the fractal dimension ¢
the observed scene. Indeed, the fractal dimensiam Ipcalcharacteristic of the surface and
effective technique for the retrieving of the fi@atlimension should work on small homogene
patches of the image. Therefore, in order to obamap of the fractal dimensi starting from a

SAR image, i.e. a makriof the point by point estimated fractal dimensadrthe observed scene



specific algorithm, based on the inversion andneation logic described in the previous section,
has been implemented. The proposed algorithm maesf a sliding window which, spanning the
entire image, performs in each iteration the retnig of D as described in the previous sub-section.
The choice both of the sliding window dimensiond ahthe number of range cut spectra averaged
in each window in order to obtain the mean PSDeddp on the specific needs of the user and
results from a trade-off between estimation acgyraomputational time and resolution of the
output fractal dimension map. As a matter of faet ¢hoice of a larger window allows obtaining a
more accurate estimate of the fractal dimensiopgdding on the number of samples drawn in the
range direction) but makes the resolution of thealfifractal map worse and increases the
computational time. Concerning the number of raogespectra averaged in each window, the
larger this number the better the PSD estimatimenaf the computational time increases: in
particular, this is true if we assume that all tomsidered range cuts in the window pertain to the
same type of terrain.

In order to evaluate the performance of this atharia test on a canonical fractal case is

presented: the algorithm has been applied to alatedi(canonical) speckle-free (corresponding to
an infinite number of looks) SAR image obtained described in the previous section (i.e.
providing as input to the simulator a DEM of a sogd holding the same fractal parameters at all
scales) with several dimensions of the elaboratiordow. In Fig.15 the simulated Envisat image
of 1000x1000 pixels of a natural surface with fehgarameter®=2.2,5=0.1 nf-?is shown. In Fig.
16, 17 and 18 the corresponding fractal maps oddausing windows of 51x51 pixels, 35x35
pixels, 21x21 pixels, respectively, are presented.able Il the statistics of these fractal maps ar
summarized: in particular, the mean and the stahdaviation of the estimated fractal dimension
are provided.



Fig. 15: Simulated SAR I mage of a canonical surface of

Fig. 16: Fractal map relevant to the SAR imagein Fig.14
fractal parameters s=0.1, D=2.2

using a diding window of dimension 51x51 pixels
. .

#

Fig. 17: Fractal map relevant to the SAR imagein Fig.14

Fig. 18: Fractal map relevant to the SAR imagein Fig.14
using a diding window of dimension 35x35 pixels

using a sliding window of dimension 21x21 pixels

Tablell
STATISTICSOF THE FRACTAL MAPS (SPECKLE FREE CASE)

Figure number SI|Q|ng W|_ndow D mean D standard deviation
dimensions
Fig. 16 51x51 pixels 2.19 0.13
Fig. 17 35x35 pixels 2.11 0.16
Fig. 18 21x21 pixels 2.06 0.19




Finally, in order to evaluate the performance af thipe of post-processing on SAR images
affected by the speckle phenomenon, the algoritlas been applied to simulated SAR images
generated by the SARAS and taking into accounsgieekle effect. In this case, a sliding window
of 51x51 pixels has been used. As shown in Fig22l&nd summarized in Table lll, the presence
of speckle does not significantly invalidate théeefiveness of the estimation for the considered
cases: in particular, four simulated SAR imagesehbgen considered, for which the observed
surface presents different values»fands, as summarized in Table Ill. As a matter of fabg
presented spectrum estimation technique perforswrtaof intrinsic speckle filtering. First of all,
averaging several spectra relevant to range ctfigisatly spaced in the azimuth direction to be
considered uncorrelated, implies a significant gaiiion of the speckle effect. Besides, as a result
the anti-aliasing filtering, which consists in disding the high frequencies components of the
spectrum (see Section V.1), the range of frequentiestly affected by the speckle is discarded.
Anyway, note that the case of speckle is subjeatunfent investigation and the study proposed
here is only a preliminary one: hence, an exhaesstudy of this phenomenon, where a more
significant range of window dimensions and fragatameters should be considered, is beyond the

scope of this paper.

Fig. 19 Fractal mapsrelevant to SAR I mages of fractal Fig. 20 Fractal mapsrelevant to SAR Images of fractal
parametersin Tablelll in presence of speckle. parametersin Tablelll in presence of speckle.



Fig. 21 Fractal mapsrelevant to SAR I mages of fractal Fig. 22 Fractal mapsrelevant to SAR I mages of fractal

parametersin Tablelll in presence of speckle. parametersin Tablelll in presence of speckle.

Tablelll
STATISTICSOF THE FRACTAL MAPS (SPECKLE CASE)

Figure | s[m""] of the imaged D of the imaged D standard
D mean L.
number surface surface deviation
Fig. 19 0.3 2.3 2.22 0.07
Fig. 20 0.3 2.1 2.14 0.08
Fig. 21 0.5 2.3 2.23 0.06
Fig. 22 0.5 2.1 2.08 0.08

VI. CONCLUSIONS

In this paper a complete direct model of the SARJIng process for fractal surfaces has
been presented for the first time. Furthermorepst-processing technique based on this model has
been developed and tested on simulated SAR images.

The proposed model, which is in turn based on sousdhr, electromagnetic and
geometrical models, links, in an analytical waye tSAR image of a natural surface to the
parameters that quantitatively describe the surtddaterest. In particular, due to the fact that a
natural surface presents an inherent stochastiavibleh we computed in closed form, under the
hypothesis of small slopes of the surface, thessitzdl characterization of the acquired imaget tha

depends on the parameters used for the surfacaatbaration. For the description of the natural



scenes fractal models have been used, as theyideb/ wecognized in literature as the best ones to
represent the roughness of this type of areas. &erein order to deal with the scattering problem,
fractal models that take into account the intecactof the electromagnetic field with a fractal
surface, have been used too. Therefore the franke@idhe presented SAR imaging model is, for
the first time, completely fractal based.

The main theoretical results presented in this pege be summarized as follows:

it has been demonstrated that the reflectivityhefimaged natural scene linearly depends, in

the hypothesis of small slopes, only on the pad&ivative along the range direction of the

two-dimensional surface;

after adequately evaluating the range derivatioegss of the surface, the two-dimensional

autocorrelation function of the reflectivity and thfe SAR image have been computed in

closed form;

starting from the two-dimensional autocorrelationdtion, the Power Spectral Densities of

a range and an azimuth cut of the image have bempwed in closed form; the range and

azimuth PSDs show very different behaviors, anadyfy highlighting the intrinsic

asymmetry of a SAR image: in particular, neitheth&fm is rigorously fractal but the range
one, in an appropriate range of wavenumbers, ptesepower-law behavior with a slope
related to the fractal dimension of the observetbse;

performing linear regression techniques on the P&ange cuts of the SAR image the

fractal dimensioD of the observed natural surface can be retrieved.

The experimental framework of this paper consistsvo main aspects: on the one hand the
numerical validation of the theoretical results,ileton the other hand, a first practical applicatio
of the proposed technique, consisting in a postgssing of the SAR image for the estimation of
the fractal dimension. First of all, a complete giation chain allowing the generation of a SAR
image of a fractal surface of known parametersidegn implemented. On the simulated image an
algorithm performing the inversion of the theoratiomodel has been applied: the PSDs of range
and azimuth cuts of the image have been estimatddhen compared with the theoretical ones.
Performing a linear regression on the range spacttiie fractal dimension of the imaged surface
has been estimated and then compared with thel acteaAll the experimental results show a very
good agreement with the theoretical ones.

Finally, an innovative post-processing of the Sikage providing a map of the point by
point fractal dimension of the observed scene le& Ipresented. It has been applied to simulated
SAR images of canonical fractal surfaces both withend with the speckle effect. This kind of

elaboration will allow the generation of fractal psafrom amplitude only SAR images and the



development of several kinds of value added pradisctSAR images of natural scenes.
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