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Abstract—In this paper, we present a technique for improving
the representation of built-up features in model-based multitem-
poral synthetic aperture radar (SAR) RGB composites. The pro-
posed technique exploits the multitemporal adaptive processing
(MAP3) framework to generate an a priori information which is
used to implement an adaptive selection of the coherence window
size. Image texture is used to support the coherence information in
case of decorrelation. The coherence information, powered by tex-
ture analysis, and combined with backscattering amplitude, pro-
vides a unique representation of built-up features. This allows for
an immediate detection of urban agglomerates by human opera-
tors, and is an advantaged starting point for urban area extraction
algorithms.

Index Terms—Data representation, fuzzy logic, multitemporal
synthetic aperture radar (SAR), urban areas.

I. INTRODUCTION

THE first contact with Earth observation data is realized
by visual inspection, through which images are under-

stood [1]. However, this is not an easy task, especially dealing
with synthetic aperture radar (SAR) data, whose interpretation
requires a technical expertise typically not held by multidisci-
plinary users.

As stated in [2], “a good knowledge representation design is
the most important part of solving the understanding problem.”
Therefore, the remote sensing community started to think about
new process models, in which the machine is a support for the
operator in taking decisions [1], [3] rather than an executor of
an algorithm completely unknown to the analyst. Clearly, the
realization of an effective human–machine interaction also takes
place through a comfortable data visualization. Recently, some
of the authors introduced the multitemporal adaptive processing
(MAP3) framework [4] to build two classes of multitemporal
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RGB composites [4], [5] having the aim 1) to lower the exper-
tise required for managing SAR data, providing images easily
interpretable and processable with simple algorithms [6], and 2)
to shorten the distance between Level-1 and Level-2 products in
a user-oriented environment, in which the fundamental require-
ments of repeatability, processing automation, and ease of data
interpretation must be satisfied.

The main characteristic of these products, named as Level-
1α [4] and Level-1β [5], is that the association color-object,
being physical-based and guided by electromagnetic scattering
models, does not depend on the scene. In this paper, we fo-
cus in particular on the built-up feature. This class of objects
is characterized by precise temporal properties: high (and sta-
ble) backscattering and high interferometric coherence, even
when computed with a long temporal baseline. These proper-
ties make built-up features appear white in Level-1α images,
which are obtained by combining the backscattering amplitude
of two acquisitions and their interferometric coherence (see [4]
for details).

Coherence is estimated in a moving window, whose typical
dimensions are of several meters in order to avoid bias [7].
However, this choice is not optimal for all the scene targets.
Moreover, decorrelation can occur due to several causes, such
as orbital instability, baseline length, shadowing, feature shape
and so on. The lack of coherence contribution makes the built-up
class appear in cyan (thanks to the contribution of the amplitude
bands), thus introducing an alteration of the expected semantic.

In this paper, we present a technique that aims at improving
the information content of the interferometric coherence band.
This technique exploits an input Level-1α product for generating
a priori information that is used for 1) adapting the coherence
window dimension to the scene target, and 2) introducing a
texture measure which is used to identify the built-up feature
class when it does not respond to the variation of the coherence
window dimension.

This paper was designed under the aegis of the MODISTA
project, and in collaboration with Ansaldo STS, which is one
of the largest worldwide players in the market of trains and rail
infrastructures. The objective of the project is the satellite mon-
itoring of railway infrastructures, including railroads, stations
and all the objects placed in their proximity, such as trellises or
lamp posts. Railways are particularly critical in response to the
interferometric coherence. In fact, their structure, consisting of a
small trihedral surrounded by stochastic scatterers (soil, stones,
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vegetation), typically causes an underestimation of the interfer-
ometric coherence. Therefore, in this case, the introduction of
texture can help in the restoration of the scene semantic.

In Section II, we introduce the coherence feedback system for
the MAP3 framework. The results of the feedback application
are presented in Section III. In Section IV, we face a building
extraction application using the enhanced Level-1α product and
compare it with two literature machine learning methods. The
assessment of the performed experiments is provided in Section
V. Conclusions are drawn at the end of this paper.

II. ENHANCED MAP3 FRAMEWORK

As known, the interferometric coherence is computed by the
relation:

γ =
E [I1 · I∗2 ]√

E
[
|I1 |2

]
· E

[
|I2 |2

] (1)

where E[·] and ∗ indicate the mathematical expectation and the
complex conjugation operations, and I1 and I2 are the master
and slave images, respectively.

In theory, the results of (1) are obtained by averaging a large
number of images acquired simultaneously. Obviously, this pro-
cedure is not possible. Therefore, in practical situations, under
the assumption of ergodicity, it is possible to exchange the av-
erage of several images acquired simultaneously with a spatial
average in a limited area surrounding the considered pixel [7].
Therefore, the maximum likelihood estimator of the coherence
in a window including N pixels is given by [8]
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The probability density function (pdf) of the coherence mag-
nitude estimator can be written as a function of the magnitude of
the true coherence |γ| and the number of independent samples
L > 2 [9]

pdf (|γ̂| , |γ| , L) = 2 (L − 1)
(
1 − |γ|2

)L

|γ̂|

·
(
1 − |γ̂|2

)L−2
2F1

(
L,L, 1, |γ|2 , |γ̂|2

)
(3)

where 2F1 is the hypergeometric function.
The expectation for |γ̂| is given by [7]

E [|γ̂|] =
Γ (L) Γ (3/2)
Γ (L + 1/2)

·3F2

(
3/2, L, L;L + 1/2, 1; |γ̂|2

) (
1 − |γ̂|2

)L

(4)

where Γ is the gamma function and 3F2 is the generalized
hypergeometric function. The expectation expressed by (4) is
plotted in Fig. 1. From this graph, it arises that the estimate is
biased towards higher values for low coherence and/or when the
estimation window is small [10].

Equation (2) requires the selection of the mean window di-
mension, which determines the performance of the estimator

Fig. 1. Expectation value |γ̂ | as function of the true coherence |γ | for
various L.

Fig. 2. Castel Volturno (Italy): Level-1α product (reference image December
2009, test image August 2010) computed setting the coherence window to (a)
11 pixels and (b) 3 pixels.

with respect to the scene objects [11]. As an example, rough
surfaces (like the sea) exhibit a stochastic and nonstationary
backscattering, which is expected to produce incoherent sig-
nals. Thus, as explained above, a small coherence window could
produce a noisy coherence. Conversely, man-made structures,
having a deterministic stable scattering, typically exhibit high
coherence values. Especially if the urban texture is not dense,
a large computation window could include features like vegeta-
tion, shadows, or roads together with buildings, thus causing a
decrease in the resulting coherence, together with a poor reso-
lution of the computed map.

In Fig. 2(a), we show a 3-m resolution Level-1α product [4]
of the city of Castel Volturno (Italy). The product is composed
as follows: on the blue band, an image acquired on Decem-
ber 2009 (reference image) is loaded; the green band depicts
an image acquired on August 2010 (test image); the red band
is reserved for the interferometric coherence between the two
images computed using an 11-pixel side mean window. Further
details about Level-1α processing can be found in [4].

About eight months passed between the two acquisitions.
Therefore, we expect that only stable features, like buildings,
keep high values of the interferometric coherence. Being these
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Fig. 3. Coherence feedback system for the MAP3 framework.

features also highly reflective, urban structures should be repre-
sented in white color. However, since the interferometric coher-
ence is computed using a mean window (i.e., the interferometric
coherence map has a coarser resolution than the intensity prod-
ucts), stable targets are surrounded by a red “crown,” which
helps the human photo-interpreter in their detection.

The product depicted in Fig. 2(a) is consistent with the above
considerations. Anyway, it is reasonable to think that a mean
window of about 30 m is too large for representing at best
the details of the urban area. In fact, the reader may have the
impression that white/red pixels are a bit sparse for being repre-
sentative of a dense urban area. This means that the choice of the
coherence window dimension was not optimal since it did not
allow to fully exploit the characteristics of the estimator defined
in (1).

In Fig. 2(b), we repeated the same experiment setting the
coherence window dimension to 3 × 3 pixels. In this case, it
is clear that the image has an unacceptable granularity, which
is physically inconsistent, besides being visually unpleasant. In
fact, as an example, wide portions of the sea surface exhibit high
coherence values. In this case the estimate on stochastic targets
is affected by a bias which increases as the coherence window
dimension decreases [7]. Anyway, it is also true that the urban
area is better represented using a smaller window, since it is
possible to appreciate that more details arise as compared to the
product depicted in Fig. 2(a). Therefore, a strategy for adapting
the coherence window to the scene target is needed.

To this end, we propose a feedback system, whose rationale
is depicted in Fig. 3. The system is structured as follows:

1) Level-1α product analysis: the characteristics of intensity
and coherence of the MAP3 output are evaluated;

2) Adaptive coherence window generation: an adaptive co-
herence window is implemented based on the above anal-
ysis; in such way the coherence estimated by (1) is opti-
mized for the considered target;

3) New coherence map: the final coherence map is assembled
and given as input in the quantization process for the
generation of the refined Level-1α products.

In the following, we provide details about the implementation
of the proposed feedback.

A. Fuzzification

The coherence feedback system is based on the fuzzification
of Level-1α’s coherence and intensity bands. We modeled these
variables using three fuzzy sets with verbal attributes of “low”
(Z-type), “medium” (π-type) and “high” (S-type). In particular,
the following expression is adopted [12]:

S(DN, a, b, c) =

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, DN ≤ a

2 {(DN − a)/(c − a)}2 , a < DN ≤ b

1 − 2 {(DN − c)/(c − a)}2 , b < DN ≤ c

1, DN > c

(5)

in which DN means digital number and a, c and b = (a + c)/2
are the parameters that model the S-function (see Table I for
details). The Z-type fuzzy set is obtained from the S-type one
being Z(DN, a, b, c) = 1 − S(DN, a, b, c). Finally, the π-type
function is built by combining a S-type and a Z-type function
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TABLE I
PARAMETERS USED FOR MODELING THE ADOPTED FUZZY SET FOR

LEVEL-1α’S COHERENCE AND INTENSITY BANDS AND FOR THE COHERENCE

WINDOW

Level-1α Coherence Window

Function type a b c a b c

S-type 160 190 220 21 36 51
Z-type 0 60 120 0 2.5 5
π -type (S-part) 40 100 160 3 7 11
π -type (Z-part) 160 185 210 11 26 31

Fig. 4. Fuzzy set adopted for the fuzzification of the input Level-1α product.

sharing the parameters c and a, respectively, as shown in Table I.
The obtained fuzzy sets are plotted in Fig. 4.

The purpose of this system is to adapt the dimension of the
coherence window as a function of the phase-stability and re-
flectivity characteristics of the target. Essentially, we aim at
reducing the mean window as the coherence and the intensity
responses increase. To this end, the system output (i.e., the co-
herence window size) is fuzzified as well as the characteristics
of the input Level-1α product. In particular, we considered three
types of windows, “small,” “medium”, and “large,” which have
been modeled similarly with a S-rule, a π-rule, and a Z-rule,
respectively.

The assignment of the coherence window category for each
image target is now in order. The rationale is quite simple: the
more stable and reflective the target, the smaller the coherence
window. In Table II, we report the adopted rules for the as-
signment of the fuzzy categories “small” and “medium” to the
coherence window. All the other cases are reserved to the “large”
window attribute.

The selected fuzzy sets for the coherence window are de-
picted in Fig. 5. They have been partitioned as a function of
the membership degree. As an example, the fuzzy set “small” is
subdivided in three parts. The first part corresponds to persistent
scatterers (PSs), and is reserved to pixels with the highest mem-
bership within this fuzzy set, which are likely to be the more

TABLE II
ADOPTED RULES FOR THE ASSIGNMENT OF THE

COHERENCE WINDOW ATTRIBUTE

Window Coherence Intensity 1 Intensity 2

Small High High High
Medium High High

High Medium High
High High Medium

Medium Medium Medium Medium
Low High High

Medium Medium High
Medium High Medium

High Medium Medium

Fig. 5. Fuzzy set adopted for the fuzzification of the coherence window. The
values labeling the curves indicate the dimension of the window used for that
piece of curve. PS stands for “permanent scatterer;” in this case the coherence
is not calculated but assumes a (high) default value.

reflective and coherent in the input Level-1α product. As the
membership of “small” window decreases, the window dimen-
sion increases to three and five pixels, since the correspondent
targets seem further away to behave as PSs. Similar reasoning
can be performed for the “medium” window fuzzy set. As for the
“large” window fuzzy set, we do not define any partition, since
all the scatterers belonging to it are expected to be stochastic.

The coherence window attribute (“small,” “medium” or
“large”) and, as a consequence, the dimension of the coher-
ence window according to the aforementioned partitions of the
fuzzy sets are assigned by computing the maximum membership
degree after the application of the rules reported in Table II.

It is remarkable that an ambiguity arises concerning the
“medium” coherence window. In fact, due to the bell-shape
of this fuzzy-set, two windows correspond to each membership
degree, one for the S-part of π and one for its Z-part. However,
these windows correspond to targets with very different charac-
teristics. In fact, on the S-part of π, we expect to have targets
with medium-high characteristics of reflectivity and coherence.
On the contrary, on the Z-part of π, we expect to find targets
more likely to be incoherent. Therefore, we require that targets
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Fig. 6. San Prisco (Italy): (a) Level-1α product, (b) two-categories k-means clustering, (c) edge map and (d) Nagao–Matsuyama texture.

which lie in the S-part of the “medium” window fuzzy set must
have “high” reflectivity in both the images which compose the
Level-1α product. Otherwise, they are placed on the Z-part of
π, on the side of the largest windows associated to this fuzzy
set.

B. Use of Texture

Coherence response of targets depends on several factors.
Decorrelation can occur, also on stable targets, due to imag-
ing geometry (incidence angle), shadowing, misalignment with
respect to the flight direction or shape of the building. As an
example, a squared-shape building with smooth walls is more
likely to have a more coherent response than one with an irreg-
ular shape or a pitched roof. Therefore, it is possible that some
buildings do not exhibit a coherent response after the reduction
of the coherence window.

In Level-1α imagery, built-up features are represented in
white color, due to the high contribution of both amplitude
and coherence channels. However, as explained above, decorre-
lation could cause this feature to appear in cyan. Here, we want
to introduce a texture measure for enhancing the red band infor-
mative content. This way, it is possible to restore the semantic
the user expects on built-up features, making this feature class
appear white.

The principle we exploit is the convergence of evidence [13].
Until now, we have assumed that the built-up class is charac-
terized by high amplitude (in both the dates that constitute the
Level-1α bi-temporal composite) and high interferometric co-
herence. The introduction of a fourth evidence, i.e., the texture,
allows to slacken the requirements on the interferometric coher-
ence and to consider as built-up also the objects that, even after
the feedback application, do not exhibit a high response to the
coherence estimator but are highly reflective (in both Level-1α’s
acquisitions) and located in areas characterized by high texture.

The texture measure we used was introduced by Nagao and
Matsuyama in [14]. To obtain it, we first applied a k-means
clustering to the input Level-1α product (see Fig. 6(b) and (a),
respectively). A coarse clustering is sufficient for our purposes.
In fact, as shown in Fig. 6(b), we just separated the white, red
and cyan colors (grouped in the white class in the classified
map) from all the others (green class). The white class can be
roughly associated with built-up features.

The cluster map is used for contour extraction through the
application of the second Laplacian operator [15] [see Fig. 6(c)].
Finally, the Nagao–Matsuyama texture can be computed. It is a
very simple rule: a moving window of dimension N is applied
to the contour map; if at least 2N + 1 border pixels fall in a
window, then the central pixel of the window is classified as
high texture area. Otherwise, it is classified as a low texture
area. The result of the application of this rule to the computed
edge map is depicted in Fig. 6(d).

The texture evidence is activated (for pixels classified as high
texture areas) on objects characterized by high backscattering in
both Level-1α acquisitions and low coherence. Obviously, the
information conveyed by the red band for these targets does not
concern anymore their phase stability.

III. EXPERIMENTAL RESULTS

The proposed feedback aims at enhancing the built-up fea-
tures in Level-1α images in order to make the urban area ex-
traction/mapping process easier. This is a current problem in
the remote sensing community, which provided several studies
about this topic. Chaabouni-Chouayakh and Datcu [16] pro-
posed a semiautomatic solution for mapping urban areas using
backscattering, statistical information, and information fusion
techniques. In [17], a multiresolution and multisensor data fu-
sion technique for mapping urban areas is presented. Reference
[18] proposed a novel method for the automatic detection of
building footprints from a single VHR SAR image. Marin et al.
[19] introduced a new approach to building change detection in
multitemporal VHR SAR images based on backscattering vari-
ability. A semiautomatic segmentation-based tool for urban area
interpretation in SAR images was proposed in [20]. Voisin et al.
[21] presented a new model combining amplitude SAR data and
textural information into a Markov random field model to ad-
dress the problem of classifying images of urban areas. Gaetano
et al. [22] proposed an interactive framework exploiting Markov
random fields for the classification of multitemporal SAR data.

The objective of the feedback introduced in Section II is to
make Level-1α images suitable to be processed with a simple
rule, in an end-user-oriented framework, for extracting the built-
up feature. It is based on the convergence of four evidences: the
amplitude of the two acquisitions composing the input Level-
1α product, their interferometric coherence, and the texture.
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Fig. 7. (a) Google Earth view of Macerata Campania (Italy) stadium with its correspondent Level-1α products (b) before and (c) after the feedback application.
(e) Google Earth view of Sant’Angelo in Formis (Italy) rail station with its correspondent Level-1α products (d) before and (f) after the feedback application.

The first three evidences can be considered strong, since high
characteristic of reflectivity and coherence is almost an exclu-
sive property of built-up features. Texture, instead, is assumed
to be a weak evidence, because in SAR imagery high texture
areas are not necessarily urban areas. However, the convergence
of two strong evidence (i.e., the high backscattering in the two
Level-1α’s acquisitions) and one weak evidence (i.e., the tex-
ture) makes us confident that the target we are considering is
man-made.

In Fig. 7(a), we show a Google Earth view of Macerata Cam-
pania, a small city in southern Italy. In Fig. 7(b) and (c), the
correspondent Level-1α products before (coherence window
set to 11 pixels) and after the feedback application, respectively,
are depicted. Qualitatively, the reader should appreciate how
the feedback system improves the representation of the built-up
feature class. In fact, in Fig. 7(c), more bright targets are vis-
ible than in Fig. 7(b). Moreover, the red “crown” surrounding
coherent targets is practically disappeared. This means that the
resolution of the coherence map is higher.

In Fig. 7(d), we show a Google Earth view of the city of
Sant’Angelo in Formis (Italy), with its rail station and railway
at the left of the residential area (see annotations on the pic-
ture). In Fig. 7(e) and (f), the correspondent Level-1α products

before (coherence window set to 11 pixels) and after the feed-
back application, respectively, are depicted. The same consider-
ations done for the Macerata Campania scene can be made: the
feedback application allows us to retrieve a number of bright tar-
gets, i.e., more buildings, in the residential area, more details on
the railway and improves the resolution of the coherence map.

These claims will be much more evident if Fig. 8 is consid-
ered. In particular, in Fig. 8(a) and (b) we reported the red band
(i.e., the one representing the coherence or the coherence/texture
information, after the feedback application) of the products dis-
played in Fig. 7(b) and (c). In Fig. 8(c) and (d), the red band of
the products displayed in Fig. 7(e) and (f) is depicted. All the
maps in Fig. 8 have been obtained through linear quantization
of the input coherence product in the interval [0.45, 0.6].

It is remarkable that more bright points appear in Fig. 8(b) and
(d) (after the feedback application) than in the maps depicted in
Fig. 8(a) and (c) obtained by applying (1) with fixed 11 pixels
window. This means that the urban area is better characterized.
In fact, as an example, in Fig. 8(b), the shape of the stadium is
recognizable (see the annotation on the picture) while in Fig. 8(a)
it is not.

In Fig. 8(d) (after the feedback application) it is remarkable
that more details of the railway station arise than in Fig. 8(c).



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

AMITRANO et al.: URBAN AREAS ENHANCEMENT IN MULTITEMPORAL SAR RGB IMAGES USING ADAPTIVE COHERENCE WINDOW 7

Fig. 8. Macerata Campania (Italy): coherence map (a) before and (b) after
the feedback application corresponding with Level-1α products depicted in
Fig. 7(b) and (c), respectively. Sant’Angelo in Formis (Italy): coherence map
(c) before and (d) after the feedback application corresponding with Level-1α
products depicted in Fig. 7(e) and (f), respectively.

Moreover, the shape of the railway is now visible at the left of
the residential area [see annotation on Fig. 8(d)].

These experiments should qualitatively convince the reader
of the effectiveness of the proposed algorithm. A quantitative
assessment is provided in the following section.

IV. FEATURE EXTRACTION

We tested the effectiveness of the proposed methodology with
a feature extraction application, i.e., building extraction. The
technique we used is a simple, user-oriented band product [23].
The obtained results are then compared with those provided
by some literature techniques based on machine learning. In
particular, support vector machines (SVMs) and self-organizing
maps (SOMs) will be used to classify data. In such way, we
will prove that the enhancement of the informative content of
the input Level-1α product, in combination with a simple band
product, provides results fully comparable with those achievable
using more and more complicated techniques, both supervised
(SVMs) and unsupervised (SOMs).

A. Building Extraction Using the Building Index

The feedback application, enhancing the informative content
of the red band of Level-1α imagery, allows for an effective
feature extraction using a simple band product. The Building
Index (BI) has been proposed in [23], and it is here reported for

the ease of the reader:

BI =
RGB

2553 (6)

where R, G, and B are the values of the red, green, and blue
bands of the input Level-1α product, respectively.

Equation (6) has been applied to the input Level-1α prod-
uct before and after the feedback application. In both cases a
threshold of 0.1 has been adopted for maps binarization.

The results of this activity are presented in Section V. They
will be compared with a ground truth extracted from the Urban
Atlas of the European Environmental Agency.

B. Buildings Extraction Using Self-Organizing Maps

SOMs are a machine learning technique introduced by Koho-
nen [24], which are exploited for the classification of the most
diverse data types in several applications [25]–[27]. SOMs have
been widely exploited in remote sensing applications, in com-
bination both with SAR and multispectral/hyperspectral data
[5], [28]–[33]. The flexibility of the tool allowed for such a
widespread diffusion.

A SOM is a network composed by a user-defined number of
nodes, connected with (usually) a rectangular structure. They are
randomly initialized and trained with sample vectors randomly
taken from the data. Each time a training element is presented to
the network, the most similar node is detected and identified as
Best Matching Unit (BMU). The BMU and its neighborhood,
defined by a radius, are updated to become more similar to the
presented training element. This operation is repeated for all
the training vectors and for several cycles. As the cycle number
increases, the neighborhood of the BMU decreases; in such way
the SOM becomes stable (usually a high number of cycle is
needed) and the obtained nodes can be used to classify data.

Here, we used 1000 training vectors and 200 epochs for per-
forming buildings extraction using a 3 × 3 SOM. The input was
a couple of SAR images, i.e., the same amount of information
used for extracting features using the BI. After classification,
the clusters representative of building features were selected.
The obtained results are discussed in Section V.

C. Buildings Extraction Using Support Vector Machines

In the last decade, SVMs have been extensively introduced
in the statistical learning theory domain for regression and clas-
sification problems [34]. In this methodology, the optimal sep-
aration surface between classes are used to identify the most
representative training samples, which are called “support vec-
tors.” The quality of the support vectors and of the classification
result depends on many parameters such as number of training
samples, kernel, penalty parameter. Therefore, some expertise
and a tuning phase are necessary to use this tool.

SVMs have been widely exploited for the classification and
segmentation of remote sensing images [31], [35], [36]. Here,
we ran a SVM with radial basis kernel on the stack composed by
the two intensity SAR images composing the Level-1α product
for identifying buildings. The obtained results are discussed in
Section V.
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TABLE III
AREA COVERED BY BUILT-UP PIXELS COMPARED WITH URBAN ATLAS CATEGORIES BEFORE AND AFTER THE FEEDBACK APPLICATION

SL (%) Area BI SL before BI SL after SL SOM SL SVM
Urban Atlas Categories [km2 ] (%) (%) (%) (%)

Continuous Urban Fabric >80 2.77 12.11 24.83 24.23 31.11
Discontinuous Dense Urban Fabric 50–80 5.22 9.6 20.54 20.09 26.09
Discontinuous Medium Density Urban Fabric 30–50 1.09 4.81 11.04 11 14.61
Discontinuous Low Density Urban Fabric 10–30 0.46 2.33 5.59 5.55 7.49
Discontinuous Very Low Density Urban Fabric <10 0.08 1.39 3.35 3.05 4.57
Agricultural, SemiNatural Areas, Wetlands 42.1 0.13 0.7 0.73 1.02
Isolated Structures 0.6 1.82 3.96 3.96 5.35
Industrial, Commercial, Public, Military and Private Units 4.13 4.11 9.18 9.46 12.76
Other Roads and Associated Land 25.6 0.54 1.32 1.23 1.64
Land Without Current Use 0.2 1.33 3.56 4.3 6.06
Fast Transit Roads and Associated Land 0.41 0.14 0.5 0.52 0.71
Railways and Associated Land 0.43 1.54 4.61 3.5 6.44
Mineral Extraction and Dump Sites 0.32 0.2 10.28 7.89 11.87
Construction Sites 0.04 5.26 7.62 7.12 9.42
Green Urban Areas 0.09 4.03 10.21 9.31 12.06
Sports and Leisure Facilities 0.34 4.28 8.4 8.59 11.02
Forests 6.37 0.06 2.32 2.17 2.92
Water Bodies 1.16 0.09 0.2 0.59 0.94

In the table headings, SL stands for soil sealing; BI for building index; SOM for self-organizing map; and SVM for support vector machine.

V. ASSESSMENT

The Urban Atlas was used for a quantitative assessment of the
experiments above illustrated. It is a land cover map in which
the density of urban areas is measured with respect to the soil
sealing (SL), i.e., the covering of the ground by an imperme-
able material. In particular, here we are particularly interested
in five urban categories of the Urban Atlas: “Continuous ur-
ban fabric” (SL > 80%), “Discontinuous Dense Urban Fabric”
(SL 50–80%), “Discontinuous Medium Density Urban Fabric”
(SL 30–50%), “Discontinuous Low Density Urban Fabric” (SL
10–30%), and “Discontinuous Very Low Density Urban Fabric”
(SL < 10%).

The binary maps retrieved using the BI, the SOM, and the
SVM were compared with the polygons provided by the Urban
Atlas. In particular, we compute the zonal statistics for each
class, obtaining the total number of building pixels that fall in
the polygons belonging to that class. Therefore, for each class,
the following equation was computed:

Ni =
∑
ki

nki , (7)

where Ni is the total number of building pixels for the ith class,
ki is the index of the polygon belonging to the ith class, and nki ,
is the number of building pixels which fall in the kth polygon
of the ith class.

The Urban Atlas class list can be found in Table III together
with the SL (when specified) and the total area of the classes
relatively to the study area.

Once Ni has been computed for each class, the percentage
of soil (on average) covered by built-up pixels for the ith class
is obtained by relation

S̄L
i = 100r

Ni

Ai
(8)

Fig. 9. Level-1α product of the study area with the correspondent Urban Atlas
layer.

where r is the map cell size and Ai the total area covered by
polygons belonging to the ith class.

In Fig. 9 a picture of the study area containing both the
input Level-1α product and the Urban Atlas layer is shown.
The results of the application of the above described assessment
procedure are reported in Table III.

As expected, the percentage of soil covered by the built-up
class significantly increased after the feedback application. In
particular, the SL index passes: from 12.11% to 24.83% for
the class “Continuous Urban Fabric,” from 9.6% to 20.54%
for the class “Discontinuous Dense Urban Fabric,” from 4.81%
to 11.04% for the class “Discontinuous Medium Density Ur-
ban Fabric,” from 2.33% to 5.59% for the class “Discontinuous
Low Density Urban Fabric’,’ and from 1.39% to 3.35% for
the class “Discontinuous Very Low Density Urban Fabric.” It is
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remarkable that, even after the feedback, these values are very far
from the percentages indicated in the Urban Atlas class descrip-
tion (see Table III). This can be explained. In fact, consulting
the Urban Atlas mapping guide, we know that the macro-class
“Urban Fabric” (i.e., the one that contains all those above men-
tioned) is formed by “built-up areas and their associated land,
such as gardens, parks, planted areas and nonsurfaced public
areas, and the infrastructure” [37]. Therefore: 1) in the refer-
ence Urban Atlas class, other land covers are included beyond
built-up; 2) some of this land cover (roads, sidewalks, car parks)
do not have the fundamental property of high backscattering
we use for the detection; and 3) shadowing effects, influencing
backscattering, partially prevent the feature detection using (6).
The last phenomenon is more severe as the density of the urban
area increases. That is why the more dense the urban area, the
more distant the soil sealing index retrieved through (8) on the
Level-1α product compared to the one indicated in the Urban
Atlas.

Concerning the MODISTA project, it is remarkable that the
proposed algorithm brings significant benefits in the representa-
tion and detection of the class “Railways and associated land.”
In fact, in this case, the percentage of land covered by built-up
features increased from 1.54% before the feedback to 4.61%
after its application.

The results obtained using the SOM are reported in the sixth
column of Table III. They are comparable with those obtained
by the application of (6) on the enhanced Level-1α product, thus
confirming the reliability and the effectiveness of the proposed
representation to be exploited for the extraction of the feature
of interest using a simple and user-oriented technique [6].

SVM showed the highest percentage of soil sealing for all the
considered categories. However, this is not necessarily an index
of better detection since data concerning false alarms are not
available. Indeed, using this technique, their amount is expected
to be not negligible. This can be assessed qualitatively consider-
ing Fig. 10. The arrows point to some areas in which false alarms
in the SVM detection have been found by visual inspection. A
Google Earth patch of these areas is also reported, together with
the close-up taken from the Level-1α product itself. Moreover,
a close up from a classification difference map is attached. In
this representation, points detected by both building index and
SVM are depicted in green. Points detected only by the SVM
are depicted in red. Points detected only by the building index
are depicted in yellow. From the analysis of these pictures, it
arises that SVM classifies as buildings also changing natural
areas (see patch 1 in Fig. 10). In the same way, buildings de-
picted in patches 2 and 3 of Fig. 10 are arranged by SVM in
structures with some landscape pixels. Conversely, the classifi-
cation based on the building index has a negligible contribution
of natural surfaces pixels.

By analyzing the results reported in Table III it arises that, as
the urban density decreases, the performances of all the exam-
ined solutions tend to be equivalent. In fact, if we consider an
electromagnetically isolated building in a stationary landscape
(see Fig. 11), the obtained masks are very similar, regardless of
the technique adopted. Conversely, in denser urban areas, the
SVM tends to aggregate in the building mask also pixels that do

Fig. 10. Qualitative evaluation of false alarm using Google Earth patches and a
classification difference map in which exclusive SVM detections are depicted in
red, exclusive BI detections in yellow and SVM/BI detections in green. It arises
that SVM (red pixels) tends to classify as buildings also changing landscape.
Therefore a more significant probability of false alarms is expected than for BI
detections.

not exhibit a backscattering among the highest in the scene. This
results in a higher soil sealing index, but, as explained above,
also in a higher probability of false alarms. This behavior could
also be due to a nonoptimal selection of the SVM training sam-
ples. A more refined solution could be to exploit the building
index for the automatic selection of the training samples for the
SVM.

As for the computational burden, the SVM ran in about 10 min
on a scene of about 3000 × 5200 pixels using a 12GB RAM
machine with eight cores. SOM completed the job in more
or less the same time. As for the proposed methodology, the
feedback took about 5 min, while the building extraction process
has a negligible impact on computational time. The proposed
methodology introduces an advantage in computational time,
that can be important when the amount of data to classify is
high.

The last observation concerns layover. Using a very coarse
clustering, it is likely that the texture evidence brings to an incor-
rect decision on layover features. This is more clear considering
Fig. 12. In Fig. 12(a), we show the Level-1α product before
the feedback. Here, layover is correctly represented, since we
have no response of the red band (i.e., of the interferometric
coherence). The texture evidence action makes this feature to
appear as a bright target, thus introducing a confusion with the
built-up class (see Fig. 12(b)). This problem can be solved us-
ing topographic corrections before building Level-1α products
or by applying a layover mask in post-processing. We opted
for this choice. We used a 20 m resolution DEM for generat-
ing the layover mask depicted in Fig. 12(c). Qualitatively, the
masking operation applied to the Level-1α product after the
feedback algorithm mitigates the confusion between layover
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Fig. 11. Electromagnetically isolated building in a stable landscape: (a) Google Earth view, (b) Level-1α view. Building mask extracted (c) using the building
index and the parameters reported in Table I, (d) using SOM, and (e) using SVM.

Fig. 12. Layover treatment: Level-1α product (a) before and (b) after the feed-
back application. (c) Layover mask. (d) Level-1α product after the application
of feedback and layover masking.

(which should be displayed in cyan) and the built-up class, as
shown in Fig. 12(d).

Quantitatively, the influence of layover in the soil sealing
index calculated through (8) on the Level-1α product can be
found in the class “Forests” of Table III. In the Urban Atlas
layer, this class is mainly located in the upper left part of
our study area (see Fig. 9), where the presence of a relevant
topography makes layover to occur. The application of the
proposed feedback causes the soil sealing to increase from
0.06% (before the feedback) to 2.2% due to layover features
included in the computation. The application of the layover
mask allows to reduce this value to 1.14%. Better results could
be obtained using a finer resolution DEM.

A. Sensitivity to Parameters

The study of the sensitivity of the proposed method with
respect to the parameters reported in Table I concerning the
fuzzification of the input Level-1α product is presented.

As a general comment, if these parameters are increased, the
curves plotted in Fig. 4 move to the right, and the reflectiv-
ity requirements for the detection are reinforced. Vice versa,
if the parameters are decreased, the curves in Fig. 4 move to
the left, slackening the requirements of reflectivity for the de-
tection. Operatively, the positioning of the curves in the plan
digital-number/fuzzy membership affects: 1) the dimension of
the window in which the coherence is calculated, and 2) the
activation of the texture evidence.

Indeed, the variation of coherence window dimension is ex-
pected to give negligible variations in the detection, provided
that the scheme in Table I is maintained. In fact, if the variation
of the parameters is small, a variation of category is likely to
occur only for targets placed at the borders of the fuzzy sets.
As an example, if a change from the category “small window”
to “medium window” occurs, the coherence window dimension
changes from 5 pixels to 7 pixels; therefore the variation of
the estimated coherence value is expected to be small. In the
same way, if we a have a change from the category “medium
window” to “large window,” this would affect targets whose
characteristics are likely to be noncoherent; therefore, the pas-
sage from the 11 pixels window to the 51 pixels window would
be inconsequential.

The most important effect of a variation of the fuzzy set
is expected on the texture evidence. In fact, if the reflectivity
attribute changes from “high” to “medium” even in only one
acquisition, then the texture evidence is not activated. This can
slightly affect the detection.

In order to give a measure of such variation, we repeated
the whole processing chain varying the parameters reported
in Table I (concerning the fuzzification of the input Level-1α
product) of +5%, +10%, −5% and −10%. The results of this
experiment are reported in Table IV, together with a recap of
the previously obtained results for comparison. For brevity, only
the classes of the Urban Atlas most relevant with the building
extraction application have been reported in the table.

As expected, a higher percentage of soil sealing is obtained
decreasing the parameters reported in Table I. The lower the
parameters, the higher the soil sealing. However, a higher prob-
ability of false alarms is expected, since the texture evidence is
activated for less reflective targets. Vice versa, a lower percent-
age of soil sealing is obtained by increasing those parameters.
The higher the parameters, the lower the soil sealing, as well as
the probability of false alarm.
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TABLE IV
SUMMARY OF THE OBTAINED RESULTS

BI BI (+10%) BI (+5%) BI (−10%) BI (−5%) SOM SVM
Urban Atlas Category SL (%) SL (%) SL (%) SL (%) SL (%) SL (%) SL (%)

Continuous Urban Fabric 24.83 23.75 24.72 28.23 26.98 24.23 31.11
Discontinuous Dense Urban Fabric 20.54 19.55 20.43 23.42 22.34 20.09 26.09
Discontinuous Medium Density Urban Fabric 11.04 10.09 10.55 12.29 11.69 11 14.61
Discontinuous Low Density Urban Fabric 5.59 4.9 5.13 5.95 5.65 5.55 7.49
Discontinuous Very Low Density Urban Fabric 3.35 2.79 2.89 3.49 3.21 3.05 4.57
Isolated Structures 3.96 3.41 3.59 4.2 3.99 3.96 5.35
Railways and Associated Land 4.61 3.5 3.83 5.11 4.68 3.5 6.44

The variation of the parameters reported in Table I for the fuzzification of the input Level-1α product does not affect significantly the result of the building extraction
application.

Anyway, if the variation of the parameters is small (in the
order of ±5%), the detection rate is rather stable. In fact, fuzzy
variables allow for an effective modeling of the uncertainty.
This makes the technique scarcely sensitive to the parameters of
Table I, even if significant variations (±10%) of selected values
are applied.

VI. CONCLUSION

In this paper, we introduced a technique for enhancing the
information content of the red band of a Level-1α product. This
band is usually reserved to the interferometric coherence infor-
mation and therefore it is aimed at the enhancement of targets
characterized by high phase stability over the time, such as built-
up features. The proposed technique is devoted at enhancing the
performances of the coherence estimator through an adaptive
selection of the moving window dimension. To this end, the in-
put Level-1α product is used to generate an a priori knowledge
which is used to build the expert system for the choice of the
coherence window dimension through fuzzy rules.

Texture evidence is used for supporting the enhancement of
built-up features where the feedback fails due to decorrelation.
We proposed the use of the Nagao–Matsuyama rule for im-
proving the informative content of the red band of the refined
Level-1α product in areas characterized by high backscattering
and texture.

We assessed the performance of the proposed algorithm qual-
itatively and quantitatively. Qualitatively, the visual experience
of the operator is enhanced by the feedback application. This
makes easier to detect the urban area through the enhancement
of its built-up features. Quantitatively, we used the Urban Atlas
layer for comparing the soil sealing measured on the Level-1α
product (before and after the feedback) with data provided in
the reference layer description. We found that the feedback ap-
plication significantly increased the number of detected pixels
belonging to the built-up class for all the relevant classes. In
particular, it is appreciable the improvement obtained on rail-
ways and their associated land. The obtained results, in terms of
measured soil sealing, are congruent with the data provided by
the Urban Atlas, compatibly with SAR imaging characteristics
and classes definition.

The obtained results were compared with those retrieved
using two machine learning techniques such as SOMs and
SVMs. The comparison showed that the proposed methodology,
provided the enhancement of the informative content of the in-

put Level-1α product, can represent a good and user-oriented
alternative to more refined techniques. In fact, a simple band
product can be understood and managed even by nonexpert
users, while SOMs and SVMs require a higher expertise and a
certain confidence with machine learning to be used.
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