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Abstract—Interpreting synthetic aperture radar (SAR) images
may be a very challenging task, even for expert users. One of the
main reasons is the multiplicative speckle noise typical of coher-
ent acquisition systems. Therefore, despeckling can be expected to
play a key role in the full exploitation of SAR imagery potential.
However, even state-of-the-art despeckling algorithms neglect the
physical phenomena hidden behind SAR imagery. Image acqui-
sition depends on electromagnetic scattering, which is also at the
basis of speckle noise. Taking into account scattering issues into
more physical-based despeckling algorithms may only benefit the
overall performance. In this paper, we propose a scattering-based
(SB) version of the SAR block-matching 3D (BM3D) filter, named
SB-SARBM3D. SARBM3D can be arguably considered as one
of the most promising and accurate despeckling algorithms, pro-
viding a good compromise between speckle reduction and detail
preservation. We modify the original algorithm so as to exploit
the prior information available on the imaged scene, taken into
account based on scattering concepts. The new algorithm is tested
in a variety of different and complementary simulated scenarios,
and its performance is assessed objectively by means of numer-
ous synthetic parameters. Moreover, comparison with different
state-of-the-art despeckling algorithms is performed on some
actual SAR images, both inherent to natural and urbanized areas,
for subjective evaluation. Thanks to the prior information, SB-
SARBM3D outperforms the original algorithm in terms of both
speckle reduction and detail preservation. Moreover, it reduces
the annoying artifacts introduced sometimes by SARBM3D in
homogeneous areas of the image.

Index Terms—Fractals, image denoising, SAR block-matching
3D (SARBM3D), scattering models, synthetic aperture radar
(SAR).

I. INTRODUCTION

S YNTHETIC aperture radar (SAR) images are among the
most valuable sources of information for all applications

involving the remote sensing of the Earth. Besides ensuring all-
weather and all-time coverage, they provide information about
the surface that cannot be acquired by other types of sensors.
However, they are affected by intense speckle, which prevents
their use in automatic tools for information extraction, and
makes their interpretation challenging even for human experts.
Often, this problem is contrasted by resorting to some forms of
multilooking, with the remarkable side effect of losing spatial
resolution. A more appealing alternative is to resort to signal
processing, looking for SAR despeckling techniques that sup-
press speckle in homogeneous areas without losing resolution
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and without impairing the image features of interest. Several
techniques have been proposed to tackle this issue [1]. The first
approaches known in the literature are local spatial filters [2]–
[4], which take into account the nonstationarity of the image
by adapting the filter to the local statistics within a fixed-size
sliding window. Specifically, most of these filters adopt a test
to discriminate homogeneous from heterogeneous areas based
on the local coefficient of variation, which is a simple and
robust index of textural content. In this way, a good balance
between smoothing and edge preservation can be achieved.
These techniques have the merit of simplicity but, in general,
are characterized by a limited despeckling power. In order to
better take into account the characteristics of the scene fluctua-
tions, a Maximum a Posteriori (MAP) approach is followed in
[5], modeling both the scene and the speckle through a Gamma
distribution. Improved versions of these filters have been pro-
posed in [6], using the local coefficient of variation combined
with a ratio edge detector [7] not only to inhibit smoothing
near edges but also to enhance the edges themselves. In [8],
instead, a new model is proposed which better fits SAR data
in textured areas, and a more appropriate strategy is used to
handle edges and strong scatterers. Still in the context of MAP
formulation, a different texture modelization, based on Gauss–
Markov Random Fields, is proposed in [9], together with an ad
hoc strategy to detect and preserve strong scatterers and borders
between regions of uniform backscattering.

More sophisticated methods rely on the use of transforms,
which provide a manageable sparse representation of the signal.
Several algorithms based on wavelet transform (WT) followed
by coefficient shrinkage have been proposed. In particular, by
using redundant WT [10], [11], they are also able to avoid
annoying artifacts such as Gibbs-like ringing in uniform areas
and near edges. In this context, a central issue is the adoption of
nonlinear shrinkage for the wavelet coefficients. Even though
deterministic shrinkage represents a simple and effective solu-
tion, especially in its adaptive version [10], better results can be
expected from statistical shrinkage, and its use in the context of
MAP approaches has led to a great variety of filters. Also, in this
case, results can be improved by taking into account the spatial
heterogeneity, as done for example in [12], or in [13], where
the local texture energy is used to classify wavelet coefficients
and adapt the filtering strategy. More recent techniques which
take advantage of bidimensional transforms better fit to repre-
sent edges, such as bandelets [14] and curvelets [15]. Instead of
using a fixed transform, an alternative approach is to build an
adaptive dictionary from the image itself, as done in [16]–[18].
Recently, the nonlocal approach [19] has gained much popular-
ity in this field, proving very effective for various SAR imaging
modalities [20]. The basic idea is to take advantage of image

1939-1404 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

self-similarity. Each target pixel is reconstructed through the
weighted average of those pixels that are deemed to be more
similar to it. These may be located anywhere in the image, not
necessarily close to the target. The central issue, therefore, is
to find a suitable measure of similarity, typically patch-based,
to find these optimal predictors. Interestingly, a rough form of
nonlocal filtering was already present in the well-known sigma
filter [21], later improved in [9] and [22]. In recent years, a
number of nonlocal techniques have been proposed for SAR
despeckling, e.g., [23]–[26]. The most popular among them
are arguably PPB [23], characterized by an excellent speckle
suppression ability, and SAR-block-matching 3D (SARBM3D)
[24], which ensures a very good preservation of fine image
features.

All the above-mentioned state-of-the-art techniques
are based on statistical and/or geometrical concepts and
approaches, with limited physical insight [1], [27]. Even well-
known and well-assessed despeckling techniques ([2]–[4])
do not take into any account the physical mechanisms and
phenomena involved in SAR image formation. Nonetheless,
electromagnetic scattering plays a key role in SAR imagery
acquisition process: a SAR image can be modeled as the
reflectivity pattern of the illuminated scene filtered by the SAR
system [28], [29]. Scattering phenomena are also responsible
for the speckle noise that affects every coherent acquisition
system like SAR sensors. By explicitly taking into account the
electromagnetic phenomena of interest for SAR image for-
mation, notably, the scattering mechanisms, a physical-based
approach to despeckling can be pursued. This kind of approach
has the potential to provide more reliable and artifact-free
SAR images and eventually more informative SAR products,
readable also by nonexpert SAR users. A first attempt in this
direction, only applicable to polarimetric SAR data, can be
found in [30]. More recently, some of the authors applied
the aforementioned ideas in a novel physical-based nonlocal
means despeckling algorithm in which the measure of object
similarity also takes into account the physical parameters [31],
[32]. In this paper, we go one step further in this direction,
proposing a modified version of the SARBM3D filter [24]
where prior information on the scene scattering properties
is suitably modeled and taken into account. This paper is
organized as follows. Section II provides a detailed description
of SARBM3D; proposed modifications to this filter are pre-
sented and described in Section III together with the adopted
scattering model. In Section IV, the performance improvement
over SARBM3D is assessed by computing several objective
indicators on some suitable simulated test images. Then,
a comparison with state-of-the-art reference techniques is
carried out on real-world SAR images. Conclusion is drawn in
Section V.

II. SARBM3D

In this section, we provide the information on SARBM3D
strictly necessary for a full understanding of the proposed
extension. After a conceptual overview of BM3D, we explore
its SAR-oriented version in more detail, introducing also the
notation used in the following, and eventually highlight its

Fig. 1. Block-scheme of the two-pass SARBM3D filter.

strengths and weaknesses. For more information, the reader is
referred to the original papers [24], [33].

A. Block Matching 3-D

As the name suggests, SARBM3D is the SAR-oriented ver-
sion of the BM3D algorithm, proposed in [33] for AWGN
image denoising. While these algorithms share the same gen-
eral structure, they differ profoundly in the implementation, as
SARBM3D takes into account the peculiar nature and strong
intensity of speckle noise. The filtering procedure comprises
two passes, as shown in Fig. 1.

However, the actual despeckling takes place only in the sec-
ond pass, by means of Wiener filtering in the wavelet domain.
Nonetheless, the first pass is of paramount importance. In fact,
it produces a partially despeckled image, x̂1, used as a “pilot,”
over which the statistics α for the subsequent Wiener filtering
are estimated. The better the pilot, the more reliable the esti-
mates, the better the final outcome. Both in the first and second
pass, three main processing steps are carried out:

1) grouping;
2) collaborative filtering;
3) aggregation.
In the grouping step, the nonlocal principle comes heavily

into action. For each target block, the most similar blocks in the
neighborhood are located and collected in a three-dimensional
(3-D) stack for subsequent filtering (see Fig. 2).

By doing so, one exploits the inherent self-similarity of
images to mimic a true statistical filtering, where multiple
instances of the same block are taken into account. The col-
laborative filtering of the 3-D stack is performed by wavelet
shrinkage, exploiting redundancies both in space and through
blocks to separate signal from noise. Finally, the filtered blocks
are returned to their original locations and aggregated, gaining
the benefit of multiple alternative estimates of the same object.

B. Dealing With the SAR Despeckling Problem

SARBM3D departs from its AWGN counterpart under two
respects: 1) the use of a block similarity measure tailored to
speckle statistics; 2) the use of undecimated WT and Wiener
filtering in place of ordinary WT and hard thresholding in the
first pass. Following the usual multiplicative noise model, the
observed signal is expressed as

z(s) = x(s)n(s) (1)

where the spatial location is indicated by a single letter for
compactness, z(s) and x(s) are the observed and clean signal
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Fig. 2. Nonlocal BM3D in SARBM3D. Inspired to [20, Fig. 2].

intensities, and the speckle samples n(s) are independent and
identically distributed Gamma random variables. Accordingly,
x̂1(s) and x̂2(s) are the intensities estimated in the first and
second pass.

Nonlocal filtering relies heavily on a suitable measure of sim-
ilarity. The problem of determining such a measure, depending
on noise statistics, has been studied in several papers [34]–
[36]. A widespread approach, well supported by experimental
evidence, is to define the similarity between two noisy observa-
tions as the likelihood that they come from the same underlying
signal before being corrupted by noise, i.e.,

p [a(s), a (t) |x(s) = x (t)] (2)

where, following [23], we use signal amplitudes a(s) =
√
z(s),

rather than intensities, and p indicates a probability density
function. In the hypotheses of additive white Gaussian noise,
this approach leads to the Euclidean distance as a measure of
dis-similarity. With L-look SAR images, however, it leads to a
different distance

d1 [a (Bs) , a (Bt)] = (2L− 1)
∑
k

log

[
a (s+k)

a (t+k)
+

a (t+k)

a (s+k)

]
(3)

where Bs indicates a block centered on s, a (Bs) is the corre-
sponding amplitude, and k scans the block pixels. This distance
has been used with success in several nonlocal despeckling
techniques. Besides having solid statistical bases, using the
ratio of samples rather than their difference makes full sense
for multiplicative noise, as it makes the distance independent
of the average signal level. When other estimates of the signal
are available, coming for example from other sensors [37], the
distance can be modified to take into account this side informa-
tion. This is the case of the second pass of SARBM3D, where
the first-pass pilot estimate is already available and the distance
is therefore modified accordingly.

The other major innovation introduced in SARBM3D con-
cerns the first-pass filtering step aimed at providing the pilot
image. As already said, a good pilot is essential for the success
of the final despeckling step, especially when the original image
is very noisy, as is the case of single-look SAR images. Hence,
it makes full sense replacing hard and soft wavelet threshold-
ing with Wiener filtering, which is theoretically optimal. To
perform well, however, the latter needs reliable estimates of

statistics. When this is not the case, a simpler but more robust
thresholding may still be preferable. To address this issue,
SARBM3D resorts to undecimated discrete wavelet transform
(UDWT) rather than critically sampled WT. Without deci-
mation, a large number of samples (though more correlated)
become available in each subband to estimate the variance of
wavelet coefficients, allowing for the correct functioning of
the Wiener filter. The price to pay is an increase in compu-
tation time and memory usage, more and more acceptable as
technology progresses.

In [24], the multiplicative noise model is first of all converted
in an additive signal-dependent noise model

z(s) = x(s)n(s) = x(s) + x(s) [n(s)− 1] = x(s) + v(s).
(4)

Then, resorting to some reasonable simplifications, the fil-
tered wavelet coefficients are computed as

X̂1 (i) = max

⎛
⎝0,

〈Z2〉SB(i) − σ2
u

(1+σ2
u)
〈z2〉G

〈Z2〉SB(i)

⎞
⎠Z (i) (5)

where capital letters indicate wavelet coefficients. In (5), all
quantities within the crochets can be estimated reliably by
sample averages [24], either over the UDWT subband the coef-
ficient belongs to 〈·〉SB or over the whole 3-D stack 〈·〉G.
Inverse transform provides eventually the filtered image.

C. Strengths and Weaknesses

We now focus on the pros and cons of SARBM3D, only par-
tially highlighted in the above description. Its major strength
is certainly the ability to preserve image details, such as man-
made structures, textures, and region boundaries. This is due
to the nonlocal approach. Since details represent rare “anoma-
lies” as opposed to the larger homogeneous areas, it is only
by collecting multiple similar patches in a large area that one
can gather enough information to perform a reliable estima-
tion. This information is then exploited very effectively in
SARBM3D by means of a number of sophisticated tools, such
as UDWT, Wiener filtering, and the aggregation of multiple
estimates. The strengths of SARBM3D, however, are also its
weaknesses. Since it preserves very well image structures, it
tends to preserve also random patterns originated by speckle



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

in homogeneous areas. Therefore, the speckle suppression in
homogeneous areas is not as strong as it happens with some
competing techniques, e.g., PPB. On the other hand, speckle
suppression and detail preservation are inherently contrasting
requirements. Interestingly, the reinforcement of random pat-
terns gives rise to despeckling artifacts only occasionally. This
important property must be credited to the UDWT/Wiener suite
in the first pass which produces a pilot image free of the typi-
cal wavelet-basis artifacts. In fact, replacing UDWT with WT,
as done in FANS [25] to reduce complexity, originates a num-
ber of annoying artifacts. It is therefore reasonable to expect
that further improving the pilot, by using some available side
information, will entail significant benefits on the final filtered
image.

III. SCATTERING-BASED SARBM3D

As described in the previous section, the first step of
SARBM3D aims at estimating the local statistics of image
intensity, which are used to drive the actual despeckling pro-
cess performed in the second step. The quality of such estimates
impacts heavily on the filter performance in terms of both
speckle rejection and detail preservation. In this paper, we
improve the estimation quality using some prior information
available on the sensed surface, interpreted through suitable
scattering models. As a result, filtering performance improves
significantly wherever the proposed scattering model is appli-
cable, and notably in natural areas with gentle topography. In
the following, the adopted scattering model and the proposed
SB-SARBM3D filter are described in detail.

A. Scattering Model

The scattering mechanisms involved in SAR image forma-
tion are numerous and complex. They depend on the surface
geometry and composition, as well as on SAR operating fre-
quency. Surface and volumetric scattering dominate in natural
areas, while double- and multiple-bounce scattering phenom-
ena are evident in urban areas. Taking into account all of
these mechanisms in a scattering model would require very
involved formulas, with plenty of parameters to estimate or
nonclosed form solutions. For the sake of simplicity, we will
therefore consider only surface scattering, which is suitable for
the description of scattering from natural areas.

A closed-form scattering model, necessary for automatic
SAR inversion techniques, requires a suitable model of the sur-
face. To this aim, we resort to the fractal geometry, arguably
the best tool for taking into account the self-affinity and
self-similarity properties of natural surfaces [38]–[41]. With
this approach, a natural surface is described by means of
a two-dimensional (2-D) fractional Brownian motion (fBm)
stochastic process, z(x,y), defined by the relation [40]

Pr
{
z (x, y)− z (x′, y′) < ζ

}

=
1√

2πT (1−H)τH

ζ∫
−∞

exp

(
− ζ2

2T 2(1−H)τ2H

)
dζ (6)

Fig. 3. Block scheme of the SB-SARBM3D algorithm.

where Pr{} stands for “probability,” ζ is the considered height
increment, and z(x,y) is the surface elevation

τ =

√
(x− x′)2 + (y − y′)2 (7)

is the distance between the two points of coordinates (x, y) and
(x′, y′), H is the Hurst coefficient (0 < H < 1) related to the
fractal dimension D = 3−H , and T is the topothesy [m], i.e.,
the distance over which chords joining points on the surface
have a root mean square slope equal to unity.

Given the geometrical description of the surface, the scat-
tering model provides its electromagnetic description, i.e., the
normalized radar cross section (NRCS). In this paper, we resort
to the small perturbation method (SPM) suitable for natural sur-
faces with limited roughness. Considering a monostatic radar,
and assuming that the surface can be described through a fBm,
the SPM estimate, σ̂0, of the NRCS, σ0, is given by [42], [43]

σ̂0
mn = 2π8k4S0|βmn|2 cos4ϑ

(2k sinϑ)
2+2H

(8)

in which m and n denote the transmitted and received polar-
izations, either horizontal or vertical, k is the electromagnetic
wavenumber of the incident field, and S0 is a parameter related
to T and H [40] characterizing the spectral behavior of the fBm
surface. Finally, βmn accounts for the incident- and reflected-
field polarization, and is a function of both the complex relative
dielectric constant εrc of the surface and the local incidence
angle ϑ [40]

βhh =
cosϑ−√

εrc − sin2ϑ

cosϑ+
√
εrc − sin2ϑ

,

βvv = (εrc − 1)
sin2ϑ− εrc

(
1 + sin2ϑ

)
εrc cosϑ+

√
εrc − sin2ϑ

. (9)

Note that, according to this model, βmn = 0 for m �= n,
hence we are able to deal only with the copolarized case.
However, a nonnull closed-form expression of the NRCS for
the cross-polarized case can be still obtained extending the
SPM using the polarimetric two-scale model, described in [44].
From now on, the subscripts related to the polarization will be
neglected. Equation (8) describes the NRCS of a single res-
olution cell with a microscopic roughness described by the
fractal parameters H and T, and with a macroscopic rough-
ness described by the local incidence angle, ϑ, where the latter
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Fig. 4. (a) 512× 512 simulated single-look SAR image in the presence of a sinusoidal topography, microscopic roughness of fractal parameters H = 0.8 and
T = 10−4 m, and electromagnetic parameters εr = 4 and σc = 10−2 S/m. (b) 512-look reference image. (c) Local incidence angle map. (d) SARBM3D.
(e) SB-SARBM3D. (f) Weight map in the range 0–1.

is defined as the angle between the propagation direction of
the incoming radar electromagnetic wave and the direction
orthogonal to the local mean plane approximating the res-
olution cell. It is noticeable that the proposed surface and
scattering models correctly describe single-bounce phenom-
ena occurring on natural surfaces, i.e., multiple-bounce and
volume-scattering phenomena—mainly inherent to man-made
and vegetated areas—are not taken into account.

The exact evaluation of the surface NRCS via (8) requires the
knowledge of a number of surface parameters, such as complex
dielectric constant, local incidence angle, microscopic rough-
ness, and topothesy. Although it is not reasonable to know in
advance all these information (which would make useless the
SAR image itself), some important parameters can be obtained
quite easily. In particular, the local incidence angle can be esti-
mated from a digital elevation model (DEM) of the sensed
surface, if available. The estimate reads as

ϑ = cos−1

(
p sin θ0 + cos θ0√

p2 + q2 + 1

)
(10)

where θ0 is the radar look angle (i.e., the incidence angle over
an horizontal surface), and p and q are the range and azimuth
slopes, respectively, i.e., p = ∂z

∂y , q = ∂z
∂x , z being the elevation.

The ability to retrieve the incidence angle is a key ingredi-
ent of our proposal. In fact, the SPM NRCS depends heavily
on this parameter and much less on other ones, such as rela-
tive dielectric constant, electrical conductivity, and topothesy
[32]. Therefore, a good estimate of the NRCS can be obtained
even based on this only information. To this end, the local
incidence angle map has to be projected into the SAR sys-
tem geometry and coregistered to the noisy SAR image. The
microscopic roughness, instead, can be estimated from the SAR

image via the algorithm developed by Di Martino et al. [28] if
one assumes that the same value of H holds at both macro-
scopic and microscopic scales. This latter is a rather strong
assumption, but again, the sensitivity analysis shows that errors
on the value of H do not appreciably affect scattering evalu-
ation if a significant topography is present. In conclusion, the
NRCS can be estimated based only on the scene DEM, and the
approximation is quite accurate where surface scattering is the
dominant scattering component, namely, in natural areas with
gentle topography or homogeneous flat regions.

B. Scattering-Based SARBM3D

The previous section provided insight into how the avail-
able information on the scene DEM can be converted, through
appropriate scattering models, into an estimate, σ̂0, of the image
NRCS. Our aim is to combine this information with the first-
step estimate x̂1,SARBM3D of SARBM3D to form a better pilot
image for the second pass to work on, according to the relation

x̂1,SB−SARBM3D = f
(
x̂1,SARBM3D, σ̂0

)
. (11)

The problem becomes, therefore, the design of the most
suitable combination function f.

To this end, it is worth reminding that the available prior
information allows for an accurate description of the sig-
nal backscattered from natural areas with gentle topography
or homogeneous flat regions, where surface scattering is the
dominant phenomenon. On the contrary, the description is
not reliable in correspondence of nontopographic edges, and
in the presence of particular scattering phenomena, such as
multiple bounce and volume scattering, typical of vegetated
and urban areas. On the other hand, SARBM3D, even in the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

Fig. 5. (a) 512× 512 simulated single-look SAR image in the presence of a fBm topography of fractal parameters H = 0.8 and T = 10−4 m, and electromag-
netic parameters εr = 4 and σc = 10−2 S/m (right) and patches of different electromagnetic parameters—in particular, the brightest square simulates damp soil(
εr = 10, σc = 10−2 S/m

)
, the middle gray-level squares represent dry soil

(
εr = 4, σc = 10−3S/m

)
, and the darkest one is sea (εr = 80, σc = 4 S/m).

(b) 512-look reference image. (c) Local incidence angle map. (d) SARBM3D. (e) SB-SARBM3D. (f) Weight map in the range 0–1. White box indicates the region
where the ENL is computed; ES evaluation is performed in the red marked area consisting of 240 horizontal profiles.

TABLE I
PERFORMANCE PARAMETERS FOR THE SINUSOIDAL DEM

first step, guarantees mostly complementary properties. Edges,
man-made regions, and fine details are estimated faithfully,
while limited speckle suppression is observed in homogeneous
areas, together with some filtering artifacts due to block match-
ing. Based on these observations, we define the function f so as
to perform a simple weighted averaging of the two quantities
(normalized to their mean values), with weights w(s) that adapt
pixelwise to the local image content

x̂1,SB−SARBM3D(s) = w(s)x̂1,SARBM3D(s)

+ (1− w(s)) σ̂0(s). (12)

Accordingly, the block scheme of Fig. 1 is modified as shown
in Fig. 3. As both (12) and the block scheme in Fig. 3 reveal,
the proposed modification of SARBM3D is still applicable to
both single and multilook SAR data, since the a priori scat-
tering information is not affected by the number of looks of
the SAR image. Consequently, the SB-SARBM3D filter inher-
its the applicability of the SARBM3D filter to both single and
multilook SAR data.

The weight w varies in the range 0–1 adaptively across
the image, combining in a suitable way the two contributes:
large weights give more importance to the first-step SARBM3D

estimate, x̂1,SARBM3D, while prior knowledge on scattering
becomes dominant with small weights. Therefore, for what
previously stated, the weight should be close to 1 in corre-
spondence of nontopography-related edges and urban areas (if
present), and close to 0 in natural areas with gentle topography
or homogeneous flat regions. Therefore, to define a sensible
weight map, one has to identify beforehand nontopographic
edges and man-made structures. To this aim, we apply to the
input SAR image the detectors proposed by Lopes et al. [7],
[45] which identify relevant image features, such as edges,
lines, and point scatterers. To take into account the multiplica-
tive nature of speckle, these detectors operate on local intensity
ratios, rather than on the gradients considered in additive-noise
contexts. Moreover, to reduce the effects of speckle, ratios are
not computed between single-pixel values, but rather between
averages taken over suitable windows in the neighborhood of
the target pixel (the reader is referred to [7] and [45] for a
more detailed description). In this work, we use the very same
windows defined in [45] for detecting edges, lines, and strong
scatterers. Even so, the output detection map appears to be
quite noisy, with many false alarms and missed detections. To
improve reliability, we could enlarge the reference windows,
but this would entail an unacceptable loss of spatial resolution.
Instead, we resort here to the virtual multilooking technique
introduced in [46] based itself on nonlocal estimation. For each
patch of the SAR image, a number of similar patches are col-
lected over a large neighborhood, using block matching with
the distance measure of (3). These are averaged together, with
no loss of spatial resolution, to obtain a much cleaner patch
to which the detectors of [45] are eventually applied. The out-
put ratio map rI takes values in the range 0–1, as explained in
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Fig. 6. (a) 1700× 1200 subset of a COSMO-SkyMed single-look stripmap SAR image of the Vesuvius volcano close to Naples, Italy. (b) Reference image
obtained via a temporal multilook of 42 SAR images. The black box indicates the area selected for coefficient of variation computation. (c) Local incidence angle
in azimuth-slant range derived from a DEM obtained with a Lidar system. (d) SARBM3D. (e) SB-SARBM3D. (f) Weight map in the range 0–1. (g) NL-SAR. (h)
MAP-S.
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Fig. 7. Zoom of the crater. (a) Reference. (b) SARBM3D. (c) SB-SARBM3D. Green boxes indicate some features better preserved thanks to the a priori scattering
information; red box indicates some artifacts removed or attenuated w.r.t. SARBM3D. White box indicates the region where the ENL is computed.

[46], and provides reliable information on the image details. In
order to reduce false alarms in the presence of topography (i.e.,
to separate nontopographic edges from those caused by terrain
topography), we apply the same detector to the local incidence
angle map, obviously without any virtual multilooking, obtain-
ing a further ratio map rθ in the range 0–1. This step allows us to
correctly identify nontopographic edges, man-made structures,
and homogeneous areas by evaluating the similarity between
the two obtained maps rI and rθ: similar values reflect gen-
tle topography or homogeneous flat regions; dissimilar values
reflect the presence of nontopographic edges and/or man-made
structures. Accordingly, the output weight map w is defined
based on the similarity between rI and rθ

w(s) = 1−min

(
rI(s)

rϑ(s)
,
rϑ(s)

rI(s)

)
. (13)

IV. EXPERIMENTAL RESULTS

Due to the lack of speckle-free SAR images, assessing
the performance of despeckling algorithms is a difficult task.
Speckle rejection is easily measured through the equivalent
number of looks (ENL), computed in homogeneous areas of
the image, but detail preservation is typically evaluated only
qualitatively through visual inspection. Quantitative measures,
however, can be obtained through simulation. To this end, a
common approach is to inject speckle on optical images, but
these simulated SAR images differ profoundly from the real-
world ones, leading to measures that may have little sense. To
solve these problems, a benchmarking framework for despeck-
ling was recently proposed in [47], where a physical-based
SAR raw signal and image simulator [48] is used to gener-
ate realistic SAR images. For some selected canonical scenes,
an arbitrary number of single-look realizations can be gener-
ated, allowing one to obtain a virtually speckle-free reference
by temporal multilooking. We will follow this approach, here,
and consider two relevant scenes, computing for each one sev-
eral objective measures of performance. These simulated scenes
enable the numerical comparison between different techniques,
providing solid insight into the main advantages and disadvan-
tages of each one. Therefore, we will use them in the next
section to analyze the improvements granted over SARBM3D

by the proposed SB version. Then, in the last part of the section,
we will analyze performance on real-world SAR images, com-
paring results with those provided by some state-of-the-art
reference techniques, in particular, the NL-SAR [26] and MAP-
S [13] filters. In this case, apart from some basic numerical
measures, we will rely mostly on visual inspection to assess
despeckling quality. To ensure reproducibility of the results,
the executable code of the proposed algorithm is available
online at http://www.grip.unina.it, together with the simulated
SAR images and the corresponding DEMs projected in the
azimuth-slant range coordinate systems and coregistered with
the SAR data.

A. Results on Simulated SAR Images

In order to test the proposed algorithm in different scenar-
ios, two suitable scenes are defined, and the corresponding
SAR images are generated by means of the SARAS sim-
ulator. The first one has a sinusoidal DEM, with constant
geometrical and electromagnetic parameters (Fig. 4). A more
realistic mixed scene is considered in the second case, hav-
ing a fractal DEM with constant parameters on the right side,
and four square patches with flat DEM and different electro-
magnetic parameters on the left side (Fig. 5). In particular,
for both the sinusoidal and the fractal DEM, we assume H =
0.8, T = 10−4 m, relative dielectric constant εr = 4, elec-
trical conductivity σc = 10−2 S/m. The four flat patches,
instead, have electromagnetic parameters (clockwise from top-
left): εr = 10, σc = 10−2 S/m; εr = 4, σc = 10−3 S/m; εr =
4, σc = 10−3 S/m; εr = 80, σc = 4 S/m, the second and third
patches sharing the same electromagnetic parameters. The
parameters of the SARAS simulator are set so as to gener-
ate images with the same characteristics as those acquired by
the COSMO-SkyMed sensor [49]. All test images have size
512× 512 pixels, and for each scene, 512 independent single-
look realizations are generated. By averaging them, a 512-look
image is obtained, which is almost speckle-free and repre-
sents therefore a good basis to compute full-reference quality
measures. In Figs. 4 and 5, we show, for both scenes, (a) a
sample single-look SAR image, (b) the 512-look reference,
and (d) the despeckled images output by SARBM3D, and (e)
SB-SARBM3D. The latter is based on the prior scattering infor-
mation evaluated via (8) from (c) the local incidence angle



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DI MARTINO et al.: SCATTERING-BASED SARBM3D 9

map, and on (f) the weight map used for combination. It is
worth underlining that, although the scattering model is able
to take into account also nontopographic inhomogeneities of
the sensed surface, such as changes of the dielectric constant
or the microscopic roughness, this information is not taken into
account here by the SB-SARBM3D filter. In this way, we sim-
ulate a more realistic scenario characterized by the lack of prior
knowledge on such parameters.

Performance evaluation is carried out by computing some of
the objective measures proposed in [47]. In particular, besides
the well-known ENL, the mean of intensity (MoI) accounts
for possible biases in the output, the variance of ratio (VoR)
gives indication on under- and oversmoothing phenomena, and
edge smearing (ES) and correlation index (Cx) provide infor-
mation on the preservation of edges and textures, respectively,
while the signal-to-noise ratio (SNR) and the mean structure-
similarity index (MSSIM) are well-known global measures
of distortion. In the presence of a continuously varying SAR
image intensity, as in the sinusoidal case, SARBM3D exhibits
some clear artifacts [see Fig. 4(d)] that greatly affect the output
image quality. The prior information about scattering reduces
dramatically these artifacts [see Fig. 4(e)], improving signif-
icantly the image quality. In fact, these artifacts are due to
random speckle patterns in the input image that are reinforced
by nonlocal filtering. Of course, no such patterns exist in
the DEM-related SB image. This latter contribute prevails in
the first-pass estimate, since the homogeneity of geometrical
and electromagnetic parameters, and the absence of man-made
structures, gives rise to a weight map [Fig. 4(f)] with values
uniformly close to zero. The objective performance indicators
reported in Table I confirm these observations. The proposed
SB-SARBM3D filter improves significantly w.r.t. the original
version in terms of VoR and SNR (about 3 dB), while very
close values are observed for Cx, which makes sense given the
absence of texture, and MSSIM, which is little affected by local
artifacts.

In the more realistic mixed scene, both topographic and non-
topographic related variations in SAR intensity are present.
This scene was designed to evaluate the behavior of the algo-
rithm in different situations, such as the homogeneous areas,
edges, and topography. As expected, SARBM3D provides a
very good edge and texture preservation [see Fig. 5(d)] thanks
to the nonlocal approach, while visible artifacts appear, again,
in the homogeneous areas, especially in regions close to the
edges. In these areas, the DEM-based prior information allows
for a much better speckle suppression, increasing the ENL from
about 300 for SARBM3D to over 1800 with SB-SARBM3D
(see Table II). Because of the assumed lack of informa-
tion about the variations of electromagnetic parameters, the
scattering-based contribute does not “see” the edges in the left
side of the image. This might potentially cause a significant ES.
However, these edges are well captured by the ratio-edge detec-
tor operating on the input SAR image, leading to large values
in the weight map of Fig. 5(f). Therefore, the first-pass image
coincides largely with the one output by SARBM3D, leading to
almost as good an ES value. The SNR figure confirms the over-
all improvement of the proposed filter w.r.t. SARBM3D, thanks
to the a priori scattering information.

Fig. 8. Zoom of a flat region at the foot of the Mt. Somma. (a) Reference.
(b) SARBM3D. (c) SB-SARBM3D. Red boxes indicate some artifacts removed
or attenuated.

B. Results on Actual SAR Images

The proposed algorithm was also applied to two subsets of
an actual single-look stripmap COSMO-SkyMed SAR image
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TABLE II
PERFORMANCE PARAMETERS FOR THE MIXED CASE

Fig. 9. (a) 1000× 1000 subset of a COSMO-SkyMed single-look stripmap SAR image of the Vesuvius volcano close to Naples, Italy, and relevant to a partly
urbanized area. (b) Image obtained via a temporal multilook of 42 SAR images; ENL = 49.0. (c) Local incidence angle in azimuth-slant range derived from a
DEM obtained with a Lidar system. (d) SARBM3D; ENL = 38.1. (e) SB-SARBM3D; ENL = 50.7. (f) Weight map in the range 0–1. (g) NL-SAR; ENL =
62.1. (h) MAP-S; ENL = 62.9. Red marked area is zoomed in Fig. 10, and ENL is evaluated in the green box.

acquired over the Vesuvius-Mt. Somma complex close to
Naples, Italy, on August 3, 2011. The first image is 1700×
1200 pixels and is relevant to a natural area with some sparse
man-made objects [Fig. 6(a)]; the second subset is 1000× 1000
pixels and is relevant to a partly urbanized area at the foot
of the Vesuvius mountain [Fig. 9(a)]. The radar look-angle is
44◦, while the pixel spacing is 2.07 and 1.17 m in azimuth and
slant range, respectively; the operating frequency is 9.6 GHz.
For what concerns the natural scenario, we use a 42-look SAR
image obtained via temporal multilook as reference [Fig. 6(b)],
while the mixed scenario in Fig. 9 deserves a specific com-
ment. Indeed, due to the fast temporal changes characterizing

an urban scenario (mainly due to the presence of vehicles) and
the high resolution of the COSMO-SkyMed sensor, some dif-
ferences between the single-look and the 42-look images are
present, as in the red circles in the zoomed region in Fig. 10(a)
and (b). Consequently, the 42-look image is not a suitable ref-
erence image and no synthetic parameters are evaluated for this
scenario, but for the ENL in a homogeneous natural region.
Indeed, only a visual inspection is conducted for the quality
assessment of the filters.

The local incidence angle maps [Figs. 6(c) and 9(c)]
are obtained from a DEM acquired with a Lidar system.
Figs. 6(d)–(e) and 9(d)–(e) show the SARBM3D and the
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Fig. 10. Zoom of the red marked area in Fig. 9(b). (a) Single-look. (b) 42-look image. (c) SARBM3D. (d) NL-SAR. (e) MAP-S. (f) SB-SARBM3D. Differences
between the single and the multilook images are red circled.

proposed filter outputs for the natural and urban scenarios,
respectively; Figs. 6(f)–9(f) show the weight maps; in Figs. 6(g)
and 9(g), the output of the NL-SAR filter is depicted, while in
Figs. 6(h) and 9(h), despeckled images using the MAP-S filter
are shown. The Hurst exponent has been evaluated through the
algorithm proposed by Di Martino et al. in [28]. In order to eval-
uate the texture preservation capability for the natural scenario,
the coefficient of variation is computed on a uniformly textured
region of the Mt. Somma [black box in Fig. 6(b)]. For what
concerns the natural scenario, despite the absence of nontopo-
graphic edges, the image presents some brilliant points to be
preserved. As the weight map shows, the proposed ratio detec-
tor correctly identifies most of them penalizing the scattering
model with a high weight. Due to the strong topography and

geometric distortion (layover and shadowing), the ratio detec-
tor provides some false alarms identifying also topographic
edges in correspondence of the crater and the Mt. Somma rip-
ples. Despite an overall similarity between the SARBM3D and
its SB version outputs, zooms in Figs. 7 and 8 show the bet-
ter reliability of SB-SARBM3D result especially in terms of
removal of the artifacts that affect SARBM3D filter. In par-
ticular, the SARBM3D despeckled image presents repetitive
horizontal and vertical structures not present in the reference
that could significantly affect a correct data interpretation. The
a priori scattering information allows for a significant reduc-
tion of these artifacts. Unfortunately, synthetic parameters are
not yet able to reward artifacts removal. A better smoothing
is reached by the SB-SARBM3D filter, as witnessed by the
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TABLE III
PERFORMANCE PARAMETERS FOR THE ACTUAL IMAGE OF A NATURAL SCENE

VoR parameter in Table III. A good speckle reduction together
with satisfactory texture preservation is provided by NL-SAR
and MAP-S filters. However, the MAP-S algorithm produces
some visible artifacts and deformation of the SAR data, such as
some brilliant points in correspondence of high intensity data.
The VoR indicator for the MAP-S suggests some malfunction-
ing of the filter in specific scenarios, as shown in the literature
[47]. Finally, the SB-SARBM3D filter presents better speckle
reduction in homogeneous areas as shown by the higher ENL
computed in the white box of Fig. 7(a).

The mixed scenario shown in Fig. 9 shows the behavior of
the proposed SB-SARBM3D in a partly man-made scenario in
which, together with the single-bounce diffusion, other scatter-
ing phenomena—not taken into account within the proposed
scattering model—occur, such as multiple-bounce scattering.
Reasonably, in such a scenario, the filter assigns a major
weight to SARBM3D, but for the natural area in the right-up
corner, as the weight map in Fig. 9(f) shows. Consequently,
SB-SARBM3D inherits most of the detail-preservation capa-
bility of SARBM3D in the urban area [see Fig. 10(f)], in which
the proposed scattering model is not adequate, and provides a
better speckle reduction w.r.t. the SARBM3D filter in homoge-
neous areas, as the ENL shows (Fig. 9). The best ENL value is
provided by the MAP-S filter. However, it must be noted that
the MAP-S filter, although it is capable of retaining most of
the man-made structures, causes visible distortions of the SAR
data. In this scenario, good performance is provided also by
the NL-SAR filter, whose capability to preserve the urban fea-
tures and drastically remove speckle without inserting visible
artifacts can be visually and quantitatively assessed.

A last remark about computational complexity is in order.
Due to the additional steps of weights evaluation, DEM pro-
jection, and Hurst coefficient evaluation, the proposed SB-
SARBM3D presents a computational load larger than the
original SARBM3D filter. In particular, for all the experi-
ments run, the proposed SB-SARBM3D requires about four
times the computational time of SARBM3D. The increase of
computational time is mainly due to the weight evaluation
phase.

V. CONCLUSION

In this paper, we have proposed a SB modified version of
the SARBM3D filter originally proposed in [24]. The new ver-
sion improves the first-step estimate of SARBM3D by taking
into account prior information about electromagnetic scatter-
ing of the sensed surface. To this aim, the surface roughness

of natural surfaces has been modeled as a 2-D fBm stochas-
tic process, while scattering phenomena have been modeled
via an SPM formulation suitable for fractal surfaces. Despite
the numerous parameters influencing surface scattering, only
the local incidence angle is assumed to be known, which in
turn requires a DEM of the underlying surface. Estimates pro-
vided by the first step of SARBM3D and by the assumed
scattering model present complementary properties. In fact,
SARBM3D provides good edge and detail preservation, while
introducing visible artifacts in homogeneous and flat regions.
Conversely, the scattering model with the assumed prior knowl-
edge describes quite well the response of electromagnetically
homogeneous natural areas, while it is inaccurate in describing
scattering from nontopographic edges and man-made struc-
tures, unless additional information is available. Consequently,
the new first step estimation is obtained by combining the prior
scattering information and the first-step SARBM3D estimate
with adaptive weights, related to the local reliability of the two
terms. In particular, the weight map is computed using the ratio
edge and line detectors developed in [45]. The filter weight
evaluation is designed to assign a major weight to the a priori
scattering information in regions with topographic-related SAR
intensity variations and, conversely, to assign a major weight to
SARBM3D in regions with nontopographic-related SAR inten-
sity variations. The new SB-SARBM3D filter has been applied
to both simulated and real SAR images and compared with the
original SARBM3D and other state-of-the-art references. The
proposed filter exhibits promising results especially in homo-
geneous flat and gently sloped areas, providing a better speckle
suppression than the state of the art with the same good preser-
vation of details. However, SB despeckling is a novel idea and
there is much room for further investigations and analyses in
terms of both theoretical studies and experimental results. A
major issue for further research is the ability to take into account
peculiar scattering mechanisms from both natural and urban
areas. At the same time, the research in this field would benefit
from better tools for the numerical assessment of performance,
including, for example, a quantitative measure of despeckling
artifacts.
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