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Abstract—In this paper, we present a new framework for the
fusion, representation, and analysis of multitemporal synthetic
aperture radar (SAR) data. It leads to the definition of a new class
of products representing an intermediate level between the classic
Level-1 and Level-2 products. The proposed Level-1β products
are particularly oriented toward nonexpert users. In fact, their
principal characteristics are the interpretability and the suitability
to be processed with standard algorithms. The main innovation
of this paper is the design of a suitable RGB representation of
data aiming to enhance the information content of the time-series.
The physical rationale of the products is presented through ex-
amples, in which we show their robustness with respect to sensor,
acquisition mode, and geographic area. A discussion about the
suitability of the proposed products with Sentinel-1 imagery is also
provided, showing the full compatibility with data acquired by
the new European Space Agency sensor. Finally, we propose two
applications based on the use of Kohonen’s self-organizing maps
dealing with classification problems.

Index Terms—High-level processing, human–machine inter-
action, image enhancement, Level-1β products, multitemporal
synthetic aperture radar (SAR), self-organizing maps (SOMs),
Sentinel-1.

I. MOTIVATIONS

THE use of synthetic aperture radar (SAR) data has been so
far limited in applicative contexts because the information

content held by images rarely emerges without a high tech-
nical expertise. The development of new products providing
user-friendly representations of the physical information is a
necessary condition for the full exploitation of SAR sensors.

High-level processing is a key task for enhancing the interpre-
tability and for emphasizing the underlying information content
of remote-sensing images. This depends on the sensor acquiring
the data. As an example, for hyperspectral acquisitions, prin-
cipal component analysis is probably the most popular linear
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projection method. However, it presents several drawbacks [1].
Therefore, refined methods have been proposed in literature
to overcome its limitations [1]–[3] and to make it possible to
display the information contained in N channels (where N can
be on the order of few hundreds) on a standard tristimulus RGB
device through a consistent dimensionality reduction.

Dealing with SAR images, data interpretability problems are
principally related to: 1) the geometrical distortions induced by
the side-looking acquisition geometry[4]: 2) the scattering mech-
anisms: and 3) the grayscale displaying, at least in nonpolarimet-
ric modality. In fact, humans can easily interpret color images,
which support fast searching and comprehension of data [2].

Multiple acquisitions of the same scene represent a reasonable
mean for increasing the dimensionality of SAR data through the
combination of information collected along the time axis. The
fusion problem is brilliantly focused in [5], where the authors
suggested a series of questions that an image fusion technique
should answer. Indeed, these questions refer to multisensor data
fusion. Therefore, we slightly reworked the aforementioned
framework as follows.

1) What is the objective/application of the user?
2) What are the necessary preprocessing steps involved?

(See Section III).
3) Which combination of the data is the most successful?

(See Section IV-A).
4) Which is the “best” technique to fuse these data for that

particular application? (See Section IV-B).

The objective of this paper is the definition of a new class
of RGB SAR products exploiting multitemporal acquisitions.
This answers to the first question, establishing the purpose of
the whole processing to data representation.

Multitemporal SAR data have been widely exploited in the
recent literature for, as an example, forest monitoring [6],
flooding events [7], and land-cover mapping [8]. Other, more
general, suggestions and answers to the previously listed ques-
tions can be found in [9] or in the past distinguished literature
[10]–[12]. In this paper, we want to emphasize the usefulness of
an appropriate and comfortable representation, allowing for an
easier visual data mining and a better design of the information
extraction process. In fact, a better knowledge/understanding
of the scene implies a higher awareness of the processing
necessary for information extraction.

The previously listed questions can be summarized in the
following one (see [13]).

5) How the enormous amount of information contained in
remotely sensed images can be extracted?
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We will not provide a comprehensive answer to this question.
In fact, this work mainly deals with a part of the whole problem,
i.e., data representation. However, as stated in [14], “a good
knowledge representation design is the most important part of
solving the understanding problem.” In particular, the proposed
solution aims at creating an intermediate, user-oriented product
level between the classic Level-1 and Level-2 products. In
fact, it is designed to: 1) favor interpretation and visual data
mining; 2) favor the use of standard processing algorithms,
which are the most popular in the end-user community. These
characteristics lower the expertise required to handle data, and
make the retrieval of the physical information (which is usually
seen as Level-2 processing) simplified, since it takes place by
exploiting a product level higher than 1. As an example, dealing
with crop classification, the discrimination between summer
and winter cultivations is not Level-2 information, but anyway
more than Level-1 one, and could be helpful for moving toward
higher levels following a processing chain composed of the
following:

— a model-driven data representation, which is just the
purpose of this paper (see also [15]);

— an application-oriented information extraction process;
— a decision, which should be taken among a very limited

range of options [16].

Information extraction can be performed at two different
levels: analysis and inversion. They can exist autonomously, but
the knowledge they can achieve is different. In particular, the
analysis (data driven) typically allows for reaching high-level
information. Inversion (model based) allows for the retrieval
of objects’ physical parameters but is usually possible only in
canonical situations (see, as an example, [17]). Therefore, the
most reliable solution for solving the understanding problem
is probably the integration of the two levels. This results
in a framework where the analysis makes data suitable for
the implementation of inverse models. In other words, data
analysis should reduce the complexity of the case study in an
application-oriented environment, thus supporting the extrac-
tion of the physical information/parameter through inversion.
We think that the best examples of such integration can be
found in the image understanding systems literature of the
1970s and 1980s [18]–[23]. Recently, a very interesting mixed
framework has been proposed for through-the-wall radar image
understanding in [24].

However, a lack of integration between these two levels
was found in the recent remote-sensing literature. In fact, a
great effort was made to develop automatic (often model-free)
techniques for data analysis, trying to make SAR data available/
accessible to end users. Indeed, these techniques are helpful and
maybe necessary in the whole information extraction process,
but they cannot totally replace the use of electromagnetic
models, which represent the best way to fully understand data.

SAR data interpretation requires the knowledge of the scat-
tering models underlying the image formation and of the cog-
nitive mechanisms ruling their perception. Thus, two kinds of
knowledge coexist: an objective knowledge, which is repre-
sented by electromagnetic models, and a subjective knowledge,
which is related to the users. In Section II, some aspects related
to cognitive processes guiding humans’ mining of information
from the surrounding environment are recalled. In Section III,

Fig. 1. Peirce’s semiotic triangle. It consists of three objects: the sign (i.e.,
the world as filtered by the sensor), the object (i.e., the physical object), and the
interpretant (i.e., the understanding reached by the observer of some sign/object
relation).

the general workflow and the preprocessing chain for the gener-
ation of the proposed products are described. Section IV is de-
voted to the definition of the proposed multitemporal synthesis.
In Section V, we present the obtained products and provide their
physical interpretation through examples. In Section VI, we
face two applicative scenarios, in which the proposed products
are exploited as input of neural networks to solve high-level
classification problems. Conclusions are drawn at the end of
this paper.

II. BACKGROUND

In [25], Mendel argued that two distinct forms of knowledge
exist: an objective knowledge and a subjective knowledge. SAR
image interpretation is mainly a matter of subjective knowl-
edge. An expert SAR user has more possibilities to successfully
interpret data, owing to the user’s habit to that semantic context.
For many multidisciplinary users, mining information from the
typical grayscale Level-1 SAR image is not straightforward.
Therefore, they often prefer different data sources or leave the
process of extraction of information to automatic algorithms.

This brings us to the concept of emergent semantics. Accord-
ing to [26], the informative content of an image, or its meaning,
is assumed to be not an intrinsic property but an emergent
characteristic through the interaction with users. Therefore, the
following assumptions are made.

— Image meaning becomes contextual, i.e., depends on the
condition in which a particular query is made and on the
user performing it.

— The knowledge about the image is assessed by the
user experience which, in this context, is also built by
exploration/inspection of data.

The necessity of restoring the user’s centrality in remote-
sensing data analysis (particularly concerning SAR data) has
been already manifested in the past literature [15], [27]–[29]
and appears evident if the data analysis process is approached
from a semiotic viewpoint.

In Fig. 1, we report Peirce’s semiotic triangle [30]. It depicts
how a concept is formed in our mind. Peirce claims that this
mechanism consists of three interrelated elements: a sign, an
object, and an interpretant. The sign is everything that can be
perceived, i.e., the world as filtered by the sensor. The object is
what the sign concerns and consists of the real-world physical
object. Finally, the interpretant is the understanding that the
observer reaches about some sign–object relation.
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Fig. 2. Multitemporal synthesis general workflow. Preprocessing is necessary
to obtain images spatially and radiometrically comparable, thus suitable for the
fusion. Analysis is devoted to the extraction of the temporal features involved
into the synthesis.

This schema should highlight that the machine (at the mo-
ment) can be only a support (although in many cases indispens-
able) to the human activity. In fact, it cannot participate to the
cycle depicted in Fig. 1, apart from helping a better formation
of the interpretant through its capacity of executing complex
tasks in a short time (see also [27]).

The purpose of this work is to highlight the potentialities of
a user-driven framework (provided that he/she is placed in the
best condition to produce the sign–object association), starting
from the basic activity of the information extraction process,
i.e., the inspection of data. In fact, in a context in which the
automatic extraction of information from large databases is still
rather limited, the enhancement of user experience with data is
crucial, he/she being in most cases designated for assigning the
scene semantics. The mean that we use to improve the human–
machine interaction is the fusion, or synthesis, of the informa-
tion contained in a multitemporal SAR series in a unique RGB
frame, whose aim is to convey to the user as much information
as possible. Therefore, from this viewpoint, the word synthesis
assumes both its acceptation of combination of separate things
into a complete whole and of overviewing a series of informa-
tion. This can be useful as a first step for the understanding of
dynamic phenomena, segmentation, and mining.

These considerations should clarify the necessity to intro-
duce the rather general-purpose and user-oriented data repre-
sentation that we are going to define. We used the locution
“rather general-purpose” because the quantity (and the quality)
of information one can mine from data is always dependent on
the type of representation chosen for it. In fact, as argued by
Marr, “a representation is a formal system for making explicit
certain entities of types of information” [20]. In other words,
data can be represented in different ways, and the choice made
greatly affects the information extraction process, since it makes
explicit some information at the expense of another that is
pushed back and could be quite hard to recover [20].

Summarizing, here, we explained the philosophical back-
ground this paper refers to. At the end of this paper, the reader
should be successful in figuring out an operative model that,
placing the users at the center of the processing chain, allows
for an effective management of several applications, replying
to the fifth question introduced in Section I.

III. GENERAL WORKFLOW AND PREPROCESSING CHAIN

The general workflow to generate the proposed products is
depicted in the block diagram in Fig. 2. The preprocessing
block answers to the second question posed in Section I and
involves all the operations necessary for obtaining a dataset
suitable for the multitemporal fusion. This block, which is
exploded in Fig. 3, is inspired from the multitemporal adaptive
processing (MAP3) framework introduced in [15], and here
briefly recalled.

The input is a stack of single-look complex (SLC) images. At
first, they are coregistered with standard algorithms. Complex
data are used for the extraction of the interferometric coherence;
intensity data are subject to calibration. For more details on
this topic, the reader should refer to [31] and [32] for COSMO-
SkyMed and TerraSAR-X data, respectively.

Despeckling is a key passage for making the semantics of the
time series emergent. The availability of multiple acquisitions
allows for exploiting filtering techniques, which use temporal
information for reducing speckle with no loss in spatial resolu-
tion [33].

Normalization is necessary to reduce image dynamics to its
more relevant part (such as natural cycles, agricultural activi-
ties, etc.) through a saturation of spikes due to high-reflective
targets. The variable amplitude levels equalization method in-
troduced in [15] is used for this task. The only remark is that,
here, we keep the floating-point values of data, postponing the
quantization step at the end of the fusion, as detailed in the fol-
lowing sections.

IV. ANALYSIS AND SYNTHESIS

Jacobson et al. [2] proposed some goals that the image
fusion should achieve for preserving information and enabling
interpretability. Here, we want to highlight the four properties
of summarization, consistent rendering, computational ease,
and natural palette, recalling some concepts expressed in the
aforementioned work.

As for the summarization, an effective synthesis should accu-
rately summarize the original data set, transferring to the user an
information that he/she cannot reach otherwise. This is possible
if the rendering of data is consistent, i.e., if the user is able to
easily produce the association sign–object or color-feature.

To this end, the natural color palette is, of course, the best
intermediary, but coded techniques for SAR image display
recalling this representation are not available. Hence, an ad-
vance in this sense, with short computational times (consistent
with real-time or near-real-time applications), is desirable. The
products that we are going to define aim to provide an effective
answer to these requests by appropriately solving the challenges
concerning selection and fusion of the most suitable temporal
features. This makes it possible to meet the four proprieties
previously discussed and also represents the subject of the third
and fourth questions introduced in Section I.

A. Multitemporal Analysis

Here, an answer to the third question raised in Section I will
be provided: what is the most successful combination of data in
order to obtain an RGB representation meeting the four prop-
erties of summarization, consistent rendering, computational
ease, and natural palette?

The idea is to compare (and combine) the mean intensity
values of the time series with some variability indicators. The
use of the variance is a simple choice in order to evaluate the
deviation with respect to the mean behavior.

Another information about the scene dynamics comes from
the maximum excursion of the backscattered energy. It allows
for the identification of outliers. Therefore, we use as third
element of our synthesis the saturation map, as defined in [34],
which exploits the information derived by the absolute maxima
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Fig. 3. Exploded view of the preprocessing block. Coregistration, calibration, despeckling, and normalization allow for obtaining a data set suitable for the
multitemporal fusion.

σmax and minima σmin, calculated pixelwise over the time
series as follows:

σs =
σmax − σmin

σmax
, σs ∈ [0, 1]. (1)

The drawback of this quantity is a probability density func-
tion (pdf) typically strongly skewed to the right. This results, in
the final composition, in a sort of watermark covering the image
and corresponding to the color assigned to that band. In order to
avoid this visually unpleasant effect and reach a more balanced
composition, we consider a saturation index defined by

σ̂s =
σmax − σmin

σmax + σmin
, σ̂s ∈ [0, 1]. (2)

This formulation of the saturation index allows for reducing
the skewness of the distribution with respect to (1), making it
possible to obtain a higher balance of the RGB channels.

B. Multitemporal Synthesis

As detailed in the previous section, the quantities that will be
used for the multitemporal synthesis are the mean intensity, the
variance, and the saturation index expressed in (2). The answer
to the fourth question posed in Section I, i.e., how to fuse the
selected data, is now in order.

One of the basic problems in computer vision is to allow the
observer to segment the image into meaningful regions [35],
preventing the emergence of bright saturated regions, which
has been judged as distracting and confusing [2]. Hence, it
is fundamental that the visualization favors the preattentive
processing [36], i.e., the unconscious accumulation of informa-
tion from the environment. As a consequence, we design our
fusion mechanism in order to output highly contrasted images
(which make edge detection easier), with limited occurrences
of saturated regions, and a good class separability.

The fusion is implemented by maximizing the entropy of
the channels involved in the composition. In particular, this is
performed by clipping recursively the image pdf (at both left
and right edges) for different percentages of the cumulative
histogram until the maximum entropy value is reached. This
procedure allows for obtaining more stretched histograms and
a higher contrast. In fact, the flatter the histogram, the higher
the entropy (see [15] and [37] for more details about entropy
maximization in SAR images).

As shown in Fig. 3, the synthesis has a fourth participant, i.e.,
the interferometric coherence. This quantity is useful for sepa-
rating high-reflective natural targets from man-made surfaces.

In order to insert this information in our RGB composite, we
proceeded as follows.

a) A master image is fixed, and assumed as reference for the
entire time series.

b) The interferometric coherence between the master image
and all the slaves is computed.

c) The mean coherence value γ is extracted.
d) The mean coherence map is linearly quantized between a

user-defined maximum and minimum. Reasonable values
for these parameters are ∈ [0.3, 0.4] for the minimum and
∈ [0.5, 0.6] for the maximum. This means that, assuming
γmin = 0.3 and γmax = 0.5, all the pixels whose coher-
ence value is below 0.3 are set to null coherence; pixels
with a coherence value in the range [0.3, 0.5] are linearly
distributed in the range [0, 255]; pixels whose coherence
value is above 0.5 are set to 255. In the following, we refer
to this map as the time-series coherence map.

e) The obtained time-series coherence map is used in com-
bination with the saturation index map. In particular, we
adopted the following rule: if the mean interferometric
coherence after quantization is 0 (i.e., if the coherence is
below the user-defined threshold), then display the satu-
ration index; otherwise, display the mean interferometric
coherence.

In the following sections, when the saturation index map
is referred, the reader should have in mind the previously
described modification with respect to its original definition.

As for the combination of the selected bands, we propose a
solution aiming to satisfy the requirements of consistent render-
ing and natural palette introduced in Section IV. Therefore, the
products shown in the following sections have been built using
the following sequence:

— red band: time-series variance;
— green band: time-series mean;
— blue band: saturation index map powered with the time-

series coherence map as aforementioned.

C. Data

The proposed synthesis algorithm has been tested on four
multitemporal series acquired by three different sensors.

— The first stack is composed by 15 COSMO-SkyMed
stripmap images with 3-m spatial resolution in azimuth/
ground range directions, and acquired over the Campania
region, Italy, between December 2009 and October 2011.
Data are HH polarized and shot in ascending orbit.
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TABLE I
SUMMARY OF THE AVAILABLE DATA. RESOLUTION IS EXPRESSED IN AZIMUTH/GROUND RANGE

— The second stack is composed by 35 TerraSAR-X strip-
map images with 3-m spatial resolution in azimuth/ground
range directions, and acquired over the Calabria region,
Italy, between April 2008 and June 2010. Data are HH
polarized and shot in descending orbit.

— The third stack is composed by six Sentinel-1 interfero-
metric wide swath (IWS) images with 20 m × 5 m spatial
resolution in azimuth/ground range directions, and ac-
quired over the Saxony region, Germany, between October
2014 and December 2014. Data are VV polarized and shot
in ascending orbit.

— The fourth stack is composed by 21 COSMO-SkyMed
spotlight images with 1-m spatial resolution in azimuth/
ground range directions, and acquired over the Yatenga
region, Burkina Faso, between May 2014 and September
2014. Data are HH polarized and shot in descending orbit.

The characteristics of the processed data sets are summarized
in Table I.

V. PRODUCTS AND THEIR PHYSICAL INTERPRETATION

Here, we propose three applicative scenarios for introducing
the multitemporal products derived from the datasets described
in Section IV-C. In the following, we will adopt the nomencla-
ture introduced in [15], referring to the proposed products as
Level-1β products.

A. Scenario 1: Monitoring Seasonal Crops in Temperate
Environment With Mediterranean Climate

In this scenario, our objective is the detection of summer
cultivations using the Campania dataset. To this end, a subset
of the available time series concerning the summer season was
used. Indeed, since the sowing time is slightly moved up and
the harvest could be delayed by some weeks, we considered
nine images between April 5, 2010 and October 28, 2010. The
obtained Level-1β product is shown in Fig. 4.

Before examining the monitoring activity, it is worthwhile
to linger on this representation, which allows for highlighting
some characteristics of the proposed products and the identifi-
cation of some phenomena, as listed in the following.

— Sea appears in almost pure blue due to the low contri-
bution of the mean and variance bands and to the high
values of the saturation index. This is due to different sea
states producing different backscatter in time. Indeed, this
behavior (i.e., the blue color) can be observed on other
weak scatterers, which could exhibit an unstable response,
such as roads, shadows, or surfaces in backslope.

— A more stagnant surface water, typical of rivers and
irrigation tanks, turns the response of the composition
toward the black [see Fig. 5(a)].

Fig. 4. Campania data set: summery Level-1β product obtained by processing
eight images from April to October 2010. Roughly, the following color–object
association can be made: blue—sea, black—stagnant water/weak scatterers,
green—grasslands/unchanged land cover, cyan—urban area/built-up, and
yellow/pink—growing vegetation. The original image dimension is about
4400 × 5000 pixels.

— Some irrigation tanks are subject to more intensive usage
during summer and dry up completely. Hence, their re-
sponse acquires a strong red (i.e., variance) component
which, combined with an increased contribution of the
mean band, results in a violet color, as shown in Fig. 5(b).
In the following, we will refer to these structures as
“temporary tanks.”

— Urban areas appears in cyan due to the combined contri-
bution of the interferometric coherence and of the mean
backscattering. The former contribution, in particular,
allows for the distinction of man-made targets from the
pine wood, which is characterized by a strong response of
the mean, as shown in Fig. 5(c) and (d).

As a general comment, a high contribution of the blue band
can be found both on very stable targets (such as buildings, due
to the contribution of the time-series coherence), and on very
dynamic objects (such as cropfields or the sea surface, due to
the contribution of the saturation index). Indeed these two phe-
nomena, in principle, ambiguous if only the blue band is consid-
ered, are well separable. In fact, on stable (man-made) targets,
a negligible contribution of variance is observed. Conversely,
a high variance is expected on dynamic natural surfaces.

As argued by Marr, “the usefulness of a representation de-
pends upon how well suited it is to the purpose for which it is
used” [20]. When, in Section II, we referred to Level-1β
imagery as a “rather general-purpose data representation,” we
wanted to remark this aspect. In fact, the proposed composition,
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Fig. 5. Campania dataset: particulars of the Level-1β product. (a) Stagnant water in rivers and in “permanent” irrigation tanks. (b) “Temporary” irrigation tanks.
(c) Urban area. (d) Pine wood. The original patch dimension is 400 × 400 pixels.

Fig. 6. Campania dataset. (a) CORINE land-cover map and (b) CORINE land-cover contour overlayed to the Level-1β product. This representation should allow
the reader to appreciate the large-scale correspondence between Level-1β colors and CORINE classes.

besides the advantage for human operators, would have limited
applicability, as an example, in sea parameter estimation or ship
detection. On the other hand, it is particularly indicated for land
monitoring and agricultural applications.

For mining information about cultivated fields, we used as
reference the CORINE land-cover map [38] [see Fig. 6(a)].
In Fig. 6(b), CORINE contours have been overlayed to the
Level-1β product. These two representations should highlight
the large-scale correspondence between the RGB product se-
mantics and CORINE classes.

In fact, the reader should easily distinguish, for example, the
classes urban area and water on the Level-1β product. Their
topology is respected compared to the CORINE map. The pine
wood at the bottom-left corner of the scene, as well as the stripe
of sparse vegetation and brushwoods close to the seaside are
in the same way identifiable. Indeed, the classes brushwoods
and sparse vegetation are indistinguishable on the Level-1β
product, but they form a whole close to the coast that is clearly
separated from the adjacent urban area and conifer woods.

It is worthwhile to remark that the product we are analyzing
has been produced considering a series of images belonging to
summer. Hence, seasonal cultivations are expected to have high
values of the mean intensity and variance bands due to the en-
hancement of backscattering derived by the volumetric contri-
bution of plant growth [39]. Indeed, the saturation index is also
expected to be high due to harvesting. Therefore, summery cul-
tivations exhibit high values in all the bands of the composition,
but their balance is dictated by cultivation type (determining
the harvesting time), terrain roughness, foliage density, plant
height, and fruit dimensions. This means that there is no unique
color association that identifies all agricultural fields. However,
given that the variance contribution is significant, a higher
contribution of the mean intensity (green band) results into a
yellow color. A dominance of the saturation index (blue band)
turns the response of the composition into a pink tonality. As an
example, if the field appears in yellow, a high foliage density or
taller plants have to be expected, as in the case of orchards [see
the upper part of the thematic map in Fig. 6(a)].
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Fig. 7. Calabria dataset: (a) April–October 2008 and (b) April–October 2009 Level-1β products. The semantic exhibited by these compositions (i.e., the
color–object association) is consistent with that of the Campania dataset previously analyzed. The original dimension of images is about 3200 × 2300 pixels.

Coming back to the overlay depicted in Fig. 6(b), the reader
should note how the contour color for the classes “Springy/
summery grain cereals,” “Springy/summery vegetable crops,”
“Springy/summery industrial crops,” and “Protected crops—
vegetables and fruits” is the same (yellow), i.e., these categories
have been grouped in a macroclass. This helps to highlight that
the Level-1β product is congruent on average with the CORINE
thematic map. In fact, fields whose response turn into pink or
yellow are enclosed in the contour of that macroclass.

The classes “Autumnal/wintery grain cereals” and “Grass-
lands,” which are identified in Fig. 6(b) by red and amethyst
contours, can be also fused in a unique class. In fact, grass-
lands are objects almost stable, and therefore, their response is
dominated by the mean intensity band (green). During summer,
winter-cultivated fields are usually destined to fallow; hence,
they are most likely covered by vegetation, and their response
turns into green, as well. In our case, grasslands and winter
cultivations are grouped in the center of the scene [see the the-
matic map in Fig. 6(a)], and this is confirmed by the Level-1β
product which, in that zone, exhibits a large dominance of the
mean intensity band response.

The previously listed outcomes are sensor independent. In
Fig. 7(a) and (b), we show two Level-1β products relevant to
the city of Cirò Marina, Calabria, (southern) Italy. In both cases,
the SLC images were acquired by the sensor TerraSAR-X.
In particular, the product depicted in Fig. 7(a) has been obtained
by fusing a time series acquired between April and October
2008. The product depicted in Fig. 7(b) is the result of the
fusion of a time series acquired in the same period of the
year 2009. In order to make the two time series comparable,
a metric was established. Therefore, we assumed as reference
the series relevant to the year 2008, fixing the maximum and

Fig. 8. Fragment of the Sentinel-1 acquisition of Dresden city. The image has
been processed up to 15 ENL using spatial multilooking and multitemporal
despeckling. It has a spatial resolution of about 15 m. The original patch size is
about 1000 × 1700 pixels.

minimum values of the quantities involved in the synthesis of
the Level-1β product. In other words, when the byte scaling of
the 2009 series is performed, the zeroth and 255th amplitude
levels coincide for each band with those of the reference series.

The reader can appreciate how the semantics of these com-
positions is consistent with that previously illustrated for the
Campania dataset. The principal cultivation of the study area
is the grapevine, which is a summer cultivation. It is easily
identifiable in the coastal stripe in Fig. 7(a) with the fields with
a yellow response. Moreover, due to the calibration, variations
in the colorimetric response between the two products can be
exploited for studying the behavior of the cultivations during
the two farming seasons, as explained in Section VI-A.
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Fig. 9. Sentinel-1 full Saxony Level-1β product with 15-m spatial resolution. The yellow dot identifies the city of Dresden. The relevant CORINE land cover
is reported at the top-left corner of the image in order to show, macroscopically, the correspondence between the Level-1β color meaning and the classes of the
reference map.

B. Scenario 2: A First Look on Sentinel-1 Data in Regions
With Continental Climate

Sentinel-1 started to acquire data in April 2014. The success
of the mission requires the development of repeatable and
reliable processing to produce attractive products for the end-
user community. The potential of the mission has been widely
explored in the remote-sensing literature [40], also through the
use of simulated data [41]. Here, we will show that Level-1β
imagery is fully compatible with the characteristics of the new
sensor.

To prove this claim, we processed a multitemporal series of six
images acquired between October 3, 2014 and December 2,
2014 in the IWS mode over the Saxony region (Germany).
Preliminary processing, such as terrain observation with pro-
gressive scan (TOPS) [42] deburst and calibration, has been per-
formed using the European Space Agency Sentinel-1 Toolbox
software.

In Fig. 8, we show a detail of the acquisition made on October3,
2014, and relevant to the city of Dresden. The image has been

processed up to 15 equivalent number of looks (ENL), using
multilooking with factor 1 × 4 in azimuth/ground range (to
make the pixel square) and multitemporal despeckling. It has
a spatial resolution of about 15 m. The whole product has a
coverage of about 180 km × 250 km and can be handled in
stack with the other images of the time series by the algorithms
described in Section IV and in Section IV-A, with a processing
time of about 1 h, on a four-core 12-GB RAM machine.

In Fig. 9, we show the full Level-1β product of the study
area. The spatial resolution is 15 m. The yellow dot on the map
identifies the city of Dresden. In the same image, the relevant
CORINE land-cover portion is also reported.

Macroscopically, the reader should note that the colors resti-
tuted by the composition are constantly associated to the same
image feature. Cities are rendered in cyan. In the middle of
the image, at south of Dresden, a wide stripe of woods is
identifiable, due to the dominant green component. Looking
at the CORINE land cover, in the top-left corner in Fig. 9,
the dominant classes in this area are “Broad-leaved forest” and
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Fig. 10. Sentinel-1 Level-1β product of the Dresden city area with its relevant
CORINE land-cover map.

“Conifer Forest,” which are rendered in green and dark green,
respectively.

At east and west of the city of Dresden (see the light yellow
class on the CORINE land cover), croplands are distinguishable,
as well as at south, above the woodland stripe. At northwest of
Dresden, instead, another wide woody area can be identified
with some water bodies of different sizes.

Summarizing, the proposed Sentinel-1 Level-1β product mac-
roscopically respects the semantic indicated by the CORINE
land cover.

The same reasoning can be repeated on a finer scale con-
sidering the close-up of the Dresden city depicted in Fig. 10.
The relevant CORINE land cover is displayed in the bottom-
left corner of the image. This representation should allow the
reader to better appreciate the matching between the semantics
extractable from the Level-1β product and that established by
the CORINE land cover.

As an example, it is easy to link the green-dominant response
in the area at northwest of the Elbe river with the conifer forest
indicated in dark green in the CORINE map. In the same way,
the Dresden city park, which is rendered in light pink on the
reference land cover, is clearly distinguishable in the Level-1β
image, owing to its green response.

In synthesis, based on the discussion provided in Section V-A
about the Campania dataset, the reader should be able to
reconstruct the semantics of the Level-1β response of the city

Fig. 11. Yatenga dataset (Burkina Faso): spotlight COSMO-SkyMed Level-1β
product obtained by fusion of eight images acquired between July and August
2014. The blue area in the middle of the image identifies the Laaba basin. The
original image dimension is about 4700 × 4900 pixels.

of Dresden. This testifies the robustness of our framework in the
color–object association (or sign–object in the Peirce view) and
its suitability to Sentinel-1 imagery. For a quantitative analysis
of this dataset, the reader is addressed to Section VI-B.

C. Scenario 3: Level-1β Products in Semiarid Environment

Here, we discuss the reliability of the proposed framework
when the climatic zone is changed. In this case, we deal
with a semiarid environment, where agricultural activities are
strongly related to the cycle of rainfalls [43], determining the
effectiveness of seasonal cultivations and the quantity of water
which can be harvested for facing the dry season [44].

In Fig. 11, we show a Level-1β product depicting the Laaba
basin. It has been obtained by processing eight spotlight images
acquired between July 3, 2014 and August 4, 2014, i.e., in the
middle of the rainy season [43]. In this scenario, it is of interest
to monitor water and cultivation dynamics, due to their impor-
tance for local community wellness, as well as the presence of
small human settlements, since updated maps are not always
available.

Level-1β imagery provides useful information regarding all
these activities. As an example, the Laaba basin is clearly
distinguishable at the center of the image. As aforementioned,
it is highly influenced by rainfall cycles. In fact, it dries up
completely during the dry season due to evapotranspiration and
human consumption, and it is filled by rain water during the
wet season [44]. This behavior is almost constant in different
years. However, basin contours are strongly variable, even
during the wet season, since the available water is used for
irrigation and human activity. This emerges when analyzing the
Level-1β product in the basin area. In fact, in its bottom part,
regions characterized by a pink response are present [see also
Fig. 12(a)], due to the combination of the variance and the
saturation index. Physically, it is possible to associate this re-
sponse to areas characterized by an unstable water coverage.
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Fig. 12. Fragments of the Yatenga image displayed in Fig. 11. (a) An area characterized by instable water coverage. (b) Crops in the nearby of the dam.
(c) A small human settlement. (d) An eroded area. The original patch dimension is of 400 × 400 pixels.

The same phenomenon characterizes bright regions within
the basin area and on its contour. However, in this case, the high
contribution of the mean indicates that the terrain is not covered
by water in most part of the considered acquisitions. There-
fore, if a mask of the maximum basin extension is available,
Level-1β imagery allows for the extraction of information
about the water coverage extent in the considered time interval.

In Fig. 12(b) and (c), the reader should note how both the
change in acquisition modality and climatic area do not affect
the response of features such as cultivated fields [see Fig. 12(b)]
and “urban areas” [see Fig. 12(c)]. We used quotation marks
since, in this case, we are considering very small settlements,
which are composed of few constructions behaving as stable
targets.

In Fig. 12(d), we show a detail relevant to a feature charac-
teristic of a semiarid environment, which is an eroded area [45],
i.e., a region which has lost its capability to retain and absorb
water. For this reason, it is completely barren and characterized
by a low reflectivity. Thus, the response of Level-1β imagery
for this feature turns out toward the black or a very dark blue
because of the contribution of the saturation index.

It is worthwhile to remark that, dealing with semiarid en-
vironments for which the imaged scenes are mostly natural
and, during the rainy season, characterized by strong dynamics,
the temporal sampling of the images involved in the Level-1β
composition is very important, as well as the considered time
span. In fact, a thin set of images or a long time interval could
give rise to anomalous response due to the effects of variance
and/or of the saturation index.

VI. APPLICATIONS

Here, we explore the suitability of the proposed products
to practical scenarios. In fact, visual data mining and inter-
pretation are not enough to extract information at large scale
from satellite images. As a consequence, it is highly desirable
that such an easy-to-read data representation can be effectively
processed with standard algorithms.

It is quite clear that a more interpretable product is very well
suited for supervised classification [46]. However, the recent
remote-sensing literature has paid great attention to neural
network techniques because they can handle effectively large
multidimensional data sets. Therefore, in the following, we will

linger on the use of such techniques, with particular reference
to one of the most consolidated and widespread, i.e., Kohonen’s
self-organizing map (SOM) [47]. In particular, we will show
that, for the considered applications, Level-1β products convey
most of the information, so that useful clustering results are
obtained.

A. Scenario 1: Monitoring Two-Year Agricultural Activities

Here, we face the problem of information mining from the
Calabria scene introduced in Section V-A. We considered im-
ages acquired in two successive years (2008 and 2009) for
generating two calibrated Level-1β products representative of
the two summer seasons. Operatively, these representations can
be exploited for making qualitative evaluations about the status
of cultivations using SOMs.

1) Objective and Approach: SOMs, which are also known
as Kohonen Maps, are machine-learning techniques of the arti-
ficial neural network (ANN) family. They are used for the clas-
sification of the most diverse data types. Their application, since
their introduction by Kohonen [47], has been experimented
in different sectors, such as gene expression analysis [48],
financial diagnosis [49], synoptic climatology [50], microbial
community dynamics [51], bankrupt prediction [52], and polit-
ical science [53]. SOMs have been widely applied to remote
sensing since the 1990s [54] as well, and new applications are
still studied and proposed today.

This widespread use of the SOMs is due to the extreme
flexibility of the tool. Compared with other classical statistical
methods, ANNs do not make assumptions on the statistical
distribution of the data. They can be easily applied to large data
sets and modified and/or integrated to be adapted to different
data structures [55] and learning techniques [56]. The robust-
ness to large amounts of data makes them a suitable instrument
for unsupervised or semisupervised classification in a big-data
scenario, which is, and will increasingly more be in the future, a
key issue in remote sensing. SOMs proved to be an outstanding
method for unsupervised classification of multispectral images
because of their dimensionality reduction capacity [56], [57].

Dealing with SAR data, SOMs have been employed, for
example, for polarimetric data classification [58], change de-
tection [59], or flood mapping [60]. Here, we want to evaluate
the cropfield behavior in the two considered years running a
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Fig. 13. Calabria dataset subset. Level-1β products relevant with years (a) 2008 and (b) 2009. (c) Clustered product. The 64 clusters identified by the SOM
depicted in Fig. 14 (counted from top to bottom and then from left to right) are associated to 64 different colors. The original patch size is 400 × 400 pixels.

SOM on the stack composed by the two Level-1β products.
The network is set up with nodes containing together the RGB
values for the two considered years and is initialized and trained
with couples of RGB triplets selected randomly from the two
Level-1β products to classify. Presenting the two-year values
together allows the network to classify the images based not
only on the characteristics of the pixels but also on their relative
change during the two years. As a consequence, the changes in
the two following years detected by the SOM can be interpreted
as changes in the crops’ behavior or production.

This application is critical since it involves two different
characteristic times relevant to the synthesis of the single multi-
temporal products and to the two-year cropfield behavior classi-
fication. This forced us to consider a strategy in which the SOM
clustering was supported by hierarchical agglomeration and
object-based reasoning. This allowed for reconstructing a more
homogeneous cluster map and a better understanding of the
study area. In particular, we used an agglomerative hierarchical
clustering method to unify similar classes after classifying the
input Level-1β products in 64 categories through an overdi-
mensioned 8 × 8 SOM [61]. Therefore, a top-down model
was followed [18]. In fact, our world model suggests that
64 categories are too much to describe the dynamics of our
scene. As a consequence, the initial number of clusters will be
reduced according to the characteristics of the scene and to the
application we are dealing with, reducing the cluster fragmen-
tation at the same time.

2) SOM Principles and Application: A SOM is a network
composed of a predefined number of nodes, which are con-
nected with a usually hexagonal or rectangular structure, such
as in our case. The nodes are elements of the same typology
of the training elements. Each time a training element is pre-
sented to the network, the most similar node is detected and
identified as the best matching unit (BMU). The BMU and
its neighborhood, defined by a radius (which decreases as the
training epoch increases), are updated to become more similar
to the presented training element. Updating the neighborhood
of the BMU allows the SOM to maintain topological properties
of the training data, i.e., to maintain topologically close on the
network the identified classes that have similar characteristics

[47]. At the end of the training phase, the obtained nodes are
used to classify each element of the data.

Several parameters can be adjusted to change the behavior
of the SOM classification. Usually, a Gaussian neighborhood
function is used, so that the strength of the adaption to the
presented training vector decays exponentially around the BMU
[62]. The number of training elements and the number of
training epochs are adjusted in order to obtain a stable result,
i.e., to obtain similar resulting patterns with multiple repetitions
of the training and classification algorithm. In fact, different re-
alizations of Kohonen’s algorithm with the selected parameters
do not show exactly the same topology, because of the random
initialization and training set, but show the same final patterns.
Here, we used 1000 training elements and 200 epochs.

In Fig. 13(a) and (b), the two subsets of the Level-1β products
relevant to the year 2008 and 2009 are depicted. SOM clusters
are reported in Fig. 13(c). In Fig. 14, a realization of the 8 ×
8 Kohonen network is provided. Each element is represented
by a plot showing the change of RGB values in the years 2008
and 2009.

The cluster map depicted in Fig. 13(c), although overseg-
mented, has a smooth representation because neighboring pix-
els, having a similar behavior, are associated to neighboring
classes, thus similar colors. In fact, observing the Kohonen
network in Fig. 14, the reader can observe that adjacent nodes
represent similar patterns in the pixel behavior between the two
years.

3) Agglomerative Hierarchical Clustering and Object-
Based Reasoning: In order to reduce the map fragmentation,
we performed an agglomeration of the obtained clusters to fuse
those carrying similar information.

A dendrogram represents a quick solution for evaluating
the relation between SOM clusters (see Fig. 15). Here, we
adopted as metric the Ward’s distance [63]. The red dashed
line represents the distance under which dendrogram’s branches
are considered for fusion. Clusters interested by fusion have
been displayed in yellow, green, magenta, blue, and red. This
representation is consistent with the SOM grid depicted in
Fig. 14, in which the colored rectangles enclose fused clusters,
for a total of five categories. Looking at the dendrogram, the
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Fig. 14. 8 × 8 SOM grid showing the RGB values (reported on the y-axis) for year 1 and their change to year 2 (see x-axis). The colored rectangles represent
the clusters after hierarchical agglomeration (see Section VI-A3, the dendrogram in Fig. 15, and the cluster maps reported in Fig. 16).

output of the fusion process is given by the intersection between
the horizontal red dashed line and the black leaves above the
colored groups of clusters.

The output of the hierarchical clustering is depicted in
Fig. 16(a), in which an unpleasant granularity arises. It consists
of small regions mainly sunk into a uniform background. In
this picture, the cluster–color association is consistent with the
dendrogram in Fig. 15 and with the SOM grid in Fig. 14,
in which the semitransparent colored rectangles enclose the
agglomerated clusters.

Physical-based consideration and object-based reasoning can
be used to improve the quality of the obtained cluster map.

We propose a simple processing based on connected-
component labeling [64]. This algorithm assigns an increasing
numeric index to each connected region found within the im-
age. For these objects, as suggested in [65], some shape parame-
ters can be computed, as well as spatial relations between them.
Here, we propose to compute some parameters, such as area,
compactness, number of neighbors, and percentage of shared
borders between adjacent regions. These parameters were used
to generate an appropriate physical-based and application-
tailored set of rules. In this case, we want to reconstruct the
homogeneity of the clusters representing the behavior of the
cropfields. Therefore, the implemented rules aim at fusing small
objects (also with irregular shape) to the background.

In Fig. 16(b), the result of the object-based image analysis
is reported. It is quite evident that the fusion operation has
definitely improved the quality of the cluster map. In fact,
with respect to the map presented in Fig. 16(a), the number of
regions is dramatically reduced, decreasing from 12 529 to 207,
also bringing undebatable benefits to the physical interpretation
of the map.

4) Interpretation: The physical interpretation of the re-
trieved clusters is now in order.

From the available data extracted from the CORINE land
cover [38], it appears that the study area is mainly destined
to vineyards. Thus, observing the Level-1β subsets depicted in
Fig. 13(a) and (b), the clustered image reported in Fig. 16(b),
and the SOM grid in Fig. 14, it is possible to infer the following.

— Yellow cluster: The RGB values in this cluster are medium
to high, constant between the two years, or with a slightly
increasing red value. The red (variance) and the green
(mean) values are generally higher than the blue (satura-
tion index). This means that the yellow cluster is associ-
ated with the agricultural areas that have a pink/yellow
color in the Level-1β product in 2008 and remained
similar in 2009, or slightly turned to pink when they were
yellow in the first year. These areas exhibit an almost con-
stant behavior in the two examined years. Assuming that
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Fig. 15. SOM cluster dendrogram. The red dashed line represents the distance under which the diagram’s branches are considered for fusion. Clusters interested
by the fusion are depicted in yellow, green, blue, red, and magenta (see also the SOM grid depicted in Fig. 14).

Fig. 16. Cluster maps (a) after the hierarchical agglomeration and (b) after the
object-based region fusion. The cluster–color association is consistent with the
dendrogram in Fig. 15 and with the SOM grid in Fig. 14.

the study area is destined to the vineyard, as stated in the
CORINE map, we can argue that this cluster represents
the fields in which the optimum behavior of the cultivation
is reached. In fact, vineyards experience their full devel-
opment between April and October, which is actually the
period considered for building the Level-1β products used
for the classification (see Section V-A). Therefore, in this
period, the growth of the cultivation results in high values
of the considered multitemporal quantities.

— Green cluster: In this cluster, the green value is medium
and remains constant, but the red and blue values are
generally decreasing from high to low. This is associated

with areas that were pink in the 2008 Level-1β product
and turned into green. Physically, the decrease in vari-
ance and saturation index could be related to a smaller
development of the cultivation, thus to a reduction of the
volumetric scattering contribution. This can be associated
to a lower development of the cultivation in the year 2009.
However, since the contribution of the mean remains high
in both years, despite the decreasing in variance and
saturation index, it is possible to argue that the cultivation
is structurally characterized by a rather dense foliage,
such as that of a vineyard, whose structure and dynamics
are fully compatible with the phenomenology inferable
from the cluster analysis.

— Red cluster: The RGB values are constant or slightly de-
creasing but generally lower than the values in the yellow
cluster. This cluster is mainly associated with green areas
which remain almost constant in the two years. From
the aforementioned considerations, we can infer that the
behavior of the vineyards grouped in this cluster is not
optimal in both the considered years.

— Blue cluster: Areas in this cluster have high blue and
red values in the first year, decreasing in the second
year, whereas the green remains constant. The red value
generally decreases more than the blue one. This cluster is
associated with areas that were pink in the 2008 Level-1β
image and turned into blue in 2009. It is mainly located
in the field at the top-left corner in Fig. 13(a) and (b),
and Fig. 16(b). It represents an anomaly with respect to
the behavior of the previously analyzed cluster. In fact,
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TABLE II
SUMMARY OF CLUSTER INTERPRETATION OUTCOMES. RGB ATTRIBUTES ARE REFERRED

TO THE 2008 LEVEL-1β PRODUCT. IN TABLE HEADINGS, t REFERS TO TIME

the abrupt fall in variance and the low values of the mean
bring us to argue that this cluster is a fallow land on which
some activities have been performed in the year 2008.

— Magenta cluster: These areas have very low values of
RGB. They are almost constant in the two years. This is
associated with dark blue areas in the Level-1β products.
The very small variance indicates that the pixels are quite
stable. In fact, looking at the shapes, it is clear that they
are associated to roads.

The outcomes of cluster interpretation are summarized in
Table II. In this table, RGB attributes refer to the 2008 Level-1β
product, and their derivatives are qualitatively evaluated based
on the SOM grid depicted in Fig. 14. However, we want to
remark that this analysis is inferred by available data, but no
ground truth for this experiment is available.

B. Scenario 2: Sentinel-1 Land-Cover Mapping

In the previous section, we used Level-1β products and
SOMs for solving a critical problem, i.e., the qualitative eval-
uation of the agricultural production in two successive years.
Here, we face a more classical problem, such as the land-cover
mapping derived from multitemporal data [34].

In this case, SOMs offer the possibility of an immediate se-
mantic transferring from the Level-1β product to the classified
map. In fact, during the training, the SOM (randomly initial-
ized) nodes are updated to be representative of the training
elements, which are chosen within the RGB product. Thus, the
resulting node colors will have the same semantics of the input
Level-1β product.

We performed a land-cover classification on a fragment of
the Sentinel-1 Level-1β product presented in Section V-B rele-
vant to the Dresden city area. Unlike the technique presented in
[66], here, we used a 2 × 2 SOM grid for producing a four-class
land-cover product. The SOM training parameters were the same
used for the Calabria experiment discussed in Section VI-A.
The original Level-1β product and the SOM land-cover classi-
fication are shown in Fig. 17(a) and (b), respectively.

As aforementioned, the use of a SOM allows for transferring
immediately the semantics from one product to another. In
particular, the interpretation of the class meaning, following the
guidelines given in Section V, is provided in the following.

— Dodger blue class (urban area): This class corresponds to
cyan areas in the Level-1β product due to the high contri-
bution of the mean and of the interferometric coherence.

— Light green class (grasslands): It corresponds to light
green areas in the Level-1β product, showing low vari-
ance and saturation index and a higher contribution of the
mean due to the backscattering contribution of terrains.

Fig. 17. Dresden area. (a) Sentinel-1 Level-1β product and (b) its four-class
land-cover map. The use of SOM allows for obtaining a classification map
whose appearance is very similar to the input RGB products. This way, an
immediate semantic transfer between the two products is possible. The original
image dimension is about 1500 × 2300 pixels.

— Orange class (growing crops/vegetation): This category
includes areas characterized by tones from yellow to pink
in the Level-1β product due to a medium/high contribu-
tion of all the considered indicators.

— Dark green class (low scatterers): This is the more hetero-
geneous class, enclosing the darker objects of the scene
(water bodies, bare soils, and shadows).

This experiment outputs a very heterogeneous cluster (the
dark green one) enclosing objects of a different nature. Thus,
with respect to the Calabria scene analyzed in Section VI-A,
the problem is inverted, since we may be interested in splitting
this cluster in at least two more significant categories.
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Fig. 18. Dresden area. Sentinel-1 five-class land-cover map after the splitting
of the dark green class.

To this end, we analyze the reasons that led to the association
of black and dark green objects in the Level-1β product within
a unique cluster.

As aforementioned, the SOM nodes are trained with RGB
triplets randomly selected within the input product. However,
looking in Fig. 17(b), it arises that the “black object class” is
the less represented in the data. Therefore, it is highly uncertain
that a SOM node can gain such color, since few training sets
relevant to this class are presented to the network.

The flexibility of a SOM, joined to a knowledge about the
mapping of the real world into Level-1β imagery [18], allows
us to easily solve this problem. In fact, in a Level-1β product, an
insufficient presence of an object class can occur mainly for wa-
ter surfaces (as in the analyzed case) and urban areas, if an ex-
tended natural scene is considered. In the presented experiment,
this substantially caused the aggregation of the class water
bodies into the class woods, which is the closer for chromatic
characteristics.

In order to split this class into its two major features, it
is sufficient to force a significant number of training sets (on
the order of 15%–20% of the total) to point toward the less
represented class. In such way, we induced one of the SOM
nodes to assume the corresponding color. In this case, we used
a 2 × 1 SOM, acting the modification of the training sets toward
the black color after masking out all the classes except the dark
green one. It is worthwhile to note that, when the dimension
of the SOM is reduced, the neighbor influenced by the winner
neuron should be modified accordingly.

In Fig. 18, we show the final five-class land-cover map,
after the application of the previously described splitting of
the dark green class into a dark green cluster (again) mainly
representative of woods, and a black cluster relevant to water
surfaces. It is remarkable how the land-cover map looks very
similar to the input Level-1β product.

However, the black cluster does not include only water
surfaces, since other features, such as shadows and bare soils,
are chromatically similar to them. This allows for enforcing the
consideration made in Section I about the extraction of informa-
tion from remote-sensing data. SOMs, although representing,
as demonstrated, a very flexible and suitable tool, can provide
only a partial answer to this problem. In fact, they act on a single

image attribute, i.e., on its chromatic characteristics. An object-
based reasoning, as discussed in Section VI-A3, can improve
the effectiveness of a SOM-based analysis, but a complete
image understanding system cannot overlook the integration
of image analysis techniques (such as SOMs) and scattering
models. In fact, the separation of water surfaces from backslope
areas or bare soils can be obtained by analyzing the electromag-
netic scattering of these features [67], [68]. In the same way,
as an example, the characteristics of the urban area can be re-
trieved only by evaluating the complex scattering mechanisms
triggered by an urban environment [69], [70]. We think that all
the ambiguity derived by the SAR scattering mechanism should
be resolved at the model level. In fact, however user friendly
this or that technique may be, including also commercial suites,
it cannot solve problems as those previously discussed without
taking into account scattering models. Thus, the role of the SAR
experts should consist in the integration of electromagnetic
models into user-oriented data analysis techniques for making
them fully effective in the solution of disambiguation problems
and, at the same time, manageable with the lowest level of
expertise by the end-user community.

VII. CONCLUSION

In this paper, we have introduced a new class of multitem-
poral SAR products. The proposed Level-1β products have
been designed to help the human photointerpreter, owing to a
rendering as much as possible consistent with human visual
understanding. The aim of the proposed products is to lower
the expertise required to correctly interpret the data. In fact,
in a scenario in which the automatic extraction of information
from large databases is rather limited, users are in many cases
appointed to extract information from the analyzed scene, i.e.,
to transfer a semantics to the imaged objects. Level-1β products
comply with this necessity, which is more and more felt in the
end-user community, making the human–machine interaction
easier and more comfortable.

We tested the reliability of our products by implement-
ing the proposed processing chain using images acquired by
three different sensors on four scenes (Campania, Calabria,
Yatenga, and Saxony). All the available acquisition modalities
(stripmap, spotlight, and scan) were tested, as well as differ-
ent climatic zones (temperate with Mediterranean/continental
climate and semiarid). The obtained results confirmed the se-
mantic stability of the proposed products, i.e., the consistency
of the association between the displayed colors and the objects
on the scene.

In Section VI, we tested the minability of the proposed
products and their suitability for data analysis techniques. The
application of SOMs was selected for the robustness to big data,
flexibility, and the capacity to maintain the chromatic semantics
of the input image. In the first application, we demonstrated the
suitability of the products and of the tool to convey a complex
information, i.e., the qualitative evaluation of changes in the
agricultural production of two consecutive years. In the second
example, we tested the capability of the SOM to classify a
Sentinel-1 composite relevant to the city of Dresden, main-
taining the semantics associated to the color response of the
input Level-1β product. In both applications, the combination
of Level-1β images and SOMs performed particularly well and
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demonstrated the suitability of the product to data analysis
techniques.

In Section I, we recalled five questions proposed in the past
literature concerning the reliability of a data fusion technique.
We proposed an answer for all of them with regard to the
problem of data representation. However, question 5 (concern-
ing how to extract the enormous amount of information from
remotely sensed data) is only partially answered. It could not
be otherwise, considering that this work mainly deals with a
part of the whole problem, i.e., data representation. Here, we
can linger on the following consideration: what is the role of
the electromagnetic models in remote-sensing data analysis?

At first, electromagnetic models constitute the basis of the
interpretation of any SAR product. In fact, unlike the case
of optical data, humans have no experience of radar imaging
directly linked to the world they live, and from which they can
take inspiration for understanding data. Therefore, Level-1β
imagery gains its semantics from the knowledge of the phenom-
enology dictated by the interaction of the electromagnetic fields
with the Earth surfaces. The proposed products subtend the ex-
pertise required for understanding these complex mechanisms,
reelaborating the scene dynamic in a more user-friendly color
display in which the nonexpert user can more easily encounter
his/her expectation about object appearance. However, models
are often left aside in favor of the development of techniques,
which are highly conditioned by the application and by the
correct selection of free parameters.

We think that a data analysis technique can be a valid
alternative to the application of electromagnetic models, which
are probably out of reach for nonexpert users, when high-level
information are sought. Instead, understanding the scene at its
lowest level requires the application of scattering models. As an
example, the knowledge of the precise destination of a terrain
belonging to the class “Cropfields” requires the mastery of a
vegetation scattering model. In the same way, the retrieval of
the height of an object classified as “Urban structure” requires
the knowledge of the complex scattering mechanism triggered
by an urban environment.

At the end of the day, the message that we convey is that a
more effective integration of techniques and models is needed,
particularly looking toward automatic systems of image under-
standing which seem to become the essential core of remotely
sensed data analysis in a big data scenario. We think that the full
development of such systems can provide a complete answer to
the question we left partially suspended.
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