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Polarimetric Two-Scale Two-Component Model for
the Retrieval of Soil Moisture Under Moderate

Vegetation via L-Band SAR Data
Gerardo Di Martino, Member, IEEE, Antonio Iodice, Senior Member, IEEE,

Antonio Natale, Member, IEEE, and Daniele Riccio, Fellow, IEEE

Abstract—Recently, we have proposed a retrieval technique
based on an original polarimetric two-scale model (PTSM), which
is able to estimate the volumetric water content of bare soils from
polarimetric synthetic aperture radar (SAR) data. In this paper, to
extend the field of application of our retrieval technique to mod-
erately vegetated soils, we combine the PTSM with a randomly
oriented dipole-cloud volumetric scattering model, thus obtaining
a polarimetric two-scale two-component model (PTSTCM). By
using this model we show that, in principle, suitable combinations
of the polarimetric SAR channels, i.e., “modified copolarized ra-
tio” and “modified copolarized correlation coefficient,” are related
only to the surface parameters because the dependence on the un-
known volumetric contribution intensity cancels out. This allows
us to retrieve soil moisture from L-band SAR data not only for
bare soils but also in moderately vegetated areas, interested by
a nonnegligible volumetric scattering contribution, provided that
the double-bounce scattering component is negligible. In addition,
describing the surface component by using the PTSM allows us
to mitigate the well-known problem of overestimating the volume
component, which affects most model-based target decompositions
and that may lead to the so-called “negative power problem.” Both
the performance and validity limits of the estimation method are
assessed by comparing the obtained soil-moisture retrieval results
to “in situ” measurements. To this aim, data from SMEX’03 and
AGRISAR’06 campaigns available in literature are considered.
They refer to sites with a flat topography. In particular, we employ
the AGRISAR database, which includes data from several fields
covering a period that spans all the phases of vegetation growth,
to explore the validity range of the method in terms of vegeta-
tion height. Results of PTSTCM are also compared with those
of available three-component methods (3CMs) employing more
simplified surface scattering models. It has turned out that the use
of the PTSTCM provides more accurate results for low vegetation
(average modulus of soil moisture relative error for vegetation
height smaller than 50 cm: 18.5% for the PTSTCM and 34%
for the 3CM). Conversely, for higher vegetation, 3CMs should be
more conveniently employed (average modulus of relative error
for vegetation height greater than 50 cm: 17.5% for the 3CM and
about 100% for the PTSTCM). A simple method to adaptively
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and automatically (i.e., based on measured data) select between
PTSTCM and 3CM on a pixel-by-pixel basis is finally suggested,
leading to a less than 20% average modulus of relative error on
the retrieved soil moisture for the considered fields over the entire
vegetation growth cycle.

Index Terms—Polarimetry, rough surfaces, soil moisture re-
trieval, synthetic aperture radar (SAR).

I. INTRODUCTION

IN MANY agricultural, hydrological, and meteorological
applications, knowledge of soil moisture content is of fun-

damental importance: For instance, it is an essential piece of
information for the prediction of crisis events such as floods and
landslides, as well as for precision farming [1]. Therefore, in the
last decades, ground water content retrieval from multiangle,
multifrequency, or multipolarization SAR data has been the
subject of extensive research [1]–[23]. Both radiative transfer
[2]–[5] and wave approaches [5]–[23] have been proposed, and
we here focus on the latter, which can more easily model coher-
ent SAR polarimetric data, with a smaller number of parameters
to retrieve. Initially, research in this field mainly addressed bare
soils [6]–[10], [12]–[17], [19]. Within this framework, some of
the authors of this paper proposed a retrieval technique based
on an original PTSM [13], [14], [16], [19], which is able to
estimate the volumetric water content of bare soils from polari-
metric SAR data in flat areas [13] or in areas with a significant
topography [14], [19]. An important feature of the PTSM is that
it is able to account for cross-polarization and depolarization
effects actually present in measured SAR data even when sur-
face scattering is the only present mechanism. This is achieved
by properly considering both the random variation of the local
incidence angle and the random rotation of the local incidence
plane around the line of sight, which is caused by the terrain
large-scale roughness [13], [16]. This is at variance with the
X-Bragg model [10], which also accounts for cross-polarization
and depolarization, but it only considers a random uniformly
distributed rotation of the local incidence plane around the line
of sight. The PTSM-based retrieval technique is able to estimate
the volumetric soil moisture and the rms of the large-scale
roughness slope by using the copolarized and cross-polarized
ratios [13] or the copolarized ratio and the copolarized, i.e.,
HH-VV, correlation coefficient [19]. In fact, these quantities
turn out to be independent of soil small-scale roughness. In
[13], it was shown that the PTSM retrieval results over bare
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soils are more accurate than those obtained by other similar
available techniques, based on Bragg or X-Bragg models.

The performance of techniques aimed at retrieving the mois-
ture content of bare soils, including PTSM, rapidly worsen
when an even moderate vegetation is present, so that nonnegli-
gible volumetric and/or multiple-bounce scattering components
are present. In order to extend the field of application to veg-
etated soils, more recently, some techniques for soil moisture
retrieval under vegetation cover have been developed [11], [18],
[20]–[23]. They are based on polarimetric target decomposi-
tion techniques [24]–[36]. Two classes of target decomposition
techniques can be identified: The so-called eigenvalue decom-
positions [24], which separate different scattering contributions
by computing eigenvalues and eigenvectors of the coherency
matrix (very recently, a related approach [25] based on in-
dependent component analysis has been also proposed), and
model-based decompositions [26], [27], [29], [30], [32]–[36],
which use scattering models for the surface contribution and for
the other scattering contributions present in the scene. Hybrid
eigenvalue/model-based techniques have been also developed
[28], [31]. Since bare-soil moisture retrieval techniques are
based on surface scattering models, their extension to include
vegetated soils requires the use of model-based decomposi-
tions: In fact, available techniques for soil moisture retrieval
under vegetation employ model-based [11], [18], [20] or at
least hybrid [21]–[23] decompositions. The first and most
widespread model-based decomposition is the three-component
Freeman and Durden (FD) one [26], which employs the Bragg
model for surface scattering, a dihedral Fresnel scattering
model for double bounce, and a simple dipole-cloud model
for volume scattering from canopy. The FD decomposition has
the advantages of simplicity and direct physical interpretability.
However, it was recognized [28] that the FD decomposition
suffers from the “negative power problem:” In many cases, after
removing the retrieved volumetric contribution, the obtained
polarimetric covariance or coherence matrix is not positive
semi-definite, i.e., it has at least one negative eigenvalue. Of
course, this is a nonphysical situation, and it is a clear indication
that the employed scattering models are often not adequate
to describe the real data. In particular, this problem is mainly
caused by the fact that FD decomposition attributes the whole
cross-polarization effect to volumetric scattering, thus overes-
timating this latter component [28]. In fact, apart from volu-
metric scattering, other possible causes of cross polarization
exist: They are listed in the following, together with ways to
account for them.

1) Oblique dihedrals that are often present in urban areas:
They can be included by adding a fourth scattering com-
ponent [27], [30] and/or matrix rotation [15], [30], or
using a more refined building model [37]; however, this
is not necessary if an agricultural area is considered as it
is usually the case for soil moisture retrieval.

2) Significant topography that causes an azimuth terrain
slope: This can be accounted for by performing a rotation
of the scattering matrix [38], [39] or, if topography is
known, by including a nonzero mean terrain slope in the
surface scattering model [14], [19].

3) Significant soil surface roughness, which causes cross
polarization also in the surface scattering component:
This can be accounted for by using X-Bragg or PTSM
for the surface component.

In addition, another cause for the “negative power problem”
recognized in literature is the excessive simplicity of the volu-
metric scattering model: Enhanced dipole-cloud models [11],
[20], [27], [40], [41], or more complex adaptive parametric
models [21]–[23], [29], [34] have been therefore proposed.

Based on the given considerations, it is obvious that im-
provements of models for all scattering components would be
required. However, unfortunately, any significant improvement
in modeling a scattering component implies that the number
of parameters to retrieve increases, which in turn causes the
retrieval problem to become ill-posed. Therefore, the models
of other components must be further simplified to keep the
number of unknown parameters unchanged or, equivalently,
some parameters must be arbitrarily a priori fixed, or further
conditions must be imposed. For instance, techniques employ-
ing parametric variable/adaptable vegetation volume models
[21]–[23], [29], [34] all use methods to reduce the number of
unknown parameters in the surface and double-bounce com-
ponents by adding constraints. An elegant way to deal with
this problem is to use the eigenvalue decomposition for these
components and impose their orthogonality, thus employing a
hybrid decomposition (model-based for volume scattering and
eigen-based for surface and double-bounce components), as in
[21]–[23]. However, although it is certainly true that this greatly
improves soil moisture retrieval in significantly vegetated areas,
it is questionable that this also improves retrieval in moderately
vegetated areas: In fact, for the surface component, inaccurate
scattering descriptions, not including cross polarization, are still
used. In addition, at variance with the case of perfectly conduct-
ing scatterers, in the more realistic case of dielectric scatterers,
there is no physical reason that imposes orthogonality of surface
and double-bounce components.

A heuristic way to avoid the negative power problem without
the necessity of improving the scattering models (and hence
without increasing the number of unknowns) was proposed
in [28] and employed in [20] for soil moisture estimation: It
consists in constraining the volume component power to be
not larger than the maximum value that allows us to obtain
a positive semi-definite remaining coherency matrix (an ana-
lytical expression for this value was computed in [28] for the
reflection symmetry case, which is of interest for soil moisture
retrieval applications). However, although this ensures avoiding
the negative power problem, it does not imply that the soil mois-
ture retrieval is improved for moderately vegetated soils: Again,
for the surface component, inaccurate scattering models, not
including cross polarization, are still used. It must be also noted
that obtaining a positive semi-definite remaining coherency
matrix does not ensure that the volumetric component is not
overestimated, but only that it is not so overestimated as to
cause the negative power problem.

Based on the considerations above, we believe that the only
way to improve retrieval results in moderately vegetated areas
is to improve the surface scattering model by using X-Bragg
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or PTSM (and hence introducing an additional unknown pa-
rameter related to surface roughness), at the cost of further
simplifying the other scattering models: After all, if their
power is small, a simple model for double-bounce and vol-
ume components may be sufficient; conversely, in significantly
vegetated areas, improved parametric vegetation models with
hybrid decomposition [22], [23] should be more conveniently
used since a simple surface scattering model may be sufficient.
Open questions are: which surface model to use for the case of
moderately vegetated surfaces, what inversion procedure to use
for soil moisture retrieval, and what quantitative criterion to use
to distinguish “moderate” (or “sparse”) from “significant” (or
“dense”) vegetation cover. This paper addresses and answers
all of these three questions. It must be noted that a similar
approach (i.e., simple dipole-cloud volumetric model used in
the moderate vegetation case) has been recently proposed in the
polarimetric decomposition technique by Lee et al. [35]. How-
ever, in [35], no soil moisture retrieval is proposed. In addition,
in the moderate vegetation case, for the surface component the
X-Bragg model is used, and the roughness parameter is heuris-
tically retrieved by iteratively finding its smallest value that
avoids the negative power problem. Conversely, we here prefer
to use PTSM, which is more satisfactory from a theoretical
viewpoint, is in good agreement with scattering measurements
over bare soils, and allows better moisture retrieval results
for bare soils [13]. In addition, we prefer the more physical
approach of retrieving the roughness parameter simultaneously
to soil moisture by fitting the model to data. This choice is
paid by the necessity to ignore the double-bounce component;
however, we believe that this is often acceptable if moderately
vegetated areas are considered, at least for L-band SAR data.
Accordingly, in this paper, we propose a new retrieval algorithm
for moderately vegetated areas, based on the combination of the
PTSM with a two-component scattering model, including sur-
face and volume contributions. In particular, we compute all the
normalized radar cross sections (NRCSs) and the copolarized
correlation by using the PTSM to describe the surface scattering
component, and a dipole-cloud volumetric scattering model
[26], [27] to describe the volume scattering contribution arising
from the vegetation layer that covers the scattering surface. We
call this model “polarimetric two-scale two-component model”
(PTSTCM). We then show that suitable combinations of the
NRCS and copolarized correlation, which we term “modified
copolarized ratio” and “modified copolarized correlation co-
efficient,” are related only to the surface parameters (i.e., the
dependence on the unknown volumetric contribution intensity
cancels out). As shown in Section IV, this allows us to get
a reasonable estimate of the soil moisture from L-band SAR
data even in moderately vegetated areas, interested by a non-
negligible volumetric scattering contribution, but where the
double-bounce scattering component is negligible. According
to the considered scene, this condition may happen over a large
percentage of the image pixels (see Section IV-A) or a smaller
one (see Section IV-B). It is important to underline again that
the use of PTSM, which predicts nonnull cross polarization
for the surface scattering component, allows mitigating the
known inconvenience of the FD decomposition of attributing
the whole cross-polarization effect to volumetric scattering,

thus overestimating this latter component and causing the
“negative power problem” [28]. At variance with the usual
model-based decompositions, in our method, it is not even
needed that the volumetric component is preliminarily esti-
mated before the soil moisture retrieval (see Section III-B).

The basic idea on which this paper is grounded was proposed
in [42]. Here, for the first time, we provide the full detailed
description of the theory (see Section II) and of the retrieval
technique, including a discussion of the behavior of the method
with respect to the negative power problem and a detailed
sensitivity analysis (see Section III). In addition, we present an
extensive analysis of the method performance by comparing ob-
tained retrieval results to in situ measurements (see Section IV).
To this aim, data from SMEX’03 and AGRISAR’06 campaigns
available in literature are considered [43], [44]. In particular,
SMEX’03 data are used to validate the method for scarcely
or moderately vegetated soils (see Section IV-A), whereas the
AGRISAR database, which includes data from several fields
covering a period that spans all the phases of vegetation growth,
is used to explore the validity range of the method in terms of
vegetation conditions (see Section IV-B). Finally, we compare
the results of the PTSTCM with those of available three-
component methods (3CMs) employing improved volume scat-
tering models but more simplified surface scattering ones [11],
[18], [22], [23] (see Section IV-C). The main aim of this
comparison is to find a quantitative criterion to adaptively select
between PTSTCM and 3CM on a pixel-by-pixel basis, thus
obtaining a more general method providing useful soil moisture
retrieval results under a wide range of vegetation conditions
(see Section IV-D).

II. THEORY

As discussed in Section I, in order to get reliable soil mois-
ture estimates not only in those areas for which the surface
scattering is practically the only present scattering mechanism,
we consider a two-component approach, in which the scattered
field is modeled as the superposition of independent surface
and volume scattering components. In particular, the former
is modeled by using the PTSM [13], [19] and the vegetation
layer that covers the soil surface is modeled by a cloud of
randomly oriented thin cylindrical scatterers, whose scattering
is described in [26] and [27]. In the following, we summarize
both models and reformulate them in a way that is more suitable
for subsequent description of the proposed retrieval scheme,
which is introduced in Section III.

A. Surface Scattering: PTSM

According to the PTSM, a soil surface is modeled as a
collection of randomly tilted rough facets: Facets’ roughness
represents the small-scale surface roughness, whereas facets’
random slope schematizes the large-scale surface roughness.
The sizes of the facets are greater than the electromagnetic
wavelength and than the correlation length of the small-scale
roughness, but they are much smaller than the sensor geometric
resolution and than the correlation length of the large-scale
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Fig. 1. Rotation of the local incidence plane and variation of the local incidence
angle due to facet tilt.

roughness. Large-scale roughness and small-scale roughness
are modeled as independent stochastic processes. As for the
former, we assume that the facet slopes a and b along azimuth
and range directions, respectively, are independent σ2-variance
Gaussian random variables, whose means represent the topo-
graphical features (if any) of the scene to be modeled [14], [19].
In the following, for the sake of simplicity, because the consid-
ered case-study areas (see Section IV) are flat, we assume zero-
mean slopes. With regard to the small-scale roughness ζ(x, y),
it is modeled as a zero-mean bandlimited fractional Brownian
motion stochastic process [13], which is characterized by its
Hurst coefficient Ht (with 0 < Ht < 1) [13] and by its height
standard deviation s0, which is assumed small compared with
the electromagnetic wavelength λ, so that it satisfies the small
perturbation method (SPM), i.e., Bragg model, validity limits.

We underline that the facet random tilt gives rise to a random
rotation β of the local incidence plane around the line of sight,
and to a stochastic drift of the local incidence angle ϑl with
respect to the global incidence angle ϑ (see Fig. 1). Both effects
are accounted for by PTSM. In fact, the SPM expressions of
the covariance matrix elements of a tilted rough facet are first
considered [13], and then they are expressed in terms of facet’s
slopes a and b by using the well-known relations linking them
to β and ϑl [13], [38]. Finally, the entries of the covariance
matrix of the overall surface are obtained by averaging the
corresponding expressions of tilted facets over a and b, after
a second-order expansion around a = 0 and b = 0 [13], [19].
Their expressions can be cast in the following form (the reader
interested in its algebraic derivation from the result presented
in [13] and [19] is referred to the Appendix):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

〈
|Svv|2

〉 ∼= s20fs(ε,Ht)
(
1− δV (ε)σ

2
)〈

|Shh|2
〉 ∼= s20fs(ε,Ht) |βr(ε)|2

(
1 + δH(ε)σ2

)
〈ShhS

∗
vv〉 ∼= s20fs(ε,Ht)βr(ε)

(
1 + δHV (ε)σ

2
)〈

|Shv|2
〉 ∼= s20fs(ε,Ht)δX(ε)σ2

(1)

where Svv , Shh, and Shv are the scattering matrix elements,
with h and v standing for horizontal and vertical polarizations,

respectively; the symbol 〈·〉 stands for “statistical mean;” the
asterisk ∗ stands for “complex conjugate”

fs(ε,Ht) = k4 cos4 ϑ |FV (ϑ; ε)|2 Wn(2k sinϑ;Ht) (2)

k = 2π/λ is the wavenumber; Wn(·) is the normalized power
spectral density of the small-scale roughness, whose expression
is reported in [13]; FV (ϑl, ε) and FH(ϑl, ε) are the Bragg
coefficients for vertical and horizontal polarizations [13], which
depend on the soil relative permittivity ε, i.e.,

βr(ε) =
FH(ϑ; ε)

FV (ϑ; ε)
(3)

δX(ε) =
|1− βr(ε)|2

sin2(ϑ)
(4)

⎧⎪⎪⎨
⎪⎪⎩
δV (ε) = 2Re

{
1−βr(ε)
sin2(ϑ)

}
− CV V

2 (ε,Ht)

fs(ε,Ht)

δH(ε) = 2Re
{

1−βr(ε)
βr(ε) sin2(ϑ)

}
+

CHH
2 (ε,Ht)

|βr(ε)|2fs(ε,Ht)

δHV (ε) =
1−βr(ε)

βr(ε) sin2(ϑ)
− 1−β∗

r (ε)
sin2(ϑ)

+
CHV

2 (ε,Ht)

βr(ε)fs(ε,Ht)

(5)

Cpq
2 (ε,Ht) =

1

2

∂2
(
Wnk

4 cos4 ϑlFpF
∗
q

)
∂a2

∣∣∣∣∣
a=b=0

+
1

2

∂2
(
Wnk

4 cos4 ϑlFpF
∗
q

)
∂b2

∣∣∣∣∣
a=b=0

(6)

with p and q that can each stand for H or V .
Full analytical expressions of the derivatives in (6) are re-

ported in [13, Appendix B]. In (1)–(6), for the sake of brevity,
we have not explicitly indicated the dependence on the known
global incidence angle ϑ. It is worth noting that βr(ε) and
δHV (ε) are complex functions because, for a lossy medium,
ε is a complex number and that the modulus of βr(ε) is smaller
than unity. Conversely, fs(ε,Ht), δH(ε), δV (ε), and δX(ε) are
real positive function. In addition, while βr(ε) and δX(ε) are
rigorously independent of the small-scale roughness parameter
Ht, the functions δH(ε), δV (ε), and δHV (ε) are actually also
dependent on Ht [see the last terms of (5)]; however, it can be
verified that this dependence tends to cancel out in the ratios
of the last terms of (5), so that it is very weak and it can
be neglected [13]. In the following, we will use Ht = 0.5 in
(5). Finally, we explicitly note that PTSM reduces to the usual
Bragg scattering model for σ = 0.

B. Volume Scattering: Dipole Cloud Model

With regard to the volume scattering contribution, the veg-
etation layer that covers the scattering surface is modeled
by a cloud of randomly oriented thin cylindrical scatterers,
whose covariance matrix is computed as described in [26], [27],
[45], and [46]. We consider three possible probability density
functions p(φ) for the dipole orientation angle φ, i.e., the angle,
in the incident wave polarization plane, between the vertical
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and the dipole directions: uniform, prevalently vertical, and
prevalently horizontal distributions, i.e.,

p(φ) =
1

2π
for 0 ≤ φ < 2π

p(φ) =
1

4
| cosφ| for 0 ≤ φ < 2π

p(φ) =
1

4
| sinφ| for 0 ≤ φ < 2π (7)

respectively. Corresponding covariance matrix elements are
[26], [27], [46]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

〈
|Svv|2

〉
= fv(u)〈

|Shh|2
〉
= fv(u)

〈ShhS
∗
vv〉 = 1

3fv(u)〈
|Shv|2

〉
= 1

3fv(u)

,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

〈
|Svv|2

〉
= fv(u)〈

|Shh|2
〉
= 3

8fv(u)

〈ShhS
∗
vv〉 = 1

4fv(u)〈
|Shv|2

〉
= 1

4fv(u)

,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

〈
|Svv|2

〉
= 3

8fv(u)〈
|Shh|2

〉
= fv(u)

〈ShhS
∗
vv〉 = 1

4fv(u)〈
|Shv|2

〉
= 1

4fv(u)

(8)

for uniform, prevalently vertical, and prevalently horizontal
distributions, respectively. In (8), fv(u) is a function of the set
of parameters u describing the dipole cloud. Its expression is
of no concern here. Selection of the distribution depends on
the vegetation type: In the absence of any information on veg-
etation, the uniform distribution should be selected. However,
in Section IV, we will analyze the effects of different choices
for the volume component description on retrieval results. Note
that, here, we are assuming that volume scattering is not dom-
inant (i.e., it is not at such a level as to determine the signum
of the copolarized ratio expressed in decibels); therefore, we
cannot select the volume scattering model based on the value of
the measured copolarized ratio, as suggested in [27]. Moreover,
as discussed in Section I, we cannot use a variable vegetation
volume model as in [20]–[23] because further parameters to
retrieve would appear, and this would prevent us from using the
PTSM in the retrieval scheme, in order to avoid ill-posedness
problems.

C. Total Scattering: PTSTCM

If the soil vegetation cover does not contain trees or other
high plants, as explained in Section I, we propose to neglect
double-bounce effect and consider a two-component scattering
model. By assuming that, as it is reasonable, surface and
volume scattering components are independent, the covariance
matrix elements of a vegetated soil can be expressed as the sum
of (1) and (8), so that we obtain⎧⎪⎪⎪⎨
⎪⎪⎪⎩

〈
|Svv|2

〉 ∼= s20fs(ε,Ht)
(
1− δV (ε)σ

2
)
+Afv(u)〈

|Shh|2
〉 ∼= s20fs(ε,Ht) |βr(ε)|2

(
1 + δH(ε)σ2

)
+B fv(u)

〈ShhS
∗
vv〉 ∼= s20fs(ε,Ht)βr(ε)

(
1 + δHV (ε)σ

2
)
+ C fv(u)〈

|Shv|2
〉 ∼= s20fs(ε,Ht)δX(ε)σ2 + Cfv(u)

(9)

where A = B = 1 and C = 1/3 for uniform dipole orientation;
A = 1, B = 3/8, and C = 1/4 for prevalently vertical dipole
orientation; and A = 3/8, B = 1, and C = 1/4 for prevalently
horizontal dipole orientation.

The system (9) has four equations, of which three are real
and one (the third) is complex. The parameters to retrieve are
also four: ε, σ, fv, and s20fs. The first is complex, and the others
are real (the last one can be considered a single parameter if s0
and Ht do not need to be retrieved individually). Accordingly,
the number of unknowns equates the number of equations, and
the system is consistent (note that assuming a real dielectric
constant ε, which is reasonable at microwave frequencies, the
third equation also becomes real). Inclusion of a double-bounce
component or of a more refined volumetric component model
would introduce further unknowns; therefore, this cannot be
done, unless one imposes further conditions or arbitrarily fixes
one of the unknowns. For instance, by setting σ = 0, one can
add a double-bounce component and recover the usual FD
decomposition. A fixed nonzero value of σ can also be used.
However, we believe that, in moderately vegetated areas, it is
more important to better describe surface roughness by leaving
σ variable than accounting for double bounce or using more
refined volumetric models, such as those employed in [11],
[20]–[23], [27], [29], [34], [40], [41], [47], [48]. For the same
reason, we are assuming that surface scattering attenuation
due to vegetation is the same at all polarizations, so that the
corresponding attenuation factor can be included in the fs
function and hence be ignored in the soil moisture retrieval
procedure.

We explicitly note that expressions in (9) ensure that both
the surface and volume component covariance matrices are
positive semi-definite, provided that the retrieved values of fv
and s20fs are nonnegative. A full discussion on this issue can be
found in Section III. Here, we only want to emphasize that, by
employing usual model-based decompositions, the volumetric
component is computed as

fv(u) =

〈
|Shv|2

〉
C

(10)

therefore attributing the whole cross-polarization effect to
volumetric scattering, whereas the use of the last equation in
(9) leads to

fv(u) =

〈
|Shv|2

〉
− s20fs(ε,Ht)δX(ε)σ2

C
≤
〈
|Shv|2

〉
C

(11)

so that the problem of overestimating the volumetric component
is certainly mitigated by our model.

III. RETRIEVAL METHOD

A. Description of the Method

Previously developed PTSM-based retrieval methods for
bare soils were based on the combined use of copolarized
(copol) and cross-polarized (crosspol) ratios [13] or of the
copolarized ratio and copolarized correlation (corr) coefficient
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[19]. The copol and crosspol ratios and corr coefficient are
defined as follows:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Copol =

〈|Shh|2〉
〈|Svv |2〉

Crosspol = 〈|Shv |2〉
〈|Svv |2〉

Corr = |〈ShhS
∗
vv〉|√

〈|Shh|2〉〈|Svv |2〉
.

(12)

Their use is motivated by the fact that, according to PTSM, they
do not depend on small-scale roughness parameters s0 and Ht,
and they only depend on the soil relative permittivity ε and on
the standard deviation σ of the large-scale roughness slopes.
In fact, by using (1) in (12), expanding in Taylor series with
respect to σ, and retaining terms up to the second order,
we obtain ⎧⎪⎨

⎪⎩
Copol ∼= |βr(ε)|2

(
1 + δcopol(ε)σ

2
)

Crosspol ∼= δX(ε)σ2

Corr ∼= 1− δcorr(ε)σ
2

(13)

where

δcopol(ε) = δH(ε) + δV (ε)

δcorr(ε) =
1

2
δH(ε)− 1

2
δV (ε)− Re {δHV (ε)} (14)

are real positive functions. Accordingly, if we neglect the imag-
inary part of ε as it is reasonable for usual soils at microwave
frequencies [49] (or also if we assume that there is a relation-
ship relating real and imaginary parts of ε at the considered
frequency, as in [49]), it is possible to retrieve σ and ε from
measured copol and crosspol ratios [13] or, equivalently, from
measured copol ratio and corr coefficient [19]. Soil moisture
can be then evaluated from ε by using one of the available semi-
empirical mixing models [49]–[51].

However, if a nonnegligible volumetric scattering component
due to vegetation is present, from (9), it is clear that the ratios
in (12) are no longer independent of small-scale roughness, and
they are of course also dependent on the volumetric component.
Therefore, it is expected that in this case the methods of [13] or
[19] lead to wrong retrieval results.

Here, we propose to properly combine the polarimetric chan-
nels in such a way to cancel out the dependence on fv and to
recover independence from small-scale roughness. In particu-
lar, we define a “modified copolarized ratio” and a “modified
copolarized correlation coefficient” as follows:⎧⎪⎨
⎪⎩

Copol mod =
〈|Shh|2〉−B

C 〈|Shv |2〉
〈|Svv |2〉−A

C 〈|Shv |2〉
=

Copol−B
C Crosspol

1−A
C Crosspol

Corr mod =
|〈ShhS

∗
vv〉−〈|Shv |2〉|√

(〈|Shh|2〉−B
C 〈|Shv |2〉)(〈|Svv |2〉−A

C 〈|Shv |2〉)
.

(15)

In fact, the use of (9) in (15) shows that the terms containing
fv cancel out in the numerator and denominator of both ratios
in (15). In particular, by using (9) in (15), expanding in Taylor
series with respect to σ, and retaining terms up to the second
order, we obtain{

Copol mod
∼= |βr(ε)|2

(
1+δcopol(ε)σ

2+δ′copol(ε)σ
2
)

Corr mod
∼= 1−δcorr(ε)σ

2+δ′corr(ε)σ
2

(16)

where

δ′copol(ε) =
δX(ε)

C

(
A− B

|βr(ε)|2
)

δ′corr(ε) =
δX(ε)

2C

(
A+

B

|βr(ε)|2
− Re

{
2C

βr(ε)

})
. (17)

Both δ′copol(ε) and δ′corr(ε) are real functions. The signum
of δ′corr(ε) depends on the value of βr(ε), and the same holds
for the signum of δ′copol(ε)for prevalently vertical dipole orien-
tation. However, for prevalently horizontal (A = 3/8, B = 1)
and uniform (A = B = 1) dipole orientations, by recalling
that |βr(ε)| < 1, it is easy to verify that δ′copol(ε) is negative.
Finally, note that the modified correlation coefficient is not a
true correlation coefficient, so that it is not restricted to be
smaller than unity.

Equations (15)–(17) can be used for the retrieval of σ and
ε from the measured modified copol ratio and modified corr
coefficient exactly in the same way as (12)–(14) are used for
the retrieval of σ and ε from the measured copol ratio and
corr coefficient. In fact, in both cases, it is possible to build
up charts (see Fig. 2) or numerical lookup tables of (possi-
bly modified) copol–corr loci parameterized by the dielectric
constant ε (or, equivalently, the soil moisture content mv) and
the large-scale roughness rms slope σ. Accordingly, the same
automatic estimation algorithm as in [13] and [19] can be used,
with the same advantages: it is a physically based inversion
approach, processing time is very short, and no preliminary
model calibration phase is needed [19]. We explicitly note here
that the elements of the covariance matrix are computed by
averaging neighboring pixels over windows of size such that
a very high equivalent number of looks (ENL), on the order
of 100, is obtained. Accordingly, the resolution cell size of the
final soil moisture maps is one order of magnitude larger than
the size of the SAR system single-look resolution cell.

It must be mentioned that formulations similar to those
of (12)–(14) or (15)–(17) can be also obtained by using the
elements of the polarimetric coherency, rather than covariance,
matrix. The coherency matrix is sometimes preferred because
its elements have a more direct physical interpretation (see,
e.g., [10] and [11]). However, we here prefer the formulation
in terms of the polarimetric covariance matrix mainly because
it was verified in [13], and it was confirmed here that second-
order expansions of copolarized ratio and correlation coeffi-
cient (and their modified versions) with respect to large-scale
roughness surface slopes have a wider range of validity (in
terms of σ) if one uses the elements of the covariance matrix
than the elements of the coherency matrix. In particular, (13)
and (16) can be safely employed for values of σ smaller than
about 0.4 (corresponding to an rms slope of about 21◦), so
that δcopol(ε)σ2, δcorr(ε)σ2, δ′copol(ε)σ

2, and δ′corr(ε)σ
2 are all

small compared with one [13], [19]. In addition, the coherency
matrix copolarized ratio is very sensitive to the presence of a
double-bounce scattering component (due to the presence of the
difference of HH and VV channels at its numerator): This is an
advantage in general, but it may be a problem if the double-
bounce component is not included in the model, as in our case.
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Fig. 2. (a) PTSM-based copol–corr and (b)–(d) PTSTCM-based modified copol–corr charts for Ht = 0.5 and ϑ = 45◦ , with (b) uniformly, (c) prevalently
vertically, and (d) prevalently horizontally distributed dipoles, and (e) for different values of the incidence angle, with uniformly distributed dipoles. In the graphs,
ε represents the relative permittivity, and σ is the rms slope of the large-scale roughness.

A block scheme of the algorithm is shown in Fig. 3. Note that
no retrieval result is obtained if the measured SAR data lead to
values of ε smaller than 2.5 and larger than 40 or to values of σ
larger than 0.4, or if at least one of the factors under the square
root in the second of (15) is nonpositive.

B. Reduction of the “Negative Power” Problem

At variance with usual model-based decompositions, in our
method, the volumetric component is not preliminarily esti-
mated before the soil moisture retrieval: In fact, as explained
earlier, soil moisture and soil roughness are retrieved with no
necessity to evaluate the volume fv and surface s20fs contribu-
tion intensities. However, if desired, of course, the latter can

be estimated once soil moisture (mv) (or better, the dielectric
constant ε) and soil roughness (σ) parameters have been re-
trieved. This can be done by solving the fourth of (9) for fv and
substituting in the first of (9), thus obtaining

s20fs(ε,Ht) =

〈
|Svv|2

〉
− A

C

〈
|Shv|2

〉
(
1− δV (ε)σ2 − A

C δX(ε)σ2
)

∼=
(〈

|Svv|2
〉
− A

C

〈
|Shv|2

〉)

×
(
1 + δV (ε)σ

2 +
A

C
δX(ε)σ2

)
(18)
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Fig. 3. Block scheme of the retrieval procedure. MCPIN and MCorrIN are the
input modified copolarized ratio and modified correlation coefficient measured
from SAR data, whereas MCPTH and MCorrTH are their theoretical values,
computed from (16) and (17). Finally, εmin = 2.5 and εmax = 40.

fv(u) =

〈
|Shv|2

〉
− s20fs(ε,Ht)δX(ε)σ2

C

∼=
〈
|Shv|2

〉
−
(〈
|Svv|2

〉
− A

C

〈
|Shv|2

〉)
δX(ε)σ2

C
.

(19)

In (18) and (19), the terms of order higher than two with respect
to σ have been neglected.

In order to avoid the negative power problem for the surface
component, it is sufficient that s20fs is nonnegative. In view of
(18), the following condition must be fulfilled by data:

〈
|Shv|2

〉
|ζ,a,b ≤

C

A

〈
|Svv|2

〉
|ζ,a,b, i.e., Crosspol ≤ C

A
. (20)

This condition is usually not violated in moderately vegetated
flat areas, which are of interest for our method. In Section IV-A
and B we show that, according to the considered scene, the
percentage of pixels violating this condition, i.e., facing the
negative power problem, may vary from 2% to about 20%. In
addition, it is important to note that if condition (20) is violated,
then no result is provided by our PTSTCM-based algorithm
(see Fig. 3) because, in this case, the modified correlation
coefficient cannot be defined (the argument of the square root at
the denominator becomes negative). This may happen in very
vegetated areas, where ignoring double bounces and using our
simple vegetation model are not adequate, and in areas with
significant topography if the latter is not compensated for as
discussed in Section I. We can then conclude that, when the soil
moisture retrieval is obtained by PTSTCM, the surface com-
ponent certainly has a positive semi-definite (positive definite)
covariance matrix.

However, since, in our case, the surface component is esti-
mated first, nonnegativity of the retrieved volume component

power must be checked. In order to avoid the negative power
problem for the volume component, fv must be nonnegative, so
that, in view of (19), the following condition must be satisfied
by σ2:

σ2 ≤
〈
|Shv|2

〉
|ζ,a,b

δX(ε)
(
〈|Svv|2〉|ζ,a,b − A

C 〈|Shv|2〉|ζ,a,b
)

=
Crosspol

δX(ε)
(
1− A

C Crosspol
) . (21)

We have verified that this condition is satisfied in the large
majority of cases in which our method leads to a retrieval
result. For instance, in the examples considered in Section IV,
condition (21) is satisfied in the 95% of “retrieved” pixels.
In any case, the negative power problem can be completely
avoided if the retrieved value of σ is chosen as the minimum
between the value obtained by PTSTCM and the value given
by the right-hand side of (21).

Finally, it is useful to underline that, even in the cases
in which nonnegativity of power is guaranteed, the proposed
method is not expected to provide reliable results when the
double-bounce component is not negligible or even dominant.
The latter situation can be easily identified from SAR data by
using the criterion suggested in [26], based on the signum of
the real part of the “vegetation-corrected” correlation: Accord-
ingly, results obtained in pixels for which Re{〈ShhS

∗
vv〉} −

〈|Shv|2〉 < 0 must be discarded as they are not reliable. In
Section IV-A and B we show that, according to the considered
scene, the percentage of pixels for which this happens may vary
from 4% to about 70%.

C. Sensitivity Analysis

The proposed method is clearly not affected by absolute cal-
ibration errors, which cancel out in the ratios of (15); however,
channel power and phase imbalance, channel crosstalk, speckle,
and thermal noise, are in principle all sources of errors on
the measurement of modified copolarized ratio and correlation
coefficient, and hence on soil moisture retrieval. Given an error
on modified copol and corr, its effect on the retrieval of ε and
hence of mv can be evaluated by using the charts of Fig. 2.
As we will see later here, errors on the order of ±0.5 dB or
less on modified copol and on the order of ±1 dB or less on
modified corr can be expected for most SAR systems. Based
from the charts in Fig. 2(b)–(d), we can verify that, if ϑ = 45◦,
a ±0.5-dB error on modified copol causes a small error on
ε, on the order of ±1 (corresponding to about ±2 vol.% soil
water content), for small values of ε (e.g., ε < 6, i.e., mv <
10 vol.%), and an increasing error for increasing values of ε. For
ε = 20 (i.e., mv about 30 vol.%), an error on the order of about
±6 is obtained (corresponding to about ±7 vol.% soil water
content). In both cases, maximum relative error on mv is on the
order of 20%. Conversely, for small values of σ (e.g., σ < 0.1),
a ±1-dB error on corr has practically no effect on the retrieval
of ε, whereas for large values of σ (e.g., σ > 0.2), the effects of
errors on corr are of the same order as those of errors on copol.
The chart in Fig. 2(e) shows that the effects on soil moisture
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retrieval of errors on modified copol and corr increase for
smaller incidence angle and decrease for larger incidence angle.

Let us now consider the effect of channel power imbalance
on modified copol and corr. For simplicity, let us assume that
the same power imbalance α between H and V channels is
present on both the transmitting and the receiving chains, so
that the measured values are related to true ones by⎧⎪⎨

⎪⎩
Cop̂ol = α2Copol

Croŝspol = α Crosspol

Côrr = Corr.

(22)

By using (22) in (15), we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cop̂ol mod = α2Copol mod

(
1+

B
C 〈|Shv|2〉(1− 1

α )
〈|Shh|2〉−B

C 〈|Shv|2〉

)
(
1+

A
C 〈|Shv|2〉(1−α)

〈|Svv |2〉−A
C 〈|Shv|2〉

)
Côrr mod

= Corrmod
1√(

1+
B
C 〈|Shv |2〉(1− 1

α )
〈|Shh|2〉−B

C 〈|Shv|2〉

)(
1+

A
C 〈|Shv |2〉(1−α)

〈|Svv |2〉− A
C 〈|Shv|2〉

) .
(23)

By noting that the quantities in the large parentheses in
(23) are approximately unitary because α ∼= 1 and the cross-
polarized power is often much smaller than copolarized one (at
least when our model is valid), we can conclude that the effect
of power imbalance on a modified copol ratio is on the order of
α2, whereas its effect on the modified correlation coefficient is
negligible. For modern SAR systems, it is reasonable to assume
that α2 is on the order of ±0.5 dB or less. For instance, the
requirement on relative calibration error for DLR E-SAR and
F-SAR systems is that it must be smaller than 1 dB [52], and the
declared α2 of ALOS-PALSAR 2 is 1.0143, i.e., 0.062 dB [53].

Let us now move to consider the effect of a phase imbalance
Δφ, which only affects the HH-VV correlation:〈

ŜhhŜ
∗
vv

〉
= 〈ShhS

∗
vv〉 exp(jΔφ). (24)

The modified copolarized ratio is not affected by phase
imbalance, whereas for the modified correlation coefficient, by
using (24) in the second of (15), we get

Côrr mod =

∣∣〈ShhS
∗
vv〉 exp(jΔφ) −

〈
|Shv|2

〉∣∣
|〈ShhS∗

vv〉 − 〈|Shv|2〉|
∼= Corr mod

(
1−Im

{
〈ShhS

∗
vv〉

〈ShhS∗
vv〉 − 〈|Shv|2〉

}
Δφ

)
(25)

where terms of order higher than one with respect to Δφ are
neglected. Therefore, by considering that the imaginary part of
the copolarized correlation is small at microwave frequencies,
that cross-polarized power is usually significantly smaller than
the copolarized correlation modulus, and that for modern SAR
system phase imbalance is always smaller (in absolute value)
than about π/20 rad, we can conclude that the phase imbalance
effect is negligible. For instance, by assuming that the imagi-

nary part in (25) is 0.1, and phase imbalance is π/20 rad, we ob-
tain an error of 0.07 dB on the modified correlation coefficient.

With regard to channel crosstalk, in modern SAR systems,
it is smaller (sometimes much smaller) than −25 dB, so that it
only affects the cross-polarized ratio, and only when the latter
is so low that it has no impact on modified copol and corr
[see (15)].

Let us now move to consider the effect of speckle on po-
larimetric SAR data statistics, which was studied in detail in
[54]. Due to speckle, the channel intensity ratios have random
fluctuations. However, considerations reported in [54] and the
use of the first part of (15) lead to the conclusion that, for an
ENL greater than about 70, the uncertainty on the modified
copol is always smaller than 0.5 dB, and usually (i.e., when
the cross-polarized ratio is small), it is negligible. The situation
is different with regard to the speckle effect on the correlation
coefficient. In this case, the estimated correlation coefficient
has both a bias and an uncertainty [54]. For an ENL larger
than about 70, the bias is negligible, particularly for high values
of the correlation coefficient. Conversely, even for an ENL on
the order of 70, the uncertainty on the correlation coefficient is
between 0.5 and 1 dB [54]. Accordingly, in view of the second
part of (15), we can conclude that, for ENL > 70, the uncer-
tainty on the modified corr is on the order of 1 dB or smaller.

Finally, let us consider the effect of the receiver ther-
mal noise, modeled as a zero-mean complex additive white
Gaussian noise. We also assume that the covariance matrix
elements are evaluated by spatially averaging over a number
of adjacent pixels on the order of 100 (i.e., over an about
10 × 10 pixel window), so that spatial average is an accurate
estimate of statistical mean. Finally, we reasonably assume that
the power values n2 of noise on all channels are equal, that
noise and signal are independent, and that noises on HH and
VV channels are independent. By using these assumptions and
employing (15), we have that noisy estimates of modified copol
and corr are related to the true values by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cop̂ol mod = Copol mod

(
1+

(1−B
C )n2

〈|Shh|2〉−B
C 〈|Shv|2〉

)
(

1+
(1−A

C )n2

〈|Svv |2〉−A
C 〈|Shv|2〉

)
Côrr mod

= Corrmod
1√(

1+
(1−B

C )n2

〈|Shh|2〉−B
C 〈|Shv |2〉

)(
1+

(1− A
C )n2

〈|Svv |2〉− A
C 〈|Shv|2〉

) .

(26)

Based on (26), we obtain that if the SNR on the HH and VV
channels is larger than 20 dB, then the error on modified copol
and corr is negligible (less than 0.1 dB). As an exception to this,
a critical situation may exist if the HV channel power is about
C/B times the HH one or C/A times the VV one [see (26)];
however, this may happen only in extremely vegetated areas,
where our model is not valid. Note that for low values of the HV
scattering, the HV channel may be strongly affected by noise,
but this does not affect modified copol and corr parameters as
long as the SNR on copolarized channels is high enough. In
view of the scattering measurements reported in [2], [6], the
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20 dB requirement on SNR for copolarized channels calls for
a noise equivalent sigma zero (NESZ) on the order of −35 dB
at the L-band and over small-roughness bare soils. Values of
NESZ on the order of −25 dB (i.e., HH and VV SNR on the
order of 10 dB for small-roughness bare soils) would imply
errors on the order of 0.5–1 dB for small-roughness bare soils,
and much smaller errors for rough and/or vegetated soils. Such
requirements are met by most modern SAR systems.

In conclusion, the performed analysis shows that, for most
SAR systems and for many observed scenarios, errors on the
order of ±0.5 dB or less can be expected on modified copol,
usually mainly due to relative calibration errors, and errors on
the order of ±1 dB or less can be expected on modified corr,
usually mainly due to speckle. This leads to maximum relative
errors on soil moisture on the order of 20%. Accordingly, higher
errors should be always mainly attributed to model inaccuracy.

IV. RETRIEVAL RESULTS

In the following, we evaluate the soil moisture retrieval
results obtained with SAR data acquired in the framework of the
2003 SMEX’03 and the 2006 AgriSAR campaigns. With regard
to the former, the data set consists of L-band data acquired on
several close dates by the JPL AIRSAR sensor over the Little
Washita basin [43]; with regard to the latter, we use L-band
SAR data acquired by the DLR airborne experimental SAR
(E-SAR) system in the site of Demmin in northern Germany,
during one whole vegetation cycle [44]. In both cases, simulta-
neously to SAR acquisitions, on-field measurements of the vol-
umetric soil moisture were performed, allowing for meaningful
comparisons of obtained retrieval results with ground-truth
data. It must be noted that both method estimates and in situ
measurements, relevant to each single field and for each single
acquisition, show large standard deviations, often of the same
order of mean values. Accordingly, for each field and at each
acquisition date, we compare average values of retrieved and
in situ measured soil moisture.

We do not consider higher frequency sensors (at C-band or
X-band) because it is expected that, at those frequency, in the
presence of even medium or moderate vegetation, volume scat-
tering is dominant. Finally, we also present a comparison of our
results with those obtained on the same AgriSAR data set using
three-component models that include also double-bounce scat-
tering. Based on this comparison, we propose a simple method
to adaptively and automatically (i.e., based on measured data)
select between PTSTCM and 3CM on a pixel-by-pixel basis.

A. SMEX’03

Here, we consider L-band AIRSAR data acquired on several
days during one week of July 2003, in the framework of the
SMEX’03 measurement campaign in the Little Washita basin
[43]. They refer to a scene for which the proposed PTSTCM
is expected to apply because it mainly consists of agricultural
fields with a scarce to moderate vegetation cover. Accordingly,
these data are used to compare the retrieval results obtained
without vegetation compensation and with the compensation
method based on the random uniformly distributed dipole ori-

entation model. In fact, we expect that this simple volumetric
component model is appropriate for this kind of vegetation (see
also Section IV-B, where this is experimentally confirmed).

SMEX’03 AIRSAR data are stored in compressed Stokes
matrix format [43]. From the Stokes matrix elements, all the
elements of the covariance (needed by our methods) and of
the coherency matrices can be easily obtained [45], [46]. Here,
we focus on the region of about 8× 8 km2 surrounding the
measurement sites labeled in [43] as LW20, LW21, LW22,
LW27, LW28, and LW29 [see Fig. 4(a)], for which the soil
moisture was measured in situ at the same times of the AIRSAR
acquisitions. In particular, in situ measured volumetric soil
moisture in the top 6-cm layer are available. More details on
the ground-truth data acquisition are provided in [43].

Based on photos and descriptions available in [43], the
considered test sites can be labeled as scarcely (LW21, LW22)
to moderately (all other sites) vegetated soils. The estimation
procedure has been performed on this data set, leading to the
estimation maps of the volumetric soil moisture (an example of
which, without and with vegetation compensation, is depicted
in Fig. 4(c) and (d), obtained from the soil permittivity maps
through the Hallikainen mixing model1 [49] (average values of
percentages of sand and clay can be derived from data in [43],
and they are about 45% and 13%, respectively). Pauli decom-
position maps, an example of which is reported in Fig. 4(b),
confirm that surface scattering is dominant in most of the scene,
and that this dominance is stronger for fields LW21 and LW22
than for the other fields. In this scenario, the overall percentage
of pixels for which retrieval is obtained (the “inversion rate”) is
63% and 66% for the uncompensated and compensated cases
(with uniformly distributed dipoles’ orientations), respectively.
In addition, in the six fields considered in this paper, the
percentage of pixels suffering from the negative power problem
(i.e., for which condition (20), with C/A = 1/3, is not fulfilled)
is 2% [see Fig. 4(e)], and the percentage of pixels for which
double bounce is dominant (i.e., for which the real part of the
vegetation-corrected correlation is negative) is 4%.

The obtained soil moisture estimates are compared with the
available ground truth. In particular, in Fig. 5(a), the scatterplot
of the results obtained through the inversion procedure of [19]
(i.e., without vegetation compensation) are reported, whereas in
Fig. 5(b) those obtained via the proposed vegetation compensa-
tion approach (with uniformly distributed dipoles’ orientations)
are shown. In the former case, the mean error (ME) is equal to
6.9 vol.% with an error standard deviation (SDE) of 3.7 vol.%
(so that the rmse is 7.8), and the correlation coefficient (ρ) is
equal to 0.74. In case of vegetation compensation, SDE and
ρ are unchanged, but the ME decreases to ME = 1.2 vol.%
(so that the rmse decreases to 3.9). In fact, looking at the plots in
Fig. 5, the improvement with respect to the ME is evident. This
figure also shows that the main effect on PTSM soil moisture
retrieval of noncompensated vegetation is an overestimation.

1If soil mixture is not known, the Topp model can be used [50]. We have
verified that the use of the Topp model only leads to a small difference in the
retrieval results that does not substantially change the conclusion of this paper.
The same holds if the updated version of the Hallikainen model provided by
Mironov [51] is employed.
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Fig. 4. (a) Optical image of the considered scene with indication of in situ measurements. (b) Pauli decomposition. (c) Soil moisture map with no vegetation
compensation and (d) soil moisture map with vegetation compensation pertinent to the AIRSAR acquisition of July 3, 2003 (black pixels: parameter not retrieved).
(e) Map reporting in black the pixels experiencing the negative power problem. The borders of the considered fields appear in red in (a) and (e). The area is about
8000 m × 8000 m wide.

This is because the presence of vegetation causes a slight
increase in the copol ratio and a significant decrease in the
correlation coefficient; accordingly, the point representing SAR
data on the graph of Fig. 2(a) moves toward the right (and only
slightly downward), so that the retrieved ε increases. It is also
interesting to note that, as expected, this soil moisture overesti-
mation is smaller for the less vegetated fields LW21 and LW22
(ME = 5 vol.%) than for the other considered fields (ME =

8 vol.%), and that it is almost canceled by vegetation compen-
sation for both groups of fields (ME about −1 and 1.5 vol.%,
respectively).

In summary, here, we have shown that, in the favorable sce-
nario of agricultural fields with a scarce to moderate vegetation
cover, the PTSTCM (i.e., the vegetation-corrected PTSM) al-
lows to properly correct the PTSM soil moisture overestimation
caused by the presence of vegetation.
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Fig. 5. Scatterplots of the retrieval results versus measured ground truth. (a) Without vegetation compensation (PTSM). (b) With vegetation compensation (PTSTCM).

Fig. 6. (a) Optical image of the considered scene, with indication of in situ
measurements. (b) Pauli decomposition. Soil moisture map (c) without vegeta-
tion compensation and (d) with “uniform” vegetation compensation pertinent to
the E-SAR acquisition of July 26, 2006 (black pixels: parameter not retrieved).
The area is about 8500 m × 3000 m wide.

B. AgriSAR

Here, we consider L-band SAR data acquired by the DLR
airborne experimental SAR (E-SAR) system over the site of
Demmin in northern Germany, during the whole vegetation
growth cycle in the year 2006 [44]. They refer to an agricultural
scenario with several different crop types [see Fig. 6(a)], whose

conditions significantly change from the times of the first
acquisitions to those of the latest ones, moving from scarcely,
to moderately, and finally to very vegetated fields. It is then
expected that the proposed PTSTCM can be only applied to
the first acquisitions; however, we here force application to
all acquisitions, to explore the validity range of the method.
In addition, we want to compare results obtained employing
different volume scattering models (i.e., the different kinds of
vegetation compensation).

In the framework of the AgriSAR campaign, in correspon-
dence with SAR acquisitions, a wide set of ground data was
collected, regarding vegetation phenology, terrain conditions,
precipitations, and volumetric soil moisture [44]. In particu-
lar, the soil water content was measured with different tech-
niques (i.e., time-domain reflectometry, and gravimetric and
capacitive measurements) and different time-sampling scenar-
ios (intensive campaigns over many fields, weekly measures on
a limited set of fields, and via continuous measurements stations
over few fields). These measurements have been used as refer-
ence ground truth in our experiment. The area is characterized
by altitude variations of less than 50 m, with very small slopes.
Several crop types are present, and in particular, in this paper,
we consider sugar beet, wheat, barley, rape, and corn. An ex-
ample of Pauli decomposition map is provided in Fig. 6(b), and
it shows that, in this scenario, a variety of dominant scattering
mechanisms are present. In addition, this situation significantly
varies with time, according to the vegetation evolution.

The retrieval procedures are applied on the available E-SAR
geocoded L-band quad-polarimetric images, after application
of a spatial multilook leading to a final pixel spacing of
20 m × 20 m (corresponding to a number of looks larger than
100, and to a minimum number of pixels per field equal to about
350). The estimates of ε and σ are obtained following both the
procedure described in [19] (i.e., without vegetation compensa-
tion) and the one presented here, with the three different pos-
sible dipole orientation distributions. They are then converted
into volumetric moisture mv using the mixing model in [49],2

considering that the soil in the Demmin area consists mostly of

2See footnote 1.
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loamy sand, with percentages of sand and clay of 68% and 7%,
respectively [44]. Two samples of obtained mv maps, one
without compensation and one with “uniform” vegetation com-
pensation, are shown in Fig. 6(c) and (d), respectively. In this
scenario, the inversion rates strongly vary from one acquisition
to another: In particular, in the first acquisition (on April 19),
they are 7% for no compensation, and 25%, 24%, and 17% for
the “uniform,” “vertical,” and “horizontal” compensation cases,
respectively; they remain substantially stable until mid May,
then they start to progressively decrease, reaching very low
values (0.1%, 2%, 1%, and 3% for the four cases) on July 12,
and finally, they raise again in the last two acquisitions, so that
in the August 2 acquisition, they are 29% for no compensation,
and 40%, 25%, and 32% for the “uniform,” “vertical” and
“horizontal” compensation cases, respectively. With regard to
the negative power problem, the situation is more stable: The
percentage of points suffering from the negative power problem
is about 6% in the April 19 acquisition, and then it moves
to values around 20% in the other acquisitions. Finally, with
regard to pixels for which double-bounce is dominant, they are
about 30%, except for the mid and late May acquisitions, in
which they raise to about 70%.

In order to explore the validity limits of the PTSTCM, and to
better compare the proposed different kinds of vegetation cor-
rections, we show the results for three different periods of the
year. In the first period (April 19–May 16, 2006) the vegetation
was mostly in an early stage of growth and its average height
was low (ranging from nearly zero, for corn fields, to more
than 1 m, for rape fields). In the second one (May 24–June 13,
2006) the various crop types were in an intermediate stage of
growth, presenting significant average heights in many cases
(ranging from 20–30 cm, for corn fields, to about 170 cm, for
rape fields). Finally, in the last period (June 21–August 2, 2006)
the vegetation was in an advanced stage of growth, with average
heights larger than 1 m in most cases (ranging from about
80 cm, for wheat fields, to more than 2 m, for corn fields).
We note that there are a couple of noticeable exceptions to
these general trends: In particular, the vegetation cycle of sugar
beet and corn cultivations (plantation in spring) is temporally
shifted with respect to the other winter cultivations (plantation
in autumn). Therefore, the fields relevant to these two crops
are completely bare during the first period because plantation
takes place in April. On the other hand, in the last couple of
acquisition dates, winter barley and rape are already harvested,
leaving almost bare-soil fields (this justifies the higher inversion
rates in these acquisitions).

In Figs. 7–9 the results obtained for the three periods without
vegetation compensation and with the three different kinds
of compensation are reported: The quantitative measures of
performance for each of the considered scatterplots are reported
in Table I. We indicate with N the number of fields for which
inversion is successful (i.e., for which, in at least 20% of the
pixels, the modified correlation coefficient can be defined, and
obtained values are inside the physically allowable range) for
all of the acquisition dates of the considered period. The total
number of fields considered in this paper is 13.

It can be seen that, as expected, none of the approaches
performs well on the whole vegetation cycle. In particular, in

the first period, when vegetation is mostly in an early stage
of growth, the highest values of N are obtained. In this case,
the best results are provided by the method based on dipoles
with random uniformly distributed orientations, which seems
to be a favorable model for early stage vegetation. This also
justifies the choice made in Section IV-A of considering this
kind of vegetation model. However, acceptable performances
are obtained also by considering mainly horizontally oriented
dipoles for the volume contribution.

In the second period, conversely, the best performance in
terms of both ρ and rmse is provided by the method based
on mainly vertically oriented dipoles: this can be related to a
preferential vertical orientation of the plants’ trunks when the
growth cycle is not yet in an advanced stage. However, a very
small ME is obtained for uniformly distributed orientations.
Note also (see Fig. 8) that the best performances are obtained
for corn fields (with all the models, and in particular for
uniformly and vertically distributed orientations) and for sugar
beet fields (with horizontally oriented dipoles), for which, as
highlighted above, the growth cycle is temporally shifted with
respect to the other cultivations, so that they are in an early stage
of growth also in this second period.

Finally, in the third period, none of the methods provides
reasonably accurate results, due to the presence of high and
dense vegetation. Anyway, the best results are once again
obtained considering mainly vertically oriented dipoles.

In summary, here, we have shown that, as expected, the
PTSTCM can be used only for moderately vegetated areas
and that, within this domain of applicability, the volumetric
model employing uniformly distributed dipole orientations is
preferable to the others in the majority of cases. Accordingly,
we can conclude that, for moderate vegetation, when no precise
information on the vegetation type is available, PTSTCM with
uniform dipole orientation can be used. However, in order to
provide more quantitative validity limits, a further analysis is
still needed. This analysis is performed in the following, where
validity limits in terms of vegetation height or in terms of
the value of the cross-polarized ratio, are provided, and the
PTSTCM is compared with 3CMs.

C. Comparison With 3CMs

Results presented earlier show that PTSTCM provides excel-
lent [see Fig. 5(b)] or good [see Fig. 7(b) and (c)] estimates
in the presence of a moderate vegetation, when a dominant
surface scattering component is accompanied by a nonnegligi-
ble volume scattering component; conversely, it provides very
poor [see Fig. 8(b)–(d)] or completely unreliable (see Fig. 9)
results when vegetation density and height increase, so that
surface scattering is not the main scattering mechanism, and in
addition to volume scattering, a nonnegligible double-bounce
scattering component is present. In order to deal with this
latter situation, 3CMs are needed, which include also double-
bounce scattering [11], and possibly, more refined, parametric/
variable vegetation volumetric scattering models [21]–[23].
We expect that our PTSTCM, which considers a more refined
surface scattering model, is preferable for low vegetation,
whereas 3CM-based methods, which consider more refined
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Fig. 7. Scatterplot of the retrieval results versus measured ground truth for the first period. (a) Without vegetation compensation. (b) With vegetation compensation
modeled via dipoles with random uniformly distributed orientations. (c) With vegetation compensation modeled via mainly horizontally oriented dipoles.
(d) With vegetation compensation modeled via mainly vertically oriented dipoles.

vegetation models, are preferable for high or very high vegeta-
tion. In order to check this expectation and to give a more quan-
titative meaning to the expressions “low vegetation” and “high
or very high vegetation,” we here compare results of PTSTCM
and 3CM over two fields with different vegetation growth
behaviors, namely fields labeled as 222 (corn field, see Fig. 10)
and 230 (wheat field, see Fig. 11) in [44]. 3CM retrieval results
are taken from [11]; in fact, in [11], the same AgriSAR data
set introduced in Section IV-B is used, and data are presented
in a format useful for our discussion. In the following, we
also consider the same ground-truth data as in [11], and a data
display format similar to that employed there. In Figs. 10(a) and
11(a), “no compensation” indicates the standard PTSM of [19],
“uniform compensation” indicates PTSTCM with a uniform
distribution for dipole orientation, and “horizontal compensa-
tion” and “vertical compensation” indicate PTSTCM with a
prevalently horizontal and prevalently vertical distribution for
dipole orientation, respectively. In Figs. 10(b) and 11(b), blue
symbols indicate that soil moisture is estimated from the surface
component of the 3CM, whereas red symbols indicate that
retrieval is obtained from the double-bounce component of the
3CM. In addition, “Bragg” indicates the usual three-component
Freeman decomposition, “X-Bragg” indicates that the X-Bragg

model [10], with an a priori fixed value of the roughness
parameter, is used for the surface component; and “volumes 1,
2, and 3” indicate three modifications of the dipole-cloud
model for the volumetric component: volume 1 indicates the
decomposition using a random oriented volume with particles
of arbitrary shape, volume 2 indicates the decomposition using
a weakly oriented volume of dipoles, and volume 3 indicates
the decomposition using a strongly oriented volume of dipoles.
Further details can be found in [11]. Note that AgriSAR data are
also used in [22], [23] to analyze the more refined parametric
volumetric model there presented; however, data presented in
[22] and [23] are not in the format useful for the comparison
here. In addition, acquisitions of May 2006 are not considered
in [22], [23]. In spite of that, since different methods considered
in [11] cover a wide range of shape and orientation parameter
values, we believe that a reasonable estimate of the results of the
parametric volume model method used in [22] and [23] can be
obtained by considering, for each acquisition, the best retrieval
result among those of all the methods considered in [11].

Let us first consider the corn field 222. Comparison of
Fig. 10(a) and (b) shows that up to the last acquisition of
June (day 172), corresponding to vegetation height smaller than
about 50 cm, PTSTCM provides better results than 3CMs,
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Fig. 8. Scatterplot of the retrieval results versus measured ground truth for the second period. (a) Without vegetation compensation. (b) With vegetation
compensation modeled via dipoles with random uniformly distributed orientations. (c) With vegetation compensation modeled via mainly horizontally oriented
dipoles. (d) With vegetation compensation modeled via mainly vertically oriented dipoles.

and relative error is always smaller than 30% (and in most
cases, smaller than 20%). In addition, all the three considered
dipole orientation distributions provide similar results, which
are better than results obtained by PTSM (i.e., without com-
pensation of vegetation).3 This is coherent with the fact that,
in this case, surface scattering is dominant with respect to a
nonnegligible volume scattering component, so that using a
more refined surface model and a simple volume model is more
appropriate than using a more refined volume model and a
simple surface model. Conversely, for the acquisitions of July
and August, corresponding to vegetation higher than about 1 m,
the best results are obtained by 3CMs; in particular, in the
last two acquisitions, results obtained from the double-bounce
component are better than those obtained from the surface
scattering component. This shows the importance of including
double bounce for such a high vegetation.

Let us now move to consider the wheat field 230. Com-
parison of Fig. 11(a) and (b) shows that, for the first three
acquisitions (April and first part of May, up to day 130), again
corresponding to vegetation height smaller than about 50 cm,

3This is with the exception of the first two acquisitions, for which the field
was bare soil, so that also the uncompensated method provides accurate results.

PTSTCM provides better results than 3CMs; in particular,
in the first two acquisitions, the relative error for PTSTCM
with uniformly and vertically oriented dipole models is always
not larger than about 20%, whereas in the third acquisition,
the PTSTCM relative error is a bit larger than 30%, but no
useful result is obtained by the 3CM. Again, this is coherent
with the fact that, in this case, surface scattering is dominant
with respect to a nonnegligible volume scattering component,
similarly to what explained for field 222. Conversely, for the
two subsequent May acquisitions (around day 140), no valid
retrieval results are obtained by our PTSTCM. However, it must
be noted that the same holds for 3CMs if retrieval is obtained
from the surface scattering component and only retrievals based
on the double-bounce component are successful. In fact, for
these acquisitions, the real part of the HH-VV correlation turns
out to be negative; this indicates a dominance of the double-
bounce component. This is most likely related to the vegetation
shape and density at this intermediate growth stage. Starting
from the June acquisitions, corresponding to vegetation higher
than about 50 cm, the best results are obtained by the 3CMs.
However, for the June acquisitions, PTSTCM with uniform
dipole orientation distribution provides reasonable results. This
is not the case for July and August acquisitions, corresponding
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Fig. 9. Scatterplot of the retrieval results versus measured ground truth for the third period. (a) Without vegetation compensation. (b) With vegetation
compensation modeled via dipoles with random uniformly distributed orientations. (c) With vegetation compensation modeled via mainly horizontally oriented
dipoles. (d) With vegetation compensation modeled via mainly vertically oriented dipoles.

TABLE I
PERFORMANCES OF THE VOLUMETRIC SOIL MOISTURE RETRIEVAL APPROACHES

to a vegetation height of about 80 cm. For these latter acquisi-
tions, the 3CM results are by far better than the PTSTCM ones.

These results suggest that PTSTCM is preferable up to a
vegetation height of about 50 cm, whereas 3CM-based methods
are preferable for vegetation height of about 80 cm or higher. In
intermediate situations (i.e., vegetation height between 50 and

80 cm) results of the two approaches are usually similar, with a
slight preference for 3CMs.

In the analysis performed earlier, we have attributed the
decreasing accuracy of PTSTCM with time to the increasing
vegetation height. It must be also noted that soil moisture
decreases with time, so that one could infer that PTSTCM
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Fig. 10. Estimated average soil moisture over the corn field 222 inverted via (a) the proposed method and (b) the 3CM method of [11]. The in situ estimated soil
moisture (as taken from [11]) is indicated by the black dashed line, and the ±30% variation region is highlighted in gray.

Fig. 11. Estimated average soil moisture over the wheat field 230 inverted via (a) the proposed method and (b) the 3CM method of [11]. The in situ estimated soil
moisture (as taken from [11]) is indicated by the black dashed line and the ±30% variation region is highlighted in gray.

decreasing accuracy may be also due to a reduced sensitivity of
the method for low values of the soil moisture. However, this is
excluded by the sensitivity analysis performed in Section III-C,
so that we can confirm that the decisive factor is the increasing
vegetation height.

In order to further support the conclusions above, in Fig. 12,
we plot the modulus of the soil moisture relative error ver-
sus vegetation height for fields 222 and 230, by considering
PTSTCM with uniformly distributed dipoles (triangular sym-
bols) and the best, for each acquisition, among the 3CMs of
[11] (asterisk symbols). This simulates a situation in which no
information on the vegetation type is available, and the variable
vegetation model of [22], [23] is used for 3CM. The plots of
Fig. 12 show that, for a vegetation height smaller than 50 cm,
PTSTCM results are more accurate than 3CM ones (with only
one exception), and in half of the cases, this improvement is
greater than 20%. The average modulus of the relative error
(in short, the average relative error) is 18.5% for PTSTCM and

34% for 3CM. For vegetation height between 50 and 80 cm,
there is no clear advantage of one method with respect to the
other (but, on the average, the relative error is smaller for
3CM, i.e., 14.3%, against a 20.3% for PTSTCM), whereas for
larger vegetation height, very small errors are obtained by 3CM.
Moreover, PTSTCM relative error is always larger than 50%
(and often even larger than 100%). In this final case, the average
relative error is 18.7% for 3CM and 134% for PTSTCM.

Finally, it is useful to analyze the behavior of PTSTCM and
3CM as a function of some parameter that can be computed
directly from SAR data. Results of Section III-B, and in par-
ticular condition (20), suggest that such a parameter can be
the value of the cross-polarized ratio. Accordingly, in Fig. 13,
we plot the modulus of the soil moisture relative error versus
cross-polarized ratio for fields 222 and 230, by considering
PTSTCM with uniformly distributed dipoles (triangular sym-
bols) and the best, for each acquisition, among the 3CMs of [11]
(asterisk symbols). It turns out that for a cross-polarized ratio
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Fig. 12. Absolute value of soil moisture relative error versus vegetation height, fields 222 and 230, for PTSTCM (triangles) and 3CM (asterisks). (a) Vegetation
height smaller than 80 cm and (b) larger than 80 cm.

Fig. 13. Absolute value of soil moisture relative error versus cross-polarized
ratio, fields 222 and 230, for PTSTCM (triangles) and 3CM (asterisks).

smaller than 0.1 (i.e., smaller than −10 dB) PTSTCM results
are more accurate than those of 3CM (the average relative
error is 14.5% for PTSTCM and 24.3% for 3CM); for a cross-
polarized ratio in the range of 0.1–0.15 (i.e., from −10 to
−8.25 dB), there is no clear advantage of one method with
respect to the other (the average relative error is 33.9% for 3CM
and 37.5% for PTSTCM), and for cross-polarized ratio with
values greater than 0.15 (i.e., greater than−8.25 dB), very small
errors are obtained by 3CM, whereas PTSTCM relative error is
always larger than 40% (and often even larger than 100%). In
this final case, the average relative error is 15.3% for 3CM and
118% for PTSTCM.

It is worth noting at this point that, although the behavior
of soil moisture retrieval as a function of vegetation height is
similar to its behavior as a function of the cross-polarized ratio,
this last parameter cannot be in general used as a measure of
vegetation height: In fact, the plot of Fig. 14 shows that, while
for field 222 a clear increasing trend of crosspol with respect to
vegetation height can be noted, this is not the case for field 230.
Finally, it must also be mentioned that, in [11], the rape field

Fig. 14. Cross-polarized ratio versus vegetation height, for fields 222 (trian-
gles) and 230 (asterisks).

labeled as 101 is considered. For this field, the vegetation height
was lower than 50 cm only for the first acquisition, and for all
the acquisitions (including the first), the crosspol ratio is higher
than 0.2, indicating that our model cannot be employed there.
In fact, it turns out that, for this field, parametric 3CM always
provides better results than PTSTCM. This further confirms the
conclusion of our analysis.

In summary, here, we have shown that for vegetation height
smaller than 50 cm or cross-polarized ratio smaller than 0.1,
PTSTCM provides better results with respect to existing para-
metric 3CMs. For vegetation height ranging from 50 to 80 cm
or cross-polarized ratio ranging from 0.1 to 0.15, there is
no clear advantage of using one method or the other. For
vegetation height larger than 80 cm or cross-polarized ratio
larger than 0.15, parametric 3CMs provide much better results
than PTSTCM. It is here also useful to recall that, as stated in
Section III-B, PTSTCM cannot be used if the real part of the
vegetation-corrected HH-VV correlation is negative. Finally,
we note that applicability of the methods may be related not
only to vegetation height but also to other vegetation indexes
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Fig. 15. Retrieval results obtained by using the PTSTCM and 3CM combined method. The selection criterion is based on the cross-polarized ratio and signum of
the real part of copolarized correlation. (a) Field 222 and (b) Field 230.

such as the Leaf Area Index (LAI). However, it is much easier
to in situ measure vegetation height than LAI, so that it is
much more likely that vegetation height is known than LAI.
That is why here we have preferred to focus our analysis on
vegetation height.

D. Combined Use of PTSTCM and 3CM

Here, we propose a way to combine the PTSTCM with
3CM of [22], [23]. In fact, results of the earlier analysis and
of Section III-B, suggest that simple criteria can be used for
the selection between the use of PTSTCM with uniformly
distributed dipoles and 3CM of [22] and [23] on a pixel-by-
pixel basis, so that a more general method is obtained.

The choice criterion can be based on the value of the cross-
polarized ratio and on the signum of the real part of the HH-
VV correlation. In particular, if the cross-polarized ratio is
smaller than 0.1 and the real part of the HH-VV correlation
is positive, then the PTSTCM must be used first: If retrieval is
successful, the obtained value is the desired output; otherwise,
3CM must be used. If the cross-polarized ratio is larger than
or equal to 0.1 and smaller than 0.15, and the real part of
the HH-VV correlation is positive, then both methods must be
used: If both are successful, then the output is computed as
the average of the two retrieved values; otherwise, the output
is the retrieved value of the successful method, if any. Finally,
if the cross-polarized ratio is larger than or equal to 0.15 or the
real part of the HH-VV correlation is negative, then the 3CM
must be used first: If retrieval is successful, the obtained value
is the desired output; otherwise, PTSTCM must be used. The
retrieval results obtained by applying this criterion to fields 222
and 230 are shown in Fig. 15. For the field 222, a significant
overall improvement with respect to the graphs of Fig. 10 is
obtained, and the relative error is in most cases well below
10%. Moreover, for the field 230, a significant improvement
with respect to the graphs of Fig. 11 is obtained, but rather,
large errors are still obtained in some of the late acquisitions.

In conclusion, combined use of PTSTCM and 3CM ac-
cording to the proposed criterion allows us to significantly
improve soil moisture results with respect to the cases in which
PTSTCM and 3CM are individually employed.

V. CONCLUSION

In this paper, we have inserted the PTSM, presented in [13],
into a two-component scattering model, thus obtaining a po-
larimetric two-scale two-component model (PTSTCM). In par-
ticular, we use the PTSM to describe the surface scattering
component, and a randomly (uniformly, vertically, or hori-
zontally) oriented thin dipole model to describe the volume
scattering contribution from the vegetation layer that covers the
scattering surface. We have shown that suitable combinations
of the NRCS and HH-VV correlation, which we term “modified
copolarized ratio” and “modified copolarized correlation coef-
ficient,” are related only to the surface parameters because, in
principle (i.e., if the employed volumetric model is sufficiently
accurate in the considered case), the dependence on the un-
known volumetric contribution intensity cancels out. Therefore,
they can be used for soil moisture retrieval under moderate
vegetation cover. The behavior of the method with respect to the
negative power problem has been discussed, showing that this
problem is significantly mitigated, and a theoretical analysis of
the sensitivity of retrieval results with respect to the different
possible error sources has been also performed.

We have then tested the PTSTCM-based retrieval method
by applying it to polarimetric SAR data acquired on areas
for which, at the same time of SAR acquisitions, ground
measurements of soil moisture were performed. To this end,
both SMEX’03 and AGRISAR’06 data have been used. In
addition, results of PTSTCM have been compared with those of
available 3CMs employing more simplified surface scattering
models but more refined volumetric ones [22], [23]. It has
turned out that the use of PTSTCM is more convenient for low
vegetation (vegetation height lower than about 50 cm) because
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surface scattering is better modeled. The results of PTSTCM
and 3CMs are also similar, with a slight preference for 3CMs,
for intermediate vegetation (vegetation height between about
50 and about 80 cm), because the surface component is still
important, but its significance decreases and double bounce
(ignored by PTSTCM) starts playing a role. Finally, 3CMs are
more convenient for high vegetation (vegetation height greater
than about 80 cm) because the advantage of the more refined
surface scattering model of PTSTCM is of little importance
in this case, whereas it is necessary to account for double-
bounce scattering. The convenience of using PTSTCM has
turned out to be also related to the values of measured cross-
polarized ratio and copolarized correlation: in fact, PTSTCM is
preferable when cross-polarized ratio is not larger than 0.1, and
at the same time, the real part of the copolarized correlation
is positive. In all other cases, 3CMs are preferable, and they
often provide accurate results even in the case of dihedral
dominance.

Finally, as a conclusion of the performed analysis, we have
suggested a method in which, pixel by pixel, based on the
values of the cross-polarized ratio and on the signum of the
real part of the copolarized correlation, either the PTSTCM
or a three-component decomposition with variable vegetation
volume model is employed to retrieve soil moisture. We have
shown that this combination of methods provides very good soil
moisture results on the entire vegetation cycle.

At this point, it is useful to note that the only situation in
which combination of the proposed PTSTCM with 3CM is not
appropriate is the case of dominant surface scattering and a
secondary nonnegligible dihedral component. Improvement of
our method to properly account for this case goes beyond the
scope of this paper and is matter of our future work.

Finally, we must remark that conclusions reported here refer
to the case of flat topography, due to the characteristics of
considered test sites. The proposed technique, with proper
modifications to the surface model [14], may also be applied
to hilly or mountainous sites, provided that site topography is
known; however, assessing the method performance in these
cases still requires further future work.

APPENDIX

Here, we show how (1)–(6) can be obtained from [19, Eq. (8)],
which we report here for the sake of completeness:
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which is the first equation of (1). Similarly〈
|Shh|2

〉
|ζ,a,b

= Chh
0,0 +

(
Chh

2,0 + Chh
0,2 + 2

Re
{
Chv

0,0

}
− Chh

0,0

sin2 ϑ

)
σ2

= Chh
0,0

[
1 +

(
Chh

2,0 + Chh
0,2

Chh
0,0

+ 2
Re

{
Chv

0,0

}
− Chh

0,0

Chh
0,0 sin

2 ϑ

)
σ2

]

= s20fs|βr|2
⎡
⎣1 +

⎛
⎝ CHH

2

fs|βr|2
+ 2

Re
{

1
β∗
r

}
− 1

sin2 ϑ

⎞
⎠σ2

⎤
⎦

= s20fs|βr|2
[
1 +

(
2Re

{
1− βr

βr sin
2 ϑ

}
+

CHH
2

fs|βr|2

)
σ2

]
(33)

which is the second equation of (1), and

〈ShhS
∗
vv〉|ζ,a,b

= Chv
0,0 +

(
Chv

2,0 + Chv
0,2 +

Chh
0,0 + Cvv

0,0 − 2Chv
0,0

sin2 ϑ

)
σ2

= Chv
0,0

[
1 +

(
Chv

2,0 + Chv
0,2

Chv
0,0

+
Chh

0,0 + Cvv
0,0 − 2Chv

0,0

Chv
0,0 sin

2 ϑ

)
σ2

]

= s20fsβr

[
1 +

(
CHV

2

fsβr
+

β∗
r +

1
βr

− 2

sin2 ϑ

)
σ2

]

= s20fsβ

[
1 +

(
β∗
r − 1 + 1

βr
− 1

sin2 ϑ
+

CHV
2

fsβr

)
σ2

]

= s20fsβr

[
1 +

(
1− βr

βr sin
2 ϑ

− 1− β∗
r

sin2 ϑ
+

CHV
2

fsβr

)
σ2

]
(34)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DI MARTINO et al.: PTSTCM FOR RETRIEVAL OF SOIL MOISTURE 21

which is the third equation of (1). Finally〈
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which is the last equation of (1).
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