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Scattering-Based Nonlocal Means SAR Despeckling
Gerardo Di Martino, Member, IEEE, Alessio Di Simone, Antonio Iodice, Senior Member, IEEE, and

Daniele Riccio, Fellow, IEEE

Abstract—Speckle noise greatly limits both synthetic aperture
radar (SAR) data human readability, especially for non-SAR-
expert users, and performance of automatic processing and in-
formation retrieval procedures by computer programs. Therefore,
despeckling of SAR images is an essential preprocessing step in
SAR data analysis, processing, and modeling, as well as in infor-
mation retrieval and inversion procedures. Up to now, one of the
most accurate and promising despeckling approaches—among
those based on a single SAR image—is the one relying on the
nonlocal means concepts. However, at the best of our knowledge,
most of the state of the art considers the despeckling problem
only within a statistical framework, completely discarding the
electromagnetic phenomena behind SAR imagery formation. In
this paper, we introduce the novel idea of a physical-based de-
speckling, taking into account meaningful physical characteristics
of the imaged scenes. This idea is realized via the implementation
of a physical-oriented probabilistic patch-based (PPB) filter based
on a priori knowledge of the underlying topography and analytical
scattering models. This filter is suitable for SAR images of natural
scenes presenting a significant topography. An adaptive version of
the proposed scattering-based PPB filter for denoising of SAR im-
ages including both mountainous and flat areas is also developed.
The performances of the proposed filter and its adaptive version
are evaluated both qualitatively and quantitatively in numerical
experiments using both simulated and actual SAR images. The
proposed technique exhibits performance superior w.r.t. the stan-
dard PPB filter and comparable or, in some cases, superior to the
state of the art, both in terms of speckle reduction and texture and
detail preservation.

Index Terms—Fractals, image denoising, nonlocal means (NLM),
scattering models, synthetic aperture radar (SAR).

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) data represent an essen-
tial tool for monitoring Earth resources and analyzing both

urban and natural areas. As the very recent European Space
Agency Sentinel mission shows, SAR systems and sensors play
a key role in understanding, controlling, and preserving our
surrounding environment. However, SAR image readability
and information retrieval procedures are dramatically affected
by speckle, the multiplicative noise typical of SAR coherent
acquisition systems. Consequently, analysis and understanding
of a single-look SAR image are often a difficult task even for
SAR-expert users [1]. In the last decades, with the introduction
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of increasingly powerful hardware and software resources, huge
efforts have been made in the despeckling field, aimed at the
reduction of speckle effects to increase the readability of SAR
data and, consequently, the number of non-SAR-expert users
approaching SAR imagery.

Numerous kinds of approaches and methods facing the de-
speckling problem have been proposed so far, as it can be
appreciated from the surveys that can be found in [2]–[4]. The
first technique is the so-called spatial multilook, simply based
on an incoherent averaging of neighboring pixels within a fixed
window. Despite its simplicity, this technique is the best (with
respect the mean-squared error) in the case of homogenous
SAR images, i.e., SAR images of surfaces with constant geo-
metrical and electromagnetic parameters. Unluckily, in most
cases, a homogenous SAR image is not of practical interest,
and it is of really rare occurrence. Typically, SAR images depict
a very inhomogeneous scenario, i.e., regions characterized by
spatial variations of at least one of the numerous parameters
influencing SAR image formation (dielectric constant, electri-
cal conductivity, and microscopic and macroscopic roughness).
Depending on these parameter variations, SAR images present
several features like edges—typically associated with changes
of the electromagnetic parameters of the surface—textures and
patterns—typically associated with changes of the geometric
parameters of the surface—homogenous regions, and so on.
The huge amount of information carried by these features
makes their preservation of key importance in despeckling.

Seeking inspiration from the huge literature about denois-
ing of signals affected by the additive white Gaussian noise
(AWGN) and of the well-assessed related techniques has been,
for a long time, the most followed approach in the development
of despeckling algorithms for SAR images: as a matter of fact,
numerous both old and recent techniques used the homomor-
phic approach, taking the logarithm of the data [5]–[7]. Despite
their simplicity and analytical tractability, the homomorphic
approach causes a severe distortion of the dynamics, as well as
of the fundamental properties of the SAR data. In fact, the log-
transformed speckle noise is neither Gaussian nor zero-mean
so that AWGN denoising methods would not provide reliable
results unless these noise peculiarities are properly taken into
account. As soon as speckle statistical descriptions and models
became available in literature [8], [9] and the denoising commu-
nity became more aware about the peculiarities of SAR images
[10], e.g., spatial nonstationarity, more advanced techniques
were conceived and developed [11]–[19].

As an alternative to the previous techniques, all operating in
the native data domain, i.e., the spatial one, the 1990s saw the
rapid diffusion of the wavelet-based denoising techniques [7],
[20]–[23]. This approach allows for both huge noise reduction
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and detail preservation, owing to the sparse representation
of the signal in the transformed domain. Wavelet transform
ensures a very accurate separation between signal and noise,
also with richly detailed images, so that excellent and promising
results are provided by wavelet-based approaches.

More recently, the nonlocal means (NLM) approach, first
introduced in [24], has been developed, and it represents a can-
didate breakthrough in the despeckling community. The basic
idea is to provide an estimate of the clean image via a proper av-
eraging of similar pixels or patches, i.e., blocks of close pixels.
The main contribution is to introduce, in a very basic way, some
physical concepts by means of an intensity-based similarity
criterion rather than of a pure geometrical one. NLM techniques
are actually of great interest, owing to their edge preservation
and speckle reduction capabilities [23]–[25]. The nonlocal fil-
ter proposed in [24], optimal for AWGN, was generalized to
SAR imagery and speckle noise by Deledalle et al. in [25],
introducing a distance suitable for the Nakagami–Rayleigh
distribution typical of SAR speckle noise. An improved version
of the filter in [25] suitable for both polarimetric and interfero-
metric SAR data has been published very recently [26].

Despite their peculiarities, all of the aforementioned ap-
proaches suffer a general lack of physically based concepts:
despeckling is considered as a pure statistical estimation prob-
lem, without taking into account the physical phenomenology
inherent to the SAR image acquisition process. However, elec-
tromagnetic scattering phenomena play a key role in the SAR
image formation process: SAR data can be modeled as the
reflectivity pattern of the illuminated scene filtered by the SAR
system [27], [28]. The past and current representation-based
approaches in denoising SAR images could be substituted by
the more meaningful and promising object-based approach,
in which the similarity criterion is evaluated on the object
properties rather than on those of its representation through
the sensor. However, an object-based approach cannot be per-
formed without taking into account the physics behind the data
acquisition and the related phenomena, which, in the SAR case,
are essentially represented by scattering. In the meantime, the
availability of both closed-form scattering models—as the geo-
metrical optics, physical optics (PO), integral equation methods,
and small-perturbation method (SPM) [29]–[31]—and a more
accurate knowledge of all those parameters and phenomena
involved in electromagnetic scattering from natural surfaces
call for the introduction of scattering concepts in despeckling
in order to obtain a significant improvement of the state of
the art.

In this paper, we introduce the novel idea of despeckling
based on scattering phenomena hidden behind SAR image
formation. In [32], we made a first naïve but promising at-
tempt in this direction by adding a similarity criterion simply
based on local incidence angle to the intensity-based one.
Here, in a more rigorous way, we apply this general idea to
the probabilistic patch-based (PPB) filter proposed in [25] by
employing a scattering-based similarity criterion. In particular,
we select the electromagnetic scattering model suitable to nat-
ural surfaces, and then, we modify the PPB filter, introducing
scattering concepts in the definition of the filter weights as a
kind of a priori knowledge, in order to take into account the

electromagnetic behavior of the scattering cell. We call this
new filter scattering-based PPB (SB-PPB) filter. The proposed
approach requires the knowledge of the scene topography. As
discussed more in detail later, this does not significantly limit
the applicability of the method since accurate digital elevation
models (DEMs) are by now easily available for most part of the
world.

This paper is organized as follows. Section II describes the
state of the art of NLM despeckling techniques, with a partic-
ular emphasis on the PPB filter. Section III presents the direct
model used in the proposed filter. In Section IV, we present the
rationale and the implementation details of the proposed NLM
filter and of its adaptive version. Its performances are assessed
in a qualitative and quantitative way, applying the proposed
SB-PPB filter to both simulated and actual SAR images in
Section V. Some conclusion and recommendations close this
paper.

II. RELATED WORKS AND MOTIVATIONS

Up to now, NLM represents one of the most widespread, ac-
curate, and promising approaches to SAR imagery despeckling
[3], [4], [23], [25], [33]. At a very basic level, the main idea of
despeckling is essentially to average similar objects: most of the
denoising algorithms and approaches can be comprised within
these two words. Different similarity criteria and/or different
averages of the objects give rise to very different techniques.
The basic idea of the nonlocal approach is very intuitive, but it
represented a total breakthrough in the denoising community:
similarity is no more intended in a pure and exclusive geomet-
rical sense. The geometric Euclidean distance was substituted
by the more meaningful intensity distance aimed at averaging
only those objects sharing the same physical properties, i.e., the
reflectivity. In other words, only those pixels presenting similar
amplitude values are averaged, irrespective of their geometric
distance. The more similar two pixels are, the greater the
weight assigned to them in the average process. The Euclidean
intensity distance first proposed by Buades et al. in [24] was de-
signed and derived in the assumption of AWGN. This distance
was recently modified by Deledalle et al. in [25] to account for
the special characteristics of SAR speckle noise.

In the 1980s, the sigma filter for additive signal-independent
noise [34] and its extension to speckle noise [35] pioneered the
application of NLM concepts. Nowadays, PPB [25] and SAR
block-matching 3-D (SAR-BM3D) [23] filters can be arguably
considered the state of the art for SAR imagery denoising. In
particular, SAR-BM3D [23] collects together several of the
most advanced concepts in denoising—block-matching, nonlo-
cal filtering, wavelet shrinkage, and Wiener filtering—first pro-
posed by Dabov et al. in [36], in a way suitable for SAR image
peculiarities. The algorithm is a two-step procedure: the first
step provides a gross estimate of the clean image that is used as
input of the second step in which a Wiener filtering is applied
to the noisy image in order to provide the final despeckled
image. Block matching and nonlocal filtering are performed via
a similarity criterion suitable for SAR speckle peculiarities. The
distance used to evaluate the block similarity is that developed
in [25].
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These patch-based nonlocal algorithms very often show bet-
ter results w.r.t. other methods [3], [4], [23], [25], [33], although
they present some limitations and difficulties in very specific
cases, especially for small nonrepetitive features, due to the
failure of the patch-matching step.

A detailed description of the PPB filter, on which the pro-
posed SB-PPB filter is based, is reported in the following.
In their original work, Deledalle et al. [25] proposed a prob-
abilistic approach for filter weight evaluation based on the
weighted maximum likelihood estimation (WMLE). The image
denoising problem consists in finding the best estimate of the
parameter of the parametric noise distribution p(As|σs), with
As being the amplitude sample located in s and σs being a
space-varying unknown parameter, assumed to be the reflec-
tivity [i.e., the normalized radar cross section (NRCS)] of the
scene at pixel s (so that the noise-free amplitude A∗

s is the
square root of σs). In [25], it was shown that, if the pixel
amplitudes are modeled as independent and identically dis-
tributed according to the Nakagami–Rayleigh distribution [10],
in agreement with the usual multiplicative speckle noise de-
scription, then the WMLE of σs can be expressed as

σ̂WMLE
s =

∑
t∈Ω ws,tA

2
t∑

t∈Ωws,t
(1)

where Ω is a (large) window centered at s (search window) and
the weight ws,t ∈ [0, 1] depends on the target pixel s and the
test pixel t; it can be also seen as a measure of the similarity
between the two pixels. The definition of the weights is the
key-point of the NLM techniques, as they are directly related
to the accuracy of the algorithm. In order to take into account
the neighborhood of the pixel under study, in [25], the patch
concept is introduced, and the weight is evaluated as the prob-
ability that the two patches Δs and Δt, centered at s and t,
respectively, share the same parameters

wnon−it. PPB
s,t � p(σΔs = σΔt|A)

1
h (2)

where h > 0 is a filter parameter setting the weight decay and
the superscript “non-it. PPB” stands for noniterative PPB.

In order to refine the weights, Deledalle et al. [25] proposed
also an iterative scheme in which the reflectivity estimation at
step i− 1 σ̂i−1 is used as a kind of a priori knowledge at step i

wit. PPB,i
s,t � p

(
σΔs = σΔt|A, σ̂i−1

) 1
h (3)

with the obvious meaning of the superscript “it. PPB.” In addi-
tion, using again the Nakagami–Rayleigh distribution for mod-
eling the speckle noise and the Kullback–Leibler divergence for
modeling the a priori knowledge, the following weight expres-
sion can be derived [25]:

wit. PPB,i
s,t = exp

[
−
∑
k

(
1

h̃
ln

(
As,k

At,k
+
At,k

As,k

)

+
L

Tfil

∣∣∣σ̂i−1
s,k −σ̂i−1

t,k

∣∣∣2
σ̂i−1
s,k σ̂

i−1
t,k

⎞
⎟⎠
⎤
⎥⎦ (4)

where L stands for the equivalent number of looks, h̃ =
h/(2L− 1), Tfil is a filter parameter dictating the decay of the

Kullback–Leibler divergence, and k is an index that identifies
the pixels within patches Δs and Δt, so that, for instance, As,k

is the amplitude of the kth pixel of the patch Δs. The logarith-
mic term in (4) weights in an optimal way (in the framework
of an MLE approach) the observed amplitude image samples
via a distance suitable for SAR data, whereas the second term
takes into account the previous estimate in an iterative scheme
and is aimed at avoiding filtering samples drawn from different
distributions. For Tfil → ∞, we have the noniterative version of
the algorithm, for which

wnon−it. PPB
s,t = exp

[
−
∑
k

1

h̃
ln

(
As,k

At,k
+

At,k

As,k

)]
. (5)

Since a complete description of the PPB filter goes outside
the scope of this paper, the reader is referred to [25] for more
details. In the next section, we present the scattering model used
in the proposed SB-PPB filter.

III. SCATTERING MODEL

In this section, the electromagnetic scattering model for
natural surfaces used for the development of the filter is pre-
sented. The proposed direct model is divided in two parts:
first, the natural surface under study is properly modeled using
fractal geometry; in particular, a fractional Brownian motion
(fBm) is used. To cope with the nondifferentiability of the
fBm process and the limited range of fractalness of natural
surfaces, a smoothed version of the original fBm process must
be introduced (physical fBm) [29].

The second step consists in adopting a scattering model,
i.e., a method for the evaluation of the field scattered from
the previously modeled natural surface. In this step, a relation-
ship between the backscattering coefficient and the geometri-
cal (in particular, local incidence angle) and electromagnetic
parameters of the surface is derived.

A. Surface Model

Many surface models have been presented in the scientific
literature—deterministic, stochastic, and empirical—each with
its advantages and drawbacks. Among these, the most accepted
and suitable model for natural surfaces is the fractal one [29],
[37]–[39]. One of the reasons for this success stands in the abil-
ity of fractal models to properly account for the statistical scale-
invariance properties (in particular, self-affinity) of natural
surfaces. Analytic models reported here are able to handle a vari-
ety of natural surfaces: bare and moderately vegetated soils, as
well as ocean surfaces. In particular, we consider here a (topolog-
ical) 2-D fBm stochastic process z(x, y) defined as follows [29]:

Pr
{
z(x, y)− z(x′, y′) < ζ̄

}
=

1√
2πT 1−HτH

ζ̄∫
−∞

exp

(
− ζ2

2T 2(1−H)τ2H

)
dζ (6)

where Pr{} stands for “probability,” ζ̄ is the considered height
increment, z(x, y) is the surface elevation

τ =
√
(x− x′)2 + (y − y′)2 (7)
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is the distance between the two considered points of coordinates
(x, y) and (x′, y′), and

• H : Hurst coefficient (0 < H < 1) related to the fractal
dimension D = 3−H ;

• T : topothesy [m], i.e., the distance over which chords
joining points on the surface have a root mean square
slope equal to unity.

Fractal geometry is the mathematical abstraction of fractal
physics: fractal surfaces exhibit properties (for instance, self-
affinity) at all scales, and they are not differentiable at any point.
Surface random fractal corrugations possess power spectra that
diverge in the low-frequency regime (infrared catastrophe) and
exhibit nonstationary correlation functions. Use of the mathe-
matical fractals to model natural surfaces would make any scat-
tering computation completely intractable[29]. However, natural
surfaces are observed, sensed, measured, and represented via
instruments that are, for their intrinsic nature, band-limited. In
other words, no actual natural surface holds property (6) at
any scale, and some properties of fBm mathematical surfaces
may be relaxed. Accordingly, the mathematical fractals may
be band-limited, thus generating the physical fractals that hold
most of the properties needed to manage them in the electro-
magnetic scattering theory. In particular, the range of scales of
interest for a scattering problem is limited, on one side, by the
finite linear size of the illuminated surface and, on the other
side, by the fact that surface variations on scales much smaller
than the incident wavelength λ do not affect the scattered field.
An efficient approach of surface modeling relies on considering
surfaces that satisfy property (6) only in a limited range of τ
[29]. That is why these surfaces are also referred to as band-
limited fBm or physical fBm, as defined in [29]. It is noteworthy
that actual natural surfaces exhibit typical values of H between
0.5 and 0.9 as reported in related literature [40]–[45].

B. Scattering Model

The second step of the direct model consists in the choice of
the electromagnetic method, i.e., the scattering model. In gen-
eral, no analytical closed-form exact solution for the scattered
field is achievable for natural surfaces. Only approximate analy-
tical solutions are obtained by making simplifying assumptions
for the boundary conditions relevant to the scattering surface;
different approximations lead to different methods to evaluate
the scattered field, and each method holds under the appropriate
surface roughness regime and illumination conditions.

Two main frameworks allow for closed-form solutions to the
scattering problem [29]. One is referred to as the Kirchhoff
approximation (KA) and leads to the PO solution. The other
one is the extended-boundary-condition method, which leads to
the SPM. In this paper, we select the SPM because it provides
the simplest expression for the NRCS and shows a range of
validity often adequate to SAR applications. Thus, this method
provides a very simple relation between fractal parameters and
backscattered field.

Considering a monostatic radar and assuming that the surface
can be described as a physical fBm, the SPM estimation σ̂SPM

of the NRCS σ is given by [46], [47]

σ̂SPM = 2π8k4S0|βmn|2
cos4 θ

(2k sin θ)2+2H
(8)

wherein m and n denote the transmitted and received polar-
izations, respectively, and may stand for horizontal or vertical
polarization; k is the electromagnetic wavenumber of the inci-
dent field; S0 is a parameter characterizing the spectral behavior
of the physical fBm surface, expressed in [m−2−2H ], and related
to T and H [29]; and βmn, accounting for the incident and
reflected field polarization, is a function of both the complex re-
lative dielectric constant of the surface and the local incidence
angle θ, i.e., the angle between the propagation direction of
the incoming radar electromagnetic wave and the direction
orthogonal to the local mean plane approximating the resolution
cell [29]. Note that, according to this model, βmn = 0 for
m �= n so that SPM is able to deal only with the copolarized
case; however, a nonnull closed-form expression of the NRCS
for the cross-polarized case can be still obtained, extending the
SPM by using the polarimetric two-scale model, described in
[48]. From now on, the subscripts related to the polarization
will be neglected. Equation (8) describes the NRCS of a single
resolution cell with a microscopic roughness described by the
fractal parameters H and T (or H and S0) and with a macro-
scopic roughness described by the local incidence angle θ.

In the next section, the method proposed to introduce the
scattering model in the despeckling process is presented.

IV. SCATTERING-BASED NLM

Following the approach in [25], the nonlocal filter output is
computed according to (1), and the filter weights are defined as
the probability that the NRCSs of the two patches Δs and Δt
are equal given an appropriate a priori knowledge. In particular,
we introduce the scattering behavior of the resolution cell as
an a priori knowledge. Accordingly, the following filter weight
definition is proposed:

wnon−it. SB−PPB
s,t � p

(
σΔs = σΔt|A, σ̂SPM

) 1
h (9)

with σΔs and σΔt being the NRCS in the selected (Δs) and
test (Δt) patch and A being the amplitude SAR signal; σ̂SPM

takes into account the a priori information about the signal
backscattered from the scene, and h is a parameter controlling
the weight decay. By proceeding in a way similar to that of [25],
we have

wnon−it. SB−PPB
s,t

= exp

[
−2L− 1

h

∑
k

ln

(
As,k

At,k
+

At,k

As,k

)

+
1

h

∑
k

ln p
(
σs,k = σt,k|σ̂SPM

)]

= wnon−it. PPB
s,t exp

[
1

h

∑
k

ln p
(
σs,k = σt,k|σ̂SPM

)]
.

(10)

Therefore, to properly take into account scattering, a descrip-
tion of the a priori probability p(σs,k = σt,k|σ̂SPM) is required.
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To this aim, we use the approach proposed in [25], thus model-
ing the a priori term via the symmetric version of the Kullback–
Leibler divergence [25]

p
(
σs,k = σt,k|σ̂SPM

)
∝ exp

⎧⎨
⎩− 1

Tfil

∫ [
p
(
σ|σ̂SPM

s,k

)

−p
(
σ|σ̂SPM

t,k

)]
ln

p
(
σ|σ̂SPM

s,k

)
p
(
σ|σ̂SPM

t,k

)dσ
⎫⎬
⎭

∝ exp

⎛
⎜⎝−L

∣∣∣σ̂SPM
s,k − σ̂SPM

t,k

∣∣∣2
σ̂SPM
s,k σ̂SPM

t,k

⎞
⎟⎠ . (11)

As a consequence

wnon−it. SB−PPB
s,t

= exp

⎡
⎢⎣−∑

k

⎛
⎜⎝ 1

h̃
ln

(
As,k

At,k
+

At,k

As,k

)

+
L

Tfil

∣∣∣σ̂SPM
s,k − σ̂SPM

t,k

∣∣∣2
σ̂SPM
s,k σ̂SPM

t,k

⎞
⎟⎠
⎤
⎥⎦

= wnon−it. PPB
s,t · exp

⎛
⎜⎝−

∑
k

L

Tfil

∣∣∣σ̂SPM
s,k − σ̂SPM

t,k

∣∣∣2
σ̂SPM
s,k σ̂SPM

t,k

⎞
⎟⎠ .

(12)

Note that this equation is formally identical to (4), provided that
the σ estimation at previous step σ̂i−1 is replaced by the σ value
computed by the scattering model σ̂SPM. It is also worth
noticing that (12) reduces to (5), i.e., to usual noniterative
PPB, for flat areas, because in this case σ̂SPM

s,k = σ̂SPM
t,k , so that

wnon−it. SB−PPB
s,t = wnon−it. PPB

s,t .
Evaluation of (12) via the expression (8) requires the avail-

ability of a DEM of the sensed surface, so that the local
incidence angle can be computed, and knowledge of the ter-
rain complex relative dielectric constant, Hurst parameter, and
spectral parameter. However, if the underlying topography is
significant, the backscattered signal and, hence, SAR intensity
variations are mostly due to the topographic content of the
sensed surface, due to the major influence of the local incidence
angle on the NRCS with respect to the remaining parameters
(see the sensitivity analysis reported in the Appendix). Ac-
cordingly, we can reasonably assume that S0 is constant in
the search window, so that it cancels out in (12); in addition,
dependence on εr can be neglected, and a standard εr value can
be used in (8), so that we can assume

σ̂SPM
p = σ̂SPM(θp) ∝ |β(θp)|2

cos4 θp
(sin θp)2+2H

(13)

where θp is the local incidence angle evaluated in the location p.
With regard to the Hurst coefficient H , it can be estimated from
the SAR image via the algorithm by Di Martino et al. [28],

if one assumes that the same value of H holds at both macro-
scopic and microscopic scales. This is a rather strong assump-
tion, but again, the sensitivity analysis in the Appendix shows
that errors on the value of H do not appreciably affect scattering
evaluation if a significant topography is present. Accordingly,
in conclusion, evaluation of the weight (12) only requires
availability of the scene DEM. We want to underline that this
does not significantly limit the applicability of our method
since accurate DEMs are by now easily available for most part
of the world, often free of charge. In fact, the Shuttle Radar
Topography Mission [49] provided a DEM of the entire Earth
(with the exception of polar areas), freely available at [50]. In
addition, lidar data providing very high resolution DEMs are
becoming more and more widespread, especially in the most
developed countries. For instance, the DEM employed in our
work (Section V-C) is publicly available at no cost at the Naples
(Italy) local authority website [51].

Finally, it must be noted that the employed fractal direct
model (13) describes single bounce scattering phenomena typ-
ical of many natural scenarios (rocks, geomorphologic relief,
bare, or little vegetated soil). It does not describe other phe-
nomena, such as volume scattering (e.g., from vegetation),
and layover, shadowing and double bounce effects, typical of
urban and suburban areas. In addition, as already mentioned, a
uniform standard value of εr is assumed. However, this does not
mean that the proposed filter is not applicable to different sce-
narios, where the scattering model is not accurate or εr is space-
varying. In fact, together with the new distance term based on
scattering, the weight used by our algorithm still retains the
PPB distance term based on intensity [see (5) and (12)], owing
to which SB-PPB can be expected to work well also in regions
in which the employed scattering model is not accurate. Further
help with this regard is expected to be provided by the adoption
of an adaptive scheme, as described in the following. The
aforementioned expectations are confirmed by the experimental
results of Section V.

A. Adaptive Scheme

In order to fill the lack of a proper nonuniform a priori
knowledge in the initial estimate, Deledalle et al. proposed also
an iterative scheme within the PPB filter [25], with refined
weights given by (4) (see Section II). Iterations ensure a better
preservation of edges and texture. It is then meaningful to
discuss the use of this iterative scheme also for the proposed
SB-PPB filter. It is noteworthy that, whenever topography rep-
resents the main contribution to the backscattering variations
over the scene, an iterative scheme of the proposed technique
does not provide relevant improvements since gray-level varia-
tions of the SAR image are already properly taken into account
by the a priori knowledge about the local incidence angle (see
Section V for an experimental verification). Nevertheless, in
case of scenes presenting gentle topography and SAR image
intensity variations not related to topography (i.e., related to
variations of scene electromagnetic parameters, microscopic
roughness or scattering phenomena not described by the pro-
posed one, e.g., volume scattering typical of vegetated areas and
double bounce, layover, and shadowing typical of urban areas),
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iterations can provide better edge and feature preservation ca-
pabilities w.r.t. the noniterative version. In a realistic scenario,
distinguishing the main source of the SAR intensity variations
may not be an easy task. However, if a DEM of the sensed
surface is available, it is possible to establish if the local
topography is significant or not. Following this idea, we pro-
pose a simple flat—nonflat binary classification-based adaptive
iterative scheme of the proposed filter, based on the iterative
PPB filter presented in [25]. Iterations are adaptively performed
only in those regions characterized by a flat topography.

B. Filter Rationale

The rationale of the proposed adaptive SB-PPB filter is pre-
sented in the following. From the DEM of the sensed scene, the
local incidence angle map can be easily computed as follows [28]:

θ = cos−1

(
p sin θ0 + cos θ0√

p2 + q2 + 1

)
(14)

where θ0 is the radar look angle (i.e., the incidence angle
over an horizontal surface) and p and q are the range and
azimuth slopes, respectively, i.e., p = ∂z/∂y, and q = ∂z/∂x,
with z being the elevation map. In order to insert the a priori
knowledge in the proposed filter, the local incidence angle
map has to be projected into the SAR system geometry and
coregistered to the noisy SAR image. This step is by now
standard in SAR processing, and it can be easily performed
by most of the available commercial software tools. The local
incidence angle map is then divided in fixed-size blocks: each
block undergoes a binary flat–nonflat classification process.
A block is classified as flat if the standard deviation of the
local incidence angle is less than a fixed threshold. SAR image
blocks corresponding to nonflat regions undergo the nonitera-
tive scheme of the proposed filter, i.e., filter weights defined
by (12) are used. This corresponds to applying the PPB filter
as introduced in [25] with a proper initial estimate provided by
(13), in which the incidence angle computed via (14) is inserted.
Conversely, in SAR image blocks corresponding to flat regions,
the iterative scheme is employed, in order to refine weights in
regions with nontopographic-related SAR intensity variations,
such as edges, man-made features, etc., and improve the edge
and feature preservation capability of the filter. In this case,
after the first iteration, the a priori knowledge about topography
is no more used, and it is substituted by the previous intensity
estimate, exactly as in [25], i.e., the weights defined in (4) are
used. The flowchart of the algorithm is shown in Fig. 1. Finally,
it is worth noticing that, apart from the H estimation and
coregistration steps, whose computing time requirements are
analyzed in the following sections, the adaptive SB-PPB filter
has a complexity comparable to that of the PPB filter, the exe-
cution time depending on the flatness of the analyzed surface.
In particular, the adaptive scheme allows for time saving in non-
flat regions w.r.t. the iterative PPB, avoiding further iterations.

V. EXPERIMENTAL RESULTS

Performance evaluation of SAR despeckling techniques is
not an easy task due to the absence of speckle-free SAR

Fig. 1. Flowchart of the proposed SB-PPB filter. Iterations are adaptively
performed only on flat areas, identified through a binary classification method
based on the local incidence angle map.

images to be used as reference. For this reason, numerous no-
reference measures have been introduced to objectively evalu-
ate the quality and accuracy of despeckling algorithms without
resorting to reference images. However, on one hand, these mea-
sures do not provide a complete understanding of the algorithm
behavior, and on the other hand, actual SAR images are not
useful to analyze algorithm performances in some meaningful
canonical situations. In order to provide a complete qualitative
and quantitative analysis of the proposed filter performances
and despeckling capabilities, the proposed filter is applied to
both simulated and actual SAR images, and most of the perfor-
mance measures introduced in [33] are used. In particular, the
following performance parameters are evaluated: mean of im-
age (MoI), variance of ratio (VoR), signal-to-noise ratio (SNR),
mean structural similarity index measure (MSSIM), coefficient
of variation (Cx), edge smearing (ES), and equivalent number
of looks (ENL); refer to [33] and [52] for the definition and
detailed description of these performance parameters. Since
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TABLE I
PERFORMANCE PARAMETERS FOR THE SINUSOIDAL DEM

TABLE II
PERFORMANCE PARAMETERS FOR THE FRACTAL DEM

each parameter is intended to evaluate performance w.r.t. spe-
cific aspects of the algorithm or of the scene, in each ex-
periment, a subset of the aforementioned parameters is used,
as explicitly indicated both in the text and in the tables. For
simulation purposes, we make use of SARAS, a SAR raw
signal and image simulator [53]. Consistently with the proposed
theoretical approach, the backscattered signal has been simu-
lated using the SPM option of SARAS; furthermore, typical
parameters of the Cosmo-SkyMed sensor have been set [54].
The speckle-free reference SAR images have been obtained
through an average of 512 single-look realizations. On all noisy
SAR images, the proposed adaptive SB-PPB filter is applied
and compared to the SAR-BM3D, noniterative PPB, and PPB
with four iterations. Default filter parameters defined in [25]
and [23] are used for the PPB and SAR-BM3D, respectively.
For the proposed filter, we use the same values of the parameters
used for the PPB, apart from the Tfil parameter that, only in
the first iteration, assumes different values in order to take
into account the different kind of a priori information. In this
case, best results are obtained, setting it equal to 1.3. Whenever
iterations are performed, the default PPB value for Tfil is
used. The binary classification is performed, subdividing the
image in distinct blocks of size 256 × 256 and evaluating the
standard deviation of the local incidence angle map: a region
is classified as flat if the standard deviation of the incidence
angle is sufficiently low. We empirically set a threshold of 2◦.
Furthermore, a search window size of 21 × 21 and a patch size
of 7 × 7 are used both for the proposed and PPB filters, while
a search window size of 39 × 39 is used for the SAR-BM3D
filter. It is noteworthy that the proposed approach provides a
direct improvement of the PPB filter, to which the proposed
SB-PPB should be primarily compared. The best performances
for each case and for each parameter are highlighted in boldface
in Tables I–IV for the sake of clarity.

A. Results on Simulated SAR Images

This section presents numerical and visual results regard-
ing the application of the proposed despeckling algorithm on

TABLE III
PERFORMANCE PARAMETERS FOR THE MIXED CASE

TABLE IV
PERFORMANCE PARAMETERS FOR THE ACTUAL CASE

three 512 × 512 Cosmo/SkyMed SAR images simulated using
SARAS. In particular, the SAR images are simulated in the
presence of a synthesized sinusoidal (Fig. 2) and fBm (Fig. 3)
DEM, with microscopic roughness fractal parameters H=0.8
and T = 10−4 m, relative dielectric constant εr = 4, and con-
ductivity σc = 10−2 S/m. The fBm DEM presents the same
fractal parameter values also at macroscopic scales. In order to
test the effectiveness of the adaptive procedure, the proposed
algorithm is applied also to a more realistic scenario in which
both topographic- and nontopographic-induced SAR inten-
sity variations are present (Fig. 4). In this experiment, the
adaptive scheme is compared also to the noniterative and (non-
adaptive) purely iterative versions of the proposed algorithm.
Performance evaluation is carried out by computing the proper
metrics in each case. In particular, MoI, VoR, SNR, and MSSIM
are evaluated in all cases; in the sinusoidal case, the ENL is also
computed, while in the fractal case, the coefficient of variation
Cx is computed to evaluate the textural preservation capability
of the despeckling filters. In the mixed case, ENL, ES, and Cx

are all properly evaluated. Single-look SAR images are shown
in Figs. 2(a), 3(a), and 4(a), respectively, while the reference
512-look images are depicted in Figs. 2(b), 3(b), and 4(b).

Concerning the sinusoidal case, the proposed SB-PPB tech-
nique [Fig. 2(c)], together with the PPB filter [Fig. 2(e)–(f)],
provides the best results, both visually and quantitatively (as
Table I shows), in preserving the continuous spatial variation
of the SAR image intensity. SAR-BM3D [Fig. 2(d)] provides
the worst results in this case, both visually and quantitatively,
introducing visible artifacts in the despeckled image. The good
performance of SAR-BM3D in terms of ENL is also partly
due to the presence of oversmoothed block-like artifacts in
the area used to evaluate the ENL [see Fig. 2(a)]. The slow-
varying topography justifies the similarity in the performances
of the proposed technique and the PPB filter (see Table I),
while the absence of rapid variations in the image ensures
an extremely fast convergence of PPB, i.e., iterations do not
provide a significant improvement w.r.t. the noniterative PPB.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 2. (a) 512 × 512 simulated single-look SAR image in the presence of a sinusoidal topography, microscopic roughness of fractal parameters H = 0.8 and
T = 10−4 m, and electromagnetic parameters εr = 4 and σc = 10−2 S/m, with indication of the area selected for the average ENL evaluation (white box).
(b) 512-look reference image. (c) SB-PPB. (d) SAR-BM3D. (e) Four-iterative PPB. (f) Noniterative PPB.

Fig. 3. (a) 512 × 512 simulated single-look SAR image in the presence of an fBm topography of fractal parameters H = 0.8 and T = 10−4 m, and
electromagnetic parameters εr = 4 and σc = 10−2 S/m. (b) 512-look reference image. (c) SB-PPB. (d) SAR-BM3D. (e) Four-iterative PPB. (f) Nonitera-
tive PPB.
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Turning to the fractal case [Fig. 3(a)], the knowledge of the
underlying topography is responsible for a huge improvement of
the despeckling capability of the PPB filter, as Fig. 3(c) and (f)
shows, also considering its iterative version [Fig. 3(e)]. As
shown in Table II, in this case, owing to the a priori knowledge
of the local incidence angle map, the proposed approach pro-
vides the best results, also w.r.t. SAR-BM3D, particularly in
terms of SNR. It provides also a preservation of the textural
content of the sensed scene that is better with respect to the
noniterative PPB and comparable to the SAR-BM3D, as
demonstrated by the coefficient of variation and the structural
similarity index.

In the previous two examples, due to the presence of a
significant topography, the adaptive algorithm does not require
to perform iterations. Fig. 4(a) and (b) shows the single-
look and 512-look SAR images, respectively, in the case of a
“mixed” scenario. The left part of the image consists of a flat
region with four squares presenting different electromagnetic
parameters: in particular, the brightest square simulates damp
soil (εr = 10, σc = 10−2 S/m), the middle gray-level squares
simulate dry soil (εr = 4, σc = 10−3 S/m), and the darkest one
simulates the sea (εr = 80, σc = 4 S/m). The right part is the
SAR image of a 2-D fBm surface with the same parameters
used in the previous experiment. The local incidence angle map
is depicted in Fig. 4(i). Fig. 4(g) shows the outcome of the
noniterative version of the proposed despeckling algorithm, i.e.,
no iterations are applied to the entire image. The noniterative
scheme provides a good speckle reduction on the overall image
with a satisfactory detail preservation in the nonflat part of the
image (see also the coefficient of variation and the SNR in
Table III). However, in the left part, where nontopographic-
induced intensity variations are present, the lack of a priori
knowledge about electromagnetic parameter variations makes
the edges in the left part to be largely smoothed: in this case,
iterations are needed to enhance edge preservation capability.
Performing iterations over the entire image improves edge
preservation capability of the filter, at the cost of a much greater
execution time, since iterations are performed also in nonflat
regions, in which they are theoretically useless and also detri-
mental for detail preservation, as Fig. 4(h) shows. To this aim,
the proposed adaptive scheme introduces iterations in a smart
and adaptive way only in those regions where nontopographic-
related intensity variations are present. In this case, the adaptive
scheme performs iterations only in the left part of the image
[Fig. 4(c)], thus greatly reducing the execution time w.r.t. the
pure iterative scheme, in which iterations are performed on
the whole image [Fig. 4(h)] and ensuring the same detail
preservation provided by the noniterative scheme. A visual in-
spection of the results shows that the adaptive scheme provides
better results w.r.t. both the noniterative and purely iterative
versions of the proposed algorithm, maintaining the advantages
of both schemes, namely, a good preservation of both textural
details and edges. The proposed adaptive SB-PPB presents the
best SNR, and in general, its performances are comparable
to the SAR-BM3D, outperforming both the noniterative and
iterative PPBs. This behavior is quantitatively confirmed by the
performance parameters reported in Table III. In particular, the
adaptive SB-PPB ensures the same detail preservation as the non-

iterative SB-PPB in the nonflat region (see the Cx parameter)
and a comparable edge preservation as the iterative SB-PPB
in the flat one (see the ES parameter).

B. Robustness of the Method With Respect to
Scattering Model Inaccuracy

In this section, we test the robustness of the proposed de-
speckling algorithm with respect to inaccuracies of the em-
ployed scattering model. To this aim, we apply the proposed
algorithm to a single-look SAR image simulated using a scat-
tering model different from the SPM one of (8). In particular,
we simulate a SAR image of a fractal DEM with H = 0.8 and
T = 10−4 m using an empirical scattering model according to
which σ̂ = cos4 θ. However, in the algorithm, the fractal SPM
scattering model was used as described in Section III. Perfor-
mance is quantitatively evaluated via the MSE. The output of
the algorithm is compared with the PPB and the SAR-BM3D
filters in Fig. 5. In particular, Fig. 5(a) shows the 512 × 512
simulated single-look SAR image; the 512-look SAR image
used as reference is depicted in Fig. 5(b). The output of the
proposed algorithm is shown in Fig. 5(c), while Fig. 5(d)–(f)
shows the filtered image using the SAR-BM3D and the orig-
inal PPB with no iterations and four iterations, respectively.
The lower dynamic of SAR data in the cos4 θ case, due to the
flatter scattering model, causes an evident oversmoothing in the
PPB filter, in which iterations are not able to recover more de-
tails. The SB-PPB performs better than PPB both visually and
quantitatively. Owing to the scattering distance term, a better
detail preservation is reached, also in the presence of a different
scattering behavior of the surface. The slightly better quantita-
tive performance provided by SAR-BM3D is accompanied by
a more visible blocky effect that could affect in some way the
interpretation of the despeckled image.

We also test the robustness of the algorithm with respect
to inaccuracy in the estimation of the Hurst coefficient. In
particular, we apply the SB-PPB filter to the single-look SAR
image in Fig. 3(a) simulated considering an fBm surface of
fractal parameters H = 0.8 and T = 10−4 m and the SPM
scattering model as described in Section III. In order to simulate
an error in the H estimation, in the filter, we assume H = 0.6
(a relative error of 25%). It turns out that the significant error on
the H parameter causes a negligible performance degradation
of about 3% (computed on the SNR), owing to the scatter-
ing model weaker dependence on H than on the incidence
angle. Consequently, in the case of strict time requirements,
it is possible to avoid the H estimation step, using a default
value, e.g., H = 0.8, without a significative degradation of the
performance.

C. Results on Actual SAR Image

The proposed algorithm is also applied to a 2700× 2700 sub-
set of an actual single-look stripmap Cosmo/SkyMed SAR
image acquired over the Vesuvius-Mt. Somma complex close
to Naples, Italy, on August 1, 2011. The image is relevant to
an area almost free of man-made objects [Fig. 6(a)]. The radar
look angle is 35◦, the azimuth and slant range resolutions are
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Fig. 4. (a) 512 × 512 simulated single-look SAR image in the presence of an fBm topography of fractal parameters H = 0.8 and T = 10−4 m, and
electromagnetic parameters εr = 4 and σc = 10−2 S/m (right) and patches of different electromagnetic parameters—in particular, the brightest square simulates
damp soil (εr = 10, σc = 10−2 S/m), the middle gray-level squares simulate dry soil (εr = 4, σc = 10−3 S/m), and the darkest one simulates sea
(εr = 80, σc = 4 S/m). (b) 512-look reference image. The red box indicates the region in which the ENL is computed; the ES parameter is computed on
the edge between the upper left and lower left squares. (c) Adaptive SB-PPB. (d) SAR-BM3D. (e) Four-iterative PPB. (f) Noniterative PPB. (g) Noniterative
SB-PPB. (h) Four-iterative SB-PPB. (i) Local incidence angle map.

both equal to 2.5 m, while the pixel spacing values are 2.07 and
2.06 m in azimuth and ground range, respectively; the operating
frequency is 9.6 GHz. The local incidence angle map [Fig. 6(b)]
is obtained from a DEM acquired with a lidar system.
Fig. 6(c) shows the proposed SB-PPB filter, Fig. 6(d) shows the
SAR-BM3D, while Fig. 6(e) and (f) shows the four-iterative
and noniterative PPB outcomes, respectively. The Hurst ex-
ponent has been evaluated through the algorithm proposed by
Di Martino et al. in [28]. In this case, due to the absence of a

reference image, performance is evaluated, computing all of the
no-reference parameters, i.e., the MoI, VoR, Cx, and ENL. In
order to evaluate the speckle reduction in homogeneous regions,
we compute the average ENL in a region of homogeneous local
incidence angle [white box in Fig. 6(a)]. Similarly, the coef-
ficient of variation is computed on a homogeneously textured
region of the Mt. Somma [black box in Fig. 6(a)]. The proposed
scattering-based technique exhibits better performance than the
PPB for what concerns the textural information preservation,
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Fig. 5. (a) Single-look SAR image of a fractal DEM with H = 0.8 and T = 10−4 m simulated via the cos4 θ scattering model. (b) 512-look SAR image
used as reference and simulated via the cos4 θ scattering model. (c) SB-PPB filter. MSE = 0.153. (d) SAR-BM3D. MSE = 0.150. (e) PPB with four iterations.
MSE = 0.187. (f) Noniterative PPB. MSE = 0.188. For MSE evaluation, the single-look and reference SAR images are normalized to the mean value of the
reference SAR image. Owing to the scattering distance term, the SB-PPB filter performs better than the original PPB both visually and quantitatively also in the
presence of a different scattering model.

as shown both in Table IV (see the Cx parameter) and in
Figs. 6 and 7. Owing to the introduction of the scattering term,
good enhancement and preservation of details are obtained, as
shown in Fig. 6(c)–(f). With regard to speckle reduction in
homogeneous areas, the proposed algorithm shows comparable
performances w.r.t. PPB, as Fig. 6(c) and the ENL show. In
conclusion, in this case, no algorithm is the best for all metrics,
PPB exhibits a better speckle reduction, while SAR-BM3D and
the proposed filter show a better detail preservation (see the
zoomed region in Fig. 7). It can be reasonably argued that the
difficulty to correctly evaluate performance with actual SAR
images makes visual inspection the best tool for performance
evaluation. A simple visual inspection suggests that the SB-PPB
filter, owing to the introduction of a priori knowledge about the
scattering behavior of the scene, ensures a better detail preser-
vation w.r.t. the PPB filter and exhibits an overall performance
comparable to the SAR-BM3D.

Finally, a last remark about computational time is in order.
All of the experiments were carried out on a dual-core, 3-GHz
clock, and 8-GB RAM PC. Application of the proposed adap-
tive SB-PPB algorithm (including H estimation and coregistra-
tion steps) to the actual 2700 × 2700 pixel SAR image of Fig. 6
required about 11 min, of which one and a half for the coregis-
tration step and 3 for the H estimation step (the latter, however,

can be avoided without significant performance degradation, thus
reducing the total processing time to 8 min). Conversely, PPB re-
quired about 6 and about 25 min in its noniterative and iterative
versions, respectively. Finally, SAR-BM3D required about 1 h.
Accordingly, it is confirmed that the proposed adaptive SB-PPB
algorithm, complete of azimuth–slant range projection and H
estimation steps, exhibits an execution time on the same order of
the one of PPB; conversely, the SAR-BM3D filter is more com-
putationally demanding due to the higher computational com-
plexity of the approach and the larger default search window.

VI. CONCLUSION

In this paper, the novel concept of taking into account the
scattering mechanisms within the despeckling problem has
been presented and implemented via an NLM approach, pro-
viding an improvement of the PPB filter—the SB-PPB filter—
through a proper insertion of a priori information about the
scattering from the resolution cell. In particular, starting from
the PPB filter proposed in [25], we have derived a new patch
similarity measure introducing a fractal scattering model suit-
able for natural surfaces for the weight definition. Due to the
strong dependence of the scattered field on the local incidence
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Fig. 6. (a) 2700 × 2700 subset of a Cosmo/SkyMed single-look stripmap SAR image with indication of the areas selected for coefficient of variation (black
box) and average ENL (white box) computation. (b) Local incidence angle in azimuth–slant range derived from a DEM obtained with a lidar system and used as
a priori knowledge in the SB-PPB filter. (c) Adaptive SB-PPB. (d) SAR-BM3D. (e) Four-iterative PPB. (f) Noniterative PPB.

Fig. 7. Zoom of a portion of the black-marked region of Fig. 6. (a) Single-look image. (b) Local incidence angle in azimuth–slant range. (c) Adaptive SB-PPB.
(d) SAR-BM3D. (e) Four-iterative PPB. (f) Noniterative PPB. Oversmoothing of the PPB filter is clearly visible. SAR-BM3D and SB-PPB succeed better in
preserving texture and details.
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Fig. 8. NRCS dependence [see (8)]. (a) Incidence angle versus dielectric constant assuming T = 10−4 m, H = 0.8, and σ = 10−2 S/m. (b) Incidence angle
versus electrical conductivity assuming T = 10−4 m, H = 0.8, and εr = 10. (c) Incidence angle versus Hurst coefficient assuming T = 10−4 m, εr = 10,
and σ = 10−2 S/m. (d) Incidence angle versus topothesy assuming εr = 10, H = 0.8, and σ = 10−2 S/m. All graphs are in logarithmic scale on the z-axis;
electrical conductivity and topothesy axes are in log scale, too.

angle, the proposed distance reduces to a proper nonlinear
distance in incidence angle. Owing to the scattering distance
term, we have shown that the SB-PPB performs better than
the original PPB filter, even in cases in which scattering from
the surface is not accurately described by the fractal scattering
model employed in this paper.

The proposed technique requires an a priori knowledge of
the underlying topography, i.e., a DEM in the azimuth–slant
range geometry of the SAR sensor coregistered with the noisy
SAR image is required. The Hurst exponent describing the soil
roughness can be easily estimated through the approach pro-
posed in [28]. However, we have shown that the proposed filter
is quite robust against errors on the H coefficient, so that, if time
requirements are very strict, it is possible to use a typical value
forH without a significative performance degradation. The pro-
posed filter is originally designed for nonflat natural surfaces,
i.e., for SAR images in which the intensity variations are mostly
due to the topography. However, in order to deal also with flat
regions and nontopographic-induced backscattering variations,
we have proposed an iterative scheme that, in a smart and adap-
tive way, performs iterations only in flat regions in which the
noniterative procedure does not provide a good reliability in
terms of edge preservation if compared to the state of the art. To
this aim, we have proposed a simple flat–nonflat binary classifi-
cation method in order to discriminate topographic-related from
nontopographic-related SAR intensity variations. The proposed

binary classification technique is based on the DEM, and there-
fore, it does not require additional information. The adaptive
scheme extends the applicability of the filter to different scenar-
ios in which the single-bounce scattering is not the dominant scat-
tering phenomenon, such as vegetated areas or suburban areas.

In order to evaluate the effectiveness of the filter and its
capability of speckle reduction, an extensive experimental part
has been set up, using both simulated and actual SAR images.
The proposed SB-PPB filter exhibits objective performances
comparable or superior to competing techniques on simulated
single-look SAR images and satisfactory subjective quality on
the actual SAR image considered. It is also noteworthy that
the proposed algorithm “converges” to the iterative PPB in the
presence of totally flat topography. The proposed adaptive
SB-PPB filter provides promising results especially in those
cases in which topography is the main source of SAR intensity
variations. With SAR images of nonflat surfaces, the proposed
algorithm outperforms both the noniterative and iterative PPB
filters, both in terms of speckle reduction and detail preserva-
tion, owing to the a priori topographic knowledge.

The authors are currently studying the possibility to estimate
the local incidence angle map, needed by the filter, from a single
SAR image. Such a retrieval procedure would be useful in the
proposed despeckling approach since the a priori knowledge
could be estimated from the image itself without requiring
extra information, but it would be also relevant per se since it
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could be useful in a number of applications. In addition, the
proposed scattering-based approach can be easily applied to
other despeckling filters, such as SAR-BM3D. This possibility
is currently under investigation by the authors. Last but not
least, an approach similar to the one presented here for the scene
topography may be used to take into account some additional
a priori information about the sensed scene, in order to move
a step further toward a more meaningful physical-based and
object-oriented despeckling approach.

APPENDIX

SENSITIVITY ANALYSIS OF THE DIRECT MODEL

The direct model presented in Section III [see (8)] iden-
tifies the numerous parameters (relevant to both the sensor
and the surface) on which SAR imagery depends, namely, the
dielectric constant, electrical conductivity, and microscopic and
macroscopic roughness. The use of analytical models for both
scattering phenomena and surface shape makes us more aware
on how these parameters affect SAR image formation. At the
same time, a proper modeling of the problem provides the
possibility to estimate the parameters of interest. Fig. 8 shows
the dependence of the intensity SAR image, evaluated through
(8), against the local incidence angle, the dielectric constant,
the Hurst coefficient, and the topothesy. All of the graphs show
that the major contribution to SAR image formation is due to
the topography, i.e., to the local incidence angle. In particular,
it is important to note that also the microscopic roughness, i.e.,
Hurst coefficient and topothesy, has a minor influence on SAR
image intensity with respect to the macroscopic one.
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