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Abstract—In this paper, we introduce a novel framework for
small reservoirs extraction in semiarid environment. The task is
accomplished through the introduction of a pseudoprobability in-
dex derived from multitemporal synthetic aperture radar RGB
images. These products are characterized by the ease of interpre-
tation for nonexpert users, and the possibility to be processed using
simple algorithms, allowing, in this case, for the definition of an ad
hoc band ratio for feature extraction. The reliability of the pro-
posed approach is demonstrated through a case study in Burkina
Faso in which 19 reservoirs up to about 6000 m2 extent were tested.
The obtained accuracy with respect to the available ground truth
is higher than 88%.

Index Terms—Change detection, level-1α products, multitem-
poral, semiarid environment, small reservoirs, synthetic aperture
radar (SAR), water resource management.

I. INTRODUCTION

INFORMATION about the extent of water surfaces is fun-
damental for water resource monitoring [1]–[3]. In fact,

fresh water is crucial for terrestrial life, providing a unique
resource for various human activities and several ecosystem ser-
vices, guaranteeing high levels of biodiversity [4]. However, our
knowledge of river networks and inland water storage is rather
scarce [5]. In this context, recent advances in remote sensing
allow for a better understanding of water dynamics, thus intro-
ducing significant improvements, as an example, in the mapping
of floods [6]–[10] and prediction of droughts [11].

Dealing with inland water, several methods were developed in
the past remote sensing literature to delineate water bodies and
enhance their presence. As stated in [12], these methods gener-
ally make use of reflected solar radiation or active microwave
systems.

Solar radiation-based methods can be classified in single-
band and multiband methods [12]. In the first case, near-infrared
radiation (NIR) is used, because it is strongly absorbed by water
and highly reflected by vegetation and terrain. Thresholding
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is then applied to isolate the water class. However, moist and
bare soils could exhibit low reflectance at NIR frequencies.
Therefore, the joint use of NIR and visible frequencies has
been proposed to enhance the presence of surface water with
respect to terrestrial features, thus leading to the formulation
of the normalized difference water index (NDWI) [12] and its
modifications [13].

Multispectral sensors allows for the definition of spectral in-
dices, whose amplitude is related to some physical characteristic
of the feature of interest. As an example, the NDWI is related
to the water turbidity [12]. This index provides an easily com-
prehensible information for nonexpert remote sensing users.
Therefore, it is often exploited in applications [14]–[18].

Main limitations of this approach are: 1) The low resolution
of the most used sensors (Landsat, Meris) which is a signifi-
cant constraint in the monitoring of small reservoirs with few
thousand square meters of extension, and 2) the cloud coverage.
During either winter, in temperate areas, or the rainy season,
in tropical environment, the extremely probable cloud coverage
hampers the use of optical sensors.

The use of active microwave systems, in particular synthetic
aperture radar (SAR), can help to overcome the above-described
hurdles. In fact, these sensors are very attractive for water
resources management applications thanks to their high reso-
lution, short revisit time, and independence from weather con-
ditions. Using SAR images, water body detection is mainly
addressed as an image segmentation problem. Amitrano et al.
[2] suggested to extract small reservoirs in semiarid Burkina
Faso using a simple threshold on the amplitude images. Similar,
thresholding-based approaches were proposed in [19] and [3].
Gaetano et al. [20] proposed a more general interactive segmen-
tation framework exploiting Markov random fields. Boni et al.
[8] proposed an integrated system for flood monitoring based
on the joint exploitation of satellite acquisitions and flood fore-
casts. Martinis et al. compared four operational water and flood
detection approaches developed at DLR, i.e., the water mask
processor, the rapid mapping of flooding, the TSX flood ser-
vice, and the TanDEM-X water indication mask processor [21].
Garcia-Pintado et al. [22] proposed a flood forecasting system
supported by satellite SAR acquisitions. D’Addabbo et al. [23]
introduced a Bayesian network to integrate multitemporal SAR
data with geomorphic and other ground information for flood
detection. The same topic was faced in [10], where the use of
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both supervised and unsupervised methods, and of multimodal
data is investigated. Anyway, identification of water surfaces
is still an open challenge, as witnessed by the high number of
valuable contributions dealing with this problem.

In this paper, we address the problem of small reservoirs ex-
traction exploiting change detection applied on multitemporal
Level-1α RGB products [24]. They are bitemporal images com-
bining a reference acquisition with a test one, whose principal
characteristics are the interpretability (thanks to an opportune,
end-user-oriented color-coding of the SAR information), and
the possibility to be processed with simple algorithms for in-
formation extraction [25], [26]. In particular, they allow for
the introduction of indices to enhance the presence of a cer-
tain image feature [27]. Here, we present a temporary water
index suitable to be applied in semiarid environment for ex-
tracting small reservoir contours. This introduces a significant
novelty with respect to the past literature. In fact, several valu-
able change-detection-based methods have been proposed in the
past literature [28]–[30], but no water index derived from SAR
data has been formulated yet. This way, computational com-
plexity and SAR expertise are moved in the product formation
phase, thus simplifying the feature extraction step. In fact, just
one parameter has to be adjusted, that is the threshold to be
applied to the index map.

The proposed solution can be effectively used for water re-
source monitoring in semiarid environments. Multispectral data
have been widely employed for this task with the limitation
due to cloud cover, especially during the rainy season [31]–
[33]. SAR data have been used to overcome this problem [34],
[35], but mainly exploiting low-resolution data. In the context
of semiarid regions, small reservoirs are defined as basins with
surface area smaller than 100 hectares [34]. This extension is
almost at the limit of the imaging capability of a sensor like
ASAR, which is one of the most exploited in the past literature.
The introduction of high-resolution sensors, such as COSMO-
SkyMed, allowed us to lower the dimension of the observable
basins drastically, bringing it to few thousand square meters.

The paper is organized as follows. In Section II, the case
study is presented, and the proposed water index is defined.
The study area is located in semiarid Burkina Faso, and the ob-
jective is to extract small reservoirs exploiting the water index
applied on Level-1α images derived from stripmap, 3-m reso-
lution COSMO-SKyMed data. Experimental results and their
assessment are discussed in Section III. Conclusions are drawn
at the end of this paper.

II. MATERIALS AND METHODS

The case study has been implemented in semiarid Burk-
ina Faso (Western Africa). The study area is located in the
Yatenga region, in the North of the country. It is approximately
40 × 40 km2 wide. The dataset we exploited for the study is
composed by a series of COSMO-SkyMed stripmap acquisi-
tions with 3-m spatial resolution (see Table I for a summary of
the images used in this study).

Burkina Faso, as well as the whole Sahel, is characterized by a
particularly vulnerable environment due to the scarce rainfalls.
Therefore the growth of vegetation is possible only during a

TABLE I
SUMMARY OF THE DATA USED IN THIS STUDY

Acquisition date Sensor Resolution Polarization Mode

28/4/2011 CSK 3 × 3 (m) HH Stripmap
15/8/2010 CSK 3 × 3 (m) HH Stripmap
31/8/2010 CSK 3 × 3 (m) HH Stripmap

Images are combined in two Level-1α products sharing the reference
band, i.e., the 28/4/2011 acquisition.

Fig. 1. Level-1α product, particular of a dam in a rural area of Burkina Faso.
Blue band: April 28, 2011 (dry season, reference image); green band: August
31, 2010 (wet season, test image, i.e., the acquisition in which changes are
evaluated).

limited period of the year, making terrains very prone to erosion
phenomena. The combination of water scarcity and soil erosion
has a serious impact on terrain productivity and on the avail-
able food provisions [36] in countries where the demographic
pressure is among the highest in the world.

The international community is well aware of these prob-
lems and many initiatives for their monitoring, prevention, and
mitigation have been promoted. In particular, the TIGER ini-
tiative launched by the European Space Agency [37] represents
the most relevant program of the last decade concerning water
resource management supported by remotely sensed (mainly
optical) data.

Using SAR data, the presence of temporary surface water can
be detected through change detection by comparing the elec-
tromagnetic (EM) response of a reference image with that of a
test one [24]. In a semiarid environment, a suitable reference is
an image acquired during the dry season, when the landscape is
almost completely dry [24]. Here, the change detection is imple-
mented exploiting multitemporal images combined in a Level-
1α RGB composite. This class of products is obtained through
multitemporal processing of several SLC images acquired over
the same scene, and combined in such way to favor the recog-
nition of some scene features (in this case water and vegeta-
tion) through a suitable color rendering of the information (the
interested reader can find further details about these products
in [24]).

An example of such products is provided in Fig. 1. The blue
band represents the amplitude of the reference image. It has been
acquired on April 2011, at the peak of the dry season [38]. The
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green band (test image) represents the amplitude of the image
in which changes are evaluated. It has been acquired on August
2010, during the wet season. The red band is reserved to the
interferometric coherence between the two images (it is useful
for identifying small settlements).

This combination allows for displaying in natural colors the
most important features of the study area. In fact, surface water
is rendered in blue. This is due to the dominance of the EM
scattering from the terrain in the basin area during the dry season
(blue band) with respect to the EM scattering from surface water
in the wet season (green band). Vegetation is displayed in green,
due to the volumetric backscattering contribution triggered by
its growing during the wet season. For further information about
Level-1α processing, the reader can refer to [24].

The above-mentioned considerations lead us to define a sea-
sonal water presence pseudoprobability as follows:

SWPP = Ĝ2
(

B − G

B + G

)
, SWPP ∈ [−1, 1] (1)

in which SWPP is the acronym for seasonal water pseudoprob-
ability and Ĝ is given by

Ĝ =
(

1 − G

255

)
. (2)

In (1), the first factor at the right-hand side enhances the value
of SWPP for those pixels lacking the green band contribution.
They are likely to represent seasonal surface water. Moreover,
it is useful to drop the SWPP response from eroded terrains,
whose return is typically slightly higher than that of surface
water, and stable throughout the year [39].

The second factor at right-hand side attenuates the SWPP
value for pixels whose green and blue response is comparable.
Pixels having a dominant response in the green band (vegetation)
assume negative values of the SWPP. Pixels for which the blue
band is dominant assume positive SWPP values. Therefore, the
threshold identifying surface water has to be searched for into
the interval ]0, 1].

The SWPP formulation does not include the interferometric
coherence. In fact, this quantity is expected to be negligible on
objects unstable with respect to phase such as water surfaces.

Physically, the SWPP is related to the state of terrains during
the acquisition of the reference scene. In fact, the higher the
terrain response during this acquisition, the higher the value of
the SWPP. As an example, consider the dam depicted in Fig. 1.
The reader should note that around the permanent water surface
(displayed in black) there is a “crown” in which the blue color
is purer with respect to the rest of the basin area. This is due
to the presence of vegetation at the basin’s boundary during the
dry season image acquisition. In this area, the SWPP will be
slightly higher with respect to surrounding regions.

III. EXPERIMENTAL RESULTS

The result of the application of (1) to some reservoirs of
the study area is depicted in Fig. 2. In particular, in the first
column of the picture, we reported the subsets of the Level-1α
product concerning the considered reservoir. In this case, the
test image has been acquired on August 31, 2010. In the second
column, the reservoir contour has been manually extracted from

the intensity (test) image. In the third column the SWPP map
of the area (which covers in all cases approximately 1.5 km2)
is shown. Finally, in the fourth column, a binary mask obtained
after thresholding of the SWPP map is depicted. Mathematical
morphology has been applied in order to make the final mask
more homogeneous and remove islands [40].

Qualitatively, the obtained results show a good agreement
with the manually extracted ground truth. The threshold (set
to 0.3) has been determined through visual inspection of the
obtained SWPP map and a trial-and-error approach. This value
should be scene adapted but not time-dependent, since it mainly
depends on the state of terrains during the acquisition of the
reference image.

A quantitative assessment of the proposed approach is now
in order. A standard ground truth is not available. Therefore,
we built it from data, exploiting our a priori knowledge of
the study area [2], [38], [41]. We identified and extracted by
visual inspection of the 31 August acquisition the contour of
19 reservoirs. This operation is of course time-consuming [42]
and not trivial, due to the strong unbalance between the classes
water and nonwater (reservoirs constitute about 0.01% of the
whole scene), and the presence of vegetation/mud at reservoir
boundary, making it difficult to recognize the contour. However,
in many cases, the expert photo interpreter is able to perform
reliable feature extraction [43], [44]. Therefore, we are quite
confident that the retrieved contours are well representative of
the real basin extension.

The reservoirs included in the ground truth have dimension
between approximately 6000 and 300 000 m2 (in general, we did
not consider objects with surface area smaller than 6000 m2).
These reservoirs have been marked with a red dot in Fig. 3,
in which we report the Level-1α product of the whole study
area (reference image: April 28, 2011, test image: August 31,
2010). The numeric ID accompanying the red dots refers to the
graph depicted in Fig. 6. The second RGB image used for the
assessment has as test image the acquisition of August 15, 2010.

At first, an object-based assessment is proposed. In Fig. 3,
we also emphasize possible ambiguities, defined as structures
with an high SWPP (i.e., above the selected threshold) in only
one or both acquisitions, but not associable to reservoirs by
visual inspection. In particular, yellow dots have high SWPP on
August 15. Magenta dots have high SWPP on August 31. White
dots have high SWPP in both acquisitions. On August 15, we
counted 13 of such structures; on August 31, the count was 17.
The number of structures which persist in both dates is 6.

The first result we obtained is that all the 19 basins constitut-
ing the ground truth were detected on both 15 and 31 August
images.

False alarms can be due to climatic conditions and the severe
rainfalls occurring during the wet season. In fact, after a heavy
rainfall, it is highly probable that the terrain shape, in some area,
favors the accumulation of water in natural hollows. This makes
very difficult to establish whether a detected structure is a false
alarm or a tank. Therefore, we define as a false alarm a structure
that is not stable on a short time scale. In fact, due to high
evapotranspirations (and infiltrations), a water accumulation in
a natural hollow should disappear in few days.
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Fig. 2. Results of the application of the SWPP definition to the August 31, 2010 scene for four small reservoirs. First column: Level-1α products (reference
image: April 28, 2011); second column: manually extracted water surface mask superimposed to the temporal-filtered SAR product; third column: SWPP map;
fourth column: binary mask obtained thresholding the SWPP map at 0.3. Original patch dimensions: 512 × 512 pixels (approximately 1.5 × 1.5 m2 ).

Fig. 3. Level-1α product of the study area. Reference image (blue band):
April 28, 2011. Test image (green band): August 31, 2010. Red dots identify
the basins assumed as ground truth, indexed with an ID referring to the graph
of Fig. 6. Magenta dots indicate objects not recognized as basins by visual
inspection in the image acquired on August 31, 2010. Yellow dots indicate
objects not recognized as basins by visual inspection in the image acquired on
August 15, 2010. White dots indicate objects not recognized as basins by visual
inspection in both the aforementioned images.

The analysis of false alarms is supported by the rainfalls di-
agram in the study area for the years 2010 and 2011, reported
in Fig. 4 [38]. In this graph, each of the indicated dates refers
to an available SAR acquisition, which can be exploited to map
reservoirs’ state using always the same reference scene. It arises
that the acquisition of August 31 is immediately preceded by
a severe rainfall event. Therefore, we can argue that the higher
false alarm rate should be due to this event. If we consider the
acquisition of August 15, we can see that the closest rainfall
occurred a couple of days before. Therefore, we can argue that
the evapotranspiration phenomenon causes the reduction in the
number of unidentifiable structures. As a general comment, the
more intense the rainfalls in the days preceding the acquisition,
the higher the probability to detect such structures. However,
if two acquisitions are considered, the probability to detect ob-
jects not relevant from an hydrological viewpoint is significantly
reduced. In particular, as aforementioned, by considering the ac-
quisitions of August 15 and 31, 2010, we found 6 structures that
can be assumed as false alarms.

However, in order to remark the complexity of false alarm
evaluation, consider the situation depicted in Fig. 5. This picture
represents a particular agricultural structure, typical of semiarid
environments, constituted by terracing built in counterslope us-
ing rudimental walls for collecting rain water [45]. One of these
structures as seen on a Google Earth view is shown in Fig. 5(a).
This image has been acquired during the dry season on March
2013; no wet season image of the area is available.
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Fig. 4. Rainfalls diagram for the study area in the years 2010 and 2011.

Fig. 5. Terracing built on natural hollow walls as represented in (a) Google Earth (dry season, no wet season image available), (b) Level-1α imagery (wet
season), and (c) on a DEM.

This structure is one of the 6 objects we classified as false
alarms (see white dots in Fig. 3). In Fig. 5(b), the same area
is shown as it appears in the Level-1α product of the August
31, 2010. Finally, in Fig. 5(c), a 3-m resolution DEM of the
area is shown. It arises that there is a natural hollow, whose
walls are used for creating terracing. During the wet season,
these structures can be covered by surface water, as well as
the hollow on which they are built. Thus, they could be de-
tected using the proposed methodology. The same situation
occurs in at least four of the six cases we classified as false
alarms.

In this context, evaluation of false alarms is a matter of defi-
nition, and it should be application-oriented. As an example, if
the analyst is interested in the water balance of the study area,
these structures should be classified as false alarms, since they
are probably not hydrologically relevant. If the application is
focused on agriculture, then terracing becomes as important as
reservoirs, since they represent areas in which cultivation is pos-
sible. Therefore, the capability of the analyst is fundamental for
recognizing the structures that could be interesting for his/her
purposes. In this activity, Level-1α products make data inter-
pretation easier with respect to Level-1 products, representing
a valid support even for users with limited expertise in SAR
issues.

Summarizing, dealing with small reservoirs extraction, as
previously stated, we found 6 structures not relevant with the

Fig. 6. Detection accuracy with respect to the extracted ground truth for the
19 analyzed reservoirs as a function of the applied threshold. Data refer to the
acquisition of August 31, 2010.

application. Indeed, this information is provided after interpre-
tation, i.e., we aggregated in one object more (not connected)
structures clearly belonging to the same scene feature.

A pixel-based assessment was also performed. In Fig. 6, we
reported the detection accuracy with respect to the available
ground truth as a function of the applied threshold (see the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

Fig. 7. Basin 7: (a) close-up of the Level-1α product and (b) its mask extracted
after thresholding.

sensitivity analysis in Section III-A for details) for the 19 con-
sidered basins (see Fig. 3). Overall, the registered accuracy is of
88.8%.

As for missed detections, they are mainly related to the mixed
response of boundaries in which the presence of mud and/or per-
sistent vegetation causes the reference image scattering to be not
dominant. This is the case, as an example, of the basin depicted
in Fig. 7(a), which is indexed with the number 7 in Fig. 3. This
basin is among those characterized by the worse performance
of the detection (about 60%, see Fig. 6). In this case, the shape
of the reservoir (particularly elongated and narrow in its upper
part) also plays a role. In fact, the usage of mathematical mor-
phology tends to further erode the contour, which in this case
is completely lost in the upper part. The combination of the
presence of mud and of the usage of mathematical morphology
generally causes an underestimation of basin contours.

Operatively, the SWPP can be effectively exploited for tem-
poral monitoring of the available water. An example is shown in
Fig. 8. In particular, in the first column, we show three Level-1α
products concerning the Laaba basin (ID 19 in Fig. 3). They
share the reference image (acquired on April 28, 2011). The test
images was acquired on March 27, 2011 (first row, dry season),
August 8, 2011 (second row, wet season), and December 12,
2011 (third row, beginning of a new dry season). These rep-
resentations allow for easily monitoring the state of the basin
(water is displayed in blue) and of the surrounding land cover
(vegetation is displayed in green).

In the second column of Fig. 8, the SWPP maps correspond-
ing to the above-described Level-1α products are shown. Areas
covered by surface water have a strong response to the SWPP
and can be identified at the center of the scene. Finally, in the
third column of Fig. 8, the water masks obtained via threshold-
ing of the SWPP maps is reported. In all the cases, the threshold
has been set to 0.3. In fact, as previously explained, the threshold
is scene dependent but not time dependent. If the same reference
image is selected, the same threshold value can be used to mon-
itor the study area over the time. We want to remark that these
binary masks have been treated just with mathematical mor-
phology. No rejection of small regions has been implemented,
in order to highlight that the SWPP thresholding restitutes al-
most “clean” maps, in which water surfaces are well separated
from land.

As discussed in [2], basins’ shoreline, combined with their
bathymetric profile, can be transformed in a Level-2 product
carrying the retained water volume.

A. Considerations on the Threshold and Sensitivity Analysis

The most critic operation of the proposed methodology is
the thresholding to be applied to the SWPP map to retrieve
the reservoirs mask. In fact, similarly to any threshold-based
method, the selected value can greatly affect the quality of the
retrieved feature map. A starting point to determine it can be
provided by automatic thresholding algorithms, like the Otsu
algorithm [46], which is one of the most popular and widely
available in open-source/commercial software suites. However,
this method performs at its best, when the number of pixels in
each of the two scene classes is comparable [47]. Therefore, to
make this algorithm exploitable, a supervised procedure inspired
to the one suggested in [48] was implemented. In particular,
after visual inspection of the image, some patches have been
retrieved around the reservoirs. Then, the Otsu algorithm has
been run for each patch to retrieve a local threshold. The global
threshold, to be applied to the whole image, is assumed to be
the average of the local thresholds. The value obtained using ten
patches is t = 0.3031, that is very close to the one we determined
through a trial-and-error approach (i.e., t = 0.3). This is due to
our expertise with the scene. Conversely, a nonexpert operator
can benefit from the patch-based threshold determination, which
requires just the selection of some significant areas of interest.

The sensitivity analysis with respect to variations of the
threshold is now in order. We assume that the “optimum” thresh-
old is the one determined with the trial-and-error-approach,
i.e., t = 0.3. To perform this analysis, we repeated the entire
processing varying the threshold of an amount of ±5% and
±10%. Therefore, the threshold values t = 0.285, t = 0.315,
t = 0.27, and t = 0.33 were considered. The obtained re-
sults were compared with those obtained setting the threshold
value t = 0.3.

In Fig. 6, we show the detection accuracy for each of the con-
sidered reservoirs as a function of the applied threshold (data
refer to the 31 August acquisition). Aggregated results are pre-
sented in Table II for both 31 August and 15 August acquisitions.
The parameters we used for the assessment are the overall accu-
racy and the false alarm rate. A pixel-based and an object-based
assessment were performed. In the false alarm column, data in
parentheses are those obtained after the cross comparison be-
tween the two considered dates. In fact, as explained above,
false alarm rate can be reduced excluding objects not stable on
a short temporal scale. Finally, concerning false alarms, all the
objects not identified as reservoirs by visual inspection were
counted, regardless they evidently belong to the same structure.

The outcomes of the performed experiments are the follow-
ing.

1) Moving the threshold upward (even significantly) did not
cause missed detection and did not affect significantly the
overall accuracy.

2) When the threshold is moved downward significantly
(−10%) a relevant increase of false alarms is registered.
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Fig. 8. Laaba basin, temporal monitoring. First column: Level-1α products (reference image April 28, 2011). Second column: SWPP maps. Third column:
water masks obtained thresholding the SWPP maps at 0.3 (mathematical morphology has been applied, no rejection of small regions implemented). Test images
of Level-1α products: first row—March 27, 2011 (dry season), second row—August 2, 2011 (wet season), third row—December 12, 2011 (beginning of a new
dry season).

3) The false alarm rate can be significantly reduced through
cross comparison of two acquisitions made with short
temporal baseline.

4) The detection accuracy is rather high for all the performed
experiments.

Based on these experiments, we can conclude that the pro-
posed method is rather robust to variation of the selected thresh-
old, especially when this value is moved upward with respect to
the “optimum” value.

B. Comparison With Other Methods

The proposed methodology is composed by two steps: 1) the
computation of the seasonal water pseudoprobability and 2) the

determination of the best threshold. Thus, the feature extraction
problem is related to the binary segmentation of the SWPP
feature map. Clearly, this process can be also applied directly to
SAR data. Therefore, in this section, we assess the performance
of our methodology through the following experiments.

1) Comparison with fixed thresholding method and varying
the input feature map. In other words, we adopt the trial-
and-error approach to segment two different feature maps,
i.e., the SWPP map and the band ratio map.

2) Comparison with fixed input feature map and varying the
segmentation method. In this case, we fix the base map for
reservoir extraction (i.e., the SWPP map) and test the trial-
and-error approach with other segmentation methods.
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TABLE II
SWPP RESERVOIR EXTRACTION SENSITIVITY ANALYSIS

Date T OA FA

P (% ) O P × E−4 O

31/8 0.3 88.8 19/19 2.38 (1.06) 37 (13)
0.27 90.5 19/19 4.31 (1.82) 80 (31)
0.33 85.1 19/19 1.62 (0.82) 24 (11)
0.285 89.7 19/19 3.16 (1.39) 50 (19)
0.315 86.4 19/19 1.95 (0.90) 29 (11)

15/8 0.3 89.8 19/19 2.64 (1.32) 48 (13)
0.27 91.1 19/19 4.73 (1.78) 97 (31)
0.33 88.4 19/19 1.68 (0.79) 23 (11)
0.285 89.1 19/19 1.92 (1.35) 70 (19)
0.315 90.6 19/19 4.30 (0.87) 27 (11)

T : applied threshold, OA: overall accuracy, FA: false alarm
rate. P: pixel-based assessment, O: object-based assessment. In
the false alarm column, values in parenthesis are those obtained
after cross comparison with the closest available acquisition.

TABLE III
FIXED THRESHOLDING

Date Method T OA FA

P (% ) O P × E−4 O

31/8 SWPP 0.3 88.8 19/19 2.38 (1.06) 37 (13)
BR 2.5 82.2 19/19 2.00 (0.82) 32 (11)
BR 2.25 85.7 19/19 4.26 (1.36) 68 (19)

15/8 SWPP 0.3 89.8 19/19 2.64 (1.32) 48 (13)
BR 2.5 87 19/19 4.13 (0.78) 61 (11)
BR 2.25 89.5 19/19 8.54 (1.32) 94 (19)

Comparison between SWPP-based and band ratio-based (BR) reservoirs
extraction with threshold determined using a trial-and-error approach. T :
applied threshold, OA: overall accuracy, FA: false alarm rate. P: pixel-
based assessment, O: object-based assessment. In the false alarm column,
values in parenthesis are those obtained after cross comparison with the
closest available acquisition.

3) Comparison of the whole methodology with direct classi-
fication of SAR images. Here, we compare our approach
with simple and popular SAR segmentation methods.

1) Fixed Thresholding: We start the assessment comparing
the SWPP-based feature extraction with the most similar proce-
dure, i.e., a band ratio-based extraction (see Table III). In both
cases, the trial-and-error approach for thresholding determina-
tion was adopted.

At first, we set the threshold for the ratio image to t = 2.5. The
comparison with the SWPP-based extraction (using t = 0.3)
shows that the overall accuracy is rather lower, and the false
alarm rate slightly better. Therefore, we lowered the threshold
of 10% (t = 2.25), in order to get the band-ratio accuracy closer
to the one obtained using the SWPP, evaluating at the same time
the effect on the false alarm rate. We found that the band-ratio
accuracy was still lower than the SWPP accuracy, and that the
false alarm rate was higher with respect to the one obtained
using the SWPP. Therefore, we can conclude that in order to
reach the same performance of the SWPP-based extraction, us-
ing a band ratio a significantly higher false alarm rate has to be
expected.

TABLE IV
FIXED SWPP INPUT FEATURE MAP

Date Method T OA FA

P (% ) O P × E−4 O

31/8 SWPP 0.3 88.8 19/19 2.38 (1.06) 37 (13)
KM 6 94.9 19/19 115 (12.8) 2077 (293)
KM 7 93.9 19/19 57.9 (4.74) 1207 (111)
KM 8 92.2 19/19 17.4 (1.36) 392 (21)
KM 9 89.8 19/19 5.89 (1.09) 120 (13)

15/8 SWPP 0.3 89.8 19/19 2.64 (1.32) 48 (13)
KM 6 93.5 19/19 18.9 (13.0) 388 (293)
KM 7 92.17 19/19 7.50 (4.84) 156 (111)
KM 8 89.51 19/19 2.27 (1.41) 37 (21)
KM 9 89.3 19/19 2.01 (1.10) 30 (13)

Comparison between thresholding-based and k-means-based (KM) reser-
voirs extraction. T : applied threshold or number of clusters, OA: overall
accuracy, FA: false alarm rate. P: pixel-based assessment, O: object-based
assessment. In the false alarm column, values in parenthesis are those ob-
tained after cross comparison with the closest available acquisition.

2) Fixed Input Feature Map: In this section, we fix the input
feature map, i.e., the proposed SWPP map, and verify the relia-
bility of the trial-and-error approach for threshold determination
comparing the obtained results with those output by other simple
segmentation techniques. In particular, the k-means algorithm
was tested due to its availability in commercial/open-source
software suites and popularity in the end-user community. As
shown in Table IV, several experiments have been performed
varying the number k of input clusters. In this case, the final
basin mask is given by the cluster with the highest SWPP mean.

We found that, using the k-means, the best tradeoff between
overall accuracy and false alarm rate is obtained by setting
k = 9. With this parameter setting (computational time was of
some hours using an 8-core, 24-GB RAM machine), results are
comparable with those obtained through trial-and-error thresh-
olding. Further increase of the number of clusters caused an
unacceptable rising of false alarms due to their aggregation in
few mottled dominant classes.

3) Direct Classification of SAR Images: In this section, we
test the reliability of the whole methodology with respect to
feature extraction based on direct classification of SAR images.
We tested k-means and maximum likelihood classifiers. In all
cases, the same information content of a Level-1α product, i.e.,
a couple of SAR images, was exploited to classify.

As for the k-means, we ran the algorithm setting as output
from 5 to 15 clusters having no convergence for all the exper-
iments after 100 iterations and several hours processing time
(increasing as the number of output clusters increases).

As for the ML classification, the adopted procedure is the fol-
lowing. We performed a three-class classification (water, vegeta-
tion, bare soil) selecting training sets whose extension is related
to the occurrence of the class on the scene. Therefore, the biggest
one was for the bare soil class. The training set for the water
class was the smallest, with an extension of about 10% of the
available ground truth. Results of this experiment are reported
in Table V. After the classification, the class with the highest
SWPP mean was selected as representative of the scene’s reser-
voirs. We registered a significantly lower overall accuracy with
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TABLE V
DIRECT CLASSIFICATION OF SAR IMAGES

Date Method T OA FA

P (% ) O P × E−4 O

31/8 SWPP 0.3 88.8 19/19 2.38 (1.06) 37 (13)
KM No convergence
ML na 79.39 19/19 7.63 (0.37) 134 (5)

15/8 SWPP 0.3 89.8 19/19 2.64 (1.32) 48 (13)
KM No convergence
ML na 80.7 19/19 0.97 (0.37) 20 (5)

Comparison between SWPP-based, k-means-based (KM) and maximum
likelihood-based (ML) feature extraction. T : applied threshold, OA:
overall accuracy, FA: false alarm rate. P: pixel-based assessment, O:
object-based assessment. In the false alarm column, values in parenthesis
are those obtained after cross comparison with the closest available
acquisition.

respect to the SWPP-based classification, as well as a slightly
lower false alarm rate. The conclusion is that, provided a good
knowledge of the scene, allowing for a suitable training of the
classifier, the ML algorithm could be a valid alternative to solve
the problem of reservoir identification, if a rather low detection
rate is acceptable for the application.

IV. CONCLUSION

In this paper, we presented a novel methodology for tempo-
rary water body detection in semiarid environment. It is suitable
to be applied to Level-1α RGB multitemporal SAR composites.
In particular, we introduced a seasonal water pseudoprobabil-
ity, whose expression is given by a simple weighted band-ratio
between a reference and a test image, representing the situation
in which the seasonal water coverage occurs.

The proposed method allowed for detecting all the reservoirs
in the study area with limited occurrence of false alarms. This
is encouraging, since in the study area, basins are not mapped
and often built autonomously by local communities without a
governmental coordination. Therefore, the most important in-
formation the analyst needs is about the presence or not of a
water surface in a certain area.

The effectiveness of the proposed method is related to the
selection of the reference band composing the input Level-1α
product. In fact, the seasonality of the water is related to its
absence during the acquisition of this image. Therefore, a suit-
able choice for the reference image is an acquisition made at
the peak of the dry season, when the environment is almost
completely dry.

The performance of our methodology was compared with that
of several literature algorithms obtaining satisfying results. In
particular, three approaches have been tested: fixed thresholding
method, fixed input feature map, and direct segmentation. In all
the experiments, the proposed methodology demonstrated to be
a valid alternative to popular algorithms with higher complexity.

A sensitivity analysis was also performed, demonstrating that
the method is rather robust with respect to variations of the
“optimum” threshold value, here determined with a trial-and-
error approach. A simple supervised procedure for threshold

determination has been also proposed to help nonexpert user in
this task.

The presented technique provides a quick solution for the
detection of temporary water bodies detection. Our approach is
particularly oriented toward the end-user community because it
allows for operating with a simple tool, moving the complexities
related to scattering mechanisms and the computational burden
in the products formation phase.
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