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Abstract—We introduce a new architecture for feature extrac-
tion from multitemporal synthetic aperture radar (SAR) data. Its
the purpose is to combine classic SAR processing and geographi-
cal object-based image analysis to provide a robust unsupervised
tool for information extraction from time series images. The ar-
chitecture takes advantage from the characteristics of the recently
introduced RGB products of the Level-1α and Level-1β families,
and employs self-organizing map clustering and object-based im-
age analysis. In particular, the input products are clustered using
color homogeneity and automatically enriched with a semantic at-
tribute referring to clusters’ color, providing a preclassification
mask. Then, in the frame of an application-oriented object-based
image analysis, opportune layers measuring scattering and geo-
metric properties of candidate objects are evaluated, and an ap-
propriate rule-set is implemented in a fuzzy system to extract the
feature of interest. The obtained results have been compared with
those given by existing techniques and turned out to provide high
degree of accuracy and negligible false alarms. The discussion is
supported by an example concerning small reservoir mapping in
semiarid environment.

Index Terms—Classification, multitemporal, object-based image
analysis (OBIA), self-organizing maps (SOM), synthetic aperture
radar (SAR).

I. INTRODUCTION

EARTH observation exploitation in operational/industrial
contexts is today still limited, because it requires to end

users, who are mainly used to work in geographical information
system (GIS) environments, to handle sophisticated data anal-
ysis algorithms. This is especially true for synthetic aperture
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Fig. 1. (a) Classic SAR processing, (b) classic GEOBIA, and (c) proposed
architecture. Boxes with filled background represent products. Those with blank
background identify processes.

radar (SAR) data, which are largely underused due to the high
expertise required to handle/interpret them. Therefore, the de-
velopment of new tools for complex satellite data management,
integrating remote sensing and GIS technologies, is desirable
for enlarging the user community.

To this aim, many authors suggest to balance percep-
tive insights and mathematics for building end-user-oriented/
multidisciplinary processing chains [1]–[5]. Research on these
topics lead to a huge literature on knowledge-driven expert
systems [6]–[8] constituting the basis of modern geographi-
cal object-based image analysis (GEOBIA) [9], whose classic
schema is summarized by the flowchart depicted in Fig. 1(b).
This approach aims at extracting information from remote sens-
ing data by mimicking the way in which humans visually in-
terpret images [10], [11], analyzing spectral information (e.g.,
colors), spatial characteristics (e.g., size, shape), textural, and
contextual information (e.g., relation with neighboring objects)
[12].

The crucial step for applying object-based techniques to re-
mote sensing images is the object definition. This is typically
done through segmentation, obtaining good results with opti-
cal data. This approach cannot be applied to SAR images as is,
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because the speckle reduces the segmentation performances and
the extraction of the semantics from the image is not immediate.
Accordingly, at the state of the art, common practice in SAR
data processing is still to focus the innovation on algorithms
[13]–[17], following the scheme reported in Fig. 1(a).

In this paper, we devise a novel architecture for feature ex-
traction based on innovative SAR remote sensing processing
allowing for the extension of GEOBIA techniques to SAR time
series. The goal is to create a bridge between GEOBIA and
SAR communities, providing easy-to-use tools for data exploita-
tion. The proposed architecture takes advantage of consolidated
techniques, as self-organizing map clustering (SOM) [18] and
object-based image analysis (OBIA) [19], and exploits the char-
acteristics of the innovative multitemporal SAR data processing
introduced by the authors [5], [20], as synthesized in Fig. 1(c).

In particular, we exploit the recently introduced products of
the Level-1α and Level-1β families [5], [20]. They are semifin-
ished products obtained from SAR time series opportunely com-
bined in an RGB frame. A multitemporal Level-1α or Level-1β
image is treated with a clustering algorithm to obtain meaningful
regions [see the fourth block of Fig. 1(c)], each of them associ-
ated to a basic verbal attribute related to its color. This algorithm
is derived from Kohonen’s SOM clustering [18] and tailored on
the characteristics of the input products, exploiting color ho-
mogeneity as discriminant for pixel aggregation. The clustered
map, enriched by the basic semantic attribute, is processed with
an application-oriented OBIA [fifth block of Fig. 1(c)]. In fact,
the color label is used to build a preclassification mask, whose
objects are analyzed with an opportune rule set allowing for the
extraction of the feature of interest. The proposed approach pro-
vides a minimization of the number of free parameters, which
is one of the biggest problems in GEOBIA [21].

The organization of the paper recalls the flowchart of Fig. 1(c).
The first three blocks have been deeply addressed in [5], [20],
and [22], and will be only recalled all over the paper, where nec-
essary. The modified SOM algorithm is presented in Section II.
The proposed OBIA technique is discussed in an application-
oriented environment in Section III, where we address the
problem of small reservoir mapping in semiarid environment.
Conclusions are drawn at the end of the work.

II. MODIFIED SOM CLUSTERING

SOM is a machine-learning technique of the artificial neu-
ral network (ANN) family. It has been exploited to classify the
most diverse data types in different sectors, from climatology
[23] to political science [24], finance [25], and remote sensing
[26]. This widespread use of SOM is due to its high flexibility
and adaptability. In fact, an ANN does not make assumptions
on the statistical distribution of the data, and this makes it pos-
sible its application to heterogeneous data sets and modifica-
tion/integration for adaptation to different data structures [27]
and learning techniques [28]. The robustness to large amounts
of data makes ANNs a suitable instrument for unsupervised or
semisupervised classification in a big-data environment, which
is, and will be a crucial issue in remote sensing.

Fig. 2. SOM principle. (a) Initial, randomly initialized SOM. (b) The
BMU and its neighbor are updated to become more similar to the presented
training set.

The SOM principle is schematized in Fig. 2, in which nodes
are constituted by RGB triplets. The number of (predefined)
nodes (or neurons), having the same structure of the data to be
classified, will coincide with the number of output classes. In
the classic Kohonen’s schema, these nodes are randomly ini-
tialized [see Fig. 2(a)] and connected by a (usually) rectangular
structure. They are trained using a predefined number of sam-
ple vectors randomly selected from the input data. Each time
a training vector is presented to the network, the most similar
node (i.e., the one minimizing the objective function given by
the Euclidean distance) is detected and identified as the best
matching unit (BMU). The BMU and its neighbor, defined by
a radius, are updated to become more similar to the presented
training set, as shown in Fig. 2(b). This operation is repeated for
several iterations, called epochs. At the end of each epoch, the
neighbor of the BMU as well as the learning rate are decreased.
This way, after many epochs, the SOM becomes stable, i.e., it
does not exhibit significant changes with respect to the previous
epoch, and the obtained nodes can be used to classify data.

As aforementioned, SOMs can be easily modified to be
adapted to specific data [27], [28], and this made them very
attractive for the clustering of our SAR-derived RGB products.
As an example, in the initialization phase, neurons are typically
randomly selected. As a consequence, the SOM output will be
slightly different for different executions given the same set of
network parameters. In our case, we need the output cluster map
to be stable with respect to the input RGB product. To this end,
we established a data-driven seed to initialize neurons and to
generate the training samples. In such way, for a given RGB
product, the output SOM is fixed by its parameters.

As for the training phase, we implemented the following
procedure. A matrix of M × 3 RGB triplets is randomly gener-
ated using the aforementioned seed. In order to consider more
combinations of the primary colors, M is greater than the
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pre-established number T of training vectors. These random
triplets are made consistent with the requantization problem by
computing pixel-wise the Euclidean distance between the i-th
training set and the input RGB product. Finally, among the M
available triplets, the T more similar to a color existing in the
input RGB product are selected as training sets.

As stated in [8], one of the knowledge required for under-
standing remote sensing images concerns the mapping of scene
features into the image acquired by the sensor. Therefore, in
order to better adapt the classic Kohonen’s scheme to the input
data, we slightly modified the algorithm presented in [18].

As an example, let us consider the Level-1α product depicted
in Fig. 3(a). It represents a rural area in Burkina Faso (Western
Africa). In this region, the climate is semiarid, with a long
dry season (at the peak of which the environment is almost
completely dry) followed by a short and intense wet season, in
which the abundant rainfalls allow for cultivation and water and
food storage [29]. In this product, the red, green, and blue bands
are assigned to the interferometric coherence, to a wet season
image, and to a dry season image, respectively. This composition
allows for displaying the seasonal water in blue, due to the
dominance of terrain scattering during the dry season, and the
vegetation in green, due to volumetric scattering enhancement
triggered by vegetation growing during the wet season. For
more information about Level-1α imagery, the reader can refer
to [5].

In this scene, natural land cover is dominant with respect to
the “urban class,” consisting in small settlements represented by
bright targets [5]. Therefore, if the classic Kohonen’s algorithm
is used, very few training set belonging to this category would
be presented to the network. As a result, it is likely that the
“urban” cluster will be not represented in the final SOM. To
overcome this problem, we impose the presence of the white,
black, and red colors among the training sets to be used in
the competitive phase. In fact, these colors are associated to
precise classes (such as built-up features, water surfaces, and
low-backscattering areas) which are likely to be present in every
acquisition, even if with small occurrence with respect to other
classes. Moreover, in order to ensure the presence of such colors
in almost pure tonality within the final SOM, when the relevant
training sets are presented to the network, it behaves as in a
learning vector quantization schema [18], in which only the
winning neuron is updated with a high learning rate.

The objective of using an SOM is to map the input product
from the RGB space, whose dimension is [256 × 256 × 256],
into a space Ŝ with a limited number of elements (coinciding
with the number of SOM neurons). At the same time, we aim at
enriching the obtained cluster map with a basic semantic, i.e.,
to label each element of Ŝ with a meaningful word recalling a
physical property of the cluster. This makes the SOM semantic
(SSOM), allowing for querying the image in the feature space
exploiting the cluster label.

To this end, an HTML color database is considered for picking
the cluster label. The Euclidean distance between the SOM
and the database elements is computed. Finally, for each SOM
cluster, the name of the closest color within the database is
assigned.

In Fig. 3, we show the output of the SSOM clustering, setting
the dimension of Ŝ (i.e., the size of the SSOM) to 49 [see
Fig. 3(b)], 25 [see Fig. 3(c)], and 9 [see Fig. 3(d)] elements.
In Fig. 4, a sample SSOM for the 49-cluster case is reported
together with the relevant color label list. In this picture, the
association color label-SSOM cluster is made column-wise from
up to down and from left to right. Note that very similar colors
can have the same label.

From Fig. 3, it arises that the larger the number of clusters in
the output product, the more similar the (pre)-classified image
to the input RGB one. In fact, as shown in Fig. 3(d), when the
dimension of Ŝ is reduced to nine elements, its colorimetric con-
tent becomes insufficient to describe effectively the information
contained in the input Level-1α product, causing the loss of the
physical relation between the colors in the clustered product and
the scene objects [see as an example gray pixels in the lake area
in Fig. 3(d)].

However, beyond interpretability, the principal purpose of
clustering is to provide a product useful to be processed auto-
matically by the machine. This means that a number of clusters
appropriate for human interpretation could be not sufficient (in
the sense that the image could result undersegmented) to ad-
dress a certain problem using a computer algorithm. Actually,
in the framework of the method outlined in Section I, the num-
ber of SSOM clusters is very important and can greatly affect
the performance of the processing chain. The problem will be
addressed with an empirical approach in Section III-F to face the
problem of small reservoir mapping in semiarid environment.

III. APPLICATION-ORIENTED OBIA: SMALL RESERVOIR

MAPPING IN SEMIARID ENVIRONMENT

The processing chain outlined in Section I is strongly
application-oriented since the management of the semantics in-
troduced by the SSOM clustering, as well as the OBIA, needs to
be adapted to the feature of interest. In other words, if the general
processing depicted in the last diagram of Fig. 1 can be repli-
cated to address different problems (see as an example [30] for
a preliminary experiment dealing with urban area mapping), the
OBIA block has to be adapted to the scattering and geometrical
characteristics of the objects one wants to identify, represented
in this case by small reservoirs in semiarid environment.

In semiarid environment, small reservoirs constitute a funda-
mental resource for local population (especially in rural areas)
to face water scarcity during long periods of drought [31], [32].
In Burkina Faso, that is the country in which our study area
is located, it is estimated that about 1700 small reservoirs are
actually used for irrigation, livestock, and human consumption.
However, despite of their importance, reservoirs are rarely ap-
propriately monitored in low-income countries, especially in
Sub-Saharian Africa [32]. Moreover, small reservoirs are often
built/modified by local communities without governmental co-
ordination and even basic data, like their location and capacity,
are not available. For these reasons, it is extremely hard to study
their impact on the territory and to optimize their management.

Remote sensing technologies have been widely exploited to
address this problem [33]–[37], which is particularly discussed
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Fig. 3. Result of SSOM clustering varying the dimension of the output feature space. (a) Input RGB product. (b) 49-cluster product. (c) 25-cluster product.
(d) 9-cluster product.

Fig. 4. Sample 49-cluster SSOM referring the image depicted in Fig. 3(a). Each cluster is associated to one of the color labels enumerated on the right. The
association color label-SSOM cluster is made column-wise from up to down and from left to right. Similar colors can have the same color label.

in the community, also thanks to the TIGER initiative of the
European Space Agency [38]. Using SAR data, small reser-
voirs are usually mapped using pixel-based segmentation tech-
niques providing results characterized by good accuracy, but
with an incidence of false alarm that sometimes is not negligi-
ble [36]. In this work, we want to demonstrate that the proposed

methodology allows for reducing drastically the false alarm rate
keeping, at the same time, the accuracy comparable to that given
by the most popular SAR segmentation algorithms.

The general flowchart of the method we are going to apply
is depicted in Fig. 5. In this picture, boxes and arrows with red
edges represent an exploded view of the block “OBIA” of the last
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Fig. 5. Small reservoir extraction using SSOM and OBIA: general flowchart. Boxes with filled background represent products. Those with blank background
identify processes.

graph depicted in Fig. 1. Boxes with filled background represent
products. Those with blank background identify processes.

Although at first glance it could appear complicated, the
flowchart is composed by a series of very simple operations dic-
tated by the experience and regulated, when necessary, by fuzzy
rules. Indeed, it is in line with the GEOBIA philosophy, whose
objective is to mime the human behavior in the understanding
of the surrounding environment. In fact, humans understand the
world and operate in it through a series of simple operations,
which become obvious with the experience. The reader can
think, as an example, to the trivial operation of pouring water
from a bottle into a glass for drinking. Clearly, several basic
operation must be implemented, such as segment the scene to
localize the bottle and the glass, take the bottle, pour water into
the glass, replace the bottle, and then drink water using the glass.
The concept we adopted in the design of the flowchart reported
in Fig. 5 is exactly the same, i.e., the implementation of several
simple operation to understand the scene up to the extraction of
its reservoirs.

Roughly, the proposed processing chain is the following. The
input RGB product is treated with SSOM clustering and a rel-
evant set of words is identified to be representative of the class
“small reservoirs.” Clusters associated to this class constitute
a overdimensioned preclassification mask, identifying objects
candidate to be classified as reservoirs. This mask is treated
with OBIA, whose aim is to identify objects whose scattering
and geometric characteristics are most likely to be those of a
reservoir. To this end, two object layers are exploited. The first
one is the mean (computed within each image object) of the
seasonal water pseudo-probability (SWPP) [36]. It represents a
scattering layer. The second one, representing a geometric layer,
is the objects’ compactness [39].

In the following sections, we will provide a complete descrip-
tion of all the aforementioned operations.

A. Dictionary Definition

This section describes the blocks indexed with 1 and 2 in
Fig. 5.

The input of the processing chain is a change-detection-
oriented Level-1α product in which the blue band is acquired
at the peak of the dry season. As explained in Section II, this
causes small reservoirs to be rendered in blue color (see [5] for
further details).

The input RGB product is treated with the SSOM algorithm
discussed in Section II, and the associated color labels consid-
ered for the dictionary definition. This operation is guided by
the knowledge of Level-1α products characteristics and of their
mapping into the SSOM. As a result, the following color labels
were selected as the most representative of the class “small reser-
voir” (see Fig. 4): “Blue,” “Navy blue,” “Royal blue,” “Medium
blue,” and “Midnight blue.” A nonexpert user can reach the same
result empirically through visual inspection of the cluster map.
Selecting a region representing a reservoir and computing the
statistics, it will result that more than 90% of pixels within the
area of interest belong to the above listed classes.

The idea is to build an overdimensioned preclassification map
to be eroded through the successive OBIA steps in order to
reach the final reservoirs map. An example of this operation is
provided in Fig. 6. In particular, in Fig. 6(a), a Level-1α product
concerning one of the reservoirs of the study area is shown.
The corresponding 49-cluster SSOM is shown in Fig. 6(b). The
semantic mask obtained considering all the pixels having a color
label included in the dictionary is depicted in Fig. 6(c). The
mixing of land and water features may cause the object to lose
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Fig. 6. (a) Sample Level-1α products concerning a reservoir of the study area, (b) corresponding SSOM, (c) semantic mask obtained considering the whole
dictionary, and (d) mask obtained splitting the dictionary in a reliable part (yellow cluster) and in a unreliable part (red, green, and blue clusters). Original patch
dimension approximately 1.5 × 1.5 km2 .

the characteristics of scattering (on average) and the geometric
properties useful to classify it as a reservoir.

To prevent this, a suitable management of the dictionary is
necessary. In particular, it is split in a “reliable” part and in
an “unreliable” part. This division is made on an empirical
basis and dictated by the experience. We identified the color
labels “Blue,” “Navy blue,” “Royal blue,” and “Medium blue” as
“reliable.” With “reliable,” we mean that these clusters are likely
to exhibit a strong dominance of water features with respect to
land features. Conversely, we identified clusters with color label
“Midnight blue” as “unreliable.” In fact, as shown in Fig. 4,
the same color label can be repeated in the same SSOM. These
clusters are likely to exhibit a strong dominance of land features
with respect to water features.

The splitting of the dictionary led to the result depicted in
Fig. 6(d). This operation allows for the reconstruction of the
reservoir shape using only the clusters of the “unreliable” dic-
tionary (in this case, just the red one) ensuring the preservation
of the required scattering and geometric characteristics, discard-
ing all the others.

B. Morphological Operations on the Semantic Mask
and Segmentation

This section describes the blocks indexed from 3 to 6 in Fig. 5.
The masks representative of the “reliable” and of the “un-

reliable” dictionaries are treated with a morphological filter in
order to discard small regions and obtain more homogeneous
clusters (see block 3 of Fig. 5) [40]. It is worthwhile to remark
that the mask corresponding to the “reliable” dictionary fuses all
the color labels belonging to it. In other words, this is a binary
“true”/“false” mask in which all the pixels of the SSOM having
a color label falling into the “reliable” dictionary are associated
to the value “true.” Conversely, the mask associated with the
“unreliable” dictionary concerns, at each loop iteration, to just
one of its elements.

The objective is to reconstruct the reservoir shape using
words. Clusters belonging to the “unreliable” dictionary are
added incrementally to the initial nucleus constituted by the
“reliable” dictionary and treated with an OBIA dependent on
their expected degree of membership to the class “reservoir.”
This is dictated by the mean of the SWPP (see Section III-C for

more details) computed within the entire cluster. The higher this
value, the higher the probability that the cluster is dominated by
water features.

In particular, suppose that our “unreliable” dictionary is
composed by three color labels, as in the case of Fig. 6(d).
They are sorted as the values of the SWPP mean computed
cluster-wise and added to the nucleus identified by the “reli-
able” dictionary in that order. In our case, we have the follow-
ing situation: <SWPP>red= 0.3, <SWPP>green= 0.28, and
<SWPP>blue= 0.14. This means that, within the loop, the cor-
responding clusters will be added to the nucleus identified by the
“reliable” dictionary (yellow cluster) in the same (descending)
order.

As a result, referring to Fig. 6(d), at iteration 1 of the loop,
the mask considered for object layers calculation is given by the
junction of the yellow and red clusters (block 4 of Fig. 5). It
is possible that the output cluster presents several “holes” (i.e.,
areas not candidate to be classified as reservoir but completely
surrounded by candidate objects), and this can alter the calcu-
lation of the compactness layer due to the decrease of the ratio
between object’s area and perimeter (see Section III-C). This
problem is solved in the block indexed with the number 5 in
Fig. 5.

In general, the first element of the “unreliable” dictionary (i.e.,
the one exhibiting the highest SWPP mean) has usually a strong
dominance of water features. Therefore, it can be considered a
quite “safe” cluster, and its holes treated as islands (due to the
clustering or to residual speckle in the original RGB product). In
other words, at step 1 of the loop (which concerns the element
of the “unreliable” dictionary with the highest SWPP mean),
all the holes within the considered objects are covered using as
parameter just the uniqueness of the adjacency to a candidate
reservoir cluster.

Starting from the second element of the “unreliable” dictio-
nary and beyond, in which we deal with clusters with a high
probability to have a dominant land component, the coverage of
possible holes rely on a fuzzy system using as parameters the
number of holes and the ratio between their area and the area of
the unique candidate object surrounding them. The parameters
defining the fuzzy sets exploited in this phase are reported in
Table I. In particular, we require that holes should be in “low”
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TABLE I
ADOPTED FUZZY SET PARAMETERS FOR HOLES FILLING STARTING FROM

ITERATION 2 OF THE “UNRELIABLE” DICTIONARY LOOP AND BEYOND

Layer Semantic attribute Fuzzy set a c

Number of holes Low Z-type 0 10
Number of holes High S-type 5 20
Ah /Ao (%) Low Z-type 0 10
Ah /Ao (%) High S-type 5 20

The ratio Ah /Ao indicates the ratio between the area occupied by the
holes and the area of the object surrounding them.

number, and occupy a “low” area with respect to the one of the
object surrounding them.

Once the mask for the current iteration is assembled, segmen-
tation is implemented in the block 6 of Fig. 5. The object map,
indexed with an increasing numeric attribute, is retrieved using
a connected components labeling algorithm [41]. Contours are
also computed at this stage through the calculation of the im-
age second Laplacian [42]. In fact, objects’ perimeter will be
necessary for the calculation of the compactness parameter.

C. Object Layers

This paragraph describes the block indexed with 7 in Fig. 5.
As aforementioned, the fuzzy system devoted to assign the

classes “reservoir” and “no reservoir” is fed by two object layers.
We use a scattering layer, i.e., the mean SWPP calculated within
each identified candidate reservoir, and a geometric layer, i.e.,
the object compactness.

The SWPP is an index measuring the pseudo-probability that
a pixel belongs to a temporary water surface. It has been intro-
duced in [36], and computed as follows:

SWPP =

[
1 −

(
G

255

)2
]

B − G

B + G
, SWPP ∈ [−1, 1] .

(1)
In this formula, B and G are the blue and the green band of a

Level-1α product, respectively. Roughly, this formulation aims
at the enhancement of areas appearing in blue color in the RGB
product. For further details, the reader can refer to [36].

The compactness, as suggested by the name, measures how
compact an object is, i.e., how much the object is shaped like a
circle. It is defined as follows [39]:

C =
4πA

P 2 , C ∈]0, 1]. (2)

In this formula, A and P represent objects’ area and perimeter,
respectively. Indeed, this parameter was introduced to measure
the roundness of sand grains, and then reused in the image
processing literature. In the digital world, the more compact
object is the square, for which C = 0.785.

D. Fuzzy Rules and Candidate Objects Selection

This section describes the blocks 8 to 10 of Fig. 5.
The two object layers described in Section III-C are combined

using fuzzy rules [43], [44]. We used two fuzzy sets, “low”

TABLE II
ADOPTED PARAMETERS TO MODEL THE FUZZY SETS RELEVANT TO THE MEAN

SWPP COMPUTED OBJECT-WISE AND THE OBJECTS’ COMPACTNESS

Layer Semantic attribute Fuzzy set a c

SWPP Low Z-type 0 0.5
SWPP High S-type 0.35 0.6
Compactness Low Z-type 0 0.15
Compactness High S-type 0.05 0.25

(Z-type) and “high” (S-type), to model the uncertainty related
to the considered quantities. Selected parameters for these fuzzy
sets are reported in Table II.

Reservoirs are expected to have “high” SWPP mean within
candidate objects, which should also exhibit “high” compact-
ness. This combination of the input fuzzy sets leads to the cre-
ation of the class “reservoir.” Each object in the segment map
will have a certain membership degree to this class. The higher
the membership, the higher the probability that the object really
represents a reservoir.

However, being the system fuzzy, each of the possible com-
binations obtainable from the fuzzy sets reported in Table II
are possible: “High” SWPP plus “High” compactness (i.e.,
the “reservoir” class), “High” SWPP plus “Low” compactness,
“Low” SWPP plus “High” compactness, and “Low” SWPP plus
“Low” compactness. The last three classes identify the class “no
reservoir.” Each image segment will have a certain membership
degree for this class. The higher the membership, the higher
the probability that the object belongs to that class. Therefore,
a defuzzification step is necessary and implemented assigning
the class having the maximum probability to each object, given
the adopted fuzzy sets.

However, the three classes composing the category “no reser-
voir” have different probability to really belong to it. In fact,
image segments having “High” SWPP plus “Low” compact-
ness have the scattering properties requested for a reservoir,
lacking the geometric one. This can be due to residual speckle
in the input RGB product altering the response of some area,
as well as to clustering, causing the association of some por-
tion of the reservoir to different elements of the “unreliable”
dictionary. In other words, some objects belonging to the class
“High” SWPP plus “Low” compactness can still be considered
for classification as “reservoir” in a successive iteration of the
“unreliable” dictionary loop.

This is clarified in Fig. 7, which is an exploded view of the
blocks indexed with 9 and 10 in Fig. 5. At the end of iteration 1
(“reliable” dictionary plus first element of the “unreliable” one),
objects exhibiting “High” SWPP mean and “High” compact-
ness are stored in the “actual” reservoirs map. Objects having
“High” SWPP mean and “Low” compactness are stored into the
“maybe” reservoirs map and sent to the second iteration of the
“unreliable” dictionary loop, in which the second element of
this dictionary is added to the already retrieved semantic mask.
After fuzzy classification, objects within the “maybe” reservoirs
acquiring the characteristics of “High” SWPP mean and “High”
compactness, are transferred in the “actual” reservoirs map.
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Fig. 7. “Unreliable” dictionary loop management. At the end of iteration 1, objects exhibiting “High” SWPP mean and “High” compactness are stored in the
“actual” reservoirs map. Objects having “High” SWPP mean and “Low” compactness are stored into the “maybe” reservoirs map and sent to the second iteration of
the loop. After fuzzy classification rules, objects acquiring the characteristics of “High” SWPP mean and “High” compactness, are added to the “actual” reservoirs
map. Boxes with filled background represent products. Those with blank background identify processes.

Obviously, objects having “High” SWPP and “High” compact-
ness also appear in the “maybe” reservoir map. In fact, they can
be updated by the addition of other elements of the “unreliable”
dictionary, provided that the fusion preserves these characteris-
tics. In other words, if the addition of new image segments to an
object having “High” SWPP and “High” compactness creates an
objects still having “High” SWPP and “High” compactness, this
new object is stored in the “actual” reservoirs map. Otherwise,
it is discarded, and the old object is restored.

The loop is repeated for each element of the “unreliable”
dictionary up to its depletion. At the end of the loop, the “actual”
reservoirs map becomes the “final” reservoirs map.

E. Study Area, Data, and Ground Truth

The study area is located in a rural area of Burkina Faso
(Western Africa). It is about 36 × 18 km wide, and land cover
is prevalently natural, with just few villages scattered into the
scene. Data were provided by the Italian Space Agency at free
of charge under the aegis of the “HydroCIDOT” project. In
particular, our database is constituted by more than 50 COSMO-
SkyMed stripmap three meter resolution images acquired in HH
polarization between 2010 and 2016. The interested reader can
find further information about this data set in [36].

In our study area, a different number of reservoirs can be ob-
served (with a maximum 13, ranging approximately from 6000
to 300 000 m2 of extension) depending on the period of the
year. In fact, in semiarid environment, starting from the end
of the wet season, reservoirs tend to recede up to completely
disappear with the advance of the dry season. This makes their
identification even more challenging. In fact, we are analyzing
ponds whose boundaries are not man-made. Therefore, there is
no clear edge between the water surface and the surrounding
land. Moreover, their tendency to get dry creates further am-
biguity due to the presence of mud at the boundary, especially
during the transition from the wet to the dry season.

The ground truth used to assess the obtained results was
manually retrieved for each considered acquisition. This oper-
ation was not trivial, due to the strong unbalance between the
classes water and nonwater and the presence of vegetation/mud
at reservoir boundary making it difficult to recognize the con-
tour. However, in many cases, the expert photo-interpreters are
able to perform reliable feature extraction [45], [46], especially
if they have a good a priori knowledge of the study area [29],
[37], [47]. This makes us quite confident that the reservoir con-
tours manually retrieved through photo-interpretation are well
representative of the real basins extension.

F. Experimental Results

In this section, we present the results of the proposed frame-
work application to eight images taken from the available
database. Acquisition dates were selected with the purpose to
catch the most important moments of reservoirs’ life-cycle, i.e.,
the maximum extension toward the peak of the wet season
(July–August), and the starting of the recession in the transi-
tion between the wet and the dry seasons (September–October).

An important parameter of the proposed method, which can
significantly condition its performance, is the number of clus-
ters in the input SSOM. Actually, the optimum number of clus-
ters in unsupervised clustering is an open problem [48]–[50].
Therefore, we adopted an empiric approach. In particular, we
repeated the reservoirs extraction experiment changing the num-
ber of clusters in the SSOM, setting it to 25, 36, 49, and 64
clusters. In all cases, the same dictionary was used. Results of
these experiments are reported in Table III. A pixel-based and
an object-based assessment of the performance of the proposed
methodology were implemented. As for the object-based as-
sessment, an object is considered hit if it is detected for more
than 30% of its total extension.

Main outcomes of the performed experiments are the fol-
lowings. As aforementioned, the number of clusters set in the
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TABLE III
RESULTS OF THE APPLICATION OF THE PROPOSED FRAMEWORK FOR EIGHT IMAGES OF THE AVAILABLE DATA SET AND FOR

DIFFERENT NUMBER OF CLUSTERS IN THE INPUT SSOM

Date N OA FA Date N OA FA

P (%) O P ×E−4 O P (%) O P ×E−4 O

25 25.9 7/9 1.21 1 25 86.2 11/11 0.36 1
2010/07/14 36 24.9 7/9 0.73 1 2011/10/09 36 85.2 11/11 0.32 1

49 82.6 9/9 1.18 3 49 83.9 11/11 0.36 1
64 90.2 9/9 1.14 2 64 85.0 11/11 0.24 0

25 84.6 13/13 0.52 2 25 39.6 6/8 1.48 3
2010/08/31 36 84.7 13/13 0.57 4 2014/07/01 36 40.3 6/8 1.70 2

49 83.7 13/13 0.15 1 49 83.2 8/8 2.58 2
64 83.4 13/13 0.35 2 64 89.0 8/8 2.70 2

25 86.5 13/13 0.61 0 25 29.4 7/10 0.80 0
2010/09/16 36 88.8 13/13 0.73 0 2014/08/26 36 87.1 9/10 1.10 0

49 85.0 13/13 0.66 0 49 86.0 9/10 0.80 0
64 84.9 13/13 0.38 0 64 82.0 9/10 0.71 0

25 37.4 10/11 0.61 0 25 86.1 10/10 1.38 2
2011/09/03 36 35.2 10/11 0.55 0 2014/10/05 36 84.5 10/10 1.02 1

49 86.1 11/11 0.22 0 49 76.0 9/10 0.60 0
64 88.5 11/11 0.49 0 64 86.5 10/10 0.63 0

N : number of SSOM clusters, OA: overall accuracy, FA: false alarm rate. P: pixel-based assessment, O: object-based assessment.

Fig. 8. (a) 64-cluster SSOM. (b) Mask obtained after the first iteration of the
“unreliable” dictionary loop. The presence of areas connected to the background
causes the loss of the compactness requirement. Original patch dimension ap-
proximately 1.5 × 1.5 km2 .

input SSOM can greatly affect the detection of the reservoirs.
We found that setting it to 25 or 36 lead to conflicting results,
sometimes very unpleasant. In fact, in these cases, the “unre-
liable” dictionary does not have clusters with dominant water
features. Therefore, the fusion around the nucleus constituted by
the “reliable” dictionary of image segments mainly representing
land, causes the loss of the scattering and geometric properties
(defined in Section III-C) required to candidate objects to be
classified as reservoirs.

The proposed method performs at its best raising the number
of clusters in the input SSOM. In fact, setting it to 49 or 64, the
clustering is able to model appropriately the transition between
water and land features at reservoirs boundary creating image
segments representative of this intermediate land cover, thus
allowing for a satisfying reconstruction of the reservoirs shape.

The principal characteristic of the proposed architecture is
the very low probability of false alarms. In fact, the max-
imum number of false reservoirs detected in the performed

Fig. 9. (a) 64-cluster SSOM. (b) Classification map. Green: correct detections.
Red: missed detections. Yellow: false detections. Original patch dimension
approximately 1.5 × 1.5 km2 .

experiments is 4 on 31 August 2010, using the 36-cluster SSOM.
Using the 64-cluster SSOM, this value decreases to 2. Averag-
ing the results of all the experiments, the results we obtain
are the followings: 25-cluster, 1.125 false reservoirs per image;
36-cluster, 1.125 false reservoirs per image; 49-cluster, 0.875
false reservoirs per image; 64-cluster, 0.75 false reservoirs per
image.

Missed detections are mainly due to: 1) the application of
morphological operators for cluster regularization causing ero-
sion of objects’ boundary (this causes missed detection only
at the pixel level); 2) the presence of clusters having dominant
land features at reservoirs borders causing the rejection of the
retrieved object by the fuzzy system described Section III-D;
3) the presence, especially at reservoirs’ boundary, of clusters
having color label not included into the “reliable”/“unreliable”
dictionary.

A graphical explanation of the method behavior is provided
in Fig. 8. In particular, in Fig. 8(a), we report a 64-cluster SSOM
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TABLE IV
COMPARISON BETWEEN THE PROPOSED ALGORITHM AND OTHER POPULAR CLASSIFICATION METHODS: SWPP, ML, SVM, NN, MR SEGMENTATION

Date Method N OA FA Date Method N OA FA

P (%) O P ×E−4 O P (%) O P ×E−4 O

Proposed 64 90.2 9/9 1.14 2 Proposed 64 85.0 11/11 0.24 0
SWPP 0.3 94.9 9/9 3.04 20 SWPP 0.3 89.5 11/11 0.47 2

2010/07/14 ML 4 94.4 9/9 1.38 5 2011/10/09 ML 4 78.8 11/11 3.50 40
SVM 4 92.4 9/9 1.18 5 SVM 4 85.8 11/11 0.33 2
NN 4 95.0 9/9 1.62 4 NN 4 89.9 11/11 0.29 1
MR 2.5 90.0 9/9 1.73 2 MR 2.5 87.6 11/11 0.72 0

Proposed 64 83.4 13/13 0.35 2 Proposed 64 89.0 8/8 2.70 2
SWPP 0.3 89.8 13/13 1.35 12 SWPP 0.3 91.8 8/8 4.45 12

2010/08/31 ML 4 89.3 13/13 0.95 8 2014/07/01 ML 4 98.3 8/8 594 2069
SVM 4 88.4 13/13 0.18 3 SVM 4 89.8 8/8 5.87 21
NN 4 85.5 13/13 1.08 9 NN 4 93.1 8/8 33.6 226
MR 2.5 77.0 11/13 0.66 2 MR 2.5 88.3 8/8 3.20 0

Proposed 64 84.9 13/13 0.38 0 Proposed 64 82.0 9/10 0.71 0
SWPP 0.3 90.2 13/13 0.76 3 SWPP 0.3 92.8 10/10 1.38 5

2010/09/16 ML 4 90.2 13/13 1.60 3 2014/08/26 ML 4 96.4 10/10 22.4 122
SVM 4 78.6 13/13 0.43 1 SVM 4 87.9 10/10 0.70 2
NN 4 83.5 13/13 0.52 2 NN 4 91.8 10/10 0.89 3
MR 2.5 66.8 12/13 0.59 1 MR 2.5 86.0 10/10 1.22 1

Proposed 64 88.3 11/11 0.49 0 Proposed 64 86.5 10/10 0.63 2
SWPP 0.3 89.1 11/11 0.60 2 SWPP 0.3 90.2 10/10 1.60 6

2011/09/03 ML 4 90.3 11/11 1.38 8 2014/10/05 ML 4 96.6 10/10 2.96 11
SVM 4 86.9 11/11 0.41 1 SVM 4 87.6 10/10 1.39 6
NN 4 90.2 11/11 1.83 12 NN 4 88.4 10/10 1.51 6
MR 2.5 87.4 11/11 0.93 0 MR 2.5 84.3 9/10 1.64 1

N: applied threshold for binary segmentation or number of clusters/classes for supervised classifiers. OA: overall accuracy, FA: false alarm rate. P: pixel-based
assessment. O: object-based assessment. Bold characters indicate the best registered performance.

centered on a reservoir of the study area. It is the only reservoir
missed using the 64-cluster SSOM in the performed experiments
(see Table III, acquisition on Aug. 26, 2014). In Fig. 8(b), the
mask obtained at iteration 1 of the “unreliable” dictionary loop is
shown. In this case, the presence of vegetation within the basin
cannot be compensated by the “fill holes” procedure because
the correspondent “holes” are connected with the background,
i.e., not completely surrounded by white pixels. This situation
is maintained for all the iterations of the “unreliable” dictionary
loop and causes the lost of the compactness requirement asked
to the shape to be classified as a reservoir.

In Fig. 9, we provide another graphical example of the be-
havior of our method, this time oriented to the pixel level. In
particular, in Fig. 9(a), a 64-cluster SSOM representing two
reservoirs of the study area is shown. In Fig. 9(b), a classifica-
tion map is depicted. Green, red, and yellow colors mean correct
decision, missed detections, and false alarms, respectively. Con-
sidering the larger of the two reservoirs, there is a stripe (wider
on the left) which is missed in the computed mask. This is be-
cause this stripe mainly falls in the cluster labeled as “Dark
slate gray,” which is generally not associated to the reservoir
class and therefore not included in our dictionaries.

As for pixel-based false alarms, the mechanism is quite simi-
lar. They can occur if, within the “unreliable” dictionary loop, a
small image segment mixing water and land features is added to
the “master” object. In this case [see yellow pixels in Fig. 8(b)],
land features, being strongly minority, does not affect the prop-
erties of the object and are aggregated to it to form the final
shape classified as reservoir.

TABLE V
SUMMARY OF THE OBTAINED RESULTS

Method AOA (pixel) MFA (object)

Proposed 86.2% 0
SWPP 91.0% 5.5
ML 91.8% 9.5
SVM 87.2% 2.5
NN 89.7% 5
MR 83.4% 1

AOA: Average pixel-based overall accuracy.
MFA: Median of the object-based false alarm.
Bold characters indicate the best registered
performance.

G. Comparison With Other Methods

In this section, we compare the results obtained using the pro-
posed methodology with other popular classification methods.
We assume as reference the experiments using the 64-cluster
SSOM as input, which are those giving the best tradeoff be-
tween the overall accuracy and false alarms.

The comparison is made with other (pixel-based) meth-
ods, very popular among end users and widely available on
commercial/open-source software suites for remote sensing
data analysis. In particular, we tested the performance of
the maximum-likelihood (ML) classifier, the support-vector
machine (SVM), and a standard back-propagation neural
net (NN). We also implemented the reservoirs extraction
through binary segmentation of the SWPP map recently in-
troduced by Amitrano et al. [36]. Finally, we experimented the
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TABLE VI
CONTRIBUTION OF THE THREE TECHNIQUE’S MODULE TO THE FINAL RESULT

Acquisition date Step 1 Step 2 Step 3

OA (%) FA×E−4 OA (%) FA×E−4 OA (%) FA×E−4

2010/07/14 50.5 (56.0) 221 89.0 (42.7) 0.09 90.2 (1.33) 1.14
2010/08/31 44.7 (53.6) 70.1 82.0 (44.7) 0.02 83.4 (1.67) 0.35
2010/09/16 46.4 (54.6) 79.4 83.8 (44.0) 0.02 84.9 (1.29) 0.38
2011/09/16 46.2 (52.3) 77.2 74.4 (32.0) 0.02 88.3 (15.7) 0.49
2011/10/09 49.2 (57.9) 19.4 83.7 (40.5) 0.01 85.0 (1.52) 0.24
2014/07/01 48.9 (54.9) 118 87.0 (42.8) 1.07 89.0 (2.24) 2.70
2014/08/26 45.9 (55.9) 80.1 80.9 (42.6) 0.06 82.6 (1.34) 0.71
2014/10/15 40.9 (47.3) 43.3 83.8 (49.6) 0.05 86.5 (3.12) 0.63

Step 1: Semantic preclassification mask based on the “reliable” dictionary. Step 2: First OBIA iteration. Step 3: Other
OBIA iterations. OA: Overall accuracy. FA: False alarms. In the OA column, we report the percentage value of the
module contribution with respect to the total in parenthesis.

multiresolution image segmentation algorithm (MR) [51] cou-
pled with an object-based analysis made on a single layer, given
by the mean of the ratio image calculated segment-wise, which
is treated with hard thresholding to classify. All these tech-
niques were applied to the Level-1α products used as input
for SSOM clustering. In fact, the authors demonstrated that the
performance of standard classifiers when applied to Level-1α
and Level-1β products are fully comparable with those given
by their application to standard temporal-filtered SAR images
(see, as an example, [20], [36], [40], [44] for more details).

As for ML, SVM, and NN techniques, 4-class classifications
(water, bare soil, layover, and vegetation) were implemented.
It is worthwhile to remark that they are supervised classifiers
(while the proposed method, after the definition of the dictio-
nary, is fully unsupervised). Therefore, for each of the consid-
ered acquisitions, relevant training samples for each class (about
10% of the ground truth) were selected. As for the SWPP, the
threshold value to be applied to the pseudo-probability map
was retrieved through a trial-and-error approach. As explained
in [36], this value is not time-dependent if the same reference
image is used to build the time series of Level-1α products.

The results of the performed experiments are summarized in
Table IV and Table V. At first, we analyze Table IV. Compared
to the other considered classifiers, the proposed methodology
systematically reduces the false alarm rate. On the other hand,
the object-based overall accuracy is slightly lower. This means
that, generally, a pixel-based classifier allows for having better
performances at the border of the reservoir, but at the cost of
a higher false alarm rate, which may be significant in some
cases. This happens especially for the ML classifier on Jul. 1,
2014 and Aug. 26, 2014, and for the NN classifier on Jul. 1,
2014. These classifications are completely failed, despite an
expert selection of the training samples. In general, we think
that the best tradeoff between the accuracy and the false alarms
is given, between the considered techniques, by the SVM
classification, whose performance are almost in line with those
of the proposed methodology.

As for the MR-based procedure, the obtained results are quite
satisfying. In fact, the overall accuracy is in line with those of the
best performing methods, while data on false alarms confirmed
the robustness of OBIA techniques with respect to this quality

parameter. Principal drawbacks of this experiment are the fine
tuning necessary to find the best parameter setup for the MR
algorithm and the trial-and-error approach to determine the hard
threshold to be applied to the considered object layer.

Another useful tool to evaluate the performance of all the
analyzed methods is provided in Table V, in which aggregated
results are reported. In particular, we considered the mean pixel-
based overall accuracy and the median of the object-based false
alarm computed considering the results for the eight performed
experiments. The median is chosen to exclude outliers from the
assessment.

From the first column of the table, it arises that the overall
accuracy is (on average) comparable and rather high for all the
considered methods, ranging from the 83.4% of the OBIA based
on MR segmentation to the 91.8 of the ML. The value for the
proposed method is 86.2%, and it is in line with that registered
for the SVM, which is 87.2%, so just 1 point above the one
given by our technique.

As for the second column, it is remarkable that the proposed
method restitutes a median of false alarms equal to zero. MR
and SVM also gives satisfying results, having a median of false
alarms of 1 and 2.5, respectively, with no particularly serious
outliers (see Table IV). The NN and the SWPP perform pretty
well with a median of about 5. However, in the case of the NN,
one of the experiments we made resulted failed. The ML clas-
sifier gave the worst performance with respect to this indicator,
and its usage for this application is seriously compromised by
the probability of failed classifications.

Summarizing, the proposed method showed performance
comparable with those of popular pixel-based supervised
techniques (ML, SVM, NN) in terms of accuracy, with the
advantages of minimizing false alarms (thanks to object-based
processing) and of being unsupervised (after the dictionary
definition). This makes our method very well suited for the
analysis of long time series, where robustness with respect to
misclassification is crucial due to the scarce supervision (which
is the main weakness of current OBIA methods, like the one
based on MR here analyzed). Moreover, in this application, su-
pervised techniques have a double drawback: 1) the necessity of
selecting relevant training samples for each image to be
classified and/or the fine tuning phase for the best technique’s
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TABLE VII
ASSESSMENT OF THE PERFORMANCE OF THE PROPOSED METHOD WITH RESPECT TO VARIATIONS OF THE PARAMETERS GOVERNING THE FUZZY SYSTEMS FOR

OBJECT-LAYERS MANAGEMENT AND FILLING HOLES OPERATION

Date F OA FA Date F OA FA

P (%) O P×E−4 O P (%) O P ×E−4 O

F−0 90.2 9/9 1.14 2 F−0 85.0 11/11 0.24 0
F−5 90.2 9/9 1.89 3 F−5 85.0 11/11 0.24 0

2010/07/14 F+5 90.2 9/9 1.14 2 2011/10/09 F+5 85.0 11/11 0.24 0
F−10 90.2 9/9 1.94 3 F−10 85.0 11/11 0.24 0
F+10 90.2 9/9 1.14 2 F+10 85.0 11/11 0.24 0

F−0 83.4 13/13 0.35 2 F−0 89.0 8/8 2.70 2
F−5 83.4 13/13 0.50 3 F−5 89.0 8/8 3.05 4

2010/08/31 F+5 83.4 13/13 0.27 1 2014/07/01 F+5 89.0 8/8 2.50 2
F−10 83.4 13/13 0.50 3 F−10 89.0 8/8 3.44 4
F+10 83.4 13/13 0.27 1 F+10 89.0 8/8 2.50 2

F−0 84.9 13/13 0.38 0 F−0 82.0 9/10 0.71 0
F−5 85.4 13/13 0.38 0 F−5 87.7 10/10 0.82 3

2010/09/16 F+5 84.9 13/13 0.38 0 2014/08/26 F+5 82.0 9/10 0.66 0
F−10 85.4 13/13 0.38 0 F−10 87.7 10/10 0.82 3
F+10 84.9 13/13 0.38 0 F+10 82.0 9/10 0.66 0

F−0 88.3 11/11 0.49 0 F−0 86.5 10/10 0.71 2
F−5 88.3 11/11 0.49 0 F−5 86.9 10/10 0.71 2

2011/09/03 F+5 88.3 11/11 0.49 0 2014/10/05 F+5 86.5 10/10 0.71 2
F−10 89.0 11/11 0.66 0 F−10 86.9 10/10 0.71 2
F+10 88.3 11/11 0.49 0 F+10 84.5 10/10 0.53 2

Reference results: Experiment F0 . Experiments F−5 , F−1 0 , F+ 5 , and F+ 1 0 have been run with parameters lowered of 5% and 10%, and
raised of 5% and 10%, respectively. OA: Overall accuracy, FA: False alarm rate. P: Pixel-based assessment, O: Object-based assessment.

parameter set-up, and 2) the strong dependency of the classifi-
cation result from the quality of such training sets/parameters,
which makes the operation highly dependent on the expertise
of the operator.

H. Modules Contribution

The proposed method can be packed into three steps: 1) the
semantic preclassification mask constituted by the “reliable”
dictionary; 2) the first OBIA iteration using the first element of
the “unreliable” dictionary; 3) the successive iterations of the
OBIA loop, from the second to the last element of the “unreli-
able” dictionary. The purpose of this section is to evaluate quan-
titatively the contribution of each module to the final result. The
outcomes of this investigation are reported in Table VI concern-
ing the pixel-based overall accuracy and false alarm rate. In the
overall accuracy column, we report in parenthesis the percentage
value of the module contribution with respect to the total.

As a general comment, the first step (i.e., the pixel-based anal-
ysis of the “reliable” dictionary), brings an average contribution
of about 53% to the total detections. In this phase, the false
alarm is quite high, since no OBIA has been implemented yet.
The second step accounts for about 42% of the total detections.
However, in this phase, a significant reduction of false alarms
is achieved thanks to OBIA. The last step is in most cases just
a refinement, allowing to better delineate reservoir borders with
negligible increase of false alarms. Only in one case, a signif-
icant improvement of the detection rate was registered in this
processing phase (see experiment relevant to the acquisition of
2011/09/16).

I. Sensitivity Analysis

In this section, the sensitivity analysis of the performance
of the method with respect to variations of its parameters is
presented.

Actually, being the problem of the number of clusters to be
set in the SSOM already discussed before, the parameters we
considered here for the assessment are those defining the fuzzy
system ruling the object layers and the filling holes operation.
Therefore, we changed the parameters reported in Table II and
Table I of ±5% and ±10%. Results of these new experiments
are shown in Table VII for the 64-cluster SSOM case. In par-
ticular, the experiments F−5 , F−10 , F+5 , and F+10 have been
implemented changing the parameters of −5%, −10%, +5%,
and +5%, respectively. Reference results are named as F0 .

The obtained results show a very poor sensitivity of the
method on its parameters. In fact, their decreasing, up to 10%,
does not affect significantly the false alarm rate. As an example,
the mean of the object-based false alarms passes from a value
of 1 in the case of “optimum” parameter selection (see Table II
and Table I) to about 1.9 for both F−5 and F−10 experiments.
Similarly, raising all the parameters of 10% has a very negligible
impact on the overall accuracy.

IV. CONCLUSION

One of the challenges of modern remote sensing is the in-
tegration of perceptive insights and mathematics for building
user-oriented processing chains allowing for fully exploitation
of Earth observation in operational/industrial contexts. In this
work, we have presented a novel architecture for feature ex-
traction from multitemporal SAR data mixing classic SAR
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processing and GEOBIA concepts. It was based on the usage
of the recently introduced RGB products of the Level-1α and
Level-1β families. These images have been treated with a self-
organized map algorithm derived from the classic Kohonen’s
schema and opportunely modified to best fit the characteris-
tics of the input products and to make it possible the automatic
attachment of a basic semantics to each cluster of the output
feature space.

The available semantics, referring to clusters’ color, has
been used to build a dictionary related to the feature of interest,
represented in the example discussed in Section III by small
reservoirs in semiarid environment. The dictionary was then
split in a “reliable” and a “unreliable” part. The former included
color labels which are likely to exhibit dominant water features.
The latter is composed by clusters which could have dominance
of land pixels.

The “reliable” dictionary was used as a nucleus to reconstruct
the reservoirs shape within a loop, in which the elements of the
“unreliable” dictionary were added one by one based on the
probability they have to represent clusters with dominant water
features. This allowed for building a semantic mask of candi-
date image segments. Two object-layers have been introduced
to individuate, among them, those having the scattering and
geometric characteristics best fitting those of a reservoir. They
were the mean (computed object-wise) of the SWPP (scattering
layer) and the compactness (geometric layer). A fuzzy system
rules the selection/rejection of candidate reservoirs.

The performance of the proposed architecture has been com-
pared with that of popular pixel-based supervised classifiers and
with that of an object-based approach based on a literature seg-
mentation method. As a result, using our method, we registered
a significant improvement of the robustness to false alarms,
keeping a comparable detection accuracy.

A sensitivity analysis on the parameters defining the fuzzy
classification system was also performed. The results show that
the proposed architecture is quite insensitive to variations, even
significant, of its parameters.

The proposed methodology represents a robust unsupervised
tool for time series analysis and can be adapted to several re-
mote sensing problems, provided the definition of the dictionary
best representing the scattering characteristics of the feature of
interest and of the most suitable OBIA for its identification.
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