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and Giuseppe Ruello, Member, IEEE

Abstract— We present a new methodology for rapid flood
mapping exploiting Sentinel-1 synthetic aperture radar data.
In particular, we propose the usage of ground range
detected (GRD) images, i.e., preprocessed products made avail-
able by the European Space Agency, which can be quickly treated
for information extraction through simple and poorly demanding
algorithms. The proposed framework is based on two processing
levels providing event maps with increasing resolution. The first
level exploits classic co-occurrence texture measures combined
with amplitude information in a fuzzy classification system
avoiding the critical step of thresholding. The second level consists
of a change-detection approach applied to the full resolution
GRD product. The discussion is supported by several experiments
demonstrating the potentiality of the proposed methodology,
which is particularly oriented toward the end-user community.

Index Terms— Classification, co-occurrence texture, flooding,
fuzzy systems, synthetic aperture radar (SAR).

I. INTRODUCTION

EFFECTIVE response to natural disasters requires the
availability of systems providing decision makers and

first responders a map of the affected area in a short
time [1], [2]. Floods are among the most serious natural
hazards in the world, causing significant damage to people,
infrastructure, and economies. This is true not only for devel-
oping countries. In fact, as an example, the U.S. Department of
Commerce, National Oceanic and Atmospheric Administration
estimated that in the U.S. an average of more than 225 people
were killed and more than 3.5 billion dollars in property were
damaged by heavy rainfall and flooding each year between
1993 and 1999 [3]. In Pakistan, between 1947 and 2008,
floods in the Indus river basin claimed more than 7000 lives,
inundating 7.7 million acres and causing massive infrastructure
and crop losses [4]. In these scenarios, rapid estimation of
inundated areas is crucial to effectively organize response
operations. Emergency managers require timely information
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about areas interested by floodwater in order to establish
interventions priority and plan mitigation measures.

The use of synthetic aperture radar (SAR) sensors is a
crucial value-added in rapid mapping of flooding due to their
all-weather and all-time imaging characteristics, ensuring the
availability of the acquisition independently of illumination
and weather conditions. However, the handling of radar data
for information extraction is typically considered more difficult
by end users, which often find more attractive images acquired
by multispectral sensors. This is due to both interpretation
and processing issues [5], the latter principally related to
the possibility to operate with radiometric indices, allowing
for the identification of many scene features through simple
thresholding. In the case of surface water, the normalized
difference water index introduced by McFeeters [6] is a
tool widely employed in applications providing easily com-
prehensible information even for nonexpert remote sensing
users [7]–[12].

However, despite their ease of use, multispectral data are
often not suitable for emergency due to their sensitivity to
weather and illumination conditions. Therefore, the scien-
tific community deeply investigated the use of SAR data.
Thresholding-based methods have been proposed, as an exam-
ple, in [13]–[15]. Boni et al. [16] proposed an integrated
system for flood monitoring based on the exploitation of satel-
lite acquisitions and flood forecasts. Garcia-Pintado et al. [17]
introduced a flood forecasting system supported by satel-
lite SAR acquisitions. D’Addabbo et al. [18] presented a
Bayesian network to integrate multitemporal SAR data with
geomorphic and other ground information. The use of both
supervised and unsupervised methods and multimodal data
is investigated in [19]. Reference [20] presented a fully
automated service for flood mapping exploiting TerraSAR-X
data in which preprocessing, unsupervised initialization of
the classification as well as postclassification refinement is
automatically triggered after satellite data delivery. A method
for the estimation of flood depth based on the inversion of
theoretical urban scattering models was presented in [21]. Ref-
erence [22] proposed an approach exploiting TerraSAR-X data
in combination with rule-based classification and Taguchi opti-
mization techniques. Change-detection for flooding mapping
in urban areas was faced in [23]. Reference [24] introduced
an automatic split-based thresholding process as a computa-
tionally efficient method providing reliable results in near-real-
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Fig. 1. RFP-L1 general workflow. The input is a calibrated Sentinel-1 GRD product with 10-m spatial resolution. It is treated with spatial multilooking
for speckle reduction. Histogram clipping is then performed in order to enhance the information of low reflectivity areas. The Haralick dissimilarity texture
and the reflectivity map feed a fuzzy system assigning the class “Flood” only to pixels having the characteristics required basing on the available layers. The
output flood map has 30-m spatial resolution due to the applied multilook. The method is fully unsupervised and threshold-free.

time mapping. Martinis et al. [25] compared four operational
SAR-based flood detection approaches. As for global-scale
applications, an automated water mapping algorithm based on
long-term training data sets to estimate the probability that a
pixel is covered by water given its backscatter and incidence
angle was introduced in [26].

The variety and the volume of the literature addressing
floods testify that mapping surface water from space using
SAR data is still an open problem. In this paper, we pro-
pose a new unsupervised framework for rapid flood mapping
exploiting Sentinel-1 ground range detected (GRD) products.
GRD products are detected images, made available by the
European Space Agency (ESA) through the Sentinels Data
Hub, on which a basic preprocessing [27] has been already
implemented. Therefore, they are ready to feed information
extraction processing chains.

This paper introduces a double innovation. The first one is
at product level. In fact, as far we know, there are very few
papers discussing the usage of Sentinel-1 GRD products in
applications (see [28]–[30] for flooding application), despite
they are raising more and more interest among end users
being available for cloud processing within the Google Earth
Engine platform [31], [32]. The second innovation is method-
ological. We propose two processing levels with increasing
computational burden providing maps with increasing reso-
lution. The first one is based on the analysis of the single
GRD product, and basically exploits classic Haralick textural
features [33]. The output is a flood map with 30-m spatial
resolution obtainable with few minutes processing time on
standard machines. The second processing level is based
on change detection, exploiting the comparison between two
GRD products imaging the same area. The output is a flood
map with the same resolution of the input products, unless
losses due to despeckling. In this case, the processing time
varies depending on the technique selected for despeckling,
which represents the most computationally demanding step of
the designed chain.

This paper is organized as follows. In Section II, the pro-
posed methodology is introduced. Experiments on five test

sites are discussed in Section III. The obtained results are
compared with those given by popular classification methods
in Section IV. The sensitivity of the method with respect to its
parameters is explored in Section V. Conclusions are drawn
at the end of this paper.

II. METHODOLOGY

The proposed methodology consists in two processing lev-
els with increasing complexity and computational burden.
In the following, we will refer to them as Level-1 rapid
flood processor (RFP-L1) and Level-2 rapid flood processor
(RFP-L2), respectively.

A. RFP-L1 Chain

The RFP-L1 chain is depicted in Fig. 1. The input is a
calibrated Sentinel-1 GRD product (10-m spatial resolution).
It is treated with a moderate multilook (3×3) in order to reduce
speckle without degrading excessively the image resolution
that passes from 10 to 30 m. Calibration is implemented using
the snap platform.

After multilooking, the SAR dynamic range is reduced to
compensate the presence of highly reflecting targets, result-
ing in an exponential probability distribution function (pdf).
As suggested in [34] and [35], this can be done with a
histogram clipping, which allows for relaxing the pdf, thus
enhancing the information content of low reflectivity areas.

Texture processing consists in the calculation of classic
Haralick features [33]. Actually, just one of them (the dissimi-
larity) is considered in this paper. The choice of the dissimilar-
ity was mainly empirical. We tested different texture measures,
and the best results were obtained using the dissimilarity.
However, good performances, only slightly worse than those
here presented, can be obtained using the homogeneity or the
contrast. The adopted window dimension for texture calcula-
tion was 5 pixels in order to optimize the tradeoff between
computational time (increasing with the window dimensions),
robustness to outliers, and edge preservation.
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Fig. 2. RFP-L2 general workflow. The input is a couple of calibrated, coregistered Sentinel-1 GRD products with 10-m spatial resolution (preevent and
postevent images). They are treated with despeckling and cross calibrated using the variable amplitude-level equalization method. A change index is defined to
feed, together with the postevent image, a fuzzy system assigning the class “Flood” only to pixels having the characteristics required basing on the available
layers. The output flood map has about 10-m spatial resolution (losses can occur depending on the applied despeckling). The method is fully unsupervised
and threshold-free.

TABLE I

ADOPTED PARAMETERS TO MODEL THE FUZZY SETS RELEVANT TO THE

SIMILARITY [SEE (1)] AND TO THE NORMALIZED GRD PRODUCT
TREATED WITH MULTILOOK AND HISTOGRAM CLIPPING

The clipped multilook product and the dissimilarity map are
normalized with respect to their maximum. These two maps,
ranging in the interval [0, 1], feed the fuzzy system for the
extraction of the flooded area. Actually, the dissimilarity is
used with its complementary to 1, that we call, for the sake
of simplicity, similarity, which is defined as follows:

s = 1 − d̂ (1)

in which d̂ is the normalized Haralick dissimilarity.
The two variables are modeled with two semantic attributes,

“Low” and “High,” corresponding to a Z-type and to an
S-type fuzzy set, respectively. The fuzzy set parameters are
reported in Table I. The flooded area is required to exhibit
“High” similarity (since negligible texture is expected on water
surfaces) and “Low” intensity.

The adoption of a fuzzy decision rule avoids the search for a
threshold. In fact, the classes “Flood” and “No flood” are auto-
matically assigned through defuzzification of the probability
maps created by the fuzzy system. This step is implemented
with the maximum membership method [36].

Object-based image analysis (OBIA) [37] is used to exclude
from the final map all the regions whose area is smaller
than a user-defined threshold. In this paper, this parameter
was set to 10E5 m2. OBIA processing is based on connected
component labeling [38], which allows for quickly segmenting
the binary images.

TABLE II

SUMMARY OF THE AVAILABLE DATA

Permanent hydrography (rivers and lakes) and sea surfaces
must be masked out from the flood map using some available
ground truths. The output map has 30-m spatial resolution due
to the applied multilooking. The method is fully unsupervised.
Its processing time is in the order of 20 min on a 4-core, 32-GB
RAM machine.

B. RFP-L2 Chain

The RFP-L2 chain is depicted in Fig. 2. The input is a
couple of calibrated Sentinel-1 GRD products representing the
preevent and the postevent scene situation. Calibration and
coregistration are implemented using the snap platform.

Despeckling is crucial to enhance the contrast between
water and land features. The higher the performance of the
selected algorithm, the higher the quality of the output map.
However, computational time will be typically higher as
well. In the experiments discussed in Section III, we used
a very simple despeckling algorithm, i.e., the refined-Lee
filter [39], in order to optimize computational time on the
available machine. However, if better performing machines are
available, the usage of more aggressive and computationally
demanding filters can be considered to increase the equivalent
number of looks in homogeneous areas [40]–[42].

Filtered images are then subjected to cross calibration using
the variable amplitude-level equalization introduced in [34] in
order to ensure that the same object in different images exhibits
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the same reflectivity. Cross-calibrated images are then used to
compute a change index, which, following the guidelines given
in [43], is formulated as follows:

CI = It2 − It1

It2 + It1
, CI ∈ [−1, 1] (2)

where It2 and It1 are the preevent and postevent images,
respectively.

The change index C I and the postevent image feed the
fuzzy classification system. Even in this case, the two variables
are modeled with the semantic attributes “Low” and “High,”
whose parameters are reported in Table I (for the change
index, they coincide with those defined for the similarity). The
flooded area should exhibit “High” change index and “Low”
intensity.

At the end of the processing chain, the OBIA is used
to discard regions smaller than a user-defined threshold
(5E4 m2 for the RFP-L2) and to fill small holes into
the retrieved map. Available ground truth about permanent
hydrography is useful to reduce false alarms (FA). The output
map has nominally 10-m resolution. However, losses are
possible due to despeckling. The method is fully unsupervised,
and its processing time (about 1.5 h using the same machine
exploited to run the RFP-L1 experiments) mainly depends on
the complexity of despeckling and the dimension of the input
images (about 1.6 GB).

III. EXPERIMENTS

The proposed methodology has been tested using five cases
taken from the list of activations of the Copernicus Emergency
Management Service (EMS) [44]. It is a wide repository in
which both processed maps and vector ground truth can be
downloaded for free. In particular, we considered the following
test sites (see also Table II).

1) Parachique (EMS Activation Code: EMSR199): This
flood, occurred on March 22, 2017, interested a wide
rural region (about 33 250 ha) in the area of Parachique
(Peru). The ground truth provided by the ESA is derived
from a COSMO-SkyMed acquisition made on March 30,
2017 using a semiautomatic method. The image used,
in this paper, for mapping the flooded area has been
acquired on March 23, 2017.

2) Selby (EMS Activation Code: EMSR150): Severe
weather and heavy rain caused flooding in the Yorkshire
area (U.K.) at the end of 2015. The affected areas are
those of York and Selby along the River Ouse and a
large West Yorkshire zone along the Calder and Aire
rivers, including the cities of Bradford and Leeds. This
data set concerns the city of Selby. The image used
for generating the flood map has been acquired on
January 1, 2016. Ground-truth data available from the
ESA were derived from a COSMO-SkyMed acquisition
made on December 31, 2015, using a semiautomatic
method.

3) Ballinasloe (EMS Activation Code: EMSR149): Heavy
rain caused flooding in the central area of Ireland in
January 2016. This data set concerns the city of Balli-
nasloe, which was one of the most affected by the event

occurred on January 8, 2016. The image used for flood
mapping has been acquired on January 9, 2016. Ground-
truth data available from the ESA were obtained using
a semiautomatic approach applied to Radarsat-2 data
acquired on January 11, 2016.

4) Poplar Bluff (EMS Activation Code: EMSR176): Strong
storms with heavy rains affected the central U.S. at the
end of April 2017 causing massive floods in Oklahoma,
Arkansas, Kansas, and Missouri. This data set concerns
the area surrounding the city of Poplar Bluff, MO, USA.
The image used for flood mapping has been acquired
on April 28, 2017. Ground-truth data made available
by the ESA were retrieved using a semiautomatic
method applied to COSMO-SkyMed data acquired on
May 03, 2017.

5) Jemalong (EMS Activation Code: EMSR184): In Sep-
tember 2016, heavy rains hit South Eastern Australia
causing flooding around the Lachlan River affecting
an area of approximately 34 000 km2. This data set
concerns the city of Jemalong. The ground truth pro-
vided by the ESA is derived from a Sentinel-1 image
acquired on September 29, 2016 and produced with a
semiautomatic method. The image used, in this paper,
to retrieve the flood map was acquired on September 27,
2016, in the descending orbit. We did not use the same
image exploited by the ESA to generate the ground truth,
because it seems that there are no other images acquired
before September 29, 2016, in the ascending orbit along
the track 155 on this site, thus making it impossible the
implementation of the change detection.

In Fig. 3, we reported some pictures relevant to the RFP-
L1 chain applied to two of the considered test sites (Parachique
and Jemalong). In particular, the input products are shown
in the first column of the picture. In the second column,
the dissimilarity maps are reported. In the third column,
the ground truth provided by the ESA is displayed. Flooded
areas are superimposed (in cyan color) to the input products
in the first column. The first row of the picture concerns the
Parachique test site. The second row of the picture concerns
the Jemalong test site.

The masks relevant to the permanent hydrography provided
by the ESA concern the same area of the ground truth. For
this reason, it is possible that lakes and rivers outside it appear
in the flooding map. However, this problem can be easily
solved by using a more extended database of permanent water
surfaces.

The results obtained using the RFP-L1 are reported in
the second and third columns of Table III. As for the
detection rate (DR) with respect to the available ground
truth, the following values were obtained: Parachique—99.8%,
Ballinasloe—98.0%, Selby—92.1%, Poplar Bluff—96.2%,
and Jemalong—91.2%. On average, the accuracy is 95.4%.

As for FA, the following values were obtained:
Parachique—8.58%, Ballinasloe—4.69%, Selby—1.00%,
Poplar Bluff—7.33%, and Jemalong—13.3%. The average
value is 6.98%.

In Fig. 4, some pictures concerning the application of
the RFP-L2 chain to the available data sets are reported.
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Fig. 3. RFP-L1 processing chain. First column: input GRD products (flooded areas superimposed in cyan color). Second column: dissimilarity maps. Third
column: ground-truth data provided by the ESA. First row: Parachique. Second row: Jemalong.

In particular, postevent images are shown in the first column
of the picture. In the second column, the change index maps
[see (2)] are reported. In the third column, the ground-truth
maps provided by the ESA are displayed. Flooded areas
are superimposed (in cyan color) to the postevent images in
the first column. The first row of the picture concerns the
Ballinasloe test site. The second row of the picture concerns
the Selby test site. The third row of the picture concerns the
Poplar Bluff test site.

The results obtained using the RFP-L2 are reported in
the second and third columns of Table IV. As for the DR
with respect to the available ground truth, the following val-
ues were obtained: Parachique—97.3%, Ballinasloe—98.6%,
Selby—91.8%, Poplar Bluff—84.1%, and Jemalong—93.6%.
On average, the accuracy is 92.9%.

As for FA, the following values were obtained:
Parachique—12.5%, Ballinasloe—6.60%, Selby—2.40%,
Poplar Bluff—11.1%, and Jemalong—12.3%. The average
value is 8.88%.

In general, both the RFP-L1 and RFP-L2 chains per-
formed quite well in all the considered test cases pro-
viding high-accuracy flooding maps with rather limited
occurrence of FA.

IV. COMPARISON WITH OTHER METHODS

A. Level-1 Processing

In this section, we compare the results obtained with
the RFP-L1 with other popular literature methods for SAR
image classification. In particular, supervised support vec-

tor machine (SVM) [45], neural net (NN) [46], maximum
likelihood (ML) [46], and unsupervised k-mean were con-
sidered. Moreover, threshold-based segmentation was also
experimented. In this case, the threshold was determined with
supervision following the approach suggested, as an example,
in [20] and [47]. The method consists in the selection of
some patches relevant to a flooded area, and then comput-
ing automatically the threshold using, as suggested in [20],
the minimum error algorithm [48]. The global threshold is
then obtained by averaging the local thresholds found using
the patches.

The results of the comparison are shown in Table III. The
proposed RFP-L1 chain is able to outperform the consid-
ered literature method in terms of DR in all the consid-
ered study cases. On average, the obtained results are the
following: RFP-L1—95.4%, k-mean—83.8%, SVM—82.8%,
NN—57.2%, ML—51.8%, and Thresholding—66.8%.

As for FA, the best performance (on average) is
given by thresholding classification. In particular,
we obtained the following mean results: RFP-L1—6.98%,
k-mean—22.3%, SVM—9.88%, NN—6.88 %, ML—4.94%,
and Thresholding—3.95%. However, the proposed
methodology offers the best tradeoff between flooding
mapping accuracy and occurrence of FA. In fact, the registered
value for FA is on average about 2% higher than the best
performing algorithm, while the overall accuracy is,
on average, at least higher than 10% with respect to the
considered literature methods.

In summary, from the performed experiments, it arises that
the proposed methodology gives the best tradeoff between DR
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Fig. 4. RFP-L2 processing chain. First column: input GRD products (flooded areas superimposed in cyan color). Second column: change index map. Third
column: ground-truth data provided by the ESA. First row: Ballinasloe. Second row: Selby. Third row: Poplar Bluff.

and FA with respect to the tested literature methods. Further
advantages are:

1) The lack of any supervision, which can significantly
influence supervised classifiers due to nonoptimal selec-
tion of the relevant training samples.

2) The lack of any thresholding, thanks to the adoption
of a fuzzy system combining the available layers in
such a way to optimize the management of uncertainty.
Local thresholding methods, in fact, although ensuring
the convergence of the most popular histogram-
based thresholding algorithm, can lead to overestima-
tion/underestimation of the optimal threshold due to: 1)
local variation of the backscattering (as an example, due
to wind-induced surface water roughness) and 2) near-
range/far-range reflectivity alteration, which is particu-
larly critical when data are acquired in ScanSAR mode,
like in the case of Sentinel-1 sensor.

Due to its characteristics, the method is particularly oriented
toward end users. In fact, it does not require particular exper-

tise in remote sensing to be effectively handled. Moreover,
assuming to fix the parameters ruling the fuzzy classification
system (whose sensitivity is analyzed in Section V), the algo-
rithm is practically parameter-free, since the variation of the
settings illustrated in Section II is expected to have a negligible
impact on the output (see Section V for details).

B. Level-2 Processing
In this section, we compare the results obtained with the

RFP-L2 with other popular literature classification methods,
such as SVM, NN, ML, and k-mean. Threshold-based seg-
mentation applied both on the ratio image and the difference
image (as suggested in [49]) was also implemented. In these
experiments, the threshold was determined applying the same
procedure used for the single GRD product.

The results of the comparison are shown in Table IV.
It arises that the RFP-L2 method is able to outperform
the considered literature methods in terms of DR in four
cases over five. On average, the obtained results are the
following: RFP-L2—92.9%, k-mean—73%, SVM—73.4%,
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TABLE III

COMPARISON BETWEEN RFP-L1 AND OTHER LITERATURE CLASSIFICATION METHOD: k-MEAN, SVM, NN, ML, AND THRESHOLDING.
DR: DETECTION RATE (PERCENTAGE). FA: FALSE ALARMS (PERCENTAGE). BOLD CHARACTERS

INDICATE THE BEST REGISTERED PERFORMANCE

TABLE IV

COMPARISON BETWEEN RFP-L2 AND OTHER LITERATURE CLASSIFICATION METHODS. SVM: SUPPORT VECTOR MACHINE. NN: NEURAL NET.
ML: MAXIMUM LIKELIHOOD. BR: BAND RATIO. DIT: DIFFERENCE IMAGE THRESHOLDING. DR: DETECTION RATE (PERCENTAGE).

FA: FALSE ALARMS (PERCENTAGE). BOLD CHARACTERS INDICATE THE BEST REGISTERED PERFORMANCE

NN—76.6%, ML—70.2%, band ratio—75.0%, and difference
image thresholding—66.1%.

As for FA, the best performance (on average) is given by the
NN classifier. In particular, we obtained the following mean
results: RFP-L2—8.88%, k-mean—19.8%, SVM—8.61%,
NN—7.25 %, ML—8.59%, band ratio—17.0%, and difference
image thresholding—18.3%. However, the proposed method-
ology allows for keeping an FA rate rather low with no occur-
rence of outliers, which are registered especially in band ratio,
difference image thresholding, and k-mean classifications.

As for computational burden, neglecting the time necessary
to select a significant number of training samples or to find
the most reliable threshold, the best performance is, of course,
given by thresholding, which restitute immediately the flooded
area. As for the other methods, considering the Jemalong
test site, the following computational times were registered:
ML—about 5 min, SVM—about 3 h, NN—about 3 h with
1000 iterations, and k-mean—about 10 min.

In summary, the considerations made for the RFP-L1 chain
hold. The proposed methodology gives the best tradeoff
between DR and FA with respect to the tested literature
methods, introducing also advantages concerning the lack
of any supervision and thresholding. Despite the first-level
chain, this algorithm requires a basic understanding of SAR
processing for the selection of the despeckling algorithm,
in case the operator wants to modify the standard choice of
the refined-Lee method.

V. SENSITIVITY ANALYSIS

In this section, we discuss the sensitivity of the proposed
methodology with respect to its parameters.

We start the assessment considering variations of the fuzzy
classification system. To this end, the values reported in
Table I were moved up and down of ±5% and ±10% in

order to evaluate their influence on the performance of the
algorithms. The results of these experiments are reported
in Table V.

In general, the behavior of the algorithm with respect to
these variations is a slightly higher overall accuracy and FA
rate moving up the parameters with respect to the settings
reported in Table I. On the other hand, a slightly lower
overall accuracy and FA rate is registered moving them down.
However, no significant variation in the performance of both
RFP-L1 and RFP-L2 are observed. In fact, the ranges of the
DR for the RFP-L1 are the following: DR ∈ [99.7, 99.9]
for the Parachique scene, DR ∈ [96.6, 98.7] for the Balli-
nasloe scene, DR ∈ [86.5, 95.6] for the Selby scene, DR ∈
[95.9, 98.9] for the Poplar Bluff scene, and DR ∈ [88.7, 93.8]
for the Jemalong scene. Concerning FA, the registered ranges
are the following: FA ∈ [7.04, 10.2] for the Parachique scene,
FA ∈ [4.46, 5.06] for the Ballinasloe scene, FA ∈ [0.78, 1.34]
for the Selby scene, FA ∈ [6.19, 8.78] for the Poplar Bluff
scene, and FA ∈ [10.3, 13.3] for the Jemalong scene.

As for the RFP-L2 chain, the registered ranges for the
DR are the following: DR ∈ [94.8, 98.4] for the Parachique
scene, DR ∈ [98.3, 98.7] for the Ballinasloe scene, DR ∈
[91.6, 91.9] for the Selby scene, DR ∈ [81.0, 86.9] for the
Poplar Bluff scene, and DR ∈ [92.2, 93.5] for the Jemalong
scene. Concerning FA, the registered ranges are the following:
FA ∈ [10.2, 15.0] for the Parachique scene, FA ∈ [6.29, 7.01]
for the Ballinasloe scene, FA ∈ [2.26, 2.61] for the Selby
scene, FA ∈ [10.0, 12.3] for the Poplar Bluff scene, and
FA ∈ [11.3, 13.4] for the Jemalong scene.

These experiments confirm the robustness of the proposed
methodology with respect to variations of the fuzzy classifi-
cation parameters.

Finally, we assessed the robustness of the presented method-
ology with respect to the size of the texture window w,
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TABLE V

SENSITIVITY ANALYSIS WITH RESPECT TO FUZZY SET PARAMETERS. O: “OPTIMUM” SETUP AS REPORTED IN TABLE I (BOLD CHARACTERS).
DR: DETECTION RATE (PERCENTAGE). FA: FALSE ALARMS (PERCENTAGE)

TABLE VI

SENSITIVITY ANALYSIS WITH RESPECT TO VARIATIONS OF THE TEXTURE WINDOW SIZE w, OF THE HISTOGRAM CLIPPING PARAMETER k , AND OF THE

MINIMUM MAPPED AREA Â. DR: DETECTION RATE (PERCENTAGE). FA: FALSE ALARMS (PERCENTAGE)

the histogram clipping parameter k, and the minimum mapped
area Â. We repeated the above-discussed experiments varying
one parameter per time with respect to the “optimum” setup
in order to evaluate the impact of each of them on the adopted
quality indicators. To this end, we set w = 3, w = 7,
k = 98%, Â = 5E4, and Â = 2E5 (i.e., the minimum
mapped area has been halved and doubled with respect to the
“optimum” setup). The results of this assessment are presented
in Table VI, in which no significant variations are appreciated
with respect to the values of DR and FA reported for the
“optimum” parameter setup. For brevity, we report just the
results obtained for RFP-L1 chain.

VI. CONCLUSION

Rapid mapping of a flooded area is crucial for the imple-
mentation of an effective response. SAR sensors, thanks
to their all-weather and all-time imaging capabilities, are a
powerful instrument, able to provide timely information to
first responders and decision makers. In this paper, we intro-
duced a novel methodology for unsupervised flooding mapping
exploiting preprocessed Sentinel-1 GRD products provided by
the ESA through the Sentinels Data Hub. It consists of two
successive processing levels with increasing computational
burden, giving as output event maps with increasing resolution.

The first level accepts as input the postevent image, which is
analyzed for standard Haralick textural features. Among them,
the dissimilarity measure is exploited to feed, together with
the amplitude information, a fuzzy classification system. The
output is a map with 30-m spatial resolution due to the applied
multilooking for speckle reduction. The processing time is in
the order of 20 min on a standard personal computer.

The second processing level is based on change detection
between a preevent and a postevent image. They are com-
bined in a change index feeding, together with the postevent
amplitude information, the fuzzy classification system. The
output is a flood map having the same resolution of the input
product (10 m), neglecting possible losses due to despeckling.

The processing time depends on the selected despeckling
algorithm. We tested the refined-Lee algorithm obtaining sat-
isfying results with respect to the available ground truth with
a processing time of about 1.5 h for all the considered test
sites. Both the level-one and level-two processing chains are
fully unsupervised and threshold-free thanks to the adoption
of fuzzy classification rules.

The performance of the proposed methodology was com-
pared with those of several literature methods. As a result,
we obtained that our method was able to outperform all of
them providing the best tradeoff between the DR and FA.

The proposed method aims at providing end users and
decision makers with a new unsupervised tool for rapid flood
mapping to support the first response to this kind of events.
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