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Pol-SARAS: A Fully Polarimetric SAR Raw Signal
Simulator for Extended Soil Surfaces

Gerardo Di Martino , Senior Member, IEEE, Antonio Iodice, Senior Member, IEEE,
Davod Poreh, Member, IEEE, and Daniele Riccio, Fellow, IEEE

Abstract— We present a new synthetic aperture radar (SAR)
raw signal simulator, which is able to simultaneously generate
raw signals of different polarimetric channels of a polarimetric
SAR system in such a way that a correct covariance matrix is
obtained for the final images. Extended natural scenes, dominated
by surface scattering, are considered. A fast Fourier-domain
approach is used for the generation of raw signals. Presentation
of theory is supplemented by meaningful experimental results,
including a comparison of simulations with real polarimetric
scattering data.

Index Terms— Rough surfaces, SAR polarimetry, SAR simu-
lation, synthetic aperture radar (SAR).

I. INTRODUCTION

IN RECENT years, synthetic aperture radar (SAR)
polarimetry has been successfully applied to soil-moisture

retrieval, forest monitoring, change detection, and marine
applications [1]. Therefore, a polarimetric SAR raw signal
simulator, based on a sound physical electromagnetic scat-
tering model, would be certainly useful for mission plan-
ning, algorithm development and testing, and prediction of
suitability of the system to different applications. This sim-
ulator should be able to consider extended scenes, whose
macroscopic topography is possibly prescribed by an external
digital elevation model (DEM), and to account for terrain
roughness and soil electromagnetic parameters. Simulated raw
signals of different polarimetric channels, when focused via
standard SAR processing algorithms, should lead to a realistic
polarimetric covariance (or coherency) matrix.

An efficient simulator with many of the above-cited features,
called synthetic aperture radar advanced simulators (SARAS)
[2]–[5], is actually available in the literature: in fact, it is a
model-based raw signal simulator that among other system
characteristics, also accounts for the transmitting and receiving
polarizations. However, it can only simulate one polarimetric
channel at a time, with the result that data of different channels
turn out to be independent. Accordingly, although the correct
relations between polarimetric channels’ powers are obtained,
the covariance (or coherency) matrix of the final images is not
realistic.
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Here, we present a new improved version of that simulator
that is able to simultaneously produce the raw signals of the
different polarimetric channels in such a way to obtain the
correct covariance or coherence matrices on the final images.
We call this new simulator “Pol-SARAS” to indicate that it
is the polarimetric version of the available SARAS. In the
following, we will refer to the simulator for the classical
stripmap acquisition mode [2], but the same modifications also
apply to simulators for spotlight [3] and hybrid [4] acquisition
modes, as well as to the one accounting for platform trajectory
deviations [5]. In addition, we here only consider surface scat-
tering, but due to the modular structure of the simulator, also
other scattering mechanisms (volumetric and double bounce)
can be included, if reliable models are available.

It must be recalled that polarimetric SAR simulators includ-
ing also other scattering mechanisms are available in the
literature (see [6], [7]). However, the simulator described in [6]
is tailored for specific man-made targets, such as ships and
tanks, and it cannot be used to simulate extended natural
scenes. On the other hand, the simulator described in [7] can
consider a wide range of natural and man-made scenarios with
different scattering mechanisms. However, with that method,
computation of the raw signal is necessarily in time domain,
and hence it is very computationally demanding. Conversely,
our proposed simulator can handle extended scenes (although,
for the moment being, just including surface scattering), and it
uses a fast Fourier-domain approach to generate raw signals,
so that it is very efficient. In addition, at variance with the
available literature, we also validate our simulator by using
a comparison with actual polarimetric scattering data. Apart
from [6] and [7], to the best of our knowledge, the several SAR
simulators available in the literature (see [31]–[36], just to
mention some of the most recent ones) are either not efficient,
in the sense that they use time-consuming numerical scattering
computation and/or time-domain raw signal evaluation, or not
polarimetric, in the sense that they are not able to simultane-
ously generate all the different polarimetric channels with a
realistic polarimetric covariance matrix.

The remainder of this paper is organized as follows.
In Section II, the rationale of the proposed simulator is
presented, highlighting similarities and differences with the
available SARAS. Section III is dedicated to the description
of simulation results. In particular, in Section III-A, the polari-
metric coherency matrices obtained from simulated data are
compared with those obtained by available approximate ana-
lytical scattering models; in Section III-B, a comparison
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Fig. 1. General architecture of the simulator.

Fig. 2. Geometry of the problem and coordinate reference systems.

between simulated and real polarimetric data is presented; and
in Section III-C, potential applications of the simulator to soil-
moisture retrieval and azimuth terrain slope retrieval from SAR
polarimetric data are illustrated. Finally, concluding remarks
are reported in Section IV.

II. POLARIMETRIC SIMULATION RATIONALE

Similar to the SARAS simulator [2]–[5], the presented
Pol-SARAS simulator employs a procedure consisting of two
main stages. In the first stage, given the illumination geometry
and the scene description, the scene reflectivity map, i.e., the
ratio between backscattered and incident field components, is
evaluated, thanks to appropriate direct models. At variance
with SARAS, the three reflectivity maps corresponding to the
HH, HV, and VV polarizations are here computed at the same
time. In the second stage, the HH, HV, and VV SAR raw
signals are computed via a superposition integral in which each
reflectivity map is weighted by the SAR system 2-D impulse
response, computed from system data. This general simulator
architecture is schematized in Fig. 1, and the geometry of the
problem is depicted in Fig. 2. It is assumed that the sensor
moves at constant velocity v along a straight-line nominal
trajectory and it transmits chirp pulses at regularly spaced
times tn ; note that in the employed reference system, x is
the azimuth coordinate, while y and r are the ground range
and slant range coordinates, respectively.

The simulator input data can be grouped into three classes:
scene data, illumination data, and system data. Scene data
include the following.

1) The scene height profile z(x, y), which can be either
provided by an external DEM, possibly resampled to fit
the employed reference system (see [24]), or selected by
the user among a set of canonical ones (plane, pyramid,
and cone).

2) Small-scale, p(x, y), and large-scale, σ(x, y), roughness
parameter maps, see below, which can be either provided
by an external file or set by the user (in the latter case,
the user can subdivide the scene in different rectangular
patches, specifying the parameters of each of them).

3) Complex relative dielectric permittivity map ε(x, y),
which again can be either provided by an external
file or set by the user (in the latter case, the user
can subdivide the scene in different rectangular patches,
specifying the permittivity of each of them).

Illumination data include sensor height, scene-center look
angle ϑ0, and carrier frequency f .

Finally, system data include, for nonsquinted stripmap
mode, sensor velocity v, antenna size, chirp bandwidth � f
and duration τ , pulse repetition frequency, and received pulse
sampling frequency fs . Additional parameters (e.g., squint
angle and length of the trajectory flight portion used to acquire
the raw data) are required for other acquisition modes [2]–[5].

A. Computation of Reflectivity Maps
Let us now analyze the first simulation stage (i.e., reflectiv-

ity maps computation) in detail. Similar to the usual SARAS
simulator, the surface macroscopic height profile is approx-
imated by rectangular rough facets, large with respect to
wavelength but smaller than SAR system resolution. The facet
roughness is here referred to as small-scale roughness, and
it is modeled as a stochastic process, whose statistics are
prescribed by the set of input parameters p(x, y). Although
different choices are possible, in this paper, we use a zero-
mean band-limited 2-D fractional Brownian motion (fBm)
isotropic stochastic process [11], characterized by its Hurst
coefficient Ht (with 0 < Ht < 1) and its topothesy T, so that
p ≡ (Ht, T ). A notable property of the fBm process is that
its power spectral density presents a power-law behavior and
is given by

W (κ) = S0κ
−2−2Ht (1)

where κ = (κ2
x + κ2

y )
1/2 is the (isotropic) roughness wavenum-

ber, and S0 is related to T and Ht as reported in [11].
At variance with the existing SARAS, here, to model the

large-scale roughness, we add zero-mean random deviations
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Fig. 3. Facet geometry.

to the facets’ azimuth and range slopes prescribed by the
macroscopic height profile. Therefore, we can express the
azimuth and range slopes a and b of each facet as

a = a0 + δa (2a)

b = b0 + δb (2b)

where a0 and b0 are the azimuth and range slopes prescribed
by the input macroscopic height profile z(x, y), and the slope
deviations δa and δb are zero-mean jointly Gaussian random
variables with joint probability distribution function given by

p(δa, δb) = 1

2πσ xσy

√
1 − ρ2

× exp

[
− 1

1−ρ2

(
δa2

2σx
2 + δb2

2σy
2 − ρδaδb

σxσy

)]
(3)

wherein σ ≡ (σx , σy, ρ) are the input large-scale roughness
parameters, σx and σy being azimuth and range slope standard
deviations, respectively, and ρ is the correlation coefficient.
A usual choice is σx = σy = σ , ρ = 0, so that the
slope deviations δa and δb are independent identically distrib-
uted Gaussian random variables, and large-scale roughness is
isotropic. However, with a different choice, it is also possible
to explore the effects of large-scale roughness anisotropy.
Realizations of random variables δa and δb according to (3)
are generated by using a standard algorithm [25].

From input illumination data (in particular, ϑ0 and sensor
height) and from z(x, y), by using simple geometric relations,
the facet center slant range r and look angle ϑ (see Fig. 3)
can be easily computed. Once facet slopes a and b and
look angle ϑ are known, it is possible to compute the local
incidence angle ϑl , i.e., the angle formed by the look direction
unit vector k̂ and the local normal unit vector of the facet n̂l

(see Fig. 3); in addition, it is possible to evaluate the ori-
entation angle β, i.e., the angle between global and local
incidence planes (i.e., between the vertical plane including the
look direction, and the plane perpendicular to the facet and
including the look direction, see Fig. 3). In particular, with

k̂ = − sin ϑ l̂y − cos ϑ l̂z (4)

and

n̂l = − a√
1+a2+b2

l̂x − b√
1+a2+b2

l̂y + 1√
1 + a2 + b2

l̂z

(5)

we can write

ϑl = cos−1(k̂ · n̂l) (6)

β = sin−1(ĥ · v̂l) (7)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ĥl = k̂ × n̂l

|k̂ × n̂l |
v̂l = ĥl × k̂

ĥ = k̂ × n̂

|k̂ × n̂|
v̂ = ĥ × k̂.

(8)

At this point, we have all the elements to evaluate the
reflectivity γ (x, r) of each facet, which can be computed by
using the small perturbation method (SPM) or the physical
optics (PO), according to the facet’s small-scale roughness and
incidence angle [8]: SPM holds for low roughness and inter-
mediate incidence angles and PO for high roughness or small
incidence angles. In particular, γ (x, r) can be expressed
as [8]–[10]

γpq(x, r; ϑl, β, ε) = χpq(x, r; ϑl, β, ε)w(x, r; ϑl) (9)

where p and q are the polarizations of the incident and
scattered fields, respectively, and stand for H (horizontal) or
V (vertical), ε is the input complex permittivity, χpq are the
elements of the 2 × 2 matrix

χ(ϑl , β, ε) = R
2
(β)

(
FH (ϑl , ε) 0

0 FV (ϑl, ε)

)
R−1

2
(β) (10)

with

R
2
(β) =

(
cos β sin β

− sin β cos β

)
(11)

being the 2 ×2 unitary rotation matrix, and FH and FV either
the Bragg (if SPM is used) or the Fresnel (if PO is used)
coefficients for H and V polarizations, respectively [8]–[10];
w(ϑl) is a polarization-independent zero-mean circular com-
plex Gaussian random variable, whose variance 〈|w(ϑl )|2〉
depends on small-scale roughness. The expression of this
dependence changes according to the employed scattering and
small-scale (i.e., facet’s) roughness models [8]–[11]: in the
SPM case, it is proportional to the power spectral density W (·)
of the facet’s roughness, given by (1) for fBm roughness, and
it can be expressed as

〈|w(ϑl )|2〉 = k4 cos4 ϑl W (2ksin ϑ l) (12)

where k is the electromagnetic wavenumber. In the PO case,
the expression of 〈|w(ϑl )|2〉 is related to the Kirchhoff scat-
tering integral and depends on the model considered for the
observed surface [10], [11]. In this paper, with the exception
mentioned at the end of this section, we will focus on SPM, but
analogous results can be obtained by using PO. Realization of
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the complex random variable w(ϑl) is obtained by generating
two independent realizations of a zero-mean Gaussian random
variable, used as real and imaginary parts of w(ϑl ).

It is important to note that at variance with the already
available SARAS simulator, in this updated version, the three
polarimetric channels HH, VV, and HV = VH (HV and
VH coincide, due to reciprocity) are simulated at the same
time, and the same realization of the random variable w(ϑl)
is used for all the three channels. This ensures that the
polarimetric channels are not independent; on the other hand,
the randomness of the facet slopes (which causes the ran-
domness of ϑl and β, and is the other main novelty of
Pol-SARAS) introduces a decorrelation among the different
channels. By performing different simulations with a varying
number of facets per pixel (from 1 × 1 to 20 × 20), we veri-
fied that practically the same correlations among polarimetric
channels are obtained by using any number of facets per pixel
equal to at least 2×2. In addition, in Sections III-A and III-B,
we will show that the statistics of the simulated polarimetric
channels are in agreement both with the ones predicted by
theory and with the ones of real polarimetric data, so that
we can conclude that if at least 2 × 2 facets per pixel are
used, the correct joint statistics among polarimetric channels
are obtained.

A few last remarks on the practical implementation of the
above-described procedure are now due. First of all, since
input data maps are sampled on a uniformly spaced grid over
the xy plane, the output reflectivity maps turn out to be sampled
on a grid which is uniformly spaced with respect to x , but
nonuniformly spaced with respect to slant range r . To recover
reflectivity maps sampled on a fully uniformly spaced grid
also on the x , r plane, to be used in the second simulation
stage, the same efficient range interpolation procedure, based
on a “power-sharing” approach, used in SARAS, is here
implemented.

In addition, the same efficient ray-tracing recursive algo-
rithm employed in SARAS [2] is here implemented to identify
shadowed facets, whose reflectivity is set to 0. Note that
for areas in back-slope close to shadow condition, the local
incidence angle is very large, so that both SPM and PO are
not appropriate. However, in this case, the backscattering is so
low that even very large relative errors on the scattered field
are of little practical importance, since in real data those areas
are dominated by thermal noise.

Finally, particular care must be dedicated to areas near
to layover conditions, for which local incidence angle is
small. In fact, as already noted, SPM does not hold for
small incidence angles, for which PO is more appropriate.
In particular, (12) diverges as the incidence angle tends to 0;
on the other hand, the PO value of 〈|w(0)|2〉 for fBm surfaces
is available [11], and we call it wmax. Indeed, small incidence
angles are of no interest in the SAR case, except occasionally
for areas near to layover conditions. To allow dealing also
with such areas without complicating the simulation algo-
rithm, in the proposed Pol-SARAS simulator, we use (12)
if it leads to a value smaller than wmax, otherwise we let
〈|w(ϑl )|2〉 = wmax. This latter condition only occurs for
incidence angles smaller than a threshold depending on small-

scale roughness parameters T and Ht . For values of roughness
parameters usually exhibited by actual natural surfaces [11],
the threshold angle ranges from very few degrees to about 20°.

The entire procedure described in this section is summarized
in the block scheme of Fig. 4, where the parts that are new
with respect to the SARAS simulator are evidenced by red
dashed boxes.

B. Evaluation of Raw Signals
Let us now consider the second simulation stage, in which

the raw signals for the different polarization channels are
obtained from the corresponding reflectivity maps by weight-
ing them with the SAR system impulse response. Apart
from the fact that this operation is performed three times
(one for each polarimetric channel), this simulation stage is
not changed with respect to the SARAS case. Therefore,
we here just briefly recall the procedure employed for the
stripmap acquisition mode [2]. However, a similar efficient
2-D Fourier-domain approach can also be used for the spotlight
case [3] and/or in the case of sufficiently regular deviations
with respect to the nominal trajectory [5]. In addition, a mixed
time- and Fourier-domain approach can be used for the hybrid
(i.e., sliding spotlight) acquisition mode and/or in the presence
of general trajectory deviations [4].

A chirp modulation of the transmitted pulse is assumed. The
expression of the SAR raw signal is the following [2]:

h pq (x ′, r ′) =
∫∫

γpq(x, r)g(x ′ − x, r ′ − r; r)dxdr (13)

wherein

g(x ′ − x, r ′ − r; r)

= exp

[
− j

4π

λ
�R

]
exp

[
− j

4π

λ

� f / f

cτ
(r ′ − r − �R)2

]

× u2
(

x ′ − x

X

)
rect

[
(r ′ − r − �R)

cτ/2

]
(14)

is the SAR system impulse response, and

�R = �R(x ′ − x; r) = R − r =
√

r2 + (x ′ − x)2 − r. (15)

In (13)–(15) (see also Fig. 2), the variables used may be
defined as follows.

1) x ′ is the azimuth coordinate of the antenna position.
2) R is the distance from the antenna to the generic point

of the scene.
3) R0 is the distance from the line of flight to the center

of the scene.
4) c is the speed of light.
5) u(·) is the azimuth illumination diagram of the real

antenna over the ground.
6) X = λR0/L is the real antenna azimuth footprint

[we assume that u(·) is negligible when the absolute
value of its argument is larger than 1/2, and that it is an
even function].

7) λ is the electromagnetic wavelength, and L is the
azimuth dimension of the real antenna.

8) rect[t /T ] is the standard rectangular window function,
i.e., rect[t /T ] = 1 if |t| ≤ T/2, otherwise rect[t/T ] = 0.
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Fig. 4. Block scheme of the reflectivity map computation; “r.v.” stands for “random variable.” Novelties with respect to the SARAS simulator are evidenced
by red dashed boxes.

9) r ′ is c/2 times the time elapsed from each pulse
transmission, and all other symbols have been already
defined.

If we ignore the r -dependence of g(·), i.e., if we let
r = R0 in (15), then (13) is easily recognized as the
2-D convolution between γ and g, which can be efficiently
performed in the 2-D Fourier transform (FT) domain. Even
considering the r -dependence, (13) can be efficiently com-
puted in the 2-D FT domain: in fact, by using the sta-
tionary phase method, it can be shown [2] that the FT
of (13) is

Hpq(ξ, η) = G0(ξ, η)�pq [ξ, η�(ξ) + μ(ξ)] (16)

where Hpq(ξ, η) is the FT of h pq(x, r) and �pq (ξ, η) is the
FT of γpq(x, r), and

G0(ξ, η) = exp

[
j
η2

4b

]
exp

[
j

ξ2

4a(1 + ηλ/(4π))

]

× rect

[
η

2bcτ/2

]
u2
(

ξ

2a X

)
(17)

is the FT of g(x ′ − x, r ′ − r; r = R0)

a = 2π

λR0
, b = 4π

λ

� f / f

cτ
(18)

and the functions

μ(ξ) = ξ2

4a R0
, �(ξ) = 1 − ξ2

4a R0

λ

4π
(19)
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Fig. 5. Flowchart of SAR raw signal simulation, given a reflectivity map.

account for the r -space-variant characteristics of the SAR
system, i.e., for the r -dependence of g(·).

Equation (16) suggests that the stripmap SAR raw
signal simulation can be performed as shown in the flowchart
in Fig. 5 [2], [4], where the “Grid deformation” block per-
forms an interpolation in the Fourier domain, to obtain the
desired values �pq [ξ, η�(ξ) + μ(ξ)] from the available ones
�pq(ξ, η).

This is the method employed in the stripmap SAR raw
signal simulator presented in [2], and also adopted here. Use
of efficient Fast FT algorithms leads, in the case of extended
scenes, to a processing time of different orders of magnitude
smaller than the one required by a time-domain simulation
directly based on (13)–(15).

Once the raw signals for the different polarization channels
are simulated, they can be focused with usual processing
algorithms employed for actual SAR data, in order to obtain
the final single-look complex images.

III. SIMULATION RESULTS

In this section, we illustrate some results obtained by
using the Pol-SARAS simulator described in Section II. The
presented experiments are aimed at the following:

1) verifying the consistency of the proposed simulator by
comparing the polarimetric coherency matrices obtained
from simulated data with those obtained by available
approximate analytical scattering models;

2) validating the proposed simulator by comparing simu-
lated and actual polarimetric SAR data;

3) illustrating the potentiality of the proposed simulator in
some SAR polarimetry applications, and in particular,
in developing and verifying algorithms to retrieve soil-
moisture or azimuth terrain slope from SAR polarimetric
data.

A. Comparison With Theoretical Models
As the first consistency check, let us verify that polarimetric

data obtained from simulated raw signals are in agreement
with those obtained by available approximate analytical scat-
tering models.

The most popular approximate analytical scattering models
are PO and SPM. However, they are not able to take into
account cross-polarization and depolarization effects, which
are essential for the modeling of polarimetric scattering from
rough surfaces (i.e., according to PO and SPM, the HV
backscattering is zero and HH and VV channels are perfectly
correlated, both results being in disagreement with experi-
ments) [9]. To properly deal with these effects, the second-
order SPM and integral equation methods have been proposed,
but their formulations are not in closed form, and they are too
involved to be used efficiently in practice [9], [10]. Two-scale
models have been introduced, which, even if able to extend the
SPM validity significantly, still do not take into account the
depolarization effect [10]. In [13], the model called “X-Bragg”
has been presented to take care of the cross-polarization and
depolarization effects. However, X-Bragg uses an unrealistic
uniform distribution to model the β angle (see Fig. 3), and
completely ignores the random variation of the local incidence
angle due to (large-scale) roughness. The polarimetric two-
scale model (PTSM) solves the aforementioned problems [9],
taking into account both cross-polarization and depolarization
effects properly: as demonstrated by meaningful experiments,
in low-vegetated areas, it presents a better agreement with
measured data [9]. In the PTSM model, the SPM expressions
of the covariance matrix elements of tilted rough facets are
evaluated; in particular, they are expressed in terms of the
facets’ slopes a and b (along azimuth and range directions,
respectively) by using the well-known relations linking them
to β and ϑl [9]. Finally, the entries of the covariance matrix
of the overall surface are obtained by averaging the cor-
responding tilted facets expressions over a and b, after a
second-order expansion around a = 0 and b = 0. There-
fore, some similarity between the PTSM and the Pol-SARAS
approach may be noted. However, relevant differences are also
present between the two approaches. In particular, in PTSM,
a second-order expansion around a = 0 and b = 0 is
performed, in order to analytically evaluate the covariance
matrix elements. Conversely, in Pol-SARAS, this approxima-
tion is not needed, because the covariance matrix elements
can be directly estimated on the polarimetric SAR images
obtained by focusing simulated raw signals. In addition, at
variance with PTSM, Pol-SARAS can account for anisotropic
behaviors of the imaged surfaces [see (3)], as we will show
in detail in Section III-C. Summarizing, in general, the
Pol-SARAS approach is expected to present a wider validity
range than that of theoretical approximated models, and a
meaningful comparison can be performed only with X-Bragg
and PTSM models, which account for cross-polarization and
depolarization.

X-Bragg and PTSM models allow for the computation of
covariance or coherency matrices [1] that have six independent
elements, of which three are real and three are complex.
Accordingly, comparison of coherency matrices obtained by
Pol-SARAS, X-Bragg and PTSM would amount to com-
pare three sets of nine real numbers each, and this should
be repeated for several combinations of input parameters
(ε, small-scale and large-scale roughness parameters, ϑ , f ).
A simpler comparison can be obtained by considering proper
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TABLE I

SIMULATION PARAMETERS FOR FLAT AND VESUVIUS SCENES

combinations of the coherency matrix elements. A convenient
choice is to use entropy and alpha angle [1]: entropy H is
related to the eigenvalues of the coherency matrix and mainly
measures the “degree of randomness” of the scattering process,
whereas the angle α is related to eigenvalues and eigenvectors
of coherency matrix, and it also depends on the kind of scatter-
ing mechanism, i.e., single, double, or volumetric scattering.
In the presence of surface scattering only, H and α mainly
depend on ϑ , ε, and large-scale roughness σ only. More details
about H and α can be found in [1], [13], [18], and [19].
In [9], PTSM and X-Bragg were compared with respect to
H –α charts, i.e., graphs in which, for a fixed incidence angle,
H and α values obtained in correspondence of ε and σ pairs
are plotted (see Fig. 6). Here, we use the same graphs to
compare Pol-SARAS with both PTSM and X-Bragg. To eval-
uate H and α, we simulated the polarimetric channels’ raw
signals giving as an input to the simulator a flat DEM (i.e., no
macroscopic topography) and using the parameters of Table I,
with 3 × 7 facets per pixel in azimuth and range, respectively.
Once the three channels’ complex images were obtained via
standard focusing of the raw data, we evaluated H and α
from coherency matrix elements obtained by averaging over
8 × 8 pixel windows; we then applied a further average of
the obtained H and α values over the whole scene. Finally,
we repeated the simulations for several values of ε and σ ,
in order to obtain the desired graphs.

In Fig. 6, a comparison between PTSM and X-Bragg H –α
graph predictions and Pol-SARAS-based ones is provided for
three different values of the look angle. PTSM and X-Bragg
graphs are evaluated assuming the same surface parameters
used for the simulations. For large look angles, i.e., 55°
and 45°, PTSM predictions are in good agreement with
Pol-SARAS results, even if, for increasing values of σ , entropy
tends to be slightly underestimated and α slightly overesti-
mated by PTSM. Conversely, as expected, Pol-SARAS results
significantly depart from X-Bragg predictions, which tend to
underestimate H and overestimate α. For smaller values of
the look angle [e.g., 35°, see Fig. 6(c)], also the PTSM graph
departs from the Pol-SARAS one, for σ larger than about 0.1.

Fig. 6. H –α chart obtained via PTSM (solid line) and X-Bragg
(dashed line), compared with Pol-SARAS results (blue points) for (a) ϑ = 55°,
(b) ϑ = 45°, and (c) ϑ = 35°. Pol-SARAS points are evaluated for ε equal
to 4, 10, 18, and 22, and for σ equal to 0.05, 0.1, 0.15, and 0.2.

In particular, α and H tend to be underestimated by PTSM.
Indeed, in this case, the PTSM is close to the limit of its
validity range, especially for increasing values of H .

By summarizing, we can state that the Pol-SARAS results
are in reasonable agreement with the ones of the PTSM
method, at least within the range of validity of the latter.
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B. Comparison With Measured Data
Comparison of polarimetric data obtained from simulated

and real data is now in order. To perform a meaningful
comparison, real SAR polarimetric data should be available
for a scene for which a DEM is available, as well as the
maps of permittivity and small- and large-scale soil roughness
(i.e., all the simulator input scene data). Unfortunately, while
DEMs are available for most part of the world, permittivity and
roughness maps are seldom, if not never, available. That is why
quantitative comparisons between simulated and real SAR data
are very seldom reported in the literature. Here, we circumvent
this problem in two ways: in one approach, we make reference
to polarimetric scatterometer real data relative to a small
bare-soil flat area for which in situ measurements of surface
permittivity and roughness are available; alternatively, in order
to consider real SAR polarimetric data, we use for comparison
purposes a combination of polarimetric channels that in case of
bare soils, only depends on topography, and is independent of
surface permittivity and roughness (namely, the combination
synthesizing the argument of correlation among right-handed
and left-handed circular polarizations [20]), so that the correct
knowledge of these input data is not critical.

With regard to the first approach, we compare simulation
results with data acquired by the University of Michigan’s
LCX POLARSCAT [9], [22], which provides measured values
of the polarimetric normalized radar cross section (NRCS) for
HH, VV, and HV channels. At the same time of scatterometer
acquisitions, also in situ measurements of soil parameters
were performed [22]. This allows for comparing the measured
values of the NRCSs with those obtained providing these
parameters as input to Pol-SARAS. In particular, here, we con-
sider the case of L-band data and moderate soil roughness,
i.e., POLARSCAT data relevant to the slightly rough bare-soil
surfaces 1 of [22]. For this surface, unfortunately, large-scale
roughness was not measured, and only the standard deviation
over 1-m long profiles s is available: in particular, for the
considered surface, we have ks = 0.16. Hence, for simulation
purposes, we fixed ε to the value measured in the top 4-cm soil
layer: in particular, surface 1 was monitored in the presence
of two different moisture conditions, corresponding to two
different values of ε. With regard to the large-scale roughness,
we fixed its value to 0.17, i.e., the average value obtained
via PTSM-based retrieval for different incidence angles and
for the two moisture conditions: PTSM-retrieved large-scale
roughness for surface 1 may be found in [9].

In Tables II and III, we present the results obtained for
wet and dry soil-moisture states, respectively. In particular, we
report the values (in dB) of co-polarized (copol) and cross-
polarized (crosspol) ratios measured by the scatterometer,
along with those predicted by the simulations. The latter are
defined as follows:⎧⎪⎪⎨

⎪⎪⎩
copol = 〈|iHH|2〉

〈|iVV|2〉
crosspol = 〈|iHV|2〉

〈|iVV|2〉
(20)

where i pq is the focused complex image relevant to the
pq polarimetric channel. The parameters of Table I were used

TABLE II

COMPARISON WITH MEASURED DATA, SURFACE 1-WET

TABLE III

COMPARISON WITH MEASURED DATA, SURFACE 1-DRY

for simulations, apart from the carrier frequency that was
set to 1.5 GHz, to match it with the scatterometer one. For
ε and σ , the values used in the simulations are reported in
the first row of Tables II and III. We note that the absolute
difference between scatterometer and Pol-SARAS copol ratio
values is at most 1 dB, i.e., comparable with POLARSCAT
measurement precision of ±0.4 dB [22]. With regard to
the crosspol ratio, for the wet case, the maximum absolute
difference is 1.1 dB, whereas for the dry case, for an incidence
angle of 30° the absolute difference is 3.4 dB and for 40° it
is 2.3 dB. However, for larger incidence angles (50° and 60°),
the absolute difference is less than 1 dB. These results confirm
the validity of the proposed simulator, which is able to provide
results in reasonable agreement with real data for a wide range
of incidence angles and soil surface parameters.

Let us now move to the second approach, in order
to directly compare simulated and real SAR polarimetric
images of an area with significant topography. We here use
May 1998 NASA/JPL AIRSAR L-band polarimetric data of
Camp Roberts, CA, USA, for which a DEM is also avail-
able [26]. Main AIRSAR system and acquisition data are
listed in Table IV, and they have been used also as inputs of
our simulator, together with the scene parameters also listed
in Table IV. Since, as usual, permittivity and roughness maps
of the imaged area are not available, for comparison purposes,
we use a combination of polarimetric channels that at least for
bare soils, is only dependent on topography, and, in particular,
mainly on the mean azimuth terrain slope within each SAR
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TABLE IV

SIMULATION PARAMETERS FOR CAMP ROBERTS AIRSAR DATA

resolution cell. This combination is [20], [27]

I2 = arctan

(
4Re

{〈
(iHH − iVV)i∗

HV

〉}
4〈|iHV|2〉 − 〈|iHH − iVV|2〉

)
. (21)

We used 2 × 2 facets per pixel in our simulations, and we
computed averages in (21) by using 2 ×36 (range × azimuth)
pixel windows on SAR images obtained from both real and
simulated raw signals, so obtaining a final pixel spacing of
about 20 m × 20 m. I2 images obtained from real and simu-
lated raw signals are shown in Fig. 7(a) and (b), respectively,
and in Fig. 7(c), the RGB false-color Pauli decomposition [1]
of the real data is displayed. In the latter, (2〈|iHV|2〉)1/2 is
loaded on the green band, (〈|iHH + iVV|2〉/2)1/2 is loaded
on the red band, and (〈|iHH − iVV|2〉/2)1/2 is loaded on the
blue band, and all three bands are normalized with respect to
(〈|iHH|2〉 + 〈|iVV|2〉 + 2〈|iHV|2〉)1/2: with this representation,
the red band is mainly associated with the surface scatter-
ing contribution, the green band with the volume scattering
contribution, and the blue band with double bounce [1].
Visually, there is a reasonable agreement between real and
simulated I2 images, but the former is clearly noisier than
the latter. This is due to two factors: first of all, I2 is quite
sensitive to thermal noise (due to the presence of the crosspol
power at the denominator of (21) and to the correlation at the
numerator of (21) [20], [27]), which we have not included in
the simulation, since the thermal noise level is not known;
second, some parts of the imaged scene are covered with
rather dense vegetation, as indicated by the green/blue areas of
the Pauli-decomposition image (volumetric scattering due to
tree foliage and branches, and double scattering due to trunk-
ground reflections), and in such areas, I2 is dependent not only
on topography, but also on the spatially varying vegetation
properties, which again are not included in the simulation (and
anyway are not known). In order to perform a quantitative

Fig. 7. I2 images obtained from (a) real and (b) simulated polarimetric SAR
data (σ = 0.15), and (c) Pauli RGB decomposition. Yellow, green, and blue
boxes encircle the three ROI of Tables V and VI.

comparison, we considered three regions in the scene: a favor-
able one [indicated by a yellow polygon in Fig. 7(c)], in which
surface scattering is the dominant mechanism; an intermediate
one [indicated by a blue polygon in Fig. 7(c)], in which
surface scattering is mixed with the other mechanisms; and an
unfavorable one [indicated by a green polygon in Fig. 7(c)],
in which volume and double scattering dominate. Mean values
and standard deviations of real and simulated I2 are reported
in Table V for each of the three regions and for three values of
the large-scale roughness parameter σ employed as simulator
inputs. A reasonable agreement between real and simulated
data is obtained for the mean values of I2 in both the favorable
(“yellow”) and the intermediate (“blue”) regions, whereas, as
expected, a poor agreement is obtained in the unfavorable
(“green”) area. It can be also noted that for the simulated
data, in all regions, I2 mean valuese decrease (in modulus) as
σ increases. Finally, confirming the result of the qualitative
visual inspection, standard deviations on simulated data are
smaller than those on real data, and this difference is more
evident in the “green” area. This is in agreement with the
explanation that we have given above for the noisier look
of I2 real image. In conclusion, we can state that I2 images
obtained from real and simulated data are in good agreement
in the areas where surfac scattering is significant. This is
further confirmed by the comparison of histograms of real and
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Fig. 8. Histogram of I2 values in the “yellow” region of Fig. 7, obtained
from (a) real and (b) simulated data.

simulated I2 images, shown in Fig. 8(a) and (b), respectively,
for the “yellow” region.

C. Usefulness of the Simulator in Some Applications
In this section, we present some simulation results illus-

trating the potentiality of the proposed simulator in some
applications of SAR polarimetry. Let us first consider soil-
moisture retrieval, which is one of the main applications of
fully polarimetric SAR data [1], [8], [9], [12]–[17]. In fact,
availability of different polarimetric channels, combined with
the use of scattering models, in principle allows independently
retrieving the different parameters on which backscattering
depends (soil moisture, surface roughness, vegetation density,
and shape). In particular, some of the employed models also
take into account the presence of double bounce and volumet-
ric scattering mechanisms to consider the presence of vegeta-
tion [14], [16], [17]. However, here we focus on the methods
tailored for bare or little vegetated soils, which only need mod-
eling of the surface scattering component [8], [9], [12], [13],
because this is the case of interest for Pol-SARAS simulations.
Some of these methods [8], [9], [13] try to define appropriate
combinations of the polarimetric channels chosen in such a
way to be dependent on the minimum number of physical
parameters of the observed scene: in the ideal case, they should
be a function of the soil dielectric permittivity (and hence soil
moisture) only; however, in practice, they also depend on the
macroscopic roughness of the surface. In particular, in [8]
and [9], lookup tables based on PTSM copol-crosspol and
copol-corr graphs are used for the estimation of soil moisture
in the presence of bare soil or low vegetation cover. The copol

and crosspol ratios are defined in (20), and the correlation
coefficient (corr) is defined as

corr =
∣∣〈iHHi∗

VV

〉∣∣√〈|iHH|2〉〈|iVV|2〉 . (22)

For PTSM, the dependence on small-scale roughness para-
meters cancels out in the ratios in (20) and (22), so that these
ratios only depend on the large-scale roughness σ and on
the relative dielectric permittivity ε. This is exploited in [9]
to devise a method for the estimation of ε from measured
polarimetric data: the obtained estimates can be used for the
estimation of the volumetric soil moisture, via appropriate
mixing models [9]. In particular, in [9], a method based on
the evaluation of the copol–crosspol graphs is used, whereas
in [8], the use of copol–corr graphs is proposed, too. One
enters the graphs with copol and crosspol ratios (or copol ratio
and correlation coefficient) obtained from SAR data and reads
the retrieved values of ε and σ on the graphs. (Of course, this
can be done automatically by a computer program.)

Since, as already discussed, Pol-SARAS simulations have
a wider range of validity than that of PTSM, they provide
the possibility to generate graphs that are not subject to
PTSM approximations. In the following, we discuss how the
proposed simulator can be used to obtain the abovementioned
graphs.

To evaluate the quantities in (20) and (22), we used the
same simulated images of Section III-A. Once the three
channels’ images were obtained, we evaluated the quantities
in (20) and (22) using a multilook of 8 × 8 pixels and then
averaging over the whole scene, as discussed in Section III-A.
Finally, we repeated the simulations for several values of
ε and σ , in order to obtain the copol–crosspol and copol–corr
graphs. In Fig. 9, the graphs obtained for a look angle of 45°
are reported. Similar results are obtained for look angles
of 35° and 55°. The behavior of the graphs matches with
PTSM theoretical expectations, at least in the considered range
of ε and σ values [8], [9]. However, the presented graphs
are expected to provide a range of validity wider than the
PTSM-based ones, especially for small look angles. A unique
characteristic of the Pol-SARAS simulator is the possibility to
account for anisotropic features of terrain roughness. Indeed,
in the simulator, it is possible to set two different values for the
standard deviation of the facets’ slopes in range and azimuth
directions, i.e., σx 	= σy , see Section II-A. This possibility
is particularly interesting in case of agricultural applications,
where harvesting and vegetation growth can easily impose
anisotropy on soil shape. The results for this case are shown
in Fig. 10. The simulation parameters are those of Table I,
with a look angle of 45° and ε = 4. In Fig. 10(a), we compare
the results obtained for the copol–crosspol graph setting σx =
σy = σ (i.e., the isotropic case), with those obtained setting
σx = 0 and σy = √

2σ , or σy = 0 and σx = √
2σ (i.e., two

anisotropic cases). The square root of two factor is used
to make the graphs comparable, considering that the overall
roughness in the case σx = σy = σ can be expressed as
(σ 2

x + σ 2
y )1/2 = √

2σ . As theoretically expected, since in the
absence of azimuth slopes, cross-polarization is not present,
when σx = 0 (i.e., only range slope and no azimuth slope),
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TABLE V

COMPARISON OF I2 FROM ACTUAL AND SIMULATED DATA FOR THE THREE ROI OF FIG. 7

Fig. 9. (a) Copol–crosspol and (b) copol–corr graphs for θ = 45°. For visualization purposes, the absolute value of the copol ratio in dB is reported on the
vertical axis.

Fig. 10. (a) Copol–crosspol and (b) copol–corr graphs in case of anisotropic soil roughness for θ = 45°. For visualization purposes, the absolute value of
the copol ratio in dB is reported on the vertical axis.

the crosspol ratio is practically 0 independent of σy value;
however, for visualization purposes in Fig. 10(a), we set it to
the conventional value of −60 dB. Moreover, we notice that in

this case, the values of copol ratio obtained for a certain σ are
slightly lower than those obtained in the case of σx = σy = σ .
When σy = 0 (i.e., only azimuth slope and no range slope),
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the results are somehow inverted. In particular, the range of
variation of the copol ratio is smaller than that of the case
σx = σy = σ ; conversely, the range of the variation of the
crosspol ratio is larger than that of the case σx = σy = σ . This
is due to the high sensitivity of the crosspol ratio to azimuth
slopes. From the viewpoint of soil-moisture estimation, i.e., of
ε estimation, it is evident that in the presence of significant
anisotropy, the estimation is impaired, since ε = constant
curves are very far from those relevant to the isotropic case,
especially when azimuth slopes are negligible with respect to
range ones.

In Fig. 10(b), the results for the copol–corr graph are
reported. When σ is equal to 0, corr is equal to 1 and, hence,
(1 − corr) is equal to 0: for visualization purposes in this
case, we set (1 − corr) to the conventional value of −60 dB.
Due to the strong dependence of both copol ratio and corr
on range slopes, we note that the graph relevant to the case
of σx = 0 is similar to the one obtained for σx = σy = σ ,
whereas the graph relevant to the case of σy = 0 significantly
departs from the case σx = σy = σ . However, in this case,
we note that ε = constant curves in the presence of anisotropy
are very close to those relevant to the isotropic case. This
is demonstrated by plotting the points relevant to different
values of ε, which highlights how the estimation of ε is not
significantly affected by anisotropic roughness. This is a very
important result, suggesting that the use of copol–corr graphs
should be preferred for bare-soil-moisture retrieval, whenever
uncontrollable anisotropies may be present in the macroscopic
roughness.

Let us now consider another application of SAR polarime-
try, i.e., the rotation angle β estimation for the compensa-
tion or the estimation of terrain azimuth slope variation [20].
In fact, in [20] and [27], it is shown that if surface scattering
dominates and if |β| ≤ π /4, then I2 in (21) is equal to 4β,
so that it can be used to retrieve β from polarimetric SAR data.
Results presented in Section III-B on simulated polarimetric
SAR data of Camp Roberts already visually show that as
expected, and in agreement with real data, I2 is actually related
to azimuth mean terrain slope in the resolution cell via the
rotation angle β (see Fig. 7). For a quantitative assessment,
as “ground truth” for the retrieval of β from SAR data, we
computed the β angle for the considered scene from the
available DEM (after averaging the latter to obtain the same
20 m × 20 m pixel spacing of the I2 maps). Obtained mean
β values (computed by restricting β values to the interval
|β| ≤ π /4) over the three regions of interest (ROI) selected in
Section III-B are reported in Table VI, together with the mean
β values retrieved from real and simulated SAR data via (21).
With regard to simulated data, we considered different, both
isotropic and anisotropic, large-scale roughness conditions.
In addition, in Table VI, we also report the mean β values
retrieved via (21) after a 2 × 2 boxcar smoothing on both real
and simulated SAR data [so that averages in (21) are in this
case obtained on 4×72 pixel windows]. Results from Table VI
show that if no smoothing is applied to SAR data, then the
following hold:

1) β values retrieved from real SAR data are significantly
underestimated (in absolute value), and this underesti-

Fig. 11. Shaded representation of the smoothed LiDAR DEM of the Vesuvius
volcano.

mation is higher on vegetated areas (“green” and “blue”
regions).

2) β values retrieved from simulated SAR data are also
underestimated, but in better agreement to DEM-derived
ones with respect to real data estimates; in addition,
the underestimation increases as the large-scale rough-
ness increases.

3) When anisotropic large-scale roughness is considered,
the underestimation effect due to roughness is much
more significant if roughness slopes are along the
azimuth direction.

However, β estimations after smoothing of polarimetric
SAR data are in much better agreement with the DEM-derived
ones, and effects of roughness, noise, and vegetation are signif-
icantly reduced. Also, retrievals from real and simulated data
are in very good agreement, thus confirming that differences
between real and simulated I2 images in Fig. 7 are mainly due
to unmodeled noise, see discussion in Section III-B.

In conclusion, simulated results show that if the elements
of the coherency matrix are obtained by averaging over
about 70–80 pixels (which is usually considered sufficient
in most applications [1]), even for pure surface scattering,
the retrieval of β from SAR polarimetric data may be affected
by underestimation due to surface roughness, especially if
the latter is prevalently along the azimuth direction. However,
this effect is almost completely eliminated if a further 2 × 2
averaging is performed, so that the overall averaging is over
about 300 pixels.

Finally, to illustrate the application of the presented sim-
ulator to the assessment of classification methods based on
polarimetric SAR data and to show the simulator efficiency in
terms of processing time, we present a last example regarding
a scene with a nonflat DEM, simulated giving as input to
Pol-SARAS a one-meter-resolution LiDAR DEM of the vol-
cano Vesuvius, close to Naples, Italy [23]. Since the high-
resolution LiDAR DEM is too sensitive to the presence of
vegetation and anthropogenic features, a preliminary smooth-
ing step was applied, leading to a final resolution of 5 m.
The DEM obtained after the smoothing is shown in Fig. 11.
The simulations were performed using the parameters reported
in Table I, with a look angle of 45°, a relative dielectric
constant equal to 4. As an example, the HH channel simulated
image is reported in Fig. 12: a multilook with a factor of 2 in
range and 16 in azimuth is applied, to obtain an approximately
square pixel.

Obtained results are here analyzed in terms of H and α
images obtained from the Pol-SARAS simulations. In Fig. 13,
H and α images obtained for σ = 0.1 are shown. The values
of H are low and tend to be higher in areas of low intensity.
The values of α are low in average and tend to increase for
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TABLE VI

MEAN VALUES OF β [rad] RETRIEVED FROM DEM AND FROM ACTUAL AND SIMULATED DATA FOR THE THREE ROI OF FIG. 7

Fig. 12. Simulated image relevant to the HH channel.

Fig. 13. Images of (a) entropy and (b) α angle relevant to the Vesuvius
simulation.

increasing values of the local incidence angle, as expected.
These observations are confirmed by the H –α scatterplot
shown in Fig. 14, where the zones identified according to
the classification scheme proposed in [19] are reported. The
graph confirms that most of the points are located in zone 9,
i.e., present low values of both entropy and α. Zone 9 is indica-
tive of the presence of surface scattering mechanisms [19].

A few last words on computation complexity and processing
time are now due. First of all, it must be noted that compu-
tation complexity has not been significantly increased with
respect to the non-polarimetric SARAS simulator, so that it
is still approximately proportional to N∗ log N , where N is
the number of pixels for the considered scene. In fact, overall

Fig. 14. Scatterplot of the images in Fig. 13 represented in the H –α plane
partitioned according to the classification scheme proposed in [19].

computational complexity for the three polarimetric channels
is slightly less than three times the one for a single channel.
(Consider that many operations for reflectivity generation are
in common for the three channels, which compensates for the
fact that generation of random deviations of facets’ slopes
has been added.) In particular, for the Vesuvius scene, with
a 5261 × 1506 pixel raw signal size, on a general purpose
PC with an Intel Core i7-6700HQ CPU @ 2.60 GHz and a
16-GB RAM, processing time is 47 s for SARAS and 2 min
and 18 s for Pol-SARAS.

IV. CONCLUSION

In this paper, a fully polarimetirc SAR simulator, which
we named Pol-SARAS, has been presented. It is based on
the use of sound direct electromagnetic models, and it is
able to provide as output the simulated raw data of all the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

three polarization channels in such a way as to obtain the
correct covariance or coherence matrices on the final focused
images. At the moment, the proposed simulator takes into
account the surface scattering contribution only; however,
thanks to the simulator modularity, volumetric and double-
bounce contributions can be included to account for vegeta-
tion, too, if efficient and accurate models become available.
Actually, several quite accurate vegetation models are already
available (see [28], [29]), but their efficient implementation in
the simulation scheme is not straightforward, and it is left to
future work.

In addition, we also note that man-made complex targets
(for instance, buildings in urban areas) may be considered by
the proposed simulator by including them in the DEM (with
also an appropriate complex permittivity, see Section II), but
only provided that z(x, y) remains single valued (i.e., two
or more facets with the same x , y coordinates and different
heights cannot be considered). In addition, multiple bounces
between different facets are not considered. For the non-
polarimetric SARAS simulator, both limitations can be over-
come as described in [30], but that solution cannot be easily
extended to the Pol-SARAS case, and this has not been made
for the moment being. Finally, the proposed polarimetric SAR
simulation scheme can be applied to time-varying marine
scenes by extending the approach described in [37], but this
is not straightforward, and has not been implemented for the
moment being.

The proposed simulator has been shown to provide results
in agreement with what predicted by available theoretical
models, at least in the validity ranges of the latter. In addi-
tion, polarimetric data obtained from simulated raw signals
have been shown to agree with those obtained from a real
SAR sensor. Finally, the potentialities of the simulator in
support of some practical applications of SAR polarimetry
have been investigated. In particular, with regard to soil-
moisture retrieval, the possibility to simulate scenes present-
ing anisotropic macroscopic roughness has been exploited to
demonstrate that the use of copol–corr lookup tables has to
be preferred to copol–crosspol ones for the estimation of ε,
in the presence of surfaces that may present an anisotropic
roughness. Furthermore, with regard to the rotation angle
estimation from polarimetric SAR data, presented results show
that to avoid underestimation, sufficiently large windows must
be used in computing the coherency matrix elements. Finally,
the usefulness of the simulator for the analysis of polarimetric
classification schemes has been also discussed: in particular,
an example of the application of H –α analysis has been
presented.
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