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Closed-Form Anisotropic Polarimetric Two-Scale
Model for Fast Evaluation of
Sea Surface Backscattering

Gerardo Di Martino , Senior Member, IEEE, Antonio Iodice , Senior Member, IEEE,
and Daniele Riccio , Fellow, IEEE

Abstract— The polarimetric two-scale model (PTSM) was
introduced a few years ago as an electromagnetic scatter-
ing model to be used within algorithms for soil moisture
retrieval from polarimetric synthetic aperture radar (SAR) data.
PTSM inherits the ability to account for depolarization effects
from the original two-scale model (TSM), and, with respect to
the latter, it has the advantage to provide closed-form expressions
of the elements of the covariance matrix that hold for moderate
large-scale surface slopes. This allows a very fast evaluation of
scattering, since numerical integration needed by the original
TSM is avoided. The TSM, also called composite model (CM),
has been extensively used to study scattering from the sea
surface, so that it is natural to explore the use of PTSM
for the same purpose. However, in its current formulation,
PTSM assumes that large-scale surface slope distribution and
small-scale roughness spectrum are isotropic. This is not realistic
for the sea surface, for which anisotropy is dictated by the wind
direction. Accordingly, we here extend PTSM to account for
surface roughness anisotropy, so obtaining the anisotropic PTSM
(A-PTSM). In addition, as a second contribution, we provide
A-PTSM expressions also in the circular polarization basis, which
may be useful for some SAR sensor polarimetric configurations.
Finally, we compare A-PTSM results with sea surface scattering
measurements available in the literature and with results of the
second-order small-slope approximation (SSA2). In particular,
as a third original contribution of this paper, an analytical
closed-form expression of the ratio of crosspolarized normalized
radar cross sections (NRCSs) obtained by SSA2 and A-PTSM is
provided.

Index Terms— Polarimetry, scattering from rough surfaces, sea
surface.

I. INTRODUCTION

THE two-scale model (TSM), also called composite model
(CM), [1], [2] has been extensively used for compu-

tation of scattering from rough surfaces, and, in particular,
from sea surfaces, see [3]–[5]. According to TSM, the rough
surface is modeled as the superposition of a large-scale
(or low-frequency) roughness, which includes surface spectral
components with wavenumbers lower than a properly chosen
cutoff wavenumber, and a small-scale (or high-frequency)
roughness, which encompasses surface spectral components
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with wavenumbers higher than the cutoff wavenumber. The
latter must be sufficiently smaller than the electromagnetic
wavenumber, and sufficiently larger than 2π times the inverse
of the sensor resolution, so that a certain degree of arbi-
trariness is implied in its choice. Scattering from large-
scale roughness is evaluated by using the geometrical optics
(GO) approximation; it is dominant at near-specular directions
(in backscattering, at small incidence angles) and the elements
of the polarimetric covariance matrix, including the normal-
ized radar cross sections (NRCS) at different polarizations,
turn out to be dependent on the large-scale surface slope
probability density function (pdf). Conversely, scattering from
the small-scale roughness is computed by evaluating the
scattering from a randomly tilted rough facet via the small
perturbation method (SPM), and then averaging the obtained
NRCS over the facet random slopes, statistically distributed
according to the large-scale surface slope pdf. Backscattering
from small-scale roughness is dominant at intermediate inci-
dence angles and the elements of the polarimetric covariance
matrix, including the NRCS, mainly depend on the small-scale
roughness power spectral density (PSD). It must be noted that
no depolarization effect can be obtained by the TSM if the
facet random tilt is not accounted for, so that averaging over
the facet random slopes is a necessary step for a polarimetric
scattering analysis via the TSM.

Although GO and SPM provide closed-form expressions
of NRCS, accurate averaging over surface slopes requires the
numerical evaluation of the corresponding integral, so that no
closed-form expression for the NRCS (and for the other ele-
ments of the polarimetric covariance matrix) can be obtained
via the TSM as it was originally formulated [1], [2] and
usually employed [3]–[5] (unless very raw approximations
are done, as in [1]). However, a closed-form formulation
of TSM was introduced a few years ago in [6] and [7],
where it was called polarimetric TSM (PTSM). PTSM inherits
the ability to account for crosspolarization and depolarization
effects from the original TSM, and, with respect to the latter,
it has the advantage to provide closed-form expressions of the
elements of the covariance matrix that hold for moderate large-
scale surface slopes [6], [7]. This is achieved by performing
a second order expansion of the tilted-facet SPM expressions
with respect to large-scale surface slopes before performing
the average operation [6], [7].

PTSM was originally introduced as a fast method for the
computation of backscattering from bare soils, to be used
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within algorithms for soil moisture retrieval from polarimetric
synthetic aperture radar (SAR) data [6]–[8]. Nevertheless,
since TSM has been extensively used to study backscattering
from the sea surface, it is natural to explore the use of PTSM
for the same purpose. However, in its current formulation
PTSM assumes that large-scale surface slope distribution and
small-scale roughness PSD are isotropic, which is not realistic
for the sea surface. In fact, the variance of sea surface
slope along the upwind (or downwind) direction is usually
higher than the one along the crosswind direction. Therefore,
slopes along range and azimuth directions turn out to have
different variances and to be correlated, and their variances and
correlation coefficient can be expressed in terms of upwind and
crosswind variances and of the angle between wind and ground
range directions, as we illustrate in Section II. Similarly,
the small-scale PSD shows an anisotropy dictated by the wind
direction. Accordingly, we here extend PTSM to account for
sea surface anisotropy, and this is the first contribution of
this paper. We call this new proposed model the anisotropic
(or advanced) PTSM (A-PTSM), see Section III. In addition,
as a second contribution, we provide A-PTSM expressions
also in the circular polarization basis, which may be useful
for some SAR sensor polarimetric configurations.

A limitation of TSM and A-PTSM is that they only account
for depolarization effect due to surface tilting, whereas they
ignore depolarization due to multiple scattering, so that it
is expected that they underestimate this effect [9]. A more
accurate model that also accounts for multiple scattering is the
second-order small-slope approximation (SSA2) [9]. However,
this higher accuracy is paid by the fact that SSA2 requires a
computationally demanding numerical evaluation of fourfold
integrals. Comparisons of numerical evaluations of TSM and
SSA2 performed in [9] showed that generally they are in
good agreement, except for the crosspolarized NRCS which,
in the considered cases, is underestimated by TSM of two to
four dB with respect to the SSA2 value. Since only numerical
evaluations of both SSA2 and TSM were available in [9],
these comparisons were made only for specific surface para-
meters, incidence angles and frequencies, so that no general
conclusion can be drawn. Fortunately, in [10], an analytical
approximation of SSA2 (SSA2-A) was obtained (although for
the crosspolarized NRCS only), and it was shown that it is
in very good agreement with exact SSA2 for moderate slopes
and intermediate incidence angles. This allows us to obtain,
as a third contribution of this paper, an analytical closed-form
expression of the ratio of crosspolarized NRCSs obtained by
SSA2-A and A-PTSM, which allows us to draw some general
conclusions on the approximate agreement of results from the
two methods, see Section IV.

Finally, comparisons of A-PTSM results with measured data
obtained from the literature are presented, see Section IV.

II. SEA SURFACE DESCRIPTION

In order to evaluate sea surface scattering via the TSM,
we need to specify the PSD of the height profile of the small-
scale roughness and the pdf of the slopes of the large-scale
roughness, with a cutoff wavenumber κcut of the order of (but

Fig. 1. Geometry of the scattering problem for a tilted facet.

smaller than) the wavenumber k of the incident microwave
signal. In the following, we will make use of a reference
system whose axes in the horizontal plane are the ground-
range (or in-plane) and azimuth (or out-of-plane) directions.
The ground-range direction is defined as the intersection of
incidence and horizontal planes, whereas the azimuth direction
is perpendicular to the incidence plane, see Fig. 1.

A. Small-Scale Roughness

With regard to the PSD of the small-scale roughness heights,
we use the high-frequency part of the directional Elfouhaily
spectrum [11]

W2D(κ, ϕ) = W (κ)�(κ, ϕ) (1)

where κ is the amplitude of the surface wavenumber vector
and ϕ is the angle between the surface wavenumber vector
and the ground-range direction; W (κ) is the omnidirectional
part of the spectrum, expressed as1

W (κ) = παmcm

c κ4 exp

[
−1

4

(
κ

κm
− 1

)2
]

(2)

where

αm =
{

0.01[1 + ln(u∗/cm)], for u∗ ≤ cm

0.01[1 + 3 ln(u∗/cm)], for u∗ > cm

κm = 363 m−1 cm = 0.23 m/s (3)

c is the sea-wave phase velocity, computed from the sea
surface dispersion relation as

c =
√√√√g

κ

[
1 +
(
κ

κm

)2
]

(4)

g being the gravity acceleration, equal to 9.81 m/s2, and
u∗ is the friction velocity, related to the wind velocity at 10 m
height u10 by the following relation [11], [12]:

u∗ =√Cd u10 (5)

1By following [6], in our convention, the factor 1/(2π ) appears in the 1-D
inverse Fourier Transform, at variance with the convention used in [11], where
the factor 1/(2π ) appears in the 1-D direct Fourier Transform.
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with

Cd =
{

1.205 · 10−3, for 4 ≤ u10 < 11 m/s

(0.49 + 0.065u10)10−3, for 11 ≤ u10 ≤ 25 m/s

(6)

finally, �(κ, ϕ) is the angular spreading function, given
by [11]

�(κ, ϕ) = 1 +�(κ) cos[2(ϕw − ϕ)] (7)

where

�(κ) = tanh[0.173 + 4(c/cp)
2.5 + am(cm/c)

2.5] (8)

with cp ∼= u10/0.84 and am = 0.13u∗/cm , and ϕw is the angle
between wind and ground-range directions.

It is useful to note that the range of surface wavenumbers
of interest here spans from a few tens of rad/m (for L-band
sensors) to a few hundreds of rad/m (for Ku-band sensors).
In this range of wavenumbers, the exponential factor in (2)
is practically constant and very close to unity, and sea-
wave phase velocity can be approximated as c ∼= √

g/κ.
Accordingly, a useful approximation of the omnidirectional
part of the spectrum is

W (κ) ∼= παmcm√
g κ3.5 exp

[
−1

4

(
κ0

κm
− 1

)2
]

(9)

with κ0 being a fixed wavenumber in the range of interest.
Equation (9) is coincident with the isotropic power-law PSD
used in [6], with Hurst coefficient Ht = 0.75 and amplitude
coefficient S0 given by

S0 = παmcm√
g

exp

[
−1

4

(
κ0

κm
− 1

)2
]
. (10)

In addition, in the considered range of wavenumbers �(κ)
turns out to be weakly dependent on κ and much smaller than
unity, except for strong winds, so that the angular spreading
function may be approximated as

�(κ, ϕ) ∼= �(ϕ) = 1 +�(κ0) cos[2(ϕw − ϕ)]. (11)

Comparison of exact, (2) and (7), and approximate, (9)
and (11), PSDs is shown in Fig. 2 for different wind directions
and for u10 = 15 m/s. For higher wind speeds, of the
order of 20 m/s or larger, the approximation is less accurate.
However, at those wind speeds other nonmodeled phenomena,
such as breaking waves, have a more significant effect on
accuracy of scattering calculations. In addition, as it will be
better explained in Section III-C, in scattering evaluations,
we will use approximate expressions (9) and (11) only for
the computation of higher order terms of power series expan-
sions, whereas for the dominant terms, we will use exact
expressions (2) and (7).

B. Large-Scale Roughness

As originally shown in [13], sea surface slopes along
up-wind and crosswind directions, sup and scross, are, with
good approximation, zero-mean independent Gaussian ran-
dom variables with variances σ 2

up and σ 2
cross, respectively.

Fig. 2. Exact (solid lines) and power-law approximated (dashed lines)
directional spectra for ϕw −ϕ equal to 0° (upper lines) and 90° (lower lines);
u10 = 15 m/s, κ0 = 75 rad/m.

Such variances were computed in [13] based on measurements
of sunlight reflection, thus including both large-scale and
small-scale roughness. To obtain an evaluation of the slope
variances of the large-scale roughness only, a possibility is to
compute them from the sea surface PSD

σ 2
up,cross = 1

4π2

∫ 2π

0

∫ κcut

0
κ2 cos2(ϕ − ϕw − ψup,cross)

× W2D(κ, ϕ) κ dκ dϕ (12)

where ψup = 0, ψcross = π/2 and the whole (i.e., both
its high- and small-frequency parts) directional PSD must
be used. This has two drawbacks: first of all, the obtained
result depends on the choice of the PSD expression and of
the cutoff wavenumber; in addition, the numerical evaluation
of a twofold integral is needed. To avoid these drawbacks,
we here use the semiempirical evaluation of [14], based on
measurements of sea surface scattering of global navigation
satellite system (GNSS) L-band signals (carrier frequency:
1.5 GHz) along near-specular directions and on the assumption
of GO scattering (which is very reasonable for near-specular
directions)

σ 2
up0 = 0.45[0.00316 f (u10)]

σ 2
cross0 = 0.45[0.003 + 0.00192 f (u10)] (13)

where u10 is the wind speed at 10-m height, measured in m/s,
and

f (u10) = u10 for 0 < u10 ≤ 3.49

f (u10) = 6 ln(u10) for 3.49 < u10 ≤ 46

f (u10) = 0.411 u10 for 46 < u10. (14)

Then, to obtain large-scale roughness slope variances for
a different frequency of the microwave range, we correct
the 1.5-GHz values of (13) as follows:

σ 2
up,cross

∼= σ 2
up0,cross0 + 1

4π2

∫ 2π

0

∫ κcut

κcut0

κ2 cos2(ϕ − ϕw − ψup,cross)

× W (κ)�(ϕ) κ dκ dϕ

= σ 2
up0,cross0 + S0

2π

(
1 ± �(κ0)

2

)
(
√
κcut − √

κcut0 ) (15)
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where κcut0 is the cutoff wavenumber at 1.5 GHz, and the
approximate expressions of (9) and (11) are used for W (κ)
and �(ϕ), respectively, since the integral only spans values
of κ for which they are accurate. In (15), we will use
κcut = k/2, but the slope variance values in (15) only slightly
depend on this choice, since the bulk of the evaluation is based
on the semiempirical values of (13). For the same reason, the
approximations in (9) and (11) have a negligible effect on the
obtained slope variance values. In addition, thanks to them no
numerical evaluation of integrals is needed.

As we will see in Section III, for scattering computation
purposes, it is necessary to specify the pdf of surface slopes
along ground-range (or in-plane) and azimuth (or out-of-plane)
directions, sr and sa . By recalling that ϕw is the angle between
wind and ground-range directions, and noting that (sup, scross)
and (sr , sa) are the components of the surface gradient vector
in two reference systems rotated by the angle ϕw, we get[

sr

sa

]
= R2(ϕw)

[
sup

scross

]
(16)

wherein

R2(ϕw) =
[

cosϕw sin ϕw
− sin ϕw cosϕw

]
(17)

is the unitary rotation matrix. By using (16) and (17), we
readily get that sr and sa are zero-mean jointly Gaussian
random variables with variances

σ 2
r = σ 2

up cos2 ϕw + σ 2
cross sin2 ϕw

= 1

2

[
σ 2

up + σ 2
cross + (σ 2

up − σ 2
cross

)
cos 2ϕw

]
σ 2

a = σ 2
cross cos2 ϕw + σ 2

up sin2 ϕw

= 1

2

[
σ 2

up + σ 2
cross − (σ 2

up − σ 2
cross

)
cos 2ϕw

]
(18)

and correlation coefficient

ρ = 1

2
sin 2ϕw

σ 2
cross − σ 2

up

σrσa
. (19)

We explicitly note that if up-wind and crosswind slope vari-
ances are equal, then range and azimuth slopes are independent
and with equal variances, too, and isotropy is recovered.
In addition, range and azimuth slopes are independent also if
wind direction is along range or azimuth (ϕw = 0, or ϕw = π ,
or ϕw = ±π /2).

III. ANISOTROPIC PTSM

According to the TSM, the elements of the polarimet-
ric covariance matrix, Rpq,rs, can be written as the sum
of the large-scale roughness contribution, RGO

pq,rs, computed
via the GO, and the small-scale roughness contribution,
〈RSPM

pq,rs〉sa ,sr , computed as the SPM scattering from a tilted
rough facet, averaged over the large-scale surface slopes

Rpq,rs = RGO
pq,rs + 〈RSPM

pq,rs

〉
sa,sr

(20)

where the subscripts p, q , r , s may each stand for
h (horizontal polarization) or v (vertical polarization), and
the symbol 〈·〉sa ,sr represents the statistical mean with respect
to the random variables sa and sr . Note that Rpq,pq is the
NRCS σ 0

pq at pq polarization.

A. GO Scattering From the Large-Scale Roughness

For the large-scale backscattering contribution, we employ
the usual GO expression

RGO
pq,rs =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|�|2
2σaσr

√
1 − ρ2 cos4 ϑ

exp

{
− tan2 ϑ

2(1 − ρ2)σ 2
r

}
if p = q and r = s

0, otherwise

(21)

where ϑ is the (global) incidence angle, see Fig. 1, and � is
the Fresnel reflection coefficient at normal incidence

� = 1 − √
ε

1 + √
ε

(22)

with ε being the sea complex relative permittivity. Note that
no depolarization is present in this contribution, and that also
nonnull copolarized terms become negligible as soon as the
tangent of the incidence angle is a few times the root-mean-
square (rms) range slope.

B. SPM Scattering From a Tilted Rough Facet

With respect to computation of backscattering from small-
scale roughness, PTSM [6] uses an approach slightly different
from the original TSM [1]–[5]. In fact, instead of trying to
express the SPM backscattering from a locally tilted rough
facet directly in terms of surface slopes, or tilt angles, it first
formulates the SPM backscattering in terms of local incidence
angle ϑl and local incidence plane rotation angle β, see Fig. 1,
and then it uses available relations between these parameters
and surface slopes [6], [15]⎧⎪⎨

⎪⎩
tan β = sa

sin ϑ − sr cosϑ

cosϑl = cosϑ + sr sin ϑ√
1 + s2

a + s2
r

.
(23)

Here, we follow this procedure, whose advantage will be
clearer in Section III-C. With respect to original PTSM,
novelties are that here we use anisotropic statistics for sr

and sa , see Section II-B, and an anisotropic small-scale rough-
ness spectrum, see Section II-A. To cope with an anisotropic
spectrum, we need to account not only for the local incidence
and rotation angles ϑl and β, but also for the local ground-
range direction, i.e., the intersection of the local incidence
plane and the tilted facet. The local ground-range direction
is characterized by the angle ϕl between its projection on
the horizontal plane and the (global) ground-range direction,
as defined in Section II. The relation between ϕl and sa , sr

can also be evaluated, but, as we will see in the following, its
full expression is not needed here.

The SPM expression of the covariance matrix elements of
the tilted facet is [6], [7]

RSPM
pq,rs = 4

π
k4 cos4 ϑlχpq(ϑl , β)χ

∗
rs(ϑl , β)W2D(2k sin ϑl, ϕl)

(24)

where k is the electromagnetic wavenumber

χ(ϑl , β) = R2(β) ·
(

Fh(ϑl) 0
0 Fv (ϑl)

)
· R2

−1(β) (25)
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with R2(β) accounting for the rotation of the local polarization
reference system with respect to the global one, and Fh

and Fv are the Bragg coefficients for horizontal and vertical
polarizations, respectively,⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Fh = cosϑl −

√
ε − sin2 ϑl

cosϑl +
√
ε − sin2 ϑl

Fv = (ε − 1)
sin2 ϑl − ε(1 + sin2 ϑl)

(ε cosϑl +
√
ε − sin2 ϑl)2

.

(26)

By using (25) and (1), we can write (24) more explicitly as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ 0 SPM
hh = 4

π k4 cos4 ϑl W (2k sin ϑl)�(2k sin ϑl , ϕl)

× [|Fh(ϑl)|2 cos4 β + |Fv (ϑl)|2 sin4 β

+ 2Re
{

Fh(ϑl)F∗
v (ϑl)

}
sin2 β cos2 β

]
σ 0 SPM
vv = 4

π
k4 cos4 ϑl W (2k sin ϑl)�(2k sin ϑl , ϕl)

× [|Fv (ϑl)|2 cos4 β + |Fh(ϑl)|2 sin4 β

+ 2Re
{

Fv (ϑl)F∗
h (ϑl)

}
sin2 β cos2 β

]
σ 0 SPM

hv = 4

π
k4 cos4 ϑl W (2k sin ϑl)�(2k sin ϑl , ϕl)

× [|Fh(ϑl)|2 + |Fv (ϑl)|2 − 2Re
{

Fh(ϑl)F∗
v (ϑl)

}]
× sin2 β cos2 β

RSPM
hh,vv = 4

π
k4 cos4 ϑl W (2k sin ϑl)�(2k sin ϑl , ϕl)

×{Fh(ϑl)F∗
v (ϑl) cos4 β + Fv (ϑl)F∗

h (ϑl) sin4 β

+ [|Fh(ϑl)|2 + |Fv (ϑl)|2] sin2 β cos2 β
}

RSPM
hh,hv = 4

π
k4 cos4 ϑl W (2k sin ϑl)�(2k sin ϑl , ϕl)

×{[Fh(ϑl)F∗
v (ϑl)− |Fh(ϑl)|2

]
cos3 β sin β

+[|Fv (ϑl)|2 − Fv (ϑl)F∗
h (ϑl)

]
sin3 β cosβ

}
RSPM

hv,vv = 4
π k4 cos4 ϑl W (2k sin ϑl)�(2k sin ϑl , ϕl)

×{[|Fv (ϑl)|2 − Fh(ϑl)F∗
v (ϑl)

]
cos3 β sin β

+[Fv (ϑl)F∗
h (ϑl)− |Fh(ϑl)|2

]
sin3 β cosβ

}
RSPM
vv,hh = RSPM∗

hh,vv , RSPM
hv,hh = RSPM∗

hh,hv , RSPM
vv,hv = RSPM∗

hv,vv .

(27)

Equation (27) shows that the elements of the covariance
matrix can be written as the sum of terms of the kind
�pq(ϑl)�(2k sin ϑl , ϕl)Bn(β), where

�pq(ϑl) = 4

π
k4 cos4 ϑl W (2k sin ϑl)Fp(ϑl)F

∗
q (ϑl). (28)

�(2k sin ϑl , ϕl) is given by (13) and Bn(β) = cos4−n β
sinn β, with n integer and 0 ≤ n ≤ 4.

C. Taylor Series Expansion

Taylor power series expansion of the covariance matrix
elements in (27) with respect to sa and sr can be readily
obtained once expansions of �pq(ϑl), �(2k sin ϑl , ϕl), and
Bn(β) are performed.

The series expansion of �pq(ϑl) up to the second order can
be expressed as

�pq(ϑl) ∼= �pq(ϑ)+ C pq
0,1sr + C pq

2,0s2
a + C pq

0,2s2
r

= �pq(ϑ)

[
1 + C pq

0,1sr + C pq
2,0s2

a + C pq
0,2s2

r

�pq(ϑ)

]
(29)

where

C pq
k,n−k = 1

n!
(

n
k

)
∂n�pq (ϑl)

∂sk
a∂sn−k

r

∣∣∣∣∣
sa=sr =0

(30)

and the derivatives in (30) can be computed by applying
the chain rule to (28) and the second of (23). This allows
immediately recognizing that C pq

1,0 = C pq
1,1 = 0, since

∂ cosϑl

∂sa

∣∣∣∣
sa=sr =0

= ∂2 cosϑl

∂sa∂sr

∣∣∣∣
sa=sr =0

= 0. (31)

In addition, if to compute the derivatives in (30) we use
the power-law approximate expression of W (κ) given in (9),
then we obtain the analytical closed-form expressions of C pq

2,0,
C pq

0,2 reported in [6, Appendix B], and of C pq
0,1 reported

in Appendix A. We explicitly underline that the approximate
expression of W (κ) given in (9) is only used to compute the
derivatives in (30), whereas the zero-order term �pq(ϑ) is
computed by using the exact expression of W (κ) given
in (2).

With regard to �(2k sinϑl , ϕl), we assume that its first-
order series expansion is sufficient, because second-order
terms include a factor �(κ) that is usually much smaller
than unity (see Section II), so that they can be neglected; in
addition, in computing the derivatives appearing in the series
expansion, we use the approximate expression of �(κ, ϕl)
given in (11), so obtaining

�(2k sin ϑl , ϕl)

∼= 1 +�(2k sin ϑ) cos 2ϕw

+ 2�(2k sin ϑ) sin 2ϕw
∂ϕl

∂sa

∣∣∣∣
sa=sr =0

sa

= �(2k sin ϑ, 0)

(
1+ 2�(2k sin ϑ) sin 2ϕw

�(2k sin ϑ, 0)

∂ϕl

∂sa

∣∣∣∣
sa=sr =0

sa

)

(32)

where we have again used the chain rule and we have exploited
the fact that (∂ϕl/∂sr )|sa=sr =0 = 0, since ϕl = 0 for any sr if
sa = 0. In Section III-D, we will see that the term involving
(∂ϕl/∂sa)|sa=sr =0 is canceled by the average operation, so
that its expression is of no concern here. Similar to the
previous case, we explicitly underline that the approximate
expression of �(κ, ϕl) given in (11) is only used to compute
the derivatives appearing in the series expansion, whereas the
zero-order term �(2ksinϑ, 0) is computed by using the exact
expression given in (7).

Finally, by using the first of (23) and recalling that

sin β = tan β√
1 + tan2 β

(33)

we obtain the following second-order expansion of Bn(β):

Bn(β) ∼=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 − 2s2
a

sin2 ϑ
, for n = 0

sa

sin ϑ
+ sasr cot ϑ

sin ϑ
, for n = 1

s2
a

sin2 ϑ
, for n = 2

0, for n > 2.

(34)
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Fig. 3. NRCS at vv (upper, blue line), hh (middle, red line), and hv (lower, green line) polarizations as a function of the incidence angle ϑ at X-band
(frequency = 10 GHz, ε = 61− j45) for a gentle breeze (u10 = 5 m/s) and a strong wind (u10 = 15 m/s), and for up-wind (ϕw = 0) and obliquus (ϕw = 45°)
incidence.

Fig. 4. NRCS at RR (lower, blue line) and RL (upper, red line) polarizations as a function of the incidence angle ϑ at X-band (frequency = 10 GHz,
ε = 61 − j45) for a gentle breeze (u10 = 5 m/s) and a strong wind (u10 = 15 m/s), and for up-wind (ϕw = 0) and obliquus (ϕw = 45°) incidence.

Note that these last expansions are not valid for small
incidence angles (sinϑ ∼ sr or smaller), for which, anyway,
SPM is not accurate.

D. Average Over Large-Scale Surface Slopes
Substituting (29), (32), and (34) into (27) and (28), neglect-

ing terms of order higher than two (and those of order two that
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include the factor �), averaging over sa , sr and recalling that
〈sa〉 = 〈sr 〉 = 0, 〈s2

a 〉 = σ 2
a , 〈s2

r 〉 = σ 2
r , and 〈sasr 〉 = ρσaσr ,

we get

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈
σ 0 SPM

hh

〉 = �hh(ϑ)�(2k sin ϑ, 0)

×
[

1 + Chh
0,2

�hh(ϑ)
σ 2

r +
(

Chh
2,0

�hh(ϑ)

+ 2
Re{Fv (ϑ)/Fh(ϑ)} − 1

sin2 ϑ

)
σ 2

a

]
〈
σ 0 S P M
vv

〉 = �vv(ϑ)�(2k sin ϑ, 0)

×
[

1 + Cvv
0,2

�vv(ϑ)
σ 2

r +
(

Cvv
2,0

�vv(ϑ)

− 2
1 − Re{Fh(ϑ)/Fv (ϑ)}

sin2 ϑ

)
σ 2

a

]
〈
σ 0 SPM

hv

〉 = �hv (ϑ)�(2k sin ϑ, 0)
|Fv (ϑ)− Fh(ϑ)|2
Fh(ϑ)F∗

v (ϑ) sin2 ϑ
σ 2

a〈
RSPM

hh,vv

〉 = �hv (ϑ)�(2k sin ϑ, 0)

×
[

1 + Chv
0,2

�hv (ϑ)
σ 2

r +
(

Chv
2,0

�hv (ϑ)

+ F∗
h (ϑ)/F∗

v (ϑ)+ Fv (ϑ)/Fh(ϑ)− 2

sin2 ϑ

)
σ 2

a

]
〈

RSPM
hh,hv

〉 = �hv (ϑ)�(2k sin ϑ, 0)

×
[(

1 − F∗
h (ϑ)

/
F∗
v (ϑ)

)
cot ϑ

sin ϑ
+
(
Chv

0,1 − Chh
0,1

)
�hv (ϑ) sin ϑ

]
ρσaσr〈

RSPM
hv,vv

〉 = �hv (ϑ)�(2k sin ϑ, 0)

×
[
(Fv (ϑ)/Fh(ϑ)− 1) cot ϑ

sin ϑ
+
(
Cvv

0,1 − Chv
0,1

)
�hv (ϑ) sin ϑ

]
ρσaσr〈

RSPM
vv,hh

〉 = 〈RSPM∗
hh,vv

〉
,
〈

RSPM
hv,hh

〉 = 〈RSPM∗
hh,hv

〉〈
RSPM
vv,hv

〉 = 〈RSPM∗
hv,vv

〉
.

(35)

Expressions in (35) reduce to those of [6] and [7] if
ρ = 0, σa = σr , and �(2k sin ϑ, 0) = 1. In addition,
the expressions in (35) reduce to the usual SPM ones if
σa = σr = 0. Finally, note that �pq(ϑ) depends on wind
velocity u10, while �(2k sin ϑ, 0), σa , σr , and ρ depend on
both wind velocity u10 and wind direction ϕw, see Section II.
In particular, dependence of �pq(ϑ) on u10 is rather simple,
since it is only via the parameter αm in (2). With regard to
wind direction, the main dependence is via �(2k sin ϑ, 0), and
it is represented by oscillations of the kind cos(2ϕw). These are
the dominant dependencies for copolarized NRCS, which can
be also inferred using the standard SPM model. With regard
to the crosspolarized NRCS, the dependence on u10 is also
strongly related to the factor σa , so that a higher sensitivity to
wind speed is expected for this term. As for wind direction,
the oscillations of kind cos(2ϕw) due to �(2k sin ϑ, 0) are
damped by the presence of the factor σa , which, according
to (18), introduces another dependence of the kind cos(2ϕw),
but with opposite sign. The proposed closed-form model also
supports prediction of the behavior of the copolarized hh, vv

and crosspolarized vh, vv correlation coefficients, defined as

ρhh,vv = Rhh,vv√
σ 0

hhσ
0
vv

, ρvh,vv = Rvh,vv√
σ 0
vhσ

0
vv

. (36)

Indeed, these coefficients result to be independent of small-
scale roughness. Moreover, the coefficient ρvh,vv is dependent
on wind direction through the surface slope correlation coef-
ficient ρ, i.e., according to (19), it presents oscillations of the
kind sin(2ϕw).

E. Circular Basis

By using the well-known relations between linear and circu-
lar polarization bases [16], the elements of the backscattering
circular polarization covariance matrix can be related to the
linear polarization ones as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ 0
RL = 1

4

(
σ 0

hh + σ 0
vv + 2Re{Rhh,vv}

)
σ 0

R R = 1

4

(
σ 0

hh + σ 0
vv − 2Re{Rhh,vv} + 4σ 0

hv

+ 4Im{Rhh,hv + Rhv,vv}
)

σ 0
L L = 1

4

(
σ 0

hh + σ 0
vv − 2Re{Rhh,vv} + 4σ 0

hv

− 4Im{Rhh,hv + Rhv,vv}
)

RRR,LL = 1

4

[− (σ 0
hh + σ 0

vv − 2Re{Rhh,vv}
)

+ 4σ 0
hv − 4 jRe{Rhh,hv − Rhv,vv}

]
RRR,RL = − j

4

(
σ 0

hh − σ 0
vv + 2 j Im{Rhh,vv}

+ 2 j
{

R∗
hh,hv + Rhv,vv

})
RLL,RL = − j

4

(
σ 0
vv − σ 0

hh − 2 j Im{Rhh,vv}
+ 2 j

{
R∗

hh,hv + Rhv,vv
})

(37)

where indices R and L stand for right-handed and left-handed
circular polarizations, respectively.

From (37), we readily get that in the GO case only σ 0
RL is

nonnull and equal to the first of (21), whereas all other
elements of the covariance matrix are equal to zero. With
regard to SPM expressions for a tilted facet, by using (27)
in (37), we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ 0 SPM
RL = 1

π
k4 cos4 ϑl W (2k sin ϑl)�(2k sin ϑl , ϕl)

×[|Fh(ϑl)|2 + |Fv (ϑl)|2 + 2Re
{

Fh(ϑl)F∗
v (ϑl)

}]
σ 0 SPM

R R = σ 0 SPM
L L = ∣∣RSPM

RR,LL

∣∣
= 1

π
k4 cos4 ϑl W (2k sin ϑl)�(2k sin ϑl , ϕl)

×[|Fh(ϑl)|2 + |Fv (ϑl)|2 − 2Re
{

Fh(ϑl)F∗
v (ϑl)

}]
arg
{

RSPM
RR,LL

} = −4β + π

RSPM
RR,RL = 1

π
k4 cos4 ϑl W (2k sin ϑl)�(2k sin ϑl , ϕl)

×
{[|Fh(ϑl)|2 − |Fv (ϑl)|2
+ 2 j Im

{
Fh(ϑl)F

∗
v (ϑl)

}]
exp
[
− j
(
2β+π

2

)]}
RSPM

LL,RL = 1

π
k4 cos4 ϑl W (2k sin ϑl)�(2k sin ϑl , ϕl)

×{[|Fv (ϑl)|2 − |Fh(ϑl)|2
−2 j Im

{
Fh(ϑl)F

∗
v (ϑl)

}]
exp
[

j
(

2β− π

2

)]}
.

(38)
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Finally, by using the Taylor expansions of Section III-C and
averaging over sa , sr as in Section III-D, we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈
σ 0 SPM

RL

〉 = 1

4
�hv (ϑ)�(2k sin ϑ, 0)

×
[

|Fv (ϑ)+ Fh(ϑ)|2
Fh(ϑ)F∗

v (ϑ)
+ Chh

0,2 + Cvv
0,2 + 2Re

{
Chv

0,2

}
�hv (ϑ)

σ 2
r

+ Chh
2,0 + Cvv

2,0 + 2Re
{

Chv
2,0

}
�hv (ϑ)

σ 2
a

]
〈
σ 0 SPM

R R

〉 = 〈σ 0 SPM
L L

〉 = 1

4
�hv (ϑ)�(2k sin ϑ, 0)

×
[

|Fv (ϑ)− Fh(ϑ)|2
Fh(ϑ)F∗

v (ϑ)
+ Chh

0,2 + Cvv
0,2 − 2Re

{
Chv

0,2

}
�hv (ϑ)

σ 2
r

+Chh
2,0 + Cvv

2,0 − 2Re
{

Chv
2,0

}
�hv (ϑ)

σ 2
a

]
〈

RSPM
RR,LL

〉 = −1

4
�hv (ϑ)�(2k sin ϑ, 0)

×
[ |Fv (ϑ)− Fh(ϑ)|2

Fh(ϑ)F∗
v (ϑ)

(
1− 8σ 2

a

sin2 ϑ
− 4 j

cot ϑ

sin ϑ
ρσaσr

)
+

− j
Chh

0,1 + Cvv
0,1 − 2Re

{
Chv

0,1

}
�hv (ϑ) sin ϑ

4ρσaσr

+ Chh
0,2 + Cvv

0,2 − 2Re
{

Chv
0,2

}
�hv (ϑ)

σ 2
r

+ Chh
2,0 + Cvv

2,0 − 2Re
{

Chv
2,0

}
�hv (ϑ)

σ 2
a〈

RSPM
RR,RL

〉 = − j

4
�hv (ϑ)�(2k sin ϑ, 0)

×
[

|Fh(ϑ)|2 − |Fv (ϑ)|2 + 2 j Im
{

Fh(ϑ)F∗
v (ϑ)

}
Fh(ϑ)F∗

v (ϑ)

×
(

1 − 2σ 2
a

sin2 ϑ
− 2 j cot ϑ

sin ϑ ρσaσr

)
+

− j
Chh

0,1 − Cvv
0,1 + 2 j Im

{
Chv

0,1

}
�hv (ϑ) sin ϑ

2ρσaσr

+Chh
0,2 − Cvv

0,2 + 2 j Im
{

Chv
0,2

}
�hv (ϑ)

σ 2
r

+Chh
2,0 − Cvv

2,0 + 2 j Im
{

Chv
2,0

}
�hv (ϑ)

σ 2
a

]
〈

RSPM
LL,RL

〉 = − j
4 �hv (ϑ)�(2k sin ϑ, 0)

×
[

|Fv (ϑ)|2 − |Fh(ϑ)|2 − 2 j Im
{

Fh(ϑ)F∗
v (ϑ)

}
Fh(ϑ)F∗

v (ϑ)

×
(

1 − 2σ 2
a

sin2 ϑ
+ 2 j

cot ϑ

sin ϑ
ρσaσr

)

+ j
Cvv

0,1 − Chh
0,1 − 2 j Im

{
Chv

0,1

}
�hv (ϑ) sin ϑ

2ρσaσr

+ Cvv
0,2 − Chh

0,2 − 2 j Im
{

Chv
0,2

}
�hv (ϑ)

σ 2
r

+ Cvv
2,0 − Chh

2,0 − 2 j Im
{

Chv
2,0

}
�hv (ϑ)

σ 2
a

]
.

(39)

As a concluding remark of this section, with regard to the
range of validity of A-PTSM expressions, we note that (39),

as well as (35), do not hold for small values of the incidence
angle (sinϑ of the order of sr or smaller, see Section III-C).
When we use them in conjunction with the first of (21)
in (20) to compute copolarized NRCSs and correlation, we will
multiply them by tanh[(sinϑ/(3 σr ))

6], which very closely
approximates one for sinϑ > 3σr and rapidly goes to zero for
sinϑ < 3σr . Also, A-PTSM (as well as SSA2) is not accurate
at near-grazing incidence angles, where multiple scattering and
shadowing effects become dominant. In addition, since (6)
holds for wind velocity from 4 to 25 m/s, this is the range
of wind velocity for which the presented formulation can be
used. It should be also noted that for wind velocities of more
than about 20 m/s breaking waves that are not accounted for
by our model, as well as by SSA2, may play an important
role in the scattering mechanism. Therefore, in conclusion we
can expect that the presented approach can be safely used
for wind speeds not smaller than 4 m/s and smaller than
about 20 m/s.

IV. RESULTS

A. Numerical Results

In this section, we present some numerical results obtained
by using the above-described A-PTSM formulation. They are
aimed on one hand at illustrating the polarimetric backscat-
tering dependence on incidence angle, frequency, and wind
speed and direction; on the other hand, they are aimed
at comparing A-PTSM results with measurements and with
SSA2 results.

In Fig. 3 we show vv, hh, and hv NRCS as a function
of the incidence angle ϑ at X-band (frequency = 10 GHz,
ε = 61– j45) for a gentle breeze (u10 = 5 m/s) and a strong
wind (near gale, u10 = 15 m/s), and for up-wind (ϕw = 0) and
obliquus (ϕw = 45°) incidence. It must be noted that the strong
wind case is the same as considered in [9, Fig. 3], so that
we can directly compare our A-PTSM results with those
obtained in [9] by using SSA2. It can be verified that A-PTSM
results are in very good agreement with SSA2 ones; only for
hv polarization A-PTSM slightly underestimates SSA2 (sim-
ilar to the usual TSM). However, it must be underlined
that our A-PTSM formulation is completely in closed form
(including expressions of slope variances), so that no numer-
ical integral evaluation is needed, and the whole plots
of our Fig. 3 are obtained in a time of the order of
the second with a common laptop. Conversely, SSA2 of [9]
requires the cumbersome evaluation of fourfold integrals,
with highly oscillating integrands, so that they must be
performed via a refined numerical method specially devised
in [9].

In Fig. 4, we show RR and RL NRCS in the same cases
of Fig. 3. Also in this case, A-PTSM results are in very good
agreement with SSA2 ones reported in [9].

Behaviors of copolarized hh, vv and crosspolarized vh,
vv correlation coefficients ρhh,vv and ρvh,vv are displayed in
Fig. 5 in the same cases of Figs. 3 and 4. It is useful to
remind that these correlation coefficients would be always
unitary and undefined, respectively, according to SPM without
random facet tilt.
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Fig. 5. Modulus of copolarized hh, vv (left and middle panels) and crosspolarized vh, vv (right panel) correlation coefficients as a function of the incidence
angle ϑ at X-band (frequency = 10 GHz, ε = 61 − j45) for a gentle breeze (u10 = 5 m/s, blue lines) and a strong wind (u10 = 15 m/s, red lines), and for
up-wind (ϕw = 0) and obliquus (ϕw = 45°) incidence. Crosspolarized correlation coefficient is zero for ϕw = 0.

Fig. 6. Copolarized ratio σ 0
hh/σ

0
vv (left panel, blue line), crosspolarized ratio σ 0

vh/σ
0
vv (left panel, red line), modulus of the copolarized correlation coefficient

(middle panel) and modulus of the crosspolarized correlation coefficients (right panel), as a function of wind velocity, at X-band (frequency = 10 GHz,
ε = 61 − j45), with ϑ = 45° and ϕw = 45°.

In Fig. 6 we illustrate the dependence on wind intensity of
copolarized and crosspolarized ratios (i.e., ratios of hh to vv,
and hv to vv, NRCS) and of copolarized and crosspolarized
correlation coefficients, again at X-band, with ϑ = 45° and
ϕw = 45°. It is worth recalling that the copolarized ratio would
be independent of wind speed according to SPM without
random tilt, and crosspolarized ratio would be null according
to that model.

Finally, in Figs. 7 and 8, we illustrate the dependence
on wind direction ϕw of vv, hh, and hv NRCS and of
the crosspolarized correlation coefficient for a fresh breeze
(u10 = 10 m/s). In Fig. 7, we consider C band (frequency =
5.66 GHz, ε = 67 − j36) and ϑ = 35°, whereas in Fig. 8,
we consider Ku band (frequency = 12.5 GHz, ε = 42 − j39)
and ϑ = 45°. In these two cases, experimental data are
available: for the C-band case, measurements obtained from
RADARSAT-2 quad-pol SAR data are reported in [17], and
for the Ku-band case, measurements obtained by using an
aircraft polarimetric scatterometer are reported in [18]. Both
sets of data were used in [9] to compare SSA2 and TSM
results with them, and we here compare our A-PTSM results
with them. At both frequencies, good agreement between
A-PTSM and experimental data is obtained for vv NRCS
and real part of the crosspolarized correlation coefficient.
Discrepancies with hh NRCS experimental data (especially at
up-wind incidence), as well as with the imaginary part of the
experimental crosspolarized correlation coefficient, are very
similar to those obtained by SSA2 and exact TSM in [9],
and can be therefore explained as in [9]. With regard to

the hv NRCS, an underestimation of A-PTSM results with
respect to experimental data by 4 to 6 dB is obtained,
in agreement with exact TSM results reported in [9], whereas
SSA2 results reported in [9] are in better agreement with
measurements (although they also show a slight underestima-
tion). This was expected, and it is related with the fact that
A-PTSM (as well as usual TSM) does not account for multiple
scattering, at variance with SSA2. This issue is better explored
in Section IV-B. However, we underline again that A-PTSM,
at variance with both SSA2 and exact TSM, does not require
any numerical integration.

Finally, we note in Figs. 7 and 8, the cos(2ϕw) dependence
of copolarized NRCSs, the “smoothed” cos(2ϕw) dependence
of crosspolarized NRCS, and the sin(2ϕw) dependence of
the crosspolarized correlation coefficient. This is in agree-
ment with theoretical expectations highlighted at the end
of Section III-D.

B. Comparison With SSA2-A

As already mentioned, in [10], an analytical approximation
of SSA2 (SSA2-A) was obtained, although for the crosspo-
larized NRCS only, and it was shown that it is in very
good agreement with exact SSA2 for moderate slopes and
intermediate incidence angles. With our notation, SSA2-A
crosspolarized NRCS can be expressed as

σ 0 SSA2-A
hv = 16

π
k4 sin4 ϑ|Gγ (ϑ)|2 cot2 ϑ W2D(2k sin ϑ, 0)σ 2

a

(40)
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Fig. 7. Scattering dependence on wind direction ϕw at C band (frequency = 5.66 GHz, ε = 67 − j36), ϑ = 35°, and u10 = 10 m/s. (Top left) A-PTSM vv
(blue, upper line) and hh (red, lower line) NRCS and corresponding measured data (blue and red connected dots). (Top right) A-PTSM hv NRCS (blue line)
and corresponding measured data (blue connected dots). (Bottom left) Real part of the vh, vv correlation coefficient (blue line) and corresponding measured
data (blue connected dots). (Bottom right) Imaginary part of the vh, vv correlation coefficient (blue line); corresponding measured data are mostly higher
than 0.01 in magnitude and are not reported.

where

Gγ (ϑ) = j
(ε − 1)2

ε + √
ε

× cosϑ
√
ε − sin2 ϑ

(ε cosϑ +
√
ε − sin2 ϑ)(cosϑ +

√
ε − sin2 ϑ)

×
(

1 + 3

2
sin2 ϑ

ε1.5 + 1

ε1.5 + ε

)
. (41)

In addition, A-PTSM crosspolarized NRCS, i.e., the third
line of (35), can be more explicitly expressed as

σ 0 A-PTSM
hv = 4

π
k4 cos4 ϑ

∣∣∣∣ Fv (ϑ)− Fh(ϑ)

sin ϑ

∣∣∣∣
2

× W2D(2k sin ϑ, 0)σ 2
a . (42)

By using (40) and (42) we can obtain an analytical closed-form
expression of the ratio of crosspolarized NRCSs obtained by
SSA2-A and A-PTSM

σ 0 SSA2-A
hv

σ 0 A-PTSM
hv

= 4|Gγ (ϑ)|2 sin4 ϑ

|Fv (ϑ)− Fh(ϑ)|2 cos2 ϑ
. (43)

This ratio turns out to be a function of only surface
relative dielectric constant ε and incidence angle ϑ , while it is

independent of surface roughness and of frequency (apart from
the frequency dependence of ε). For a perfectly conducting
rough surface (|ε| → ∞), it simplifies as

σ 0 SSA2-A
hv

σ 0 A-PTSM
hv

=
(

1 + 3

2
sin2 ϑ

)2

cos2 ϑ. (44)

Plots of the ratio in (43) and (44) for different values of ε are
displayed in Fig. 9. They show that for any values of surface
dielectric constant ε and incidence angle ϑ (except for near
grazing angles), the difference of results of the two methods
is not larger than about two dB. In particular, for incidence
angles up to about 60° A-PTSM underestimates crosspolarized
backscattering with respect to SSA2-A, since A-PTSM does
not account for multiple scatterings. Conversely, for very
high incidence angles (i.e., at grazing incidence), A-PTSM
overestimates crosspolarized backscattering with respect to
SSA2-A, most likely because it also does not account for
shadowing. This latter conjecture is also supported by the fact
that overestimation increases as dielectric constant, and hence
shadowing, increases.

It is finally worth noting that similar results have been very
recently reported in [19] for a numerical comparison of TSM
and SSA2-A. Also in [19], a second-order expansion of TSM
was used, but expansion coefficients were there computed
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Fig. 8. Scattering dependence on wind direction ϕw at Ku band (frequency = 12.5 GHz, ε = 42 − j39), ϑ = 45°, and u10 = 10 m/s. (Top left) A-PTSM vv
(blue, upper line) and hh (red, lower line) NRCS and corresponding measured data (blue and red connected dots). (Top right) A-PTSM hv NRCS (blue line)
and corresponding measured data (blue connected dots). (Bottom left) Real part of the vh, vv correlation coefficient (blue line) and corresponding measured
data (blue connected dots). (Bottom right) Imaginary part of the vh, vv correlation coefficient (blue line); corresponding measured data are mostly higher
than 0.01 in magnitude and are not reported.

Fig. 9. Ratio, in dB, of crosspolarized NRCSs obtained by SSA2-A and
A-PTSM as a function of incidence angle and for ε = 5 (light blue dotted line),
ε = 15 (red dotted-dashed line), ε = 80 (green dashed line), and perfectly
conducting surface (blue solid line).

numerically, so that no closed-form expression comparable
to (43) and (44) was there obtained.

V. CONCLUSION

We have extended the PTSM to deal with scattering surfaces
with anisotropic roughness, so obtaining the A-PTSM, and we
have applied it to backscattering from the sea surface. In doing

this, we have also devised an original method to easily evaluate
large-scale surface slope variances as a function of wind speed
and direction. All the elements of the polarimetric covariance
matrix have been analytically expressed in closed form, both
in the linear and in the circular polarization bases, so that no
numerical integration is needed by our method. This renders
all computations very fast, which is an important advantage in
situations in which scattering must be computed several times,
such as in implementing inversion methods for the retrieval
of surface parameters. In addition, although obtained closed-
form expressions are rather lengthy, some direct insight into
the scattering dependence on wind speed and direction can be
gained, see the end of Section III-D.

Obtained results are in good agreement with SSA2 results
and experimental data. Only for the crosspolarized NRCS,
A-PTSM results show a nonnegligible underestimation with
respect to SSA2 results and experimental data. In order to bet-
ter investigate this discrepancy, we have analytically evaluated
in closed form the ratio of crosspolarized NRCSs obtained by
SSA2-A (an analytical approximation of SSA2 only available
for the crosspolarized NRCS) and A-PTSM. The obtained
expression shows that this ratio is a function of only surface
relative dielectric constant and incidence angle, while it is
independent of surface roughness, and that the difference of
results of the two methods is not larger than about two dB in
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the range of incidence angles of interest in many applications
(i.e., intermediate incidence angles).

In conclusion, we can state that for applications in which
computational efficiency is important (for instance, wind speed
and direction retrieval, or, more in general, surface parameter
retrieval) A-PTSM is certainly preferable for all the elements
of the covariance matrix, except for the crosspolarized NRCS,
for which SSA2-A can be used with equal efficiency and even
greater accuracy.

Finally, we explicitly note that, although here we have
applied A-PTSM to scattering from a sea surface described
by the directional Elfouhaily spectrum, the formulations
of (35) and (39) can be used, with no need of recalculating
the expressions of expansion coefficients C pq

k,n−k , for any
small-scale roughness PSD in the form of (1), provided that,
in the range of surface wavenumbers of interest for microwave
scattering, W (κ) can be approximated by a power-law function
and �(κ, ϕ) can be approximated as �(κ, ϕ) ∼= �(ϕ) =
1 + � · f (ϕ), where f (ϕ) must be periodic of period π ,
with null average over the period, max{| f (ϕ)|} = 1, and
� is assumed to be much smaller than unity. Extension to
any � smaller than or equal to unity is not difficult, but it
is left to future work. Conversely, extension of PTSM and
A-PTSM to the bistatic scattering configuration is by no means
straightforward, and it is left to future work, too.

APPENDIX

In this Appendix, we report the expressions of C pq
0,1

C pq
0,1 = ∂(W (2k sin ϑl)(k cosϑl)

4 Fp(ϑl)F∗
q (ϑl))

∂sr

∣∣∣∣∣
sa=sr =0

= ∂(W (2k sin ϑl)(k cosϑl)
4)

∂sr
Fp(ϑl)F

∗
q (ϑl)

∣∣∣∣
sa=sr =0

+ W (2k sin ϑl)(k cosϑl)
4 ∂Fp(ϑl)

∂sr
F∗

q (ϑl)

∣∣∣∣
sa=sr =0

+ 1

2
W (2k sin ϑl)(k cosϑl)

4 Fp(ϑl)
∂F∗

q (ϑl)

∂sr

∣∣∣∣
sa=sr =0

.

(45)

Closed-form expressions of the derivatives appearing in (45)
are reported in [6, Appendix B].
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