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Abstract: Microwave remote sensing has widely demonstrated its potential in the continuous 
monitoring of our rapidly changing planet. This review provides an overview of state-of-the-art 
methodologies for multi-temporal synthetic aperture radar change detection and its applications to 
biosphere and hydrosphere monitoring, with special focus on topics like forestry, water resources 
management in semi-arid environments and floods. The analyzed literature is categorized on the 
base of the approach adopted and the data exploited and discussed in light of the downstream 
remote sensing market. The purpose is to highlight the main issues and limitations preventing the 
diffusion of synthetic aperture radar data in both industrial and multidisciplinary research con-
texts and the possible solutions for boosting their usage among end-users. 
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1. Introduction 
Climate changes and the rapid increase of the population constitute important stress 

factors for the Earth ecosystem. Biosphere and hydrosphere, crucial for human commu-
nities, are particularly threatened nowadays. In this context, satellite observations rep-
resent a key asset for large scale environmental monitoring due to their capability to 
provide synoptic information with high revisit time useful to public and private deci-
sion-makers either for planning activities or for promptly responding to emergency sit-
uations. 

Remote sensing has been variously defined in the past literature. Basically, it is “the 
practice of deriving information about the Earth’s land and water surfaces using images 
acquired from an overhead perspective, using electromagnetic (EM) radiation in one or 
more regions of the electromagnetic spectrum, reflected or emitted from the Earth’ sur-
face” [1]. This definition highlights the most important themes of the topic, i.e., the 
gathering of information at a distance and the use of pictures or series of pictures to 
represent this information. Synthetic Aperture Radar (SAR) sensors are of particular in-
terest in remote sensing thanks to the peculiar characteristics of microwaves, which are 
able to penetrate clouds resulting insensitive to weather and illumination conditions [2]. 

However, SAR sensors are still scarcely used in multidisciplinary and operative en-
vironments, which are largely dominated by the exploitation of multispectral (MS) and 
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hyperspectral (HS) data [3], with the availability of the latter increasing thanks to the re-
cent launch of the Italian spaceborne sensor PRISMA [4]. This is principally due to the 
higher information content they hold due to the wider available bandwidth and to their 
intuitive interpretability. This allowed for developing simple and robust solutions for the 
extraction of geophysical parameters from images [5] being possible, as an example, to 
retrieve the extent of water surfaces [6] or of a forest [7] by just applying a ratio of ap-
propriate spectral bands. 

In the case of SAR, the available bandwidth in the single acquisition is lower, and 
this makes it difficult the information extraction process. This can be compensated by 
exploiting temporal information. However, robust algorithms for the retrieval of even 
basic information from data are missing, with few exceptions relevant to the maritime 
domain [8] or millimeter-scale displacements estimation using Differential SAR Inter-
ferometry (DInSAR) methodologies [9], for which the landscape is richly populated by 
users and applications, able to generate value also in the industrial sector. In almost all 
the other cases, SAR data processing is mostly limited to scientists and requires 
knowledge in electromagnetics, radar and signal processing domains. This makes the 
overall capability of this imaging system highly underexploited by end-users, and with 
an exploitation route not yet identified, the demonstration of the technology remains 
difficult. 

The objective of this review is to highlight how SAR observations can support en-
vironmental monitoring activities through a discussion on the latest research exploiting 
multi-temporal concepts for adding value to data in some selected applications. Despite 
their scarce diffusion in the end-user community, SAR data can enable several applica-
tions, especially in near-real time, or give fundamental contribution through data assim-
ilation in geophysical/hydrological/weather models and/or integration with multisource 
information. Due to the variety of the field, a special focus will be dedicated to some ap-
plications related to biosphere and hydrosphere monitoring, while many others dealing, 
as an example, with the urban environment [10–12], classification [13–15] or the estima-
tion of small [16–18] and large [19–21] displacements will be only eventually mentioned. 

The lifecycle of SAR data, from the acquisition to the generation of value-added 
products, the so-called Level-2 products, i.e., those carrying some geophysical information 
about the imaged scene, is shown in Figure 1.The successful information process requires 
an adequate filling of the information gap between the measurement stored in Level-1 
products (i.e., those released by data providers) and the parameters that can be of interest 
for applications and/or remote sensing data users. 

 
Figure 1. Lifecycle of SAR data, from the acquisition to the generation of value-added products. 
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Most of the literature succeed with this through algorithms able to cover the jump 
from the ground segment to the user segment. Some authors expressed the need to re-
store the central role of analysts and users in the remote sensing information process [5], 
[22,23], as they are penalized by the extreme automation required to process large da-
tasets like those involved in multi-temporal analysis. This led to the definition of new 
classes of products, obtained through innovative combination of temporal information, 
able to introduce an intermediate processing level [5,15] (see Figure 1) which can be fur-
ther developed toward the Level-2 or serve as support for visual interpretation [24]. This 
process model represents a recent alternative to classic SAR workflows and goes toward 
the user community. Its aim is to increase the exploitation of SAR information from sci-
entists and professionals who may have the data access and the analytical/critical capa-
bility for integrating data in their processes, but not necessarily the mathematical back-
ground to understand the phenomena which generated that particular representation [5]. 

In Reference [25], it is argued that two distinct forms of knowledge exist, i.e., the 
objective knowledge and the subjective knowledge. When images are acquired beyond 
the visible spectrum, like in the case of SAR, the understanding and the interpretation of 
the physical principles leading to that particular measurement and/or arrangement of 
pixels is a matter of subjective knowledge. The higher the expertise of the analyst, the 
higher the probability to successfully complete the information process at hand. Classic 
Level-1 SAR products can be unsuitable for the extraction of relevant information, which 
is the reason turning many multidisciplinary users toward other data sources they can 
more easily handle. This brings to the concept of emergent semantics. According to [26], 
the information content of an image is not an intrinsic property but an emergent charac-
teristic through the interaction that its users have with it, i.e., it is somewhat contextual, 
being dependent on the conditions in which a particular query is made and on the user. 
One of the objectives of the introduction of the aforementioned improved representations 
of SAR images is to make this context more uniform and less dependent on the specific 
background of the operator who, having a better understanding of data, should be able to 
make better decisions about how to extract relevant information from them. 

This process can be sketched out through a semiotic paradigm, i.e., the Peirce trian-
gle [27], which provides a schematic representation about how a concept is formed in our 
mind. As shown in Figure 2, it is composed of three inter-related elements, i.e., the sign, 
the object and the interpretant.  

 
Figure 2. The Peirce semiotic triangle. 

The sign is represented by everything that can be perceived. In this context is the 
real world as filtered by the imaging sensor. The object is what the sign concerns with 
and exists independently on the sign, i.e., it is the physical real-world object. Finally, the 
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interpretant is the understanding that an observer reaches of some sign/object relation. 
When the sign is an image acquired beyond the visible spectrum, the formation of the 
interpretant can be hampered by a representation that is not familiar for many of its po-
tential users. This can be mitigated by the introduction of a representation going towards 
the expectation of the remote sensing data user, whose habit is often that of dealing with 
MS data and/or geographical information systems (GISs). 

However, as argued in [28], “a representation is a formal system making explicit 
certain entities or types of information.” As an example, the Arabic, Roman and binary 
numeral systems constitute formal systems for representing numbers. In particular, the 
Arabic system, being decimal, allows for an explicit representation of the number de-
composition into powers of 10. Therefore, forty-two equals 4 × 101 + 2 × 100 = 42. In the 
binary system, this would be 0101010, in the Roman one XLII. If the objective is to use this 
number for some calculation using a machine, the binary representation is the best one, 
provided that the output shall be converted in the base 10 we are used to. Instead, if the 
objective is to understand whether a number is or is not a power of ten, then the Arabic 
representation is more powerful. The usefulness of a representation depends on how 
well suited it is for a specific purpose. As an example, when the aforementioned mul-
ti-temporal composites are exploited, the information highlighted is the one concerning 
the land cover and its temporal changes, but the phase information is lost. As a conse-
quence, this representation should not be used if the objective of the analysis is the esti-
mation of land subsidence. Even the speckle, which is considered by the most an an-
noying characteristic of radar imaging, can turn in a source of information since it can be 
tracked for estimating large displacements using cross-correlation similarity measures 
[19] or exploited to detect the presence of urban areas through its peculiar statistics [29]. 

In the following, it will be discussed how the literature aimed at the filling of the 
information gap sketched in Figure 1 using time series of SAR data, in both classic and 
innovative representations of their information content. In particular, Section 2 is dedi-
cated to classic change detection, with an opening about best practices for data 
pre-processing. Section 3 addresses innovative change detection approaches by means of 
higher-level data representations. Section 4 deals with applications. It is intended that the 
wideness of the topic does not allow a comprehensive review of all the existent in a single 
work. Therefore, the focus is established on selected applications dealing with the bio-
sphere and the hydrosphere. Discussion is provided in Section 5, together with some 
market insights. Conclusions are drawn at the end of the work. 

2. Classic SAR Multi-Temporal Pre-Processing and Change Detection Approaches 
When performing multi-temporal analysis, it is crucial that data are adequately 

pre-processed to ensure their comparability at geometric and radiometric levels. In the 
SAR literature, this phase is very well established. Therefore, the objective of this Section 
is to briefly recall it for the sake of completeness and the ease of the reader. 

The general schema of the (amplitude) multi-temporal SAR pre-processing work-
flow accounts for data calibration, coregistration and despeckling. Calibration is essential 
for making images radiometrically comparable, i.e., this operation ensures that an ob-
ject/surface, if unchanged, exhibits the same reflectivity function along the whole time 
series [30]. This operation is implemented through calibration coefficients provided in 
the image metadata taking into account sensor and orbit effects. In case of stripmap and 
spotlight data, usually one calibration constant for the whole image is applied (see as an 
example [31,32] for the calibration procedures for COSMO-SkyMed and TerraSAR-X 
data, respectively). Dealing with SCANSAR or TOPSAR acquisitions, instead, a calibra-
tion vector/matrix is provided in order to account for signal attenuation phenomena in 
the slant range direction. The application of such calibration coefficients makes data re-
liable to fit practically all the applications today implemented with satellite imagery. As 
an example, COSMO-SkyMed single-look complex products have a declared radiometric 
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calibration accuracy smaller than 1 dB [33]. The estimated values for Sentinel-1A/B im-
ages are smaller than 0.40 dB [34]. 

Coregistration is essential to make images geometrically comparable. It ensures that 
each target on the ground corresponds to the same pixel in all the images of the time se-
ries. This operation is probably the most robust of the SAR pre-processing chain, with 
standard algorithms allowing to achieve an alignment in the order of fractions of pixel 
[35]. 

Despeckling is crucial to enhance the information content of SAR images [36]. 
Speckle is due to the presence of targets with sub-resolution dimensions within the res-
olution cell. The returned echo is determined by the coherent summation of all the con-
tributions given by the single scatterers, and this causes a random return even from ho-
mogeneous areas and the typical salt and pepper appearance of data [35], which can be 
mitigated with appropriate denoising techniques. This is one of the most discussed topics 
of the SAR literature, with several papers published each year. The availability of mul-
ti-temporal datasets allows for obtaining excellent performance by exploiting the synergy 
of spatial and temporal information [37,38] even through the application of the non-local 
paradigm [39]. Today, the frontier of the research in this field is the exploitation of deep 
learning concepts [40–43]. 

Pre-processing operations make data ready to be treated for temporal information 
extraction or for building higher-level representations according to the framework in-
troduced in Section 1. In both cases, the objective is to identify changes in the imaged 
scene and, eventually, assign a higher-level semantics to changing patterns based on their 
different temporal electromagnetic response. 

Leaving out classification aspects, which probably deserve a separate review due to 
the wideness of the topic and possible methodologies, in the following, the discussion 
will be focused on classic change detection approaches, i.e., those aiming at the associa-
tion sign-object sketched in Figure 2 without resorting to any interpretant. The infor-
mation gap graphically represented in Figure 1 is filled using an algorithm, often 
strongly parametrized as a function of the target to be identified, basically excluding the 
operator from the information processing. This can be due either to the necessity of ex-
treme automation, as an example to deliver 24/7 services, or to the difficulties related to 
the algorithm set-up, requiring users with strong technical background. 

In literature, change detection is defined as the identification of the differences in the 
state of an object/target/pattern by observing it at different times [44]. This is one of the 
most discussed topics in remote sensing [45] and represents the simplest declination of 
multi-temporal analysis, being the process usually reduced to couples of images. In the 
SAR community, the change detection is typically implemented through the segmenta-
tion of an opportunely defined change indicator [46]. The literature provides a variety of 
solutions. The simplest one is the difference operator, actually mostly used to process MS 
data [47]. However, its application causes differences in the detection accuracy in high 
and low intensity areas [48]. This leads to the ratio operator being the most exploited, as 
more stable with respect to changes occurring in areas characterized by different reflec-
tivity [49] and the detection more robust to speckle and calibration inaccuracies [50]. 

Typically, the ratio image is expressed in logarithmic scale in order to make its dis-
tribution more symmetrical and to enhance the differences between changed and un-
changed pixels [50–52]. Other change indicators introduced in the past literature include 
normalized multi-temporal band comparison [53,54], information theoretical similarity 
measures (such as the Kullback–Leiber divergence [55] and the mutual information [56]) 
and likelihood ratios [57–60]. 

The decision level is usually addressed through threshold segmentation of the se-
lected information layer. However, this operation may be critical [56]. Basic algorithms 
working on the histogram analysis, like the Otsu thresholding [61], usually fail on SAR 
images because its hypothesis (bi-modal distribution and classes equally represented on 
the scene) are typically not respected. Empirical trial-and-error thresholding [49] and 
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semi-supervised clustering are not applicable to operative scenarios because they require 
strong supervision and/or rely on the availability of relevant training samples. Bayes 
theory and the Kittler–Illingworth minimum-error thresholding have been exploited to 
toughen automatic thresholding methodologies [50,62–64], which represent the most 
adopted solutions in literature. Fully multi-temporal change indicator, thus working on 
the entire time series rather than on a bi-temporal basis, like the absolute change esti-
mator [65], the generalized likelihood ratio test [57] and the second and third order tex-
ture log-cumulants [66] have been also proposed. In these cases, being the processing 
typically accounting for an average behavior of the scene, the time at which the change 
happens influences the results. If the change happens at the beginning of the time series, 
its effects are summed up along the time, so there are more possibilities that it is high-
lighted in the final change layer. 

In the last years, the increased availability of multisource data brought to the de-
velopment of change detection techniques able to combine heterogeneous data-cubes 
[67], where SAR and MS data constitute the preferred sources of sensory information. 
According to [68], the fusion can take place at the pixel-, feature- and decision-level. 

In the decision-level fusion, the diverse datatypes follow an independent workflow 
for information extraction up to the final merge with decision rules tailored on the spe-
cific case study. This is probably the less adopted fusion solution in change detection 
problems. An example of this methodology can be found in [69], where the authors 
proposed to combine deforestation maps separately derived from ALOS-PALSAR and 
Landsat data. 

In the pixel-based fusion, data are combined at sensory data level. This approach has 
been used as an example in [70], where the authors presented a fusion framework for 
deforestation detection based on an optimized regression model of MS and SAR time se-
ries.  

The feature-based fusion approach requires the extraction of features and/or objects 
from multisensor data. They are combined using statistical methods, fuzzy logic or arti-
ficial neural networks. This is the most adopted approach to data fusion applied to 
change detection problems.  

As an example, Poulain et al. [71] proposed to detect new buildings by extracting 
several features indicative of the presence of such structures from both SAR and MS 
images and combining them using the Dempster–Shafer theory of evidence [72]. The 
feature-based fusion of SAR and MS data is also exploited in [73] for buildings damage 
assessment after an earthquake. In this work, the optical image is used to retrieve the 
geometric parameters of the intact building, whose SAR response is simulated and 
compared with that of the real image. The presence of differences between the simulated 
signature and the real one is an indicator of the fact that the building is damaged. Ref-
erence [74] adopted feature-based fusion of MS and SAR images in a geographic infor-
mation system (GIS) environment for detecting environmental hazards due to cat-
tle-breeding facilities in Southern Italy. Polychronaki et al. [75] proposed an object-based 
methodology to fuse ALOS-PALSAR with optical images to detect fire scars in Mediter-
ranean forests. This approach (see [76] for a complete review) is generally more robust 
and flexible than the pixel-based one. However, it introduces several challenges related 
to proper image segmentation and to the retrieval of relevant attributes from objects [75], 
[77,78]. This makes it difficult to be introduced in multidisciplinary operative contexts. 

These principles have been applied to address several SAR remote sensing problems 
and applications like urbanization [10,79] and its consequences on the urban climate [11], 
flood [80] and deforestation [81] mapping, water resources management [82], large dis-
placements estimation of terrains [21,83,84] and glaciers [19,20,85] using intensity track-
ing algorithms and recovering after natural disasters [73]. An insight of the literature 
produced about some of them, namely, forestry, water resources management and flood 
mapping will be provided in Section 4. 
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3. Change Detection Using Higher-Level Multi-Temporal Representations 
In the Introduction, it has been pointed out that an alternative to classic SAR pro-

cessing is possible by introducing higher level multi-temporal representations exploiting 
appropriate color-coding of the microwave information. This processing paradigm al-
lows for the formation of a relevant interpretant of the relation sign-object sketched in 
Figure 2, thus improving the user experience with data and its understanding of the EM 
response of the scene. 

This concept has been variously employed in the literature. References [86,87] used 
incoherent bi-temporal RGB compositions to enhance the presence of flooded areas and 
assessing building damages after a typhoon, respectively. The exploitation of the inter-
ferometric coherence in the generation of bi-temporal SAR color composites has been 
proposed in [88] with the purpose of mapping floods. Reference [89] introduced a new 
class of bi-temporal SAR products, known as Level-1α, obtained by the combination of 
both intensity and phase information within a more general-purpose processing frame-
work. Alves et al. [90] exploited three-temporal fusion of Cassini images to enhance the 
visualization of Titan drainage networks. The same strategy was employed by [91] to 
highlight the presence of floods. Schmitt et al. [92] developed a methodology for color-
izing Sentinel-1 images using a variational autoencoder conditioned on Sentinel-2 data. 
More general methodologies for displaying changes in SAR time series data have been 
developed in [93] with the REACTIV technique (free software available at 
https://w3.onera.fr/medusa/content/reactiv) and in [15] with the introduction of Level-1β 
products. 

In Figure 3, the comparison between the standard SLC representation and its cor-
respondent change-detection Level-1α product [89] is shown. The scene has been ac-
quired in a rural area of semi-arid Burkina Faso by the COSMO-SkyMed sensor in 
stripmap mode with three meters spatial resolution during the wet season, when a land 
cover with abundance of water and vegetation is expected [82]. However, this is not 
immediately understandable from the standard SLC SAR image reported in Figure 3.a 
due to (i) the typical gray-scale representation of data, which is related to the reflectivity 
function of the particular land cover type and (ii) the presence of speckle hampering the 
rising of relevant textures useful to discriminate different image features. This represen-
tation is not suitable, as an example, to distinguish vegetation from bare soils.  

The understanding of the observer and his/her capability to make correct decisions 
in the information processing at hand can be improved by exploiting a multi-temporal 
higher-level change-detection oriented representation following the process model in-
troduced in Section 1. The product shown in Figure 3b has been built by combining an 
image acquired during the dry season, when the landscape is almost completely dry, 
with the wet season acquisition previously introduced. In particular, the dry season im-
age has been loaded on the blue channel and constitutes the reference situation for the 
identification of changes. The wet season image is loaded on the green band, while the 
red channel is reserved to the interferometric coherence. 

The reader should note how this representation, known in literature as Level-1α [5], 
is much more informative than the standard Level-1. At first, it allows to immediately 
identify patterns of growing vegetation, depicted in green color, and the presence of 
temporary water, rendered in blue. Moreover, the introduction of a full multi-temporal 
processing, allowing for the exploitation of temporal despeckling techniques [37], makes 
image textures explicit. This is helpful in the visual segmentation of homogenous pat-
terns because the edges are better defined. Finally, it enables the extraction of higher 
quality texture measures, mostly originally defined based on optical/consumer images 
[94] not affected by speckle, which can be used as information layers in automatic change 
detection and/or classification methodologies [95]. 

The introduction of a color representation of the microwave backscattering also 
makes the information mining of the operator easier, especially for those features which 
appearance is congruent with the natural color palette. This happens, as an example, for 
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temporary water surfaces, displayed in blue, and vegetation, rendered in green. In the 
first case, the color of the composition is due to the dominance of the terrain scattering of 
the dry season image over that of the water surface covering the basin area during the 
wet season. In the same way, the green color of vegetation is due to volumetric 
backscattering enhancement triggered by the growth of crops and grass during the wet 
season [96]. 

  
(a) (b) 

Figure 3. Change detection in semi-arid Burkina Faso using multi-temporal SAR higher-level rep-
resentations. (a) Standard SAR SLC image acquired during the wet season and (b) correspondent 
change-detection Level-1α product (R: interferometric coherence, G: wet season image, B: dry 
season image). The reference for the identification of changing patterns is the dry season acquisi-
tion. 

For the other features, the composition returns a false color determined by their 
temporal backscattering behavior. As an example, soils remaining bare all over the year 
exhibit a balance of the blue and green channels (see the rightmost part of Figure 3b). 
Trees, having high and stable backscattering all over the year, are rendered in cyan. 
Permanent water surfaces are displayed in black color due to their low and stable 
backscattering. The usage of the interferometric coherence is important to separate 
man-made targets (usually stable with respect to the signal phase) from highly reflective 
natural targets. Its contribution, together with that of the intensity channels, makes these 
features, i.e., small human settlements scattered across the study area, rendered in white 
in Figure 3b. 

One of the basic problems in computer vision is to allow the observer to segment the 
image into meaningful regions [97] preventing the raise of bright saturated areas and/or 
non-natural colors which have been judged to be distracting and confusing [98]. In other 
words, it is fundamental that the visualization favors the observer pre-attentive pro-
cessing, i.e., his/her unconscious accumulation of information from the surrounding en-
vironment [99]. 

In Figure 4, the comparison between a Level-1α product [5] (see Figure 4a) and a 
bi-temporal color composite obtained as described in [86] is shown (see Figure 4b). The 
imaged area is that of two small reservoirs in semi-arid Burkina Faso. The RGB images 
have been obtained by using as a reference situation for the identification of changes an 
image acquired during the dry season. Test data are constituted by an acquisition made 
during the wet season. 

In particular, in Figure 4b, the reference dry season image has been loaded on the 
blue band, the test wet one on the green one, while the red channel is given by the dif-
ference between the two aforementioned channels. To allow for a fair comparison, a 
multi-temporal De Grandi despeckling using the same number of images employed to 
process data exploited for building the Level-1α product of Figure 4a has been applied. 

The reader should easily note that the rendering of the information between Figure 
4a,b is completely different. In the Level-1α product, the reservoirs are displayed in blue 
color. As explained before, this is due to the dominance of the terrain scattering of the 
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reference (dry) situation with respect to that produced by the water layer during the wet 
season. Using the composition proposed in [86], this phenomenology results in a signif-
icant contribution of the red band (i.e., the difference image) which turns the color of the 
composition to magenta. Moreover, in Figure 4b it is not possible to identify any of the 
small settlements scattered around the lakes which are visible in Figure 4a. 

  

(a) (b) 

Figure 4. Comparison between bi-temporal representations. (a) Level-1α product. (b) RGB compo-
site obtained as explained in [86]. 

Overall, it is possible to argue that the use of the composition reported in Figure 4b 
would hamper the general understanding of the observer by giving a quite distracting 
and confusing representation of the EM response of the scene. This composition is more 
oriented to the enhancement of changing patterns, but it may be not so effective for la-
beling activities. In other words, if the operator is not aware of the meaning of the change 
he is observing from data, it could be difficult to assign a relevant label to it because the 
representation of the information is not so helpful in the formation of the interpretant of 
the relation between the sign and the object. On the other side, in Level-1α representa-
tion, the enhancement of the changes is displayed in such way to help the operator in the 
assignment of a relevant semantics to them. 

The Level-1α representation is very well-suited for highlighting the presence of 
temporary water surfaces; these features are rendered in blue color [5], that is, the kind of 
rendering the non-expert observer expects for, as an example, a flooded area. However, if 
the objective is the monitoring of land, then this representation can be unpleasant since 
the rendering of terrains is far from the natural color palette (see Figure 5a). In this case, it 
can be useful to exchange the role of the interferometric coherence and of the image used 
as reference for the identification of changes [89], i.e., to swap the red and the blue 
channels. This leads to the representation depicted in see Figure 5b, which is closer to the 
natural color palette being a significant red component retrieved in the rendering of ter-
rains. Clearly, in this case, flooded areas would be rendered in red tonalities, as well as all 
the phenomena related with a decrease of the backscattering with respect to the reference 
situation like, as an example, removal of vegetation canopies. 

Another way to highlight the changes occurring in a scene is to exploit the temporal 
statistics of the SAR series [15,65,66,93]. In Figure 6, some fully multi-temporal products 
are reported. The first (see Figure 6a) has been generated by the chain proposed in [15], 
and it is known as Level-1β image. The second (see Figure 6b) represents the output of 
the REACTIV technique discussed in [93]. The third (see Figure 6c) is absolute change 
indicator map obtained as explained in [65]. The last one is the second order 
log-cumulants map produced as discussed in [66]. In all the cases, the input is constituted 
by a time-series of 6 images acquired over the city of Castel Volturno (Italy) between 
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April and October 2010 by the COSMO-SkyMed sensor in stripmap mode with three 
meters spatial resolution. 

  
(a) (b) 

Figure 5. Rendering variation of change-detection multi-temporal SAR images obtained by ex-
changing the positioning of the interferometric coherence and of the reference image for changes 
identification. Coherence loaded on (a) the red band and (b) the blue band. 

As explained in [15], the channels composing the RGB frame of a Level-1β product 
are extracted from the statistics of the time series. In particular, the red band is given by 
the temporal backscattering variance and the green channel by the average backscatter-
ing. The blue one is obtained by a combination of the interferometric coherence and of the 
saturation index, i.e., the normalized backscattering span calculated pixel-wise. In par-
ticular, the interferometric coherence is used when its temporal average is above a us-
er-defined threshold, and therefore, it is significant only in presence of man-made tar-
gets. Otherwise, the saturation index is displayed. 

This leads to a color-coding related to the dynamics of the scene land cover. Looking 
at Figure 6a, sea appears in almost pure blue color due to its average low backscattering, 
sometimes subject to spikes caused by waves. Stable land cover, mainly grasslands, ex-
hibit dominance of the green band, representative of the average backscattering. Urban 
areas are rendered in cyan due to their highly temporally stable backscattering and their 
high stability with respect to the phase signal. Changing areas are characterized by high 
variance, i.e., significant contribution from the red channel, which can be observed on 
crops. They are rendered in yellowish and pinkish color depending on the crop type 
and/or the occurrence of events like the harvesting, which cause the rise of the saturation 
index contribution. 

The principles driving the temporal composite depicted in Figure 6b are different 
[93], being there the colors associated to the time in which the change is detected rather 
than to the type of change, and this makes the association color–phenomenology diffi-
cult. Moreover, only a fraction of the changing patterns visually detectable in Figure 6a is 
highlighted in the representation of Figure 6b, which tends to enhance only abrupt 
changes and thus is more oriented to the application to long time-series. 

The time at which the change happens is also crucial when traditional fully mul-
ti-temporal change detection operators like those presented in [65] (see Figure 6c) and 
[66] (see Figure 6c) are considered. As discussed in Section 2, they tend to privilege ab-
rupt changes occurred at the beginning of the time series being the output map basically 
a cumulative layer. These products are not able to properly catch slow changes lasting all 
over the time series, like the growth of crops, and this makes most of the agricultural land 
of the analyzed scene quite uniform and not well separated from unchanging features. As 
for the REACTIV output, these products are more oriented for the analysis of long and 
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dense time-series with higher probability of occurrence of abrupt and long-lasting land 
cover variations. 

  
(a) (b) 

  
(c) (d) 

Figure 6. Fully multi-temporal change detection products. (a) Level-1β image. (b) Output of the REACTIV fusion tech-
nique. (c) Absolute change indicator map. (d) Second order log-cumulants map. 

As a general comment, Level-1β images are a more flexible analysis tool with respect 
to the other considered products. They offer a user-friendly representation of the SAR 
information with a balanced color displaying, characterized by limited occurrence of 
saturated and/or distracting patterns. They are able to highlight both slow and abrupt 
changes and to adequately separate them through the rendering in different colors. The 
physical-based association between the color of the composition and the change occurred 
on the scene makes the assignment of a relevant semantics (i.e., label) to the detected 
changing patterns easier. This is also useful for land cover type classification purposes, 
while the other analyzed products mainly allow only for the identification of changes.  

The reviewed change detection literature has been summarized in Table 1, catego-
rized based on the methodology and the application domain. More insights and com-
ments on the different approaches are provided in Section 5. 
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Table 1. Summary of the reviewed change detection approaches. 

Methodology Selected Works Application 

Log-ratio 
Rignot and van Zyl, 1993 [49], Bazi et al., 2005 [50],  

Bruzzone et al., 2006 [52], Bazi et al., 2006 [62]  
General purpose 

Multi-temporal normalized band ratio Amitrano et al., 2017 [53], Cian et al., 2018 [54] Flood mapping 

Information theoretical similarity 
Inglada and Mercier, 2007 [55], Aiazzi et al., 2013 [56], 

Su et al., 2015 [59], Conradsen et al., 2003 [60] 
General purpose 

Fully multi-temporal change indicators 
Martinez and Le Toan, 2007 [65], Bujor et al., 2004 [66],  

Lombardo and Oliver, 2001 [57]  
General purpose 

Multi-sensor data fusion 
Poulain et al. 2011 [71], Brunner et al., 2010 [73] Urban areas 

Polychronaki et al., 2013 [75], Reiche et al., 2015 [70] Forestry 
Object-based processing Amitrano et al., 2018 [77] Water resources 

Bi-temporal higher-level representations 
Amitrano et al. 2015 [5], Amitrano et al. 2019 [24] General purpose 

Dellepiane and Angiati, 2012 [86], Refice et al., 2014 [88] Flood mapping 
Fully multi-temporal higher-level representations Amitrano et al., 2016 [15], Colin-Koneniguer et al., 2018 [93] General purpose 

4. Applications 
In this Section, the concepts introduced in Sections 2 and 3 will be elaborated in an 

application-oriented environment, with particular reference to forestry and water re-
sources. The latter are analyzed from both perspectives of scarcity in semi-arid envi-
ronments and of hazards due to floods. The objective is to provide a complete picture of 
the literature on these topics highlighting the different approaches and their limitations. 

4.1. Forestry 
Forests currently cover about 40% of Earth’s ice-free land surface although, in the 

last centuries, a large fraction of forestland has been converted to agricultural and urban 
uses. Nevertheless, we are dependent on them for the production of paper products, 
lumber and fuelwood and, most important, for the preservation of the Earth ecosystem, 
being forests the sentinels of the carbon cycle [100] and the core of Earth’s biodiversity. 
With projected increases in human population and rising standards of living, the im-
portance and the pressure on forests is expected to increase. The challenge is to set-up 
protocols and methodologies allowing for the sustainable management and exploitation 
of this critical resource [101]. 

Despite of some critical positions risen in the past literature [102–104], the role of 
remote sensing as a proxy for effective sustainable forest management is crucial. This is 
because its implementation requires synoptic and repetitive information about several 
geophysical/biochemical data to be delivered to decision-makers to support their plan-
ning efforts [105,106]. As suggested in [107,108], many of them, like forests extent by type 
[109], topography [110], fragmentation and connectedness of forest ecosystem compo-
nents [111], areas damaged by disease and insects infestation [112], areas damaged by 
fires [113] or deforestation [81], areas successfully naturally and/or artificially regener-
ated [114,115] and above ground biomass (AGB) volume [116], can be fully or partially 
addressed using remote sensing. 

Remote sensing of forests can be effectively implemented using MS data [117]. Some 
operational services for temporal monitoring of forests already exist like the PRODES 
[118] and the DETER-B (data available for download at 
http://www1.dpi.inpe.br/obt/deter/dados/) [119] operative in the Amazon and the Global 
Land Analysis and Discovery (GLAD, datasets available for download at 
https://www.glad.umd.edu/dataset) [120]. Landsat data have been quite recently ex-
ploited to map global forest loss and gain from 2000 to 2012 at a spatial resolution of 30 m 
[121]. In this study, more than 650,000 Landsat 7 Enhanced Thematic Mapper Plus 
(ETM+) scenes were analyzed to create a cloud-free dataset. However, in tropical regions, 
massive cloud-coverage all over the year [122] and the fast recovery of vegetation can 
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hamper the detection of changes in forest cover. For this reasons, some authors expressed 
concern regarding the validity of this map [123,124]. 

The use of SAR of course solves the problem of cloud coverage but introduces sev-
eral others related to the complex scattering mechanisms triggered by vegetation layers 
[96]. In this case, the role of the wavelength is crucial, since it determines the penetration 
depth of the electromagnetic radiation within the forest canopy. This can be roughly ex-
plained looking at Figure 7. Working at short wavelengths, i.e., those corresponding to 
X-band (about 3 cm) and C-band (about 5 cm) the main contribution to the backscattering 
is that provided by the upper strata of the forest canopy, mainly constituted by leaves 
and twigs [125]. At C-band, some return by small secondary branches is also possible. 
Using longer wavelengths, i.e., that corresponding to L-band (about 27 cm), the canopy 
becomes mainly transparent, and the backscattered signal is due to primary branches and 
the trunk. Complete studies about the radar backscattering from forest have been pro-
vided by Hoekman for the X-band [126], Westman and Paris [127] for the C-band and 
Richards et al. for the L-band [128]. 

 
Figure 7. Simplified graphical representation of the role played by forest features in the backscattering as a function of the 
wavelength. 

The difference in the backscattering mechanisms triggered by different wavelengths 
strongly influences the suitability of the sensor with the application. As an example, 
many authors suggested the exploitation of short wavelengths to classify different tree 
species. Rignot et al. [129] claimed that airborne C-band images perform better than L- 
and P-band ones data over a boreal forest. In particular, the authors concluded that the 
branching geometry and foliage of certain tree species (like the white spruce and leafless 
balsam poplar) highly affects the C-band SAR signal facilitating the separation of the 
species. Similar conclusions concerning the potential of the X-band were drawn in [126], 
[130–132]. On the other hand, Reference [133] reported the inconsistences of X-band im-
ages to separate broadleaved and coniferous species. Saatchi and Rignot [134] found that 
P and L bands are better at performing the discrimination between jack pine and black 
spruce as well as between coniferous and broadleaved species, and this conflicts with the 
findings reported in [129]. These contradictory results suggest that the choice of an ap-
propriate band depends on the examined forest, its structure being widely variable with 
age, management and biome [135]. 

When the application is the mapping of forest disturbances, the literature landscape 
is dominated by the exploitation of long wavelengths, which are able to maximize the 
contrast between forest features and bare lands and pastures being more sensitive to the 
AGB content within the resolution cell. Most of the literature is therefore focused on the 
exploitation of data acquired by the Japanese sensors JERS-1 (1992–1998), ALOS-PALSAR 
(2006–2011) and ALOS-PALSAR-2 (since 2014), whose acquisition strategies were de-
signed to produce annual global mosaics, thus resolving previous spatial coverage issues. 
Thanks to these mosaics, Reference [136] produced the first SAR-based annual global 
maps of forest/non-forest cover. Global mosaics can be freely downloaded at 
https://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm. 
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All this constituted the base for a number of works. Mermoz and Le Toan [137] 
mapped forest disturbances and regrowth in Vietnam, Cambodia and Lao PDR from 
2007 to 2010. Reference [138] explored the feasibility of the detection of forest disturb-
ances from repeat-pass interferometric coherence magnitude of ALOS images. Al-
meida-Filho et al. [139] used multi-temporal JERS-1 images to detect deforestation pat-
terns in the Brazilian Amazon. They interestingly observed that, under particular cir-
cumstances, deforestation areas might be characterized by higher backscattering values 
than undisturbed primary forest. This is due to the fact that the conversion from primary 
forest to pastures or agricultural fields presents different phases like slashing, burning 
and clearing (i.e., the removal of stems and branches that were not entirely consumed by 
fire). Thus, depending on the acquisition time of the SAR image, the electromagnetic re-
turn from deforested areas can be stronger than that from primary forest, contrary to the 
general premise that the latter exhibits higher reflectivity. Similar findings were reported 
by [140], in which the authors ascribed the increase in the backscattering coefficient just 
after deforestation detected through Landsat images to felled trees left on the ground. 
Small-scale deforestation and forest degradation in Mozambique and their relation with 
the carbon stock have been studied in [141]. The suitability of ALOS-PALSAR data for 
detecting new fronts of deforestation in the Brazilian Amazon was assessed in [142]. 
Motohka et al. [143] used an annual time series of ALOS-PALSAR mosaics to automati-
cally detect deforestation in Indonesia. They suggested that HV polarized data represent 
an effective parameter for deforestation detection when a fixed threshold was used.  

Actually, the choice of the polarization (or combination of polarizations) to be used 
for deforestation mapping is controversial [137]. Some studies exploited the 
cross-polarized channel only [143–145], while other suggested the combination of co- and 
cross-polarized channels [142,146]. In any case, it is clear that the availability of the 
cross-polarized channel is crucial for forest studies, since the scattering from vegetation 
layers is likely to cause signal de-polarization, thus making this channel more sensitive to 
the presence of such structures with respect to the co-polarized one [125]. 

An interesting study made by Walker et al. [147] compared the results of forest 
mapping obtained using ALOS-PALSAR and Landsat data. The authors concluded that, 
although increasingly robust, SAR data should not be considered as a replacement for 
MS data sources. However, they encourage the research on methodologies exploiting the 
synergy between the all-weather/all-time imaging characteristics of microwaves and the 
direct link with biomass proper of MS acquisitions to provide the most effective means 
for reliable forest monitoring. This is the way followed, as an example, in [69,70,148] who 
proposed multi-sensor data fusion of multi-temporal ALOS-PALSAR and Landsat data 
for mapping and monitoring of tropical deforestation. 

The wide availability of C-band data due to the Sentinel-1 mission is also re-opening 
the research on forestry using this particular wavelength (like it was in the past thanks to 
the ERS [149,150], SIR-C [81,130] and ENVISAT [151] missions). Clearly, the shorter 
wavelength compared with the L-band limits the penetration depth into the canopy, and 
this makes data less suited for forest disturbances assessment [152]. Reference [153] used 
Sentinel-1 datasets (mostly bi-temporal) for detecting forest fires. Reiche et al. [154] pro-
posed to mitigate the limitations of the C-band through multi-sensor data fusion with 
ALOS-PALSAR-2 and Landsat MS images. Forest mapping using both phase and am-
plitude of Sentinel-1 InSAR stacks has been recently presented in [155]. A particularly 
innovative methodology has been recently introduced by Bouvet et al. [152], who used 
the shadowing effect typical of side-looking SAR acquisition geometry to identify new 
deforestation patterns. In this work, the authors also pointed out that the C-band 
backscattering of deforested areas is not necessary decreasing compared to that of an 
undisturbed forest. Following similar considerations made in [139] for the L-band, they 
argue that deforested areas that are cleaned or burnt typically exhibit lower backscatter-
ing, but patches with leftovers remaining on the ground may show similar or higher re-
turn than intact forests due to a branches-ground double-bounce scattering mechanisms. 
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The same phenomenon can be due to increased moisture in deforested patterns because 
of rainfalls. 

Experimental evidence of the different behaviour of SAR backscattering as a func-
tion of the wavelength can be better appreciated by looking at the boxplots reported in 
Figures 8 and 9 for the co-polarized and cross-polarized channel, respectively. They 
represent the co-polarized and cross-polarized average EM response of forest and land 
features (as extracted from SLC images) for different available sensors, respectively. In 
these plots, each box represents the dispersion of data around their median values, de-
picted by the red bar. The edges indicate the 25th and 75th percentiles, respectively. The 
whiskers extend to the most extreme data points not considered as outliers, which are 
plotted individually using the ‘+’ symbol. 

 
Figure 8. Co-polarized average EM response of forest and land features for different available sensors including 
ALOS-PALSAR (L-band), Sentinel-1 (C-band), TerraSAR-X (X-band) and NovaSAR (S-band). 

From the analysis of reflectivity function for the co-polarized channels, represented 
in beta nought ( 0β ) values, it arises that the best separability, as expected, is obtained by 
using L-band ALOS-PALSAR data, being the span of medians for the forest class and the 
land class in the order of 7 dB. The C-band Sentinel-1 works quite well, being that span 
around 5.3 dB. However, contrarily to the case of L-band images, the boxes representa-
tive of the EM response of the two classes exhibit a quite significant overlap. This means 
that there are higher possibilities of interclass confusion if the only reflectivity function is 
used to classify. A similar situation is registered in the case of usage of X-band Ter-
raSAR-X data. In this case, the span between the medians is even reduced with respect to 
the C-band (it is in the order of 2.8 dB). Moreover, a wider superimposition between the 
relevant class boxes is registered. This makes forest studies more challenging at this par-
ticular wavelength, with the most successful related to the availability of TerraSAR-X 
synchronized interferometric tandem acquisitions [156], which also made possible the 
derivation of a global forest/non-forest map [157]. 

The rightmost boxes in Figure 8 refer to images acquired by the recently launched 
NovaSAR platform [158]. In this case, calibrated beta nought ( 0β ) expressed in dB data 
can be retrieved from SLC digital numbers (DN) as follows 

0
10

1

10 log DN
K

β = ∗ , (1)
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where 1K  is the calibration constant provided in the product’s metadata. The reader 

should remember that the 0β  is the projection on the slant range of the sigma nought 

( 0σ ). 
The peculiarity of this sensor is that it is the only one today operating at S-band, 

therefore, with a wavelength of about 10 cm. Due to the intermediate wavelength be-
tween the L-band and the C-band, its behaviour concerning the penetration depth into 
vegetation canopy is intermediate as well. As a consequence, the discrimination of forest 
stands from land features should work better on such images than the C-band and worse 
than the L-band [159]. This is reflected from the first available data acquired during the 
commissioning phase of the platform. The span between the median of the distributions 
of the forest and land classes is about 4.1 dB, so slightly lower than that registered for the 
C-band case, but the width in the y-direction of the boxes is lower, i.e., data are more 
homogeneously distributed around the medians and this causes the lack of any overlap 
between the boxes. Therefore, there are more possibilities, compared to the usage of the 
C-band, to successfully separate the two classes from their EM return. 

 
Figure 9. Cross-polarized average EM response of forest and land features for different available sensors including 
ALOS-PALSAR (L-band), Sentinel-1 (C-band) and TerraSAR-X (X-band). 

The above considerations are confirmed if the boxplots for the cross-polarized 
channel reported in Figure 9 are considered. In this case, the span between the average 
scattering between the forest and the bare land classes increases for all the wavelengths 
due to the higher sensitivity of the cross-polarized channel to vegetation canopies [125]. 
In particular, the span for ALOS-PALSAR L-band data increases up to about 10 dB. For 
C-band Sentinel-1 and X-band TerraSAR-X data it was of about 6 dB. However, as for the 
co-polarized case, only ALOS-PALSAR data do not show any superimposition between 
the boxes representative of the classes distributions. The situation is improved for the 
C-band, being now the boxes superimposition strongly reduced with respect to the 
co-polarized case. For the X-band, the story is mostly unchanged; therefore, a significant 
interclass- confusion should be expected whatever the polarization is used. Data about 
NovaSAR images are not available for the HV polarization at the time of this research. 

Image texture is another important parameter in the discrimination of forest pat-
terns from bare land or agricultural ones [160,161] and can be effectively exploited as 
information layer in change detection algorithms. Forests are in fact characterized by 
significant texture, which is severely affected by the transformation into other land use. 



Remote Sens. 2021, 13, 604 17 of 46 
 

 

In Figure 10, an example is shown of the usage of this information for the detection 
of deforestation patterns in the Brazilian Amazon. In particular, in Figure 10a,b, two 
Google Earth views of the study area acquired in 2007 and in 2010, respectively, are re-
ported. The correspondent Level-1α SAR products [24] are depicted in Figure 10c,d. They 
share the reference situation for land cover changes evaluation, which has been acquired 
by the ALOS-PALSAR sensor in April 2007. It is loaded on the red band. The images 
useful for the detection of changes have been acquired in July 2007 (see Figure 10c) and 
September 2010 (see Figure 10d). They are loaded on the green band. The blue band is 
reserved to a texture measure calculated based on the last-mentioned acquisitions. 

  
(a) (b) 

  
(c) (d) 
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(e) (f) 

Figure 10. Deforestation detection in the Brazilian Amazon using ALOS-PALSAR Level-1α images. First row: Google 
Earth views of the study area acquired in (a) 2007 and (b) 2010. Second row: Level-1α images. Test images for changes 
identification acquired on (c) July 2008 and (d) September 2010. Third row: (e) normalized change index and (f) normal-
ized texture drop index maps. 

As explained in Section 2, changing patterns are identified by red or green shades, 
indicating, respectively, a decrease or an increase of the backscattering with respect to the 
reference situation. The product depicted in Figure 10c, involving two acquisitions made 
with short temporal baseline, does not exhibit any significant pattern having one of the 
aforementioned colours. This means that the scene is mostly stable. Conversely, it is 
possible to appreciate the rising of those patterns in the representation of Figure 10d, 
with the red one corresponding to the deforestation areas visible in Figure 10b. This is 
due to a double drop of the reflectivity and of the texture caused by the removal of the 
vegetation canopy with consequent exposition of smoother soil.  

These phenomena can be better appreciated by computing the relevant normalized 
multi-temporal band ratios from the RGB images [53], as shown in Figure 10e for the re-
flectivity and in Figure 10f for the texture. It is evident that the brightest areas on these 
pictures correspond to the red ones in the panel above. 

In Figure 11, the same experiment has been implemented using Sentinel-1 GRD 
images. In particular, in Figure 11a, the time zero situation is represented as seen from a 
Landsat 8 acquisition in April 2016. The state of the same area in November 2019 is de-
picted in Figure 11b. The yellow place marks indicate some deforestation areas.  

In Figure 11c, a Level-1α product having as reference situation an acquisition made 
in December 2015 (red band) and as a test image for the identification of changes (green 
band) an image acquired in February 2016 is represented. In Figure 11d, the test image 
has been acquired in January 2020. For both products, like in the previously discussed 
ALOS-PALSAR representations, the blue band is reserved to a texture measure. 

As for the ALOS-PALSAR case, deforestation patterns visible in Figure 11b corre-
spond with areas rendered in red in Figure 11d. However, more generally, this is the 
appearance of any event of vegetation canopy removal, like harvesting (see red patterns 
in Figure 11c) that, electromagnetically, is equivalent to deforestation. This means that 
the discrimination between changing agricultural farmlands and actual deforestation 
should be carefully taken into account and can be source of misclassifications.  
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Figure 11. Deforestation detection in the Brazilian Amazon using Sentinel-1 Level-1α images. First row: Landsat 8 images 
of the study area acquired in (a) April 2016 and (b) November 2019. Second row: Level-1α images. Test images for 
changes identification acquired on (c) February 2016 and (d) January 2020. 

In Figure 12, the comparison between the discriminability of deforestation patterns 
from undisturbed forest and agricultural fields using the multi-temporal RGB represen-
tations of ALOS-PALSAR (see Figure 12a) and Sentinel-1 (see Figure 12b) data previously 
discussed is reported. Data are shown in the plane defined by the normalized backscat-
tering and texture spans, as extracted from the Level-1α products (see Figure 10e,f for the 
ALOS-PALSAR case). 
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(a) (b) 

Figure 12. Separability of deforestation patterns from undisturbed forest and agricultural land in the plane defined by the 
normalized texture and backscattering span for (a) ALOS-PALSAR and (b) Sentinel-1 images. 

The scatter plots tell that both sensors allow for a good separation of the deforesta-
tion class from the undisturbed forest, as also shown by the boxplots of Figures 8 and 9, 
with the latter feature exhibiting very stable EM characteristics (especially at L-band) 
being characterized by a population poorly scattered around the origin of the plane, 
which means no changes. The L-band allows for a better discrimination with respect to 
agricultural lands subject to vegetation canopy removal or harvesting with respect to 
time zero. In this case, the corresponding population is more segregated and closer to the 
no variations area with respect to the C-band case, for which a higher inter-class confu-
sion is registered. Moreover, ALOS-PALSAR images exhibit a better sensitivity to the 
texture drop, being the slope of the regression line for the deforestation class of about 45° 
versus the almost 52° of the one relevant to Sentinel-1, for which the dominant effect is 
that of the drop of the backscattering. 

The wavelength also affects the estimation of vegetation parameters like the biomass 
content within the resolution cell since it mainly rules the saturation level of the SAR 
signal. Reference [162] assessed the performance of three methodologies for its estima-
tion starting from both L-band ALOS-PALSAR and X-band TerraSAR-X data and con-
cluded that artificial neural networks were the best performing, provided that a signifi-
cant number of ground data is available. An interesting study made by Yu and Saatchi 
[163] on moist forests in the Americas, Africa and Southeast Asia, as well as temperate 
conifer forests, reported a good sensitivity of the ALOS-PALSAR HV channel backscat-
tering up to about 100 t/ha and severe signal saturation phenomena (i.e., constant or de-
creasing EM return) when the AGB increases above 200 t/ha in tropical moist forests. This 
phenomenon has been reported also in [164]. Similar conclusions were derived in [165] 
for forests in the North-eastern United states. Reference [166] reported that, in the case of 
Australian Queensland forests, the L-band HV backscattering is more sensitive to the 
AGB (up to about 270 t/ha) than the HH one, which is also strongly influenced by the 
increasing soil moisture which causes a drop of the saturation level from about 170 t/ha 
to about 100 t/ha with respect to dry conditions. In case of availability of fully polarimet-
ric data, Neuman et al. [167] claimed that the best correlation with AGB is given by from 
the second Pauli component HH–VV, which is related to ground–trunk and 
ground–branches scattering.  

Working with C-band images, the sensitivity to the AGB significantly decreases 
with respect to the L-band due to earlier saturation of the signal. As an example, Refer-
ence [168] reported, in tropical environment, a sensitivity of about 30 t/ha, 70 t/ha, and 60 
t/ha for ERS-1 VV, SIR-C HH and SIR-C HV data, respectively. In these cases, one of the 
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strategies to cope with this is multi-sensor data fusion. Reference [169] claimed an in-
creased sensitivity in tropical environment up to 250 t/ha when Sentinel-1 data are com-
bined with ALOS-PALSAR-2 images. As found in [170], the integration of Sentinel-2 op-
tical data can bring the sensitivity of the estimate up to 400 t/ha, which is a value that can 
allow the study of most of the forests in the Mediterranean area. 

The exploitation of the S-band seems to be promising for AGB estimation [171]. Pre-
liminary studies made with airborne images acquired in view of the launch of the No-
vaSAR mission [158] claimed that the relation between the EM return of a broadleaved 
UK forest and the AGB follows a non-linear model up to about 150 t/ha at all polariza-
tions, while lower sensitivity has been observed for needle leaved stands [172]. The au-
thors related this phenomenon to the higher density of foliage and branches with respect 
to broadleaved stands. Interestingly, this work also used S-band signal simulations to 
decompose the various structural contributions within the total backscattered energy 
from the forest stands. Simulations have been implemented by using the Michigan mi-
crowave canopy scattering (MIMICS) model [173]. They revealed that, as an example, in 
case of broadleaved canopy, the co-polarized backscattering is dominated by 
ground/trunk interaction at HH polarization and by volume scattering at VV polariza-
tion. Direct crown scattering is the dominating mechanism for the cross-polarized chan-
nel [172]. These findings are similar to those claimed in [174,175], who differentiated 
clear-cut areas from forest stands using S-band data acquired at the beginning of the 90s 
of the past century by the Russian platform Almaz. 

From the literature, it arises that the saturation level of the SAR signal as a function 
of the AGB has been variously reported, with variations that can be significant [176] and 
anyway justifiable due to the strong influence of the forest type and structure on the es-
timate. Variability in the relationship between the SAR EM return and the AGB has been 
also observed due to acquisition parameters, like the incidence angle [177], and envi-
ronmental factors such as rainfalls [166] or freeze-thaw cycles [178]. The most reliable 
values for the L-band and P-band sensitivity to the AGB (without any data fusion) are in 
the order of 60–100 t/ha and 100–150 t/ha, respectively, and this raises the perception that 
SAR data have limited capability in AGB estimation, especially in case of high biomass 
forests [166]. 

The topic of SAR sensitivity to the AGB is particularly relevant with regard to forest 
fires detection [179]. With about 4 million km2 burned globally every year [180], they 
represent today one of the most serious environmental threats.  

The impact of fires on the backscattering coefficient was found to be ambiguous by 
the literature. They induce variations of the EM return that mostly depend on the forest 
structure and moisture, as well as from the humidity of the underneath soil [51,181]. 
Combustion reduces the number of vegetation scattering elements, and this is expected 
to reduce the backscattering coefficient as well. A strong decrease of the backscattering 
was registered in tropical environment under dry conditions using C-band VV polarized 
data due to decreased volume scattering caused by burned canopy and increased heat 
flux leading to a dryer soil [182,183]. However, the lack of the vegetation canopy may 
also increase the scattering contribution of the ground [184,185]. This makes the scatter-
ing from the fire scar affected by weather conditions, since, as an example, after rainfalls, 
the total backscattered energy can increase due to the increased moisture of the soil ex-
posed by the fire, thus complicating the discrimination from the unburned surrounding 
stands [182]. This behavior has been observed also in boreal forests using C-band 
co-polarized images [186–188]. 

Reference [189] found a drop in the backscattering for the C- and L-band 
cross-polarized channels in fire affected areas with respect to adjacent unburned forest in 
temperate environment. Conversely, in the Australian savanna, Menges et al. [190] reg-
istered an increase and a decrease of L-band co-polarized and cross-polarized backscat-
tering, respectively. In Mediterranean forests, under dry conditions, Imperatore et al. 
[191] reported a decrease of the EM return for both VV and VH polarization using Sen-
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tinel-1 data, with the effect more pronounced in the cross-polarized channel. In the same 
environment, Reference [192] studied the effect of forest fires on the X-, C- and L-band 
backscattering and reported, under dry conditions, an increase of the EM return with 
increasing fire severity for the X- and C-band co-polarized components and a decrease 
for the L-band one. The cross-polarized channel, instead, which is more sensitive to 
volume scattering, was found to be decreasing at all frequencies. A conflicting result with 
respect to the findings of Imperatore et al. was also reported by [193], which claimed an 
increase of the post-fire backscattering coefficient for C-band co-polarized ERS-2 data 
independently on the accumulated precipitation index. 

In summary, SAR remote sensing of forest fires triggers a complex phenomenology 
which can generate a wide range of backscattering behaviors, varying as a function of 
wavelength, acquisition parameters, meteorological conditions and topography [192]. 
Mostly, the literature agrees that, under dry conditions, the backscattering from the 
burned forest decreases. Conversely, under wet conditions, an increase of the EM return 
should be expected due to the higher contribution of the soil exposed following the loss 
of the vegetation canopy. This suggests that the analysis of fire scars using SAR data 
should be always coupled with data on the rainfalls in the study area [191]. 

In Table 2, the reviewed literature about forestry has been summarized and catego-
rized based on the application, the adopted methodology and the data exploited. More 
considerations about it are provided in Section 5. 

4.2. Water Resources 
Water is the primary natural resource for all the living beings on Earth and is under 

pressure. The UN estimated that more than 2 billion people live in countries experiencing 
high water stress [194]. Global water demand is expected to continue increasing, mostly 
due to an increasing demand from developing countries, at about 1% rate yearly until 
2050 accounting for an increase of 20% to 30% of the actual lever of water use [195]. 

As estimated by the UN, about 90% of all the natural disasters are water-related. 
Floods are the most frequent and the more dangerous among them, but on the other 
hand, between 1995 and 2015, droughts accounted for 5% of worldwide natural disasters, 
affecting 1.1 billion people, killing 22,000 more, and causing USD 100 billion in damages 
[194]. 

Table 2. Summary of the reviewed literature about forestry categorized based on the application, the adopted method-
ology and the data exploited. 

Application Selected Works Methodology Data Exploited 

Forest type classification 
Ranson et al., 1995 [130], Ranson and Sun, 1995 [131],  

Pierce et al., 1998 [132] 
Backscattering analysis C-band 

Deforestation 

Mermoz and LeToan, 2016 [137], Almeida-Filho et al., 2007 
[139], Joshi et al., 2015 [145], Motohka et al., 2014 [143] 

Change detection 

L-band cross-pol eventually 
coupled with co-pol 

Lehmann et al., 2012 [69], Reiche et al., 2015 [70], 2013 [148], 2018 
[154] 

L-band SAR and MS data fu-
sion 

Biomass estimation 
Mermoz et al., 2015 [164], Cartus et al., 2012 [165],  
Lucas et al., 2010 [166], Yu and Saatchi, 2016 [163] 

Backscattering analysis 
L-band SAR, cross-pol 

Forest fires detection 
Tanase et al., 2010 [192], [185], Kalogirou et al., 2014 [184],  

Imperatore et al., 2017 [191] 
C- and L-band SAR, co- and/or 

cross-pol 

Drought is a recurring phenomenon that affected civilization throughout history. 
The American Meteorological Society grouped drought types in four inter-related cate-
gories: meteorological, agricultural, hydrological and socioeconomic [196]. The meteor-
ological drought is caused by a prolonged absence of precipitations. The agricultural one 
occurs at a critical time during the growing season of crops and can be exacerbated by 
reduced rainfalls that can also affect subsurface water supply, reducing stream flows, 
groundwater, reservoirs and lakes levels, thus resulting in hydrological drought. Finally, 
the socioeconomic drought associates the supply and demand of goods with weather 
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conditions, which basically rule all the categories. As discussed in [196], the insurgence of 
drought can be detected using ad hoc indices calculated based on temporal temperature 
and rainfall statistics, as well as soil moisture, vegetation indices and reservoir storage 
parameters. 

Surface water bodies are dynamic objects as they shrink, expand and/or change their 
appearance during time due to both natural and human-induced factors [197]. Changes 
in surface water volume can cause serious consequences. Its increase can lead to floods 
(see Section 4.3). Its decrease is a trigger for drought. Therefore, it is crucial to effectively 
detect the presence of surface water and to estimate its extent, its volume, and to monitor 
its dynamics [198]. This is even more important in areas difficult to access and/or char-
acterized by chronical scarcity of water availability due to extreme climate conditions 
[199]. 

Remote sensing technologies offer unprecedent possibilities to observe surface wa-
ter dynamics being much more effective and cheaper compared with traditional in-situ 
measurements. They constitute an effective tool for the large-scale estimation of the 
quantities required to calculate the drought index introduced above. This is mostly done 
using passive remote sensing [200,201] due to the availability of long time series of data 
and to the ease with which it is possible to extract relevant vegetation and water param-
eters from them using spectral indices. 

Among them, the extension of water bodies is particularly important. As mentioned, 
it can be effectively estimated using MS data [202]. Recently, Donchys et al. [203] pre-
sented a global map of surface water changes between 1985 and 2016 obtained by pro-
cessing images from multiple Landsat mission using the Google Earth Engine [204]. This 
product offers an extraordinary picture of the water/land and land/water conversions 
occurred in the last 30 years, but it is not able to catch rapid changes (i.e., seasonal 
changes) due to the cloud coverage preventing the MS imaging of the Earth surface all 
over the year. 

The continuous monitoring of the available water is very important, as an example, 
in semi-arid environments, where the alternation between wet and dry seasons causes a 
natural oscillation of the water volume retained by dams. However, this cycle has to be 
monitored because its instability, with consequent reduction of the water availability for 
agricultural use, human consumption and livestock, can set off severe droughts which, in 
turn, could be the trigger for a Malthusian crisis [205], i.e., a situation in which the pop-
ulation in a given area exceeds its food supply. 

In this context, the all-weather and all-time imaging capabilities of SAR sensors are 
crucial, and the literature demonstrated their usefulness for the purpose [53,82], 
[206–212]. However, when dealing with small reservoirs, i.e., those having extension 
smaller than 100 ha, the medium resolution is a limitation [210]. These reservoirs are of-
ten self-built using rudimental constructions techniques and self-managed by local 
communities for which constitute a fundamental resource. Their monitoring requires the 
usage of high-resolution data which are an enabling factor for several interesting appli-
cations derived from their mapping [82]. 

This can be implemented using the techniques used for the identification of standing 
water. Reference [82] applied standard local thresholding for mapping small reservoirs in 
semi-arid Burkina Faso exploiting the characteristic bi-modal distribution of COS-
MO-SkyMed X-band SAR data within an area of few square kilometers containing the 
basin. Global thresholding was exploited in [213] for mapping reservoirs using Ter-
raSAR-X X-band images acquired in semi-arid Northeastern Brazil. Eilander et al. [212] 
developed a new Bayesian classifier and applied it to C-band RADARSAT-2 images to 
map reservoirs in the Upper East Region of Ghana. Reference [53] used bi-temporal Lev-
el-1α images to define a normalized difference water index based on the comparison of 
the two images composing the RGB frame. An example of this workflow is shown in 
Figure 13. 
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Figure 13. Small reservoir detection using COSMO-SkyMed high-resolution Level-1α images. (a) Bi-temporal color 
composite. (b) Water index map. (c) Reservoir mask obtained via thresholding. 

In particular, in Figure 13a, a Level-1α product is reported depicting a small reser-
voir in Burkina Faso. The rationale behind has been introduced in Section 3. The refer-
ence image has been acquired at the peak of the dry season by the COSMO-SkyMed 
platform with 3 m spatial resolution and it is loaded on the blue band. The test image for 
the identification of changes has been acquired during the wet season, and it is assigned 
to the green band. This makes temporary water surfaces to be rendered in blue color. In 
Figure 13b, the map of the water index is shown. The reader should note that its highest 
response is in correspondence with the basin area identifiable in Figure 13a. Finally, 
Figure 13 represents the surface water mask obtained via thresholding. The visual in-
spection reveals a good agreement with the information retrievable from the RGB image 
with limited insurgence of false alarms. This problem can be tackled using object-based 
processing exploiting geometric properties of the reservoirs as detailed in [77]. 

The reviewed literature highlighted several aspects. First, most of it proposed the 
exploitation of high-resolution images in order to cope with the dimension of the objects 
to be identified. Second, the usage of data acquired with short wavelengths, i.e., at X- or 
C-band frequencies, in the co-polarized channel, is privileged. This is due to the de-
pendencies of SAR backscattering on both polarization and roughness. 

Working with microwaves, water bodies are considered as smooth surfaces com-
pared to bare (or vegetated) soils. However, strictly speaking, the Rayleigh criterion 
holds, i.e., surfaces are smooth if / 8cosh λ τ< , where h is the standard deviation of the 
surface height, τ the depression angle and λ the wavelength [125]. A surface with the 
same roughness will appear rougher (i.e., will exhibit a higher backscattering) at shorter 
wavelengths than at long ones [214]. In other words, soils tend to appear brighter using 
short wavelengths, and this tends to maximize the contrast with respect to standing wa-
ter surfaces, which are usually very smooth. 

Such an effect can be appreciated in Figure 14, where the ratio R between the 
backscattering coefficients of a rough terrain and a water surface is simulated as a func-
tion of the incidence angle θ.  

Simulations have been implemented using the small perturbation method [215] for 
different wavelengths, namely, those corresponding to X-band, C-band, S-band and 
L-band. They are represented in Figure 14 by the curves depicted in blue, red, green and 
orange colors, respectively. The surface roughness has been described in terms of the 
fractal parameters H (the Hurst coefficient) and s (the standard deviation at unitary dis-
tance). The interested reader can refer to [215] for more information about their physical 
meaning. The geometric and dielectric parameters used to characterize rough terrain and 
water surface are presented in Table 3, where electromagnetic parameters are indicated 
with ε (dielectric permittivity) and σ (conductivity). 



Remote Sens. 2021, 13, 604 25 of 46 
 

 

The results of the simulation shown in Figure 14 confirm that the discrimination 
between terrain and water increases with the frequency and spans from about 9.6 dB at L 
band to about 10.5 dB at X band at 15° incidence angle. For all the examined wavelengths, 
the separability slightly increases with the incidence angle. 

 
Figure 14. Ratio between the backscattering coefficients of typical rough terrains and water sur-
faces at L (orange line), S (green line), C (red line) and X (blue line). Geometric and dielectric pa-
rameters used for the simulations are defined in Table 3 

Table 3. Geometric and dielectric parameters used to characterize terrain and water surfaces. 

Simulation Parameter Terrain Water 
ε/ε0 4 40 

σ [S/m] 0.001 1 
H 0.75 0.8 

s [m1-H] 0.05 0.02 

As for the dependence of surface scattering from polarization, it is worthwhile to 
recall that a linear cross polarization response results when the transmitted wave is 
re-polarized to its orthogonal polarization. Re-polarization from horizontal to vertical or 
from vertical to horizontal can happen in presence of multiple scattering, so at least two 
bounces. Smooth surfaces are dominated by single-bounce forward scattering with a very 
low cross-polarized component, which is comparable to the noise floor [216]. This means 
that the slightly higher roughness of a bare soil with respect to standing water tends to be 
flattened using the cross-polarized channel and enhanced through a higher contrast by 
exploiting the co-polarized one.  

The results of the simulations are confirmed by considering real data. In Figure 15, 
the boxplots representative of the EM response of land and water features for different 
available sensors are reported. Using L-band (~27 cm wavelength) ALOS-PALSAR data, 
the span between the median response of the two features is around 4.3 dB, but the rel-
evant boxes exhibit an overlap, which means a significant probability of class confusion. 
In the case of C-band (about 5 cm wavelength) Sentinel-1 data, the span is of about 7.3 dB, 
without any overlap between the boxes. A further decrease of the wavelength up to the 
X-band (3 cm) brings the difference in the median span between the two classes up to 10.5 
dB. NovaSAR data (acquired at S-band, thus with about 10 cm wavelength) show a sep-
aration between the medians of about 8 dB, thus comparable to that achieved using Sen-
tinel-1 images, with absence of boxes overlap as well. 

The knowledge of the extension (and of the position) of the reservoirs opens the 
doors to several multidisciplinary applications spanning from hydrology to health sci-
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ences. As an example, the duration of the presence of surface water and the retention 
capacity of the reservoirs are key parameters for modelling the diffusion of water-related 
diseases like schistosomiasis because they offer a favourable environment for the prolif-
eration of the snails responsible of its transmission [217]. In semi-arid environments, 
where most of the reservoirs are completely dry at the peak of the dry season, it is possi-
ble to estimate the water volume using SAR interferometry [82]. The absence of surface 
water in the basin areas causes the soil to be exposed to the EM signal, and this allows to 
retrieve relevant information on its phase that is exploited to produce digital elevation 
models (DEMs) using repeated acquisitions made with short temporal gap [218].  

Data resolution is fundamental in this application, that being of the freely available 
DEMs with global coverage, i.e., SRTM (90 m resolution) and ASTER (30 m resolution) 
not compatible with the average dimension of the reservoirs to be analysed [208]. The 
Global Tandem-X DEM with 12 m spatial resolution (available at free of charge only for 
research purposes subject to the approval of a scientific proposal and the payment of a 
service fee) would fit with the dimension of the objects to be monitored. However, all the 
available elevation data provide static pictures of the scene, while in case of the moni-
toring of small reservoirs, their dynamic evolution is more interesting, as they are subject 
to fast sedimentation rates. 

To this end, Reference [208] exploited high-resolution COSMO-SkyMed images ac-
quired with 3 m spatial resolution with one day time gap at the peak of the dry season to 
produce a DEM of an area of about 1600 km2 in semi-arid Burkina Faso with 9 m resolu-
tion. By coupling high-resolution elevation data with temporal surface water masks, it is 
possible to estimate reservoirs capacity and their sedimentation rate and to derive 
semi-empirical relationships relating their surface area to their retained water volume.  

The estimation of the reservoirs bathymetry starting from elevation data can be im-
plemented, as suggested by [82], superimposing the shorelines retrieved from SAR ob-
servations to the DEM and calculating the height of the contour ch . Each point p be-

longing to the reservoir area is considered as a water column whose height ph  is equal 

to p c DEMh h h= − , where DEMh  is the DEM elevation at that point. Thus, the capacity 

relevant to the point p will be p p pv h S= ⋅ , where pS  is the surface element associated 
with the point p, corresponding to the DEM resolution. Finally, the capacity V of the res-
ervoir can be estimated by integrating the elementary volume all over the reservoir mask, 
i.e.,  

1
3

i

i

p p
N

V v dS v m
=

 = =  ∬  (2)

where N is the total number of samples belonging to the surface water mask of a partic-
ular reservoir. 
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Figure 15. Co-polarized average EM response of land and water features for different available sensors including 
ALOS-PALSAR (L-band), Sentinel-1 (C-band), TerraSAR-X (X-band) and NovaSAR (S-band). Each box represents the 
dispersion of data around their median values, depicted by the red bar. The edges indicate the 25th and 75th percentiles, 
respectively. 

In Figure 16a, the statistics for the Laaba basin (Burkina Faso, see Figure 13) re-
trieved by applying the above-described methodology to a set of images acquired be-
tween June 2010 and December 2011 are reported. In particular, the upper frame of the 
picture reports the surface trend, while the lower one the corresponding estimated ca-
pacity. The application deals with very small objects. In this case of the Laaba basin, the 
maximum estimated extension was around 400,000 m2. It is also interesting to remark 
that, at the peak of the dry season, between the months of March and April, the reservoir 
disappears due to the high evapotranspiration rates characteristic of semi-arid Sahel. 

In Figure 16b, the discrete SAR-derived volume estimation is compared with con-
tinuous data obtained using the soil conservation service model [219], which is an un-
calibrated model suitable for the simulation of the runoff in small ungauged watersheds. 
The reader should appreciate the good agreement between the two methodologies that, 
as observed in [82] could work synergically to provide better results in critical situations 
characterized by strong non-linearity of the water availability trend due to strong pre-
cipitations or long drought. In these cases, SAR observations can serve as calibration 
points to improve the estimates obtained through hydrological models. 

By applying Equation (2) to several reservoirs, it is possible to derive expressions 
relating their surface area and capacity through regression. This was done in [82] using 
data derived exclusively from SAR observations over Burkina Faso. Other examples of 
the derivation of such a relation have been provided in [220] for Brazil using only SAR 
data, in [221] using multi-source remote sensing data acquired over India and in [222] 
through an extensive bathymetric survey in the Upper East Region of Ghana. Whatever 
the derivation methodology, it is easy to understand the usefulness of a relation 

bV aA= , where V is the volume, A the surface area and a and b two regression coeffi-
cients, allowing for the estimation of the capacity of a reservoir starting from the 
knowledge of its extension, with the latter information easily obtainable from active or 
passive remote sensing. Therefore, these relations constitute a very powerful tool for the 
temporal monitoring of water availability in scarcely accessible areas and for the estima-
tion of one of the parameters required for the calculation of the drought indices intro-
duced at the beginning of the Section. 
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Figure 16. (a) Laaba basin statistics in the time frame June 2010–December 2011 relevant to surface area (upper frame) and 
retained water volume (lower frame). (b) Estimated water availability trend using hydrological modeling and compari-
son with SAR estimates. Source [82]. 

It is worthwhile to remark that the relations between the reservoirs’ surface area and 
retained volume have a validity limited to areas sharing the same geomorphological 
characteristics, in which it is feasible that reservoirs have comparable bathymetric pro-
files. That is the reason why different geographic areas have different relations. Moreo-
ver, the time variable plays an important role. Semi-arid environments are typically 
characterized by high sedimentation rates [223], and this, together with the rudimental 
construction techniques adopted for building reservoirs and the lack of a structured 
management, can severely affect the storage capacity of the tanks in a relatively short 
time [224]. As an example, Reference [208] reported that many reservoirs in the Yatenga 
region in Burkina Faso lost more than 50% of their original capacity in a time frame of 25 
years. Reference [225] exploited Sentinel-1 SAR images and elevation data to study the 
Ghataprabha reservoir (India) and estimated a sedimentation rate of about 4 Mm3/year 
since its construction made in 1974. The continuous monitoring of this phenomenon is 
therefore essential for an effective management of water resources, especially in areas 
characterized by chronical water scarcity. 

4.3. Flood Mapping 
The UN estimated that about 90% of all the natural disasters are water related. In 

particular, in the period 1998–2017, floods accounted for more than 43% of the total, af-
fecting 2 billion of people and causing more than 142,000 victims and hundreds of bil-
lions of dollars in damages [226]. These numbers (see also Figure 17) should help the 
reader understand the key importance of monitoring and forecasting activities in order to 
increase the response capacity and resilience to these kinds of events. Satellite remote 
sensing has been widely exploited for these purposes [80,227], with SAR sensors playing 
a central role due to their independency from illumination and weather conditions [2] 
and the sensitivity to surface roughness, which is a key parameter in the detection of 
standing water [228]. 
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Figure 17. Number of disasters per type in the period 1998–2017. Source UN [226]. 

In general, a flood event can be seen as the composition of different phases, as 
shown in Figure 18, which reports the generic cycle of a hazard. Satellite remote sensing 
in general, and SAR observations in particular, can significantly contribute to many of 
them. As an example, a synoptic picture of an area hit by a flood event can be very useful 
for damage assessment, providing important information for insurance companies [229]. 
Geomorphological information [230] can contribute within warning systems [227,231] in 
which radar-derived flood maps are assimilated into hydrological and weather models to 
improve forecasts. 

The mapping activity, in which SAR becomes crucial due to its imaging characteris-
tics for near real time provisioning, is fundamental in the response phase [80]. For this 
purpose, some operational services already exist [232], but the research community is 
very active on the topic, also thanks to the availability of many validation data provided 
by the European Commission through the Copernicus Emergency Management Service. 
Quality approved flood maps in vector format for several events can be found at 
https://emergency.copernicus.eu/mapping. 

Flood mapping using SAR is usually faced with change detection techniques rang-
ing from simple comparison operators, like the difference operator [233] or the log-ratio 
[234], to more refined methods aimed at strengthening automatic thresholding algo-
rithms using local image statistics [235,236]. Usually, when simple comparison operators 
are used, the segmentation is supervised or semi-supervised. In these cases, visual in-
terpretation of an expert operator can be powered and made more efficient by the inno-
vative higher level data representations introduced in Section 3 [5,24,86]. An example of 
this is provided in Figure 19, which shows the evolution of the flooded area in the rice 
cultivations of the Albufera natural reserve (Spain). The purpose in this case is to high-
light the presence of standing water and to provide a quick understanding of the scene 
land cover through a balanced colour coding as much as possible close to the natural 
colour palette, which is the one the operator is used to. This can be achieved by a com-
bination of a pre-event and a post-event image. As suggested in [5], the pre-event image 
can be conveniently loaded on the blue band and the post-event image on the green one. 
The third channel (the red) can be reserved to the interferometric coherence or to a tex-
ture measure.  
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Figure 18. Different phases of a flood event. 

The images displayed in Figure 19 derive from Sentinel-1 ground range detected 
products having 10 m spatial resolution. An acquisition made on 6 April 2017 with com-
pletely dry landscape has been considered as pre-event image. Post-event images have 
been acquired on 18 April 2017 (Figure 19a), 4 August 2017 (Figure 19b) and 14 December 
2017 (Figure 19c). In the first case, the pre- and post-event images are acquired with short 
time span. The landscape is mainly unchanged, and as a consequence, the dominant 
colour is the one representative of a balance of the electromagnetic response of the two 
scenes, i.e., a balance of the blue and green channels (Figure 19a). 

In the other two cases, see Figure 19b,c, rice crops are flooded. The power of this 
representation is given by its immediate interpretation following, in which the observer 
can readily associate the flood with the blue area surrounding the lake [5]. This is due to 
the dominance of the terrain response of the pre-event image with respect to that of the 
post-event one, in which the smooth water layer covers a rougher terrain causing a drop 
of the backscattered signal. 

Beyond being helpful for visual interpretation of the SAR response of a flood event, 
these images can be the starting point for mapping. The simplest solution is the exploita-
tion of a multi-temporal normalized image ratio [53,54] to be segmented with standard 
thresholding. However, as discussed in Section 2, this operation can be critical, especially 
when unsupervised, since the performance of the algorithms can be subject to significant 
variations for small oscillations of its value. This can be avoided with semantic clustering 
[77], Bayesian network fusion [237–239] or fuzzy logic principles [95,240], which are also 
useful for the combination of heterogeneous multisource data [241]. Another fusion 
schema is given by the usage of a MS image whenever acquired before the event to train, 
exploiting the identified permanent water features, a supervised classifier acting on the 
post-event SAR one [242]. More recently, some deep architectures have been developed 
for the purpose [243–245], even if their use on SAR is still rather limited by the scarce 
availability of relevant training samples. 

In urban areas, flood detection is more challenging due to the complex backscatter-
ing mechanisms triggered by the presence of buildings causing double-bounce scattering 
[246] which is, in principle, enhanced by the presence of a layer of standing water [237]. 
However, as demonstrated in [247], this is a function of the aspect angle i.e., the angle 
between the orientation of the wall and the SAR azimuth direction, with the enhance-
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ment that can significantly drop as the aspect angle increases. The floodwater level also 
plays a role, being the double-bounce enhancement dropped as the water level increases 
[248]. 

In order to overcome these difficulties related to the incoherent detection of flood-
water in urban areas, the interferometric coherence can be exploited as a source of addi-
tional information [247,249–251]. Undisturbed urban areas are stable with respect to 
phase, i.e., they are characterized by high interferometric coherence. The presence of 
water in the urban environment causes changes in the spatial distribution of scatterers 
within a resolution cell, resulting in a coherence drop which can be identified by calcu-
lating the coherence difference between two couples sharing the same pre-event refer-
ence (or master) image, the first one built with another pre-event image, the second one 
considering a post event acquisition. 

(a) (b) (c) 

Figure 19. Evolution of the flooded area in the Albufera natural reserve (Spain). Pre-event image (blue band) acquired on 
6 April 2017. Post-event images (green channels) acquired on (a) 18 April 2017, (b) 4 August 2017 and (c) 14 December 
2017. 

What arises from the literature is that the mapping, even unsupervised, of flooded 
areas using SAR data has reached very high performance and robustness. Therefore, fu-
ture challenges include (i) a better assimilation of SAR data into hydrological [252] and 
weather models, in order to improve the contribution of SAR in the other phases of the 
cycle depicted in Figure 18, and (ii) the generation of products adding value to the flood 
maps (like the water level [248,253] or the real-time estimate of the affected population) 
or taking value from them, such as the case of flood vulnerability maps [254]. 

In Table 4, the reviewed literature about water resources has been summarized and 
categorized based on the application, the adopted methodology and the data exploited. 
More comments and considerations are provided in Section 5. 

5. Discussion 
Today, Earth observation (EO) platforms are collecting more than 4 million km2 

images of the Earth surface per-day. The diffusion of EO data is creating an incredible 
opportunity for the launch of new downstream applications and services, which is 
powered by the new possibilities for big data processing and analysis offered by innova-
tion in cloud computing and artificial intelligence. This new trend allows for capturing 
higher knowledge from EO data to be exploited in new vertical applications concerning 
environmental monitoring, disaster relief, precision farming, mining and maritime sur-
veillance.  



Remote Sens. 2021, 13, 604 32 of 46 
 

 

Table 4. Summary of the reviewed literature about water resources categorized based on the application, the adopted 
methodology and the data exploited. 

Application Selected Works Methodology Data Exploited 

Flood mapping 

Gong et al. [243], 2016; Li et al., 2019 [244], Geng et al., 2019 [245] Deep learning 

SAR short wavelength (X-, 
C-band), co-pol 

Notti et al., 2018 [234], Bovolo and Bruzzone, 2007 [235],  
Chini et al., 2017 [236] 

Thresholding 

Amitrano et al., 2018 [95], Dasgupta et al. [240] Fuzzy systems 
Amitrano et al., 2019 [24] Semantic clustering 

D’Addabbo et al., 2017 [238], 2016 [239], Li et al., 2019 [237]  Bayes networks 
Chini et al., 2019 [250], 2012 [249], Pulvirenti et al., 2016 [247], Li 

et al., 2019 [251],  
Coherent change detec-

tion 
Benoudjit and Guida, 2019 [242], Liu et al., 2018 [241] Multisensor data fusion X-, C-band SAR and MS 

Reservoirs mapping 
Amitrano et al., 2017 [53], 2014, [82], Heine et al., 2014 [213] Thresholding SAR short wavelength (X-, 

C-band), co-pol, 
high-resolution 

Amitrano et al., 2018 [77] Object-based 

Reservoirs bathymetry 

Amitrano et al., 2014 [82], Zhang et al., 2016 [220] 

Regression analysis 
Liebe et al., 2005 [222] Field surveys 

Vanthof and Kelly, 2019 [221] 
Multi-source remote sensing 

data 

Reservoir sedimentation Amitrano et al., 2014, [208], Prasad et al., 2018 [225] DEM analysis 
SAR short wavelength and 

DEM 

The European Commission estimated that, in 2017, the global EO economy ac-
counted for about EUR 10 billion, divided between the sales of EO platforms (the up-
stream section of the supply chain), and the data segment, i.e., their acquisition, pro-
cessing and transformation into information products for end users (the downstream 
section). The market is mostly driven by the upstream segment, which constitutes about 
70% of the total revenues. The downstream market is estimated to be around EUR 3 bil-
lion and is mainly driven by governmental applications, which represent between 50% 
and 60% of the revenues [255]. 

However, in order to accomplish further growth, especially in the private sector, 
some strategic problems need to be solved. The major issues pointed out by a recent ESA 
survey [256] are the cost of raw data, the market/user acceptance, and the lack of budget 
to acquire services (see Figure 20). The launch of the Copernicus program is mitigating all 
these problems. The free and open data policy tackles the problem of the cost of 
mid-resolution data and at the same time pushes the provider of high-resolution images 
to lower the cost of their products. This allows EO companies to offer more convenient 
prices for their services.  

Indeed, the Copernicus program is changing the market not only with its data policy 
but also through a dedicated global campaign to raise the awareness of the usefulness of 
satellite technologies. The EO market is greatly benefitting from this campaign, as more 
companies and customers are recognizing the advantages of using EO data. However, as 
shown by data reported in Table 5, the cost of high-resolution images, especially those 
having sub-metric resolution, is still high and this affects the commercial development of 
applications requiring this kind of data. As an example, the cost per square kilometer of a 
staring spotlight TerraSAR-X archive image with 25 cm resolution (which is the best to-
day available from space) is about EUR 230, while a multispectral WorldView-4 image 
with 30 cm resolution in the panchromatic channel has a cost per square kilometer of less 
than EUR 30 [257]. 

In the previous Section, the suitability of time-series of SAR observations with many 
applications has been highlighted through a deep revision of the reference literature on 
those topics, which are all related to change-detection approaches, whose review has 
been provided in Sections 2 and 3. It highlighted that most of the literature relies on 
thresholding of an opportunely selected change layer [48]. However, the underlying 
weakness of this approach is in the concept of the threshold itself, which is intrinsically 
not robust. As an example, the reader can consider a situation in which there are more 
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than one change in the scene, like a flood in an agricultural area. At microwaves, the ar-
eas interested by canopy removal (due to harvesting in this case) or affected by flood are 
both characterized by a decrease of the backscattering coefficient due to, in the first case, 
the lack of volumetric scattering contributions from the vegetation canopies and, in the 
second, to the change in surface roughness caused by the presence of a thick water layer 
covering the soil. Therefore, if the objective is the identification of changes in crops, then 
two thresholds are necessary, one isolating the changed pixels from the unchanged 
background and another segmenting agricultural land from flooded areas. Most of the 
analyzed literature cannot cope with this problem, since thresholding is typically blind 
with respect to the type of changes. 

 
Figure 20. Barriers to the diffusion of EO data (source [258]). 

The fusion approach for change detection is generally successful in the identification 
of different types of changes on the same scene. This is due to the introduction of an in-
formation layer (the MS one) carrying a spectral diversity allowing for the discrimination 
of different surfaces at the biochemical level rather than that of the surface roughness, 
which is the domain of SAR. However, from the analysis of the relevant literature, some 
weaknesses, like automation, uncertainty of the information and general complexity of 
the workflow, arose. As an example, an approach like that proposed in [73] requires a 
strong supervision and this makes it applicable only to small scale problems. The uncer-
tainty of the information is related to the fact that, like in [74], the main source of the in-
formation is the MS image, whose availability is subject to favourable weather and illu-
mination conditions. The general complexity of the processing chain can be due to sev-
eral factors, like the number of sources, their typology, the number of information layers 
and processing steps needed for reaching the results, the computational time, etc. A 
methodology like that described in [71], for instance, requires the availability of MS 
panchromatic images, which are not available from many platforms operative today, 
especially the low-cost ones. Moreover, the authors proposed to use five features, of 
which just one extracted from the SAR image. This means, again, that the MS acquisition 
is the main source of information.  

In Table 1, literature on SAR change detection approaches reviewed in Sections 2 
and 3 has been categorized based on the methodology developed and the application 
addressed. As discussed in Section 1, the philosophy behind this can be of two types. The 
classic one aims at filling the information gap from sensory data to the geophysical pa-
rameter required with an algorithm excluding the user from the information process. 
More recently, some higher-level data representations have been introduced to address 
change detection problems, with the objective to favour the active participation of the 



Remote Sens. 2021, 13, 604 34 of 46 
 

 

analyst in the information process, which is powered by his/her enhanced analytical ca-
pability thanks to an improved interaction with data. 

Table 5. Pricing table for some of the SAR sensors today available. 

Sensor Product Type Swath Resolution Price Per Image 

TerraSAR-X Tandem-X  
Paz 

Spotlight Up to 10 × 10 km2  Up to 0.25 m EUR 2125–3475 
Stripmap 30 × 50 km2  Up to 3 m EUR 1475 
ScanSAR Up to 270 × 200 km2  Up to 18.5 m EUR 875 

COSMO-SkyMed 
Spotlight 10 × 10 km2  Up to 0.9 m EUR 650 
Stripmap 40 × 40 km2  Up to 2.6 m 

EUR 300 
ScanSAR  Up to 200 × 200 km2  Up to 13.5 m × 23 m  

RADARSAT-2 
Spotlight Up to 5 × 20 km2  Up to 1 m EUR ≈ 3500 − 3900  
Stripmap Up to 125 × 125 km2  Up to 3 m EUR ≈ 2700 − 5050  
ScanSAR Up to 500 × 500 km2  Up to 25 m EUR ≈ 2350  

ALOS-2 
Spotlight 10 × 10 km2  Up to 1 m × 3 m EUR ≈ 3200  
Stripmap Up to 70 × 70 km2  Up to 3 m EUR ≈ 1900  
ScanSAR Up to 355 × 490 km2  Up to 44.2 m × 56.7 m  EUR ≈ 650  

It is interesting to remark that methods using microwave imagery are only quite 
general and can be used to detect a generic changing pattern, whose semantics is as-
signed offline by the operator or pre-established by the parameter set-up. When ob-
ject-based processing and/or multi-sensor data fusion is exploited, the techniques are 
more application-oriented, since the features being selected, the decisions being taken 
and/or the object parameters being estimated depend on the particular change to be 
identified. 

The reviewed higher-level representations also can be categorized in applica-
tion-oriented and general-purpose ones. In the first case, the objective is the enhancement 
of a specific changing pattern. In the second, the aim is the maximization of the infor-
mation mining of the observer favouring the identification of several land cover classes 
beyond that constituting the objective of the application. 

In Section 4, the general change detection principles have been declined in applica-
tion-oriented environments relevant to forestry (see Section 4.1) and water resources, 
with particular focus on semi-arid regions and floods (see Sections 4.2 and 4.3, respec-
tively). The general impression is that the contribution of SAR data processing in these 
applications is significant, especially when the detection of standing water is involved, 
due to the peculiar scattering mechanisms triggered by microwaves, making smooth 
surfaces highly distinguishable from rougher terrains [125]. Applications involving veg-
etation are generally more challenging due to the complex scattering mechanisms trig-
gered by the canopies [96] and mostly rely on a project-based approach, with scarce op-
erational perspectives. 

In Tables 2 and 4, the reviewed literature about forestry and water resources has 
been categorized based on the application, the adopted methodology and data exploited. 
In case of flood mapping, the landscape is quite consolidated from the viewpoint of data 
in use because all the examined literature used images acquired with short wavelength 
(i.e., at X- or C-band frequencies) in the co-polarized channel. The picture is more varie-
gated from the side of the methodologies, ranging from classic thresholding to more re-
cent deep learning ones, with all of them claiming outstanding results. The lack of 
benchmarks universally recognized by the community prevents the assessment of the 
benefits and the drawbacks of the different approaches. Actually, this is a limitation of 
the community. In the MS one, there are examples of benchmarks like the Prague Texture 
Segmentation Data generator and Benchmark [258] or the Data Fusion Contest organized 
by the IEEE Geoscience and Remote Sensing Society [259,260]. They are useful to under-
stand the characteristics of the different methodologies in a standardized environment 
providing datasets, metrics and consistency measures to assess the performance of each 
of them. In the SAR community, this is not a common practice. An attempt has been 
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made in the case of despeckling algorithms [36], but it is a quite isolated case, and this 
makes the full comparison of the literature difficult.  

However, the case of flood mapping represents one of the most consolidated in SAR 
remote sensing with successful implementation in industrial contexts [232]. The major 
challenges for a full commercial development of the technology are related to the en-
richment of the maps extracted using literature methods with information that can be 
attractive for a wider audience of customers beyond the public administration. As an 
example, the assimilation of flood maps within hydrodynamic and geomorphological 
models can lead to the production of flood vulnerability indices needed by insurers to 
better calibrate the premiums of their customers [229]. This means that, although the lit-
erature highlights a full maturity of the remote sensing problem, further efforts are 
needed to spread the technology in the user segment through the development of new 
vertical applications. 

SAR remote sensing of forests is mostly related to the exploitation of long wave-
lengths, basically L-band data. In this context, the most successful application is defor-
estation detection, which is a problem that can be approached with consolidated change 
detection techniques, eventually powered by the exploitation of multisource data. The 
other topics covered in this review showed more limitations. The literature on the classi-
fication of forest types, as an example, is sometimes contradictory. Some authors re-
ported that C-band backscattering is particularly affected by the different branching 
geometry and foliage of the different species. Other works reported better results ob-
tained using the L-band. This disagreement suggests that the choice the most appropriate 
band depends on the examined forest, being its structure widely variable with age, 
management and biome. However, the most relevant works on the topic go back to the 
‘90s of the past century and this is a symptom that the SAR community is not paying 
sufficient attention on it anymore being this application much more easily addressed 
using MS data [261]. 

Forest fires detection and biomass estimation are indeed much more actual topics on 
which SAR data demonstrated their effectiveness. In both the cases, the literature mostly 
agreed that L-band cross-polarized data are the most effective, exhibiting a good sensi-
tivity to the AGB (in the order of 200 t/ha). They are also helpful in increasing the contrast 
of fire scars with respect to undisturbed forest stands, at least in dry conditions. Howev-
er, state-of-the-art methodologies still require strong supervision of expert operators and 
appear quite far from a large-scale operational implementation. 

Remote sensing of water resources is probably the field in which SAR data can con-
tribute more compared to the actual efforts of the community, which are probably insuf-
ficient. The literature about reservoirs monitoring in arid and semi-arid environments is 
quite poor as well as the interaction with the hydrologists community, in which the 
penetration of microwave images is very limited. 

This application is helpful to highlight one of the principal barriers preventing the 
diffusion of SAR data in multidisciplinary contexts, despite the increased data availabil-
ity provided by the Copernicus Programme, the significant advances made by the scien-
tific community at the technical level and by the efforts made to promote their use out-
side the academy. There is a scarce propensity of the community to recognize the needs 
of the potential end-user and to adapt its common practices to favor data assimilation 
within models developed outside of it. As a result, in 2013, before the Copernicus era, the 
estimated sales of SAR data were in the order of 17% of the total market, mainly polar-
ized towards defense application [262]. Similar figures were reported by a more recent 
paper by Denis et al. [263] and by market reports produced by the European Commission 
[255] and private companies [264]. 

The latter data are reported in Figure 21, which shows how, despite compound an-
nual growth rate (CAGR, i.e., the mean annual growth rate of an investment over a 
specified period longer than one year) of the two markets is very similar, that of SAR is 
still a fraction of the optical one. This means that, despite of the benefits brought to the 
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diffusion of SAR data by the Copernicus Programme and the increased number of users 
approaching them, customers are reluctant to pay to acquire microwave images, thus 
preferring to direct their money toward the purchase of optical data [264]. The difficulties 
related to the handling of SAR data often prevent non-expert users to work autono-
mously, which is indeed possible dealing with MS ones, and this makes the role of SAR 
experts crucial in the creation of a bridge towards the user community. The examined 
works on water resources monitoring mostly appeared as success cases of the imple-
mentation of such path and demonstrated that the dialogue between different disciplines 
is possible and desirable to trigger the further growth of data exploitation and the de-
velopment of new downstream applications. 

 
(a) (b) 

Figure 21. Global SAR (a) and optical (b) Earth observation market. Data for the SAR market have been extrapolated from 
[264]. Those for the optical market (segmented for sensor resolution LR–low resolution, MR– medium resolution, 
HR–high resolution and VHR–very high resolution) have been extracted from [255]. Data enclosed in the ovals refer to 
the market compound annual growth rate (CAGR). 

6. Conclusions 
This work provided a deep literature review about multi-temporal synthetic aper-

ture radar data exploitation for Earth observation covering general change detection 
principles and three applicative contexts like flood mapping, forestry, and management 
of water resources. The reviewed literature highlighted the usefulness of microwave 
remote sensing in all the considered topics, although with a different technologic ma-
turity. 

Flood mapping appeared as the most consolidated application among those con-
sidered. In this context, highly effective techniques have been developed and commercial 
solutions are available, as well. The most remarkable weakness is probably the lack of 
products adding value beyond the identification of the flooded areas, which makes syn-
thetic aperture radars practically exploited only in the flood response phase. An advance 
in the research in this direction, leading to data assimilation into hydrological or weather 
models to improve forecasts, or the introduction of higher information layers related to 
the flood extent (i.e., water level maps or estimates of the affected population) should be 
therefore considered as a priority. 

Forestry is a sector in which microwave sensors have been, historically, widely em-
ployed due to their all weather and all-time imaging capabilities, which are able to sup-
ply data in absence of available multispectral acquisitions. However, the complicated 
scattering mechanisms involving vegetation canopies hamper the full development of 
most of the related applications, especially those involving the classification of forest 
types and the estimate of the above ground biomass. Better results have been reported 
concerning the mapping of fire scars and deforestation pattern, with the latter application 
probably representing the most mature and ready to be implemented in industrial envi-
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ronments. The fusion of microwave and multispectral data has been proved to be bene-
ficial in all the examined contexts. 

Remote sensing of water resources represents a field in which synthetic aperture 
radar research can contribute more in the future. The interaction between the microwave 
remote sensing community and that of hydrologists or hydraulic engineers has proved to 
be successful but is still quite limited, as well as the penetration of microwave Earth ob-
servation technologies in such a multidisciplinary context. 

Indeed, the diffusion of synthetic aperture radar data outside their reference scien-
tific community and the industry is probably the most urgent problem to be addressed 
by its members. This is due to both technical and commercial issues. Many market re-
ports stated that the principal barriers for the spreading of microwave images in the in-
dustry are the cost of data and the high expertise needed for their handling. Clearly, the 
scientific community cannot control the pricing applied by data distributors. However, 
thanks to the Copernicus Programme, this problem concerns high resolution data (with 
less than 10 m spatial resolution) and those acquired with long wavelengths (e.g., 
L-band), since there is no possibility, at the time of this research, to access new acquisi-
tions for free, while some archive data are available for any purpose. 

On the other hand, the introduction of more interpretable and user-friendly data 
representations (useful for detecting landscape changes) and the increasing availability of 
software for data analysis is a step forward in the direction of the full enabling of syn-
thetic aperture radar data in the industrial world, as well as in the scientific communities 
of data users. In the latter case, a further boost of the research in data assimilation tech-
niques should be considered as a priority to favor the dialogue between different disci-
plines and promote the development of new research areas and downstream applica-
tions. 
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