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Benchmarking Framework for Multitemporal
SAR Despeckling

Gerardo Di Martino , Senior Member, IEEE, Alessio Di Simone , Member, IEEE,
Antonio Iodice , Senior Member, IEEE, and Daniele Riccio , Fellow, IEEE

Abstract— In this article, we propose a novel benchmarking
framework for a quantitative assessment of the performance
of despeckling algorithms for multitemporal synthetic aperture
radar (SAR) imagery. A number of canonical scenes and data
sets are analyzed so as to investigate both speckle reduction
and feature preservation capabilities of the filters. Despeckling
performance is evaluated by proper quality measures that are
defined according to the scene. Due to the lack of real-world
speckle-free SAR images, the proposed benchmarking tool relies
on an accurate and well-assessed SAR simulator which allows
for generating realistic SAR images accounting for electromag-
netic (EM) and geometrical parameters of the sensed surface.
Accuracy and convergence properties of filters are first measured
on scenes with stationary reflectivity. Then, for a more realistic
performance prediction in practical situations, the effects of tem-
poral changes of the scene reflectivity on the despeckled images
are measured on time series with time-varying reflectivity. In the
latter case, performance parameters are intended to measure the
capability of the filter to preserve both the perturbation and its
impact on the other bands. The whole benchmarking framework
is applied to a representative set of state-of-the-art multitemporal
filters. Interestingly, their performance as evaluated by means
of our framework is well in agreement with (qualitative) visual
inspections by SAR specialists. Proposed quality metrics are
measured under the hypothesis of uncorrelated bands, which
defines the best case for most multitemporal filters. A numer-
ical sensitivity analysis of the performance of filters against
correlation coefficient is carried out to investigate the temporal
correlation effects on the despeckled time series.

Index Terms— Multitemporal filtering, quality assessment,
synthetic aperture radar (SAR), speckle, synthetic aperture
radar (SAR) simulation.

I. INTRODUCTION

REMOTE sensing instruments and data offer an invalu-
able support to many fields and applications related to

Earth observation and monitoring, such as agriculture, urban
planning, disaster management, security and safety, resource
control, climate change. Among others, space-based synthetic
aperture radar (SAR) enables remote sensing at a global scale
regardless of daylight and weather conditions, in contrast
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with multispectral and hyper-spectral sensors whose imaging
capabilities are impaired by cloudiness and scarce sunlight
illumination conditions. Additionally, SAR systems can pro-
vide polarization diversity which is useful for classification
purposes [1]. Actually, SAR end-users can now benefit from a
huge amount of data which are acquired at different resolution
(both in space and time), frequency, look angle, and polariza-
tion and that can be fruitfully exploited in advanced image
processing techniques, e.g., machine learning and tomography.
On the one hand, the recent class of meter-resolution space-
borne SAR systems, e.g., TerraSAR-X, COSMO-SkyMed, and
RADARSAT-2, along with the new ultrahigh-resolution (sub-
metric) sensors, e.g., COSMO-SkyMed 2, allows for informa-
tion retrieval with unprecedented spatial resolution at a cost of
reduced coverage area. On the other hand, medium-resolution
systems, such as Sentinel-1, are experiencing a renewed inter-
est as they offer imaging capabilities complementary to very-
high-resolution and ultrahigh-resolution sensors, thanks to the
larger coverage area which allows for a reduced revisit time.

Among past and current SAR missions, Sentinel-1 is par-
ticularly attractive in the remote sensing field, thanks to the
low revisit time (down to three days at the Equator), polar
orbit (ensuring high-latitude coverage), and, last but not least,
the free availability of a long-term data archive, which also
promoted the development of algorithms for the analysis of
long multitemporal data. Multitemporal SAR images refer to a
series of images that are acquired over the same scene at differ-
ent time intervals and collected in a 3-dimensional (3-D) stack
(range, azimuth, and time). They are typically acquired by the
same sensor and, therefore, share the same sensor features,
e.g., impulse response, bandwidth, and operating frequency.
Additionally, the images of the stack are typically acquired
under the same acquisition mode (and therefore exhibit the
same spatial resolution), polarization, viewing angle, and over
multiple passes on the same orbit that make the whole image
stack co-registered (with accuracy depending on the orbit
stability). Accordingly, a multitemporal SAR image can be
regarded as a collection of multiple snapshots of the same
scene under the same acquisition and illumination conditions.
Therein, variations of the backscattered energy along the
time coordinate are solely related to temporal changes in
the scene reflectivity. Such changes can be due to numerous
factors, e.g., soil moisture content variation, scene dynamics
and movements (e.g., sand dunes, sea, and mobile objects),
vegetation growing, and human activity.
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As a matter of fact, long time series spanning over years are
available and allows for collecting accurate and comprehensive
information in both spatial and temporal domains. Indeed,
numerous applications rely on the processing of multitemporal
SAR images, e.g., surface deformation analysis [2], informa-
tion retrieval [3], [4], change detection [5], [6], agricultural
areas and grasslands monitoring [7], [8], waterbodies mon-
itoring [9], [10], RGB data formation [11], and land-cover
classification [12]–[14].

Notwithstanding, SAR imagery interpretation by human
users and processing by automatic algorithms are affected by
speckle noise which is due to the coherent combination of
echoes from sub-pixel scatterers [15]. SAR image denoising
(also referred to as despeckling) is, therefore, a key enabling
factor that has driven intense research in the recent past [16].
However, most efforts have been dedicated to reduce speckle
effects in single-band (i.e., 2-D range-azimuth) SAR imagery,
for which several approaches have been developed so far,
including classical local adaptive filtering [17], [18], homo-
morphic approaches [19], [20], Bayesian estimators [21], [22],
and the more effective resolution-preserving wavelet-based
methods [23], [24], and nonlocal mean algorithms [25]–[27].

Conversely, multitemporal SAR despeckling is gaining an
increasing interest only in the recent past, likely because
of the (much) larger computational complexity required by
multitemporal SAR image processing. As a result, the litera-
ture dealing with multitemporal SAR despeckling is increas-
ing [28]–[33]. Such approaches will be discussed in detail in
the following of this work.

Despite the key role played by despeckling algorithms in
improving SAR imagery readability and information retrieval
accuracy, few efforts have been focused on the investigation
of the filtering capabilities in a wide variety of contexts and
on the assessment of despeckling performance on an objective
and standardized basis. Actually, a benchmarking framework
has been presented in [34], where five canonical scenes (homo-
geneous, topography, squares, corner reflector, and building)
have been defined and made publicly available along with ad
hoc quality measures in order to provide a quantitative and
replicable evaluation of the despeckling capabilities in several
respects, such as edge smoothing, speckle reduction, texture,
and target feature preservation.

Taking cues from the work in [34], which is designed
for single SAR images, we here extend that analysis to
multitemporal SAR despeckling, thus defining new canon-
ical scenes and performance parameters for the evaluation
of filtering quality under both stationary and time-varying
reflectivity.1

The remainder of this work is as follows: Section II points
out the motivations of our work and the need for a simulation
approach for an objective assessment of the performance of
multitemporal despeckling filters. Section III presents a brief
overview of despeckling benchmarking for single-channel
filters and the main despeckling approaches and algorithms

1To ensure the full reproducibility of the experiments as well as the
applicability of the proposed benchmarking tool to any multitemporal SAR
despeckling algorithm, all data and scripts are publicly available for download
at http://wpage.unina.it/alessio.disimone/download/download.htm.

for multitemporal SAR images. The canonical scenes and
the corresponding performance measures are described in
Section IV, whereas Section V presents and discusses the
experimental results obtained by applying the proposed bench-
marking framework to state-of-the-art multitemporal SAR
despeckling algorithms. Finally, main conclusions and guide-
lines for future research activities are briefly outlined in
Section VI, where Table VII summarizes all the introduced
quality metrics and their target values for each test case.

II. MOTIVATIONS

In classical SAR signal processing and most SAR applica-
tions, speckle is treated as noise, i.e., as a stochastic process
distorting an underlying clean signal conveying the actual
information to be retrieved. Accordingly, the objective of
despeckling techniques is to remove the speckle component
from the noisy signal by designing proper estimators of the
clean signal. However, from a physical viewpoint, there is
no actual separation between speckle and the clean signal as
they combine in the noisy signal as a result of the electro-
magnetic (EM) interaction between the radar signal and the
illuminated scene. Accordingly, a true (i.e., physically mean-
ingful) speckle-free SAR image can only be obtained with
the temporal multilook of an infinite number of independent
and stationary over time single-look images. This is certainly
not viable with real-world SAR imagery. Therefore, it is
not possible to obtain reliable (for despeckling performance
assessment purposes) actual speckle-free images.

Additionally, a comprehensive and quantitative assessment
of the performance of a despeckling algorithm relies on
the evaluation of proper measures of similarity between the
filtered time series and the speckle-free (reference) one. Such
quality indicators, referred to as full-reference measures in
the despeckling community, provide quantitative information
about the capabilities of the filter to reject speckle noise while
retaining the specific features of the clean image.

As a result, for a meaningful, fair, and objective comparison
of available methods for multitemporal SAR despeckling,
the availability of speckle-free images is of key relevance.
Conversely, using real data, only no reference measures could
be adopted and, therefore, limited insights into the despeck-
ling chain might be gathered. Indeed, a common practice
in the SAR despeckling community for the evaluation of
full-reference measures using real-world images relies on the
generation of noisy images by superimposing the speckle
component on real optical images. This approach has two
severe drawbacks. First, SAR and optical images are very
different under many respects including, acquisition geometry,
signal processing, data distribution, and, last but not least,
EM scattering. Indeed, scene response and EM scattering
phenomena at microwaves, where SAR systems typically
operate, are different from those in the visible spectrum (e.g.,
multiple-bounce scattering and the presence of strong and
persistent scatterers in urban areas); second, in SAR imagery
the overall noisy signal, including speckle, undergoes the SAR
processing chain, and, therefore, both the clean signal and
the speckle component are filtered with the SAR impulse
response and then focused. Actually, the superposition of
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speckle over an already focused image prevents obtaining
appropriate spatial statistics. The free availability of some
SAR data, e.g., Sentinel-1, is encouraging the generation
of reference speckle-free images by temporal multilook of
long time series (as in [33]), which requires stability of
the scene features along the whole observation time period
and is therefore poorly reliable for despeckling performance
assessment purposes.

For the purpose of despeckling performance assessment,
the simulation approach, despite its limits in reproducing real
SAR measurements, offers some major advantages. First of
all, a reliable reference image can be obtained by averaging
an arbitrary large number of independent images, thus approxi-
mating speckle-free data with arbitrary accuracy. Additionally,
a SAR simulator allows for generating realistic SAR signals
in controlled environments, thus avoiding spurious unwanted
perturbations taking place over the scene that might affect an
accurate evaluation of the quality metrics. This is of crucial
importance in the multitemporal case, where scene character-
istics must be controlled over multiple acquisitions. Last but
not least, the simulation approach enables the investigation
of different despeckling features (e.g., speckle suppression in
homogeneous areas, edge, and point target preservation) sep-
arately from each other by defining proper canonical scenes,
something that is hardly achievable in real imagery. Just as
an example, a reliable evaluation of the capability of the filter
of retaining sharp edges, typically measured through the edge
smearing (ES) parameter, should be kept separated by residual
speckle effects [34]. Accordingly, for the evaluation of the
ES parameter, several image profiles of the edge are averaged
altogether in order to reduce intensity variations due to residual
speckle that, otherwise, might lead to spurious variations of
the quality metric and, then, to an incorrect interpretation of
the filter behavior. The averaged profile can then be compared
with the clean one. Such an averaging procedure requires the
presence of a well-contrasted, sufficiently long edge which
must be also aligned with one of the image axes. This is easily
viable through the simulation approach. Another example is
the evaluation of the speckle rejection in homogeneous areas.
Hence, an accurate evaluation of the equivalent number of
looks (ENL) requires the presence of a sufficiently wide
area with homogeneous scattering properties so that amplitude
image samples are Rayleigh-distributed. While this is straight-
forward to accomplish in simulated data with high reliability,
it is much more complicated on real data.

The SARAS simulator [35] adopted in our approach is
based on the evaluation of the EM scattering from the illu-
minated surface and accounts for both geometric (small- and
large-scale surface roughness) and EM (complex dielectric
constant) parameters of the illuminated scene. Complex scat-
tering phenomena, such as multiple bounces from the building,
are modeled as well. Accordingly, it is able to generate SAR
images of arbitrary scenes, within the validity limits of the
adopted scattering models. The reliability and effectiveness of
the SARAS simulator have been assessed both quantitatively
and qualitatively via comparisons with actual SAR imagery in
a wide set of scenarios, including built-up areas [36], natural
surfaces [37], [38], and ocean [39].

III. RELATED WORKS

A. Benchmarking Framework for Single-Image SAR
Despeckling

The huge number of scientific contributions published in
the last two decades on the topic of SAR speckle filtering has
not been always followed by the simultaneous development
of appropriate performance evaluation frameworks. Actually,
in the last years only a few works focused on quality assess-
ment of SAR despeckling filters [34], [40], [41]. In partic-
ular, in [34] a complete benchmarking framework for SAR
despeckling was proposed. It is based on the definition of five
meaningful canonical cases, which constitute the minimum set
of cases up to the task of assessing the despeckling perfor-
mance with reference to some main features, namely speckle
reduction power, ability to tell apart speckle from texture, con-
tour preservation, radiometric preservation, and preservation
of features related to man-made structures. To obtain appro-
priate figures about these aspects the following test images
were selected: 1) a flat region with constant EM parameters
(Homogeneous), 2) a region with constant EM parameters but
nonflat orography [digital elevation model (DEM)], 3) four
flat regions with different EM parameters separated by straight
lines (Squares), 4) a corner reflector placed on a homogeneous
background (Corner), and 5) an isolated building placed on a
homogeneous background (Building). For each of these five
canonical cases 512 speckled images were simulated, using
the physical-based SAR simulator described in [35]. Indeed,
these 512 images can be averaged in order to obtain an image
with a very high number of looks, to be used as a reference
for performance assessment. In Fig. 1, one of the single-look
realizations is shown for each canonical case, along with the
respective reference image.

Appropriate full-reference and no-reference quality mea-
sures were also introduced in [34] for each of the five selected
canonical scenes. They are defined and briefly discussed in the
following of this section, where z stands for the noisy image,
x is the speckle-free image, and x̂ is the filtered one, all in
intensity format. The interested reader is referred to [34] for
more details regarding all the mentioned measures and test
cases.

1) Homogeneous: The speckle reduction power is evalu-
ated on the Homogeneous test case using the ENL and the
despeckling gain (DG), the latter providing information about
mean-square error (MSE) reduction offered by the despeckling
filter. They are defined as follows:

ENL = μ2

σ 2
(1)

DG = 10 log10

(
MSE(x, z)/MSE(x, x̂)

)
(2)

where μ and σ stand for the estimated mean and the standard
deviation of the intensity image, respectively. In addition,
the Homogeneous test case is used to evaluate bias indicators,
i.e., the mean of image (MoI), the mean of the ratio image
(MoR), and its variance (VoR), the latter conveying informa-
tion on whether the speckle is insufficiently filtered. In MoR
and VoR, the ratio image is defined as the ratio of the noisy
and filtered image. This is a well-established way to assess

Authorized licensed use limited to: Universita degli Studi di Napoli Federico II. Downloaded on May 07,2021 at 08:51:40 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 1. Test cases for single-image despeckling algorithm benchmarking. (a)–(e) Single-look image. (f)–(j) 512-look reference image. (a) and (f) Homogeneous
(256 × 256). (b) and (g) DEM (512 × 512). (c) and (h) Squares (512 × 512). (d) and (i) Corner (256 × 256). (e) and (j) Building (256 × 256).

despeckling performance, also adopted in [42] and [43] for
the evaluation of the performance of single-channel despeck-
ling filters. As a matter of fact, a good speckle filter is
expected to offer large ENL and DG values as well as to
preserve the MoI and to provide unitary MoR and VoR for
single-look SAR image filtering, whereas for multilook SAR
images the VoR should be equal to the inverse of the number
of looks.

2) Digital Elevation Model (DEM): The ability to tell apart
speckle from texture is evaluated on the DEM case through the
joint use of DG and coefficient of variation, Cx = σ/μ, which
considers the region heterogeneity. Good texture preservation
is achieved if Cx estimated on the filtered image is close to
the reference value. Bias indicators MoI, MoR, and VoR are
evaluated on the DEM test case as well.

3) Squares: Contour preservation is evaluated on the
Squares image introducing appropriate ES and figure of
merit (FOM) indexes. The ES indicator is evaluated as the
weighted square error between the filtered and the clean edge
profiles (EPs), i.e., as

ES =
∫

g(t − t0)(EPx̂(t) − EPx(t))
2 dt (3)

where g(·) is a Gaussian kernel centered at the edge location
t0, and EPx̂(·) and EPx(·) stand for the filtered and clean EPs,
respectively. Although ES is more related to the radiometric
preservation of the edge, FOM quantifies the reliability of the
filtered image for subsequent applications, such as edge detec-
tion and classification. Indeed, it is a full-reference measure of
the similarity between the outputs of an edge detector applied
to both the despeckled image and the reference one. More
specifically, it is defined as

FOM = 1

max(nd , nr )

nd∑
i=1

1

1 + γ d2
i

(4)

where nd and nr are the number of detected edge pixels
on the despeckled and reference images, respectively; di is
the Euclidean distance between the i th pixel of the detected
edge and the closest reference one; γ weights the edge
displacement. Good preservation of edges requires an ES value
as small as possible and FOM close to one.

4) Corner: Radiometric preservation is evaluated on the
Corner image defining meaningful intensity contrast measures,
namely CNN and CBG. They are defined as

CNN = 10 log10
xCF

xNN
, (5)

CBG = 10 log10
xCF

xBG
(6)

where xCF is the intensity measured in the corner reflector site,
xNN is the average intensity computed in the eight-connected
nearest neighbors, and xBG is the background average intensity.
An accurate filtering of the point target is characterized by
performance values as close as possible to the values measured
on the reference image.

5) Building: Finally, man-made structure preservation is
assessed on the Building test case introducing both an intensity
contrast measure CDR and a building smearing figure (BS).
The CDR parameter measures the radiometric precision of the
filter by evaluating the contrast between the average intensity
of the double-scattering line xDR and the average background
intensity xBG. It is, therefore, defined as

CDR = 10 log10
xDR

xBG
. (7)

The BS parameter is defined as

BS =
∫

�

(
t − t0

T

)
| log10(BPx̂(t) + �)

− log10(BPx(t) + �)| dt (8)

where � is a small number and �(·) denotes the normalized
boxcar function which selects a limited range profile of spatial
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length T and centered in the double-reflection range t0. It
measures the preservation of the radiometric building range
profile by computing the log-difference between the intensity
building range profiles of the filtered BPx̂ and the reference
image BPx , where both profiles are averaged along the azimuth
direction. For a reliable preservation of the double-scattering
mechanism, it is required that CDR is as close as possible to
the reference value and BS as small as possible.

Since the perfect filter is hard to obtain, it is clear that all
the mentioned features of the ideal filter are subject to more
or less severe trade-offs in actual SAR despeckling filters.
In this context, thanks to the framework of [34], it is possible
to capture the different capabilities of the filters in order to
identify the best filter for each specific application.

B. Overview on Multitemporal SAR Despeckling

Speckle reduction in single SAR images has been the
subject of intensive research in the last four decades, during
which diversified approaches have been investigated and devel-
oped, e.g., spatial, wavelet-based, and nonlocal filters [16].
Conversely, far less efforts have been dedicated to the devel-
opment of despeckling algorithms for multitemporal SAR
data.

The simplest choice is the pure temporal multilook where
the multiple intensity bands are averaged pixel-wise to produce
a single filtered image. Speckle noise variance is reduced by
a factor not larger than the number of images and depending
on the correlation among the bands. Despite its simplicity,
the multilook filter is the optimum (unbiased minimum-
variance) estimator for stationary SAR data and temporally
decorrelated speckle (image values at any location are indepen-
dent and identically distributed) [15]. Additionally, it preserves
the spatial resolution of the data set as filtering is carried
out only along the time coordinate. The development of
more advanced despeckling algorithms for SAR time series
dates back to the late 1990s and was driven by particular
thematic applications, e.g., tropical forest monitoring, wherein
forest/nonforest classification required accurate estimation of
the backscattering coefficient value [28], [32].

De Grandi et al. [28] proposed a simple, yet effective,
algorithm for reflectivity estimation using multitemporal data.
The filtering of multiple images acquired on the same location
at different time instants allowed to overcome the spatial
resolution degradation caused by spatial filters. Filtering is
performed through linear minimum-variance unbiased estima-
tors, which, however, ensure optimum weighting only with
stationary SAR data. Accordingly, a series of detectors and
adaptive progressively smaller windows are used in [28] to
locate inhomogeneities and, then, improve estimation of local
statistics in the presence of nonhomogeneous areas (edges, fine
structures, and man-made objects). Spatial inhomogeneities
are discriminated with the normalized second moment. Tempo-
ral changes in reflectivity are retained by applying the adaptive
windows algorithm separately to each band.

A simplified form of the minimum-variance unbiased esti-
mator tailored to ERS data is also adopted in the UTA
filter [32], where simplification comes out from the assumption

of uncorrelated ERS bands. This is justified by the low
(35 days) repeat-pass cycle of ERS satellites. The filter pro-
posed in [32] is based on a two-step procedure: the first
step is temporal pixel-based filtering consisting in a weighted
averaging along the time coordinate only. Within this step,
the local average intensity is estimated in order to produce
unbiased results. Then, in order to achieve the ENL required
for accurate forest mapping, an additional averaging in the
spatial domain is applied in a 11 × 11 window. This brings
to some unavoidable loss of spatial resolution of the filtered
products. The performance in terms of ENL achievable with
the UTA filter is discussed in [29].

The anisotropic nonlinear diffusion (ANLD) filter proposed
in [44] was conceived primarily to improve segmentation
tasks where it is mandatory to reduce speckle in order to
extract meaningful segments. The filter takes advantage of
the redundant information content available in multitempo-
ral series and embeds the original data set in a family of
derived images obtained by convolving the original image
with the Gaussian kernel of varying variance. This approach
can be equivalently formulated through the heat conduction or
diffusion equation [44]. Anisotropic diffusion is enforced by
letting the diffusion coefficient no longer constant in space
and time. Such a strategy allows a good balance between
speckle reduction in homogeneous areas and edge sharpness
preservation. The ANLD filter is sensor-independent as it
does not require any statistical description of SAR data and
can be therefore applied to images acquired from different
sensors.

Those denoising approaches of multitemporal images are
local methods. Conversely, more recent filters have been
developed within the nonlocal paradigm which, by tak-
ing advantage of image self-similarity and by introducing
appropriate patch-based similarity measures, ensures effective
speckle reduction with highly heterogeneous images. The
block-matching 4-D (BM4D) filter presented in [45] is an
extension of the BM3D filter to volumetric data. It implements
the grouping and collaborative filtering procedures and applies
them to cubes of voxels (i.e., group of pixels extracted from a
3-D image stack) instead of the traditional patches adopted in
BM3D algorithms. As in BM3D, the spectrum of the grouped
voxels is highly sparse and an effective separation of signal and
noise is achieved by either thresholding or Wiener filtering.
Finally, aggregation is performed after inverse transformation
in order to place the voxels at their original location with a
proper weight.

In [30], the authors propose an adaptation of the iterative
weighted probabilistic patch-based (PPB) algorithm to multi-
temporal images. Filtering is carried out in a two-step frame-
work (accordingly, the new algorithm was named 2S-PPB):
the first step is temporal averaging which consists of a
temporal multilook applied to stable pixels, i.e., those pixels
not affected by temporal changes and well registered. The
Kullback–Leibler divergence and a generalized likelihood ratio
are used as similarity measures to discriminate stable pixels.
The second step is a spatial filtering where a patch-based
approach similar to PPB is applied in order to derive the final
estimate of the reflectivity maps.
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Temporal and spatial filtering are also exploited in [31]
where the authors propose a multitemporal oriented version
of the single-image SAR-BM3D algorithm [23]. The temporal
averaging is performed through a minimum-variance unbiased
estimator as proposed in [32]. However, the estimation of
statistics is carried out in the framework of the nonlocal
paradigm which is preferred to the sliding-window approach
adopted in the UTA filter. Additionally, the correlation among
bands is not neglected as done instead in [32] and affects the
weighted average. This first step is called nonlocal temporal
filter (NLTF) and operates only along the temporal axis,
therefore not reducing the spatial resolution.

The NLTF algorithm is then exploited in a two-step pro-
cedure, where each step comprises the grouping, collabo-
rative filtering, and aggregation typical of block-matching
algorithms. NLTF is performed in the first step as a prefiltering
of the grouped blocks in order to enhance the speckle rejection
in the subsequent wavelet-shrinkage-based denoiser. Temporal
denoising is instead omitted in the second step in order to
preserve the information carried by noisy data. In this step,
a Wiener filtering in the transform domain is carried out in
order to produce the final filtered blocks.

Whereas most multitemporal denoising methods process
the whole time series to produce the filtered images,
the ratio-based filter (RABASAR) presented in [33] first
forms a summary of the multitemporal image, the so-called
superimage, which is obtained via an approach analogous to
that in [30]. Then, any filtered band is obtained by using only
the corresponding noisy image (rather than the whole time
series) and the corresponding superimage. More specifically,
a ratio image between the noisy image and the superimage
is formed and then denoised through a nonlocal denoiser
(called RuLoG) adapted to the ratio image Fisher distribution.
The final despeckled band is then obtained by multiplying
the denoised ratio image with the superimage. Temporal
correlation of speckle or a limited data set would reduce
speckle reduction in the superimage. To overcome this issue,
a spatial filtering step is introduced to improve the quality of
the superimage.

More recently, the deep learning paradigm has been expe-
riencing an increasing interest in the SAR despeckling com-
munity boosted by the huge availability of images at no cost
which allows for accurate training and learning of sophisti-
cated image models. A comprehensive review of current trends
is highlighted in [46]. Traditional deep learning approaches
require the exploitation of noisy-clean pairs to train the neural
network. However, as already discussed in Section II, this
idea is hardly viable for SAR despeckling purposes due to the
lack of real-world speckle-free data. To overcome this issue,
self-learning methods are gaining much interest. An example
is the recent NR-SAR-DL multitemporal filter [47], which is
based on the exploitation of noisy reference images for the
training of the network. More specifically, two time series of
SAR images acquired on the same scene by the same sensor
are used as image pairs, thus avoiding the requirement of
clean data. Such an approach is based on the assumption that
speckle distribution is the same on the noisy and reference
data. Once the network is trained, both time series can be
despeckled.

IV. PROPOSED BENCHMARKING FRAMEWORK

When moving from single SAR images to multitemporal
data, time coordinate comes into play. Accordingly, proper
procedures must be set up in order to analyze the despeckling
capabilities under different temporal behaviors of the illumi-
nated scene. In this work, we define canonical scenes with both
stationary (i.e., constant in time) and time-varying reflectivity.

The stationary test cases are aimed at evaluating
filter’s accuracy in the five canonical scenes described in
Section III-A as well as at analyzing convergence properties
of the filter, i.e., the image quality behavior as a function of
the number of bands. Conversely, the aim of the test cases with
temporal changes is twofold: first, to investigate the sensitivity
of the filter against such variations, i.e., to give an accurate
and quantitative idea of the distortions and artifacts introduced
in the despeckled data due to the reflectivity changes; second,
its capability to keep as unaltered as possible the reflectivity
perturbation and its temporal dynamic since this is crucial
in specific monitoring activities and applications, such as in
change detection algorithms.

All test cases with the exception of the Convergence one
are defined assuming an arbitrary number of bands M . Indeed,
as further discussed in Section V-C, the proposed benchmark-
ing methodology offers some flexibility and can be easily
adapted to specific SAR user needs, e.g., changing the total
number of bands, the number of perturbed bands, or their
location within the time series.

For any test case, synthetic and quantitative performance
metrics are defined so as to provide an objective similarity
measure between the actual despeckling algorithm and an ideal
filter, whose behavior is defined for any selected scene.

In the following, z will denote the multitemporal image
consisting of M single-look SAR images zi , i = 1, . . . , M;
xi is the i th time component of the reference image stack x
which coincides with the noise-free reflectivity. Finally, x̂i will
denote the i th band of the despeckled time series x̂. All such
quantities denote SAR images in intensity format.

It is also worth mentioning here that the whole bench-
marking framework is based on the fundamental assumption
of uncorrelated bands, i.e., it is assumed that ρi j = 0
∀i, j = 1, . . . , M with i �= j , where ρi j is the correlation
coefficient between zi and z j . Even though this assumption
is quite unrealistic in practical situations, it allows us to
investigate filter performance under most favorable, despite
ideal, conditions. Indeed, as it will be shown further in this
work, for most filters, temporal correlation weakens speckle
suppression capabilities along the time coordinate and, con-
sequently, reduces the overall despeckling performance of
the filter. Therefore, under the uncorrelation hypothesis, it is
possible to achieve the upper bound in filter performance:
for most filters, no better performance is reasonably expected
by relaxing the correlation hypothesis. To better support our
approach, a preliminary analysis of the time correlation effects
on filtered image quality is carried out in Section V-D.

A. Stationary Reflectivity
In this section, we describe the test cases conceived for

the evaluation of despeckling performance in presence of a
time series of SAR images of scenes exhibiting stationary
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reflectivity. This assumption, along with the uncorrelated
band hypothesis, represents the most favorable condition for
despeckling purposes as the time series consists of M uncor-
related images of the same scene, whose reflectivity is here
denoted with x and is independent on the time coordinate.
Accordingly, the collection of the M noisy image samples at
site s, z(s) = [z1(s), . . . , zM(s)], is a vector of independent
and identically distributed (i.i.d.) random variables with mean
x(s) and variance x2(s) and, therefore, minimizes the variance
of the reflectivity estimator. Under these assumptions, the tem-
poral multilook represents the minimum-variance unbiased
estimator and the output image variance will be reduced by
M . Conversely, correlation and temporal changes of scene
reflectivity will reduce the overall despeckling capabilities of
the filter as the bands are no longer i.i.d. However, their
effects might significantly differ. Indeed, temporal correlation
is expected to impact the suppression of the speckle noise,
whose variance will be reduced by a factor smaller than
M and depending on the temporal correlation coefficient.
Time-varying reflectivity, if not properly faced, might lead to
artifacts in the filtered image stack resulting from averaging
along the time coordinate. A preliminary analysis of the tem-
poral correlation effects is carried out in Section V-D, leaving
to future works the definition of ad hoc test cases including
correlation, whereas test cases for time-varying reflectivity are
presented and described in Section IV-B.

1) Single-Image Benchmarking Framework: The first part
of the proposed benchmarking framework aims at providing
a comprehensive set of well-assessed performance measures
in presence of stationary multitemporal images of canonical
scenes. To this end, we use the benchmarking framework for
single-image despeckling filters presented in [34] and extend
it to deal with multitemporal data. In particular, for each of the
five canonical scenes (Homogeneous, DEM, Squares, Corner,
and Building), the noisy time series is built by collecting M
uncorrelated single-look images simulated according to the
scene under study. The corresponding multitemporal reference
image is then created by replicating the 512-look image along
the M bands.

These five test cases allow for assessing despeckling
capabilities of multitemporal filters under different respects,
namely speckle reduction in homogeneous areas, radiometric
distortions, and the preservation of textured areas, edges, and
man-made structures. Indeed, they are analyzed in some works
to support performance evaluation, see, e.g., [31].

For each scene, the corresponding quality indicators
described in [34] and briefly recalled in Section III-A are
evaluated in each band and the M measure values are averaged
altogether in order to provide only one value for each measure
and to reduce measurements variance. The only exception with
respect to the performance measures introduced in [34] is
the ES indicator which is here properly modified in order to
better separate edge smoothing effects introduced by the filter
from a potential bias, which is already captured by the MoI
quality measure in the Homogeneous test case. The modified
ES, called normalized edge smearing, ES*, is defined as

ES* =
∫

g(t − t0)(EP*x̂(t) − EP*x(t))
2 dt (9)

where g(·) is the Gaussian kernel, t0 is the edge location,
and EP*x̂(·) and EP*x(·) stand for the filtered and clean edge
profiles, respectively, which are normalized to their average
intensity.

2) Convergence: Multitemporal data offer an additional
degree of freedom for despeckling purposes, namely the
number of bands (typically also referred to as components)
forming the time series. As a matter of fact, the reduction of
speckle noise affecting SAR imagery is basically an estimation
problem, where the parameter to be estimated is the reflectivity
of the illuminated scene. Accordingly, from basic estimation
theory principles, it is reasonable to expect that, under the
assumption of stationary reflectivity, i.e., reflectivity constant
over time, the performance of the filter improves as the number
of bands increases. Indeed, the output image stack of an ideal
multitemporal despeckling algorithm should converge (under a
specific convergence mode) to the reference image x (which is
the same among all the bands, i.e., xi = x , with i = 1, . . . , M)
as M approaches infinity. Accordingly, for an ideal filter:

lim
M→∞ d(x̂M , x) = 0 (10)

where d(·, ·) denotes the selected convergence metric or dis-
tance. Condition (10) ensures that the filtering procedure leads
to a consistent estimator of the reflectivity.

It is also reasonable to expect that better image quality is
reached with a larger number of bands. However, computa-
tional complexity increases as well. Accordingly, a trade-off
between speckle reduction and execution time must be consid-
ered in the choice of the number of bands. Notwithstanding,
for a convergent filter, there exists a minimum number of
bands over which no appreciable performance improvements
are obtained. Accordingly, given a fixed threshold αTH, we here
define the lowest number of bands MαTH such that:

|d(x̂M, x) − d(x̂M−1, x)|
d(x̂M−1, x)

≤ αTH. (11)

Condition (11) is a convergence criterion based on the relative
distance difference, whereas the MαTH parameter measures
the convergence rate of the filter. This parameter is of key
relevance in practical situations as it provides useful guidelines
for an efficient application of the filter. Indeed, the MαTH

parameter tells us the minimum number of bands required
by the filter to converge. This has some implications in the
practical application of the filter. Hence, the computational
complexity of the filter might increase significantly with the
number of bands (typically at least linearly). The convergence
analysis tells us that filtering more than MαTH bands altogether
will not give appreciable improvements of the overall quality
of the despeckled time series and will then lead to an efficient
usage of the filter. In the case, a good compromise between
computational burden and despeckling performance would be
to split the time series in groups of MαTH bands.

In order to evaluate the MαTH parameter, the filter is applied
to time series with increasing number of bands ranging from
2 up to the minimum between MαTH and 64, with a step
of one image. Therefore, the filter is run MαTH − 1 times
and, however, not more than 63. After each run following
the first, condition (11) is tested. If the condition is fulfilled,
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convergence is reached and MαTH is evaluated; otherwise,
the filter does not converge for the selected threshold αTH and
MαTH cannot be evaluated.

Different convergence modes and metrics may be selected
also depending on the scene features to be analyzed. In this
work, we chose the classical mean squared convergence as it
allows for capturing the overall despeckling capabilities of the
filter regardless of the peculiarities of the illuminated scene.
Accordingly, in conditions (10) and (11), the distance d(x̂M, x)
between the filtered multitemporal image x̂M and the reference
image x is evaluated via the MSE averaged over the M bands
(MSEM ):

d(x̂M , x) = MSEM(x̂M , x) = 1

M

M∑
i=1

E
[
(x̂i − x)2

]
(12)

where x̂i is the i th filtered band and E[·] stands for the
expectation operator.

The investigation of the filter convergence calls for addi-
tional comment. Indeed, condition (10) requires the evaluation
of a limit operator, which is not possible in practice. Accord-
ingly, in order to evaluate the despeckling capabilities in the
limit of M approaching infinity, here we propose a simplified
approach where the distance MSEM (x̂M, x) is evaluated for a
fixed and large number of bands. Here, we choose M = 64
as it is much larger than typical values used in multitemporal
SAR image processing.

Accordingly, condition (10) is replaced with the MSE64

parameter. It may happen that the filter does not fulfill (11) for
the selected threshold αTH after 64 bands. If this is the case,
only the MSE64 parameter is computed.

Finally, convergence conditions are evaluated for the
Homogeneous case [see Fig. 1(a) and (f)] as defined in [34].

B. Time-Varying Reflectivity

Whereas the test cases described in Section IV-A aim at
evaluating the filter’s performance with stationary images, the
test cases introduced here are conceived to analyze the filter
response in the presence of temporal variations of the reflec-
tivity during the overall observation time.

As a matter of fact, a large number of factors influence the
scene reflectivity and its representation on SAR data. These are
related to the illuminated scene—complex dielectric constant,
roughness (small-scale and large-scale), the sensor—operating
frequency, bandwidth, polarization, and the acquisition geome-
try, i.e., viewing angle. Notwithstanding, in most applications
dealing with multitemporal SAR data, it can be reasonably
assumed that only scene parameters can lead to time variations
of the reflectivity, see also the previous discussion in Section I.
In passing, the impact of the atmosphere and the weather
conditions can be put aside as it is mostly limited to the signal
phase. Accordingly, it can be modeled as an additional speckle
noise source and does not affect the surface reflectivity.

Reflectivity variations in time might be related to sev-
eral factors, including vegetation growing, agricultural fields
tillage, soil moisture variations, natural disasters, and human
activity. Each factor might lead to specific features in the
temporal trend of the scene reflectivity. Therefore, proper

modeling and simulation of all possible temporal variations
observable in a multitemporal SAR image is meaningless and
goes outside the scope of this work.

Following the rationale proposed in [34], here we define a
limited set of scenes exhibiting canonical temporal variations
of the reflectivity with the aim of providing meaningful
test cases which are representative of real-world physical
processes. As a matter of fact, most temporal changes observed
in multitemporal SAR imagery could be grouped in a limited
number of classes, such as the following:

1) Vegetation growing phenomena, which lead to a gradual
variation of the backscattered signal strength over time.

2) Temporally- and spatially-localized backscattering inten-
sity variations due to artificial targets appearing and
disappearing during the whole observation time period,
e.g., cars and ships, which cause strong variations (also
identifiable as perturbations) in reflectivity localized in
few pixels (depending on the size of the target and
spatial resolution of the sensor) and limited to a single
band.

3) Reflectivity variations that are localized in time but
spread in space due to, for example, tillage activity,
flooding, sudden variations of the soil moisture content.

As we are here interested in analyzing the effects due to
temporal variations, we assume a homogeneous background
reflectivity, apart from the latter case where edge preservation
is important.

Accordingly, starting from the canonical scenes described
in [34] for the assessment of single-image despeckling quality,
we define the following canonical scenes:

1) Homogeneous varying (see Section IV-B1): a collection
of SAR images with gradual intensity variation, each
one with homogeneous EM parameters. Such a scenario
is intended to analyze vegetation growing phenomena.

2) Homogeneous with Corner (see Section IV-B2): a corner
reflector is injected in a single band of a time series
of Homogeneous SAR images. The corner reflector is
representative of strong point targets, e.g., cars.

3) Homogeneous with Building (see Section IV-B3): simi-
lar to the previous test case but with a building instead
of the corner reflector. This test case is aimed at ana-
lyzing reflectivity perturbations characterized by strong
double-scattering mechanisms, e.g., ships.

4) Squares perturbed (see Section IV-B4): a single band of
a time series of stationary squares images is perturbed by
changing the EM parameters of one flat region. Flooding
and tillage activities fall within this test case.

For each test case, we define quality indicators for both
unperturbed and perturbed bands, which are averaged on
unperturbed and perturbed bands, respectively. Additionally,
simulated images have size 256×256 and 512×512 for cases
1)–3) and for case 4), respectively. This is in accordance with
the Homogeneous and Squares cases of [34].

The methodology used for simulating both single-look
and reference multitemporal images along with corresponding
quality indicators are detailed in Sections IV-B1 to IV-B4.

1) Homogeneous Varying: In this test case, the noisy time
series is simulated as follows: M uncorrelated single-look SAR
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Fig. 2. Homogeneous varying data set. Band index increases progressively from left to right. (a) Single-look multitemporal image. (b) Reference multitemporal
image. Images are displayed in logarithmic scale and share the same grayscale for a better visualization of the scene reflectivity variation over time.

images zi,0 with i = 1, . . . , M are first generated accord-
ing to the Homogeneous case described in [34]. Therefore,
the illuminated scene for such images is a flat surface with
homogeneous (i.e., constant in space) microscopic roughness,
which is described via a fractional Brownian motion (fBm)
stochastic process with the Hurst coefficient H = 0.75 and
topothesy T = 0.0625 m, and homogeneous relative electrical
permittivity ε = 4 and conductivity σ = 0.001 S/m [34].
Accordingly, the time series z0 consists of M i.i.d. homoge-
neous SAR images zi,0. Hereafter we refer to z0 as the original
time series.

Then, the i th component of the noisy multitemporal image
zi for the Homogeneous varying test case is obtained by
modifying the intensity of zi,0 according to the following
expression:

zi =
[

87.5

M − 1
(i − 1) + 1

]
zi,0 i = 1, . . . , M. (13)

In the remainder of this section, we refer to the multitemporal
image z defined in (13) as the perturbed time series.

The i th speckle-free image xi is obtained through an anal-
ogous approach as follows:

xi =
[

87.5

M − 1
(i − 1) + 1

]
x1, i = 1, . . . , M (14)

where x1 is the reference image for each zi,0 image, i.e., the
reference image for the Homogeneous case in [34]. The
perturbed time series and the corresponding reference mul-
titemporal image are shown in Fig. 2(a) and (b), respectively.

Conditions (13) and (14) make average intensity of zi and
xi increasing linearly through the time series with a factor
ranging from 1 to 88.5 times the average intensity of the first
band. Such an intensity dynamic is in agreement with data
measured over agricultural areas [48]. Additionally, the choice
of a linear variation of the average intensity can be justified by
the following considerations. First, in most practical situations,
seasonal variations of backscattering from agricultural fields
can be linearized in a sufficiently limited observation time
period, which, in our case, is the time period spanning from
the acquisition of the first image to the acquisition of the
last image of the time series. The interested reader is referred
to, e.g., [48] for measured temporal profiles of backscattering

from rice canopy at various frequencies and incidence angles.
Just as an example, in [48, Fig. 1], the seasonal variation
of backscattering coefficient of rice plants in X-band and
viewing angle of 35 degrees is reported. Even though the
whole profile is far from being linear, it could be linearized in
a narrower time period (up to several tens of days). Assuming
an acquisition cycle of six days (as that offered by a two-sat
constellation, e.g., Sentinel-1), it turns out that a time series
of eight images are acquired in 43 days, which is compatible
with the linear model.

Filter performance is measured through the indicators pro-
posed in [34] for the Homogeneous case with some differ-
ences. In particular, for each band in intensity format, we first
evaluate the MoI (corrected), MoI*, which is defined as the
average value of the ratio image between the filtered band x̂i

and the corresponding reference band xi . This parameter is
a modified version of the MoI introduced in [34] and takes
into account for the average intensity variation among the
bands due to the scaling factor in (13) and (14). The M MoI*
measures are averaged in order to provide a synthetic indicator
of potential overall (average) bias on the mean introduced by
the filter. We call this performance parameter MoI*μ.

However, when dealing with multitemporal data, apart from
an overall evaluation of the mean conservation, which is well
captured by MoI*μ, it is also of key relevance to get an idea
of the preservation of the average intensity temporal trend.
Indeed, a filter might provide a good overall mean preser-
vation, but introduce a significant distortion of the mean in
each band. This behavior would not be completely captured by
MoI*μ and a second-order statistic is required. For this reason,
we propose to measure also the standard deviation of the M
MoI* measures, MoI*σ . The MoI*μ and MoI*σ parameters
provide together a more comprehensive view of the mean
preservation capability of the multitemporal filter. Speckle
rejection capabilities and the accuracy of the filtered image
are additionally measured via the DG and ENL parameters.

To further investigate the impact of the temporal variations
of the scene reflectivity on the despeckling capabilities of the
filter, it is useful to somehow relate the despeckling perfor-
mance achieved with the perturbed time series z with that one
achieved with the original time series z0. Indeed, the temporal
variations in the perturbed time series might affect the averag-
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ing along the time coordinate and then negatively impact the
speckle reduction capability of the filter. This would result in
an ENL lower than that achieved on the original multitemporal
image, whose bands are i.i.d. Accordingly, a measure of such
effects can be obtained by evaluating the ENL ratio (ENLR),
which is defined as

ENLR = ENL(x̂i)

ENL(x̂i,0)
(15)

where x̂i,0 is the i th filtered band of the original multitemporal
image.

2) Homogeneous With Corner: The perturbed noisy data
set for this test case is created as follows: the first M − 1
images are simulated according to the Homogeneous case.
Hereafter, they are referred to as the unperturbed bands.
A point target is then introduced in the last image which is
simulated according to the Corner test case, see Fig. 1(d). This
is hereafter referred to as the perturbed band, while the whole
multitemporal image is referred to as the perturbed time series.
The corresponding reference multitemporal image is built by
replicating the Homogeneous reference image [see Fig. 1(f)]
over the first M − 1 bands, whereas the latter band is the
Corner reference image, see Fig. 1(i). As will be better detailed
in Section V-C, the temporal location of the perturbation does
not appreciably affect the despeckling capabilities of the filters,
and, therefore, it can be put on the last image without loss of
generality.

Since the Homogeneous and the Corner images as origi-
nally presented in [34] exhibit different background intensity,
a normalization of intensity data is performed so that the whole
noisy data set has unitary background intensity average. The
same normalization factor is then applied to the reference time
series.

The presence of a bright feature in the perturbed band
may affect despeckling capabilities in the unperturbed bands
as multitemporal filters average along the time axis as well.
Therefore, in such a scenario, it is reasonable to require that
the multitemporal despeckling filter exhibits a sensitivity to
the perturbation as low as possible in the unperturbed bands,
while it should retain as accurate as possible the reflectivity
variation features in the perturbed band.

Accordingly, proper metrics have to be defined for both
the perturbed and the unperturbed bands. The capability of
the filter to keep the corner features in the perturbed band is
here evaluated with the corner measures CNN and CBG defined
according to (5) and (6), respectively.

In order to assess despeckling capabilities in the unperturbed
bands, it is useful to compare the performance achieved on the
perturbed time series with that obtained with the original time
series z0 defined in Section IV-B1. Here, we here propose a
perturbation sensitivity (PS) measure on the i th unperturbed
band (i = 1, . . . , M − 1), which is defined as

PS = 10 log10
MSE(x̂i , xi)

MSE(x̂i,0, xi )
, i = 1, . . . , M − 1 (16)

where xi is the Homogeneous reference image, x̂i and x̂i,0 are
the i th filtered band of the perturbed and original multitempo-
ral images, respectively. To reduce measure variance, the PS

for the overall despeckled image stack is averaged among the
M − 1 unperturbed bands.

The PS parameter defined in (16) is an indicator of potential
artifacts introduced by the filter in the unperturbed bands
due to the temporal change. The larger the PS, the higher
the sensitivity of the filter to the corner perturbation. To
better catch and measure the reflectivity distortions in the
unperturbed bands, the PS in (16) is evaluated in a 5 × 5
region centered on the corner site.

Potential distortions arising far away from the corner reflec-
tor are measured with the ENLR, see (15), averaged through
the unperturbed bands. The ENL ratio will provide quantitative
information on how the temporal change influences the speckle
reduction capabilities of the filter in a homogeneous region.
To avoid the influence of the artifacts potentially introduced in
correspondence of the corner site, the ENL values in (15) are
measured on an upper-left region not affected by appreciable
temporal changes of the reflectivity.

3) Homogeneous With Building: This test case is conceived
in a way similar to the Homogeneous with Corner test
case. Accordingly, the first M − 1 images are Homogeneous
images (unperturbed bands), whereas the last band is generated
according to the Building test case [perturbed band, see
Fig. 1(e)] as defined in [34]. Again, the noisy data set is
normalized so that it exhibits unitary background intensity
average. The same normalization factor is applied to the refer-
ence multitemporal image, which includes the Homogeneous
reference image in the first M − 1 images and the Building
reference image in the last band, see Fig. 1(j).

This test case is aimed at evaluating the capability of the
filter to retain temporal changes due to multiple scattering
phenomena and their impact on the filtered unperturbed bands.
The first objective is fulfilled by evaluating the building
measures CDR and BS on the filtered perturbed band x̂M .
As for the effects of the temporal change on the unperturbed
bands, we proceed as in the Homogeneous with Corner test
case and evaluate the PS and the ENLR.

4) Squares Perturbed: The perturbed multitemporal image
for this test case is built as follows: the first M − 1 images of
the single-look data set are generated according to the Squares
case as illustrated in [34]. In the last band, the reflectivity of
the lower-right square is changed by modifying its dielectric
constant, which is set equal to that of the upper-left square.
This change brings to a significant attenuation of the backscat-
tered energy which makes the square appearing much darker
than in the previous bands. Accordingly, such a scenario may
be representative of a flooding event. Example images are
shown in Fig. 3. The first (unperturbed) single-look band is
shown in Fig. 3(a), whereas its corresponding reference image
is shown in Fig. 3(b). The perturbed single-look and reference
bands are depicted in Fig. 3(c) and (d), respectively.

As for the unperturbed bands, at first we measure the
normalized edge smearing ES* averaged through the M − 1
unperturbed bands. Then, we evaluate the impact of the
temporal change on the capability of the filter to preserve the
sharp edges. To this end, we compare the edge preservation
achieved on the perturbed time series with that obtained with
the original time series, which consists of M i.i.d. Squares
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Fig. 3. Squares perturbed data set. (a) Single-look unperturbed. (b) Reference
unperturbed. (c) Single-look perturbed. (d) Reference perturbed.

images simulated as in [34]. Accordingly, we define the edge
smearing ratio ESR for the i th band as

ESR = ES*(x̂i)

ES*(x̂i,0)
, i = 1, . . . , M − 1 (17)

i.e., as the ratio between the ES* of the i th unperturbed filtered
band x̂i and the i th original filtered band x̂i,0. Among the
different edges present in any band, we select the lower vertical
edge as it is affected by the reflectivity temporal variation. By
following the approach proposed in [34], multiple edge range
profiles are averaged altogether to reduce measurement varia-
tions. Finally, ESR is averaged among the M − 1 unperturbed
bands to reduce measurement noise.

The normalized ES indicator is also adopted on the per-
turbed band to measure the filter capability to preserve the
perturbation features. To this end, we measure the ES* on the
same region used for the evaluation of ESR.

V. EXPERIMENTAL RESULTS

In this section, we apply the benchmarking framework
described in Section IV to a number of state-of-the-art multi-
temporal SAR despeckling techniques. This is basically done
to provide, also by comparison with a visual inspection,
the ability of the proposed quality indicators to catch sat-
isfactorily the main limits and advantages of the denoising
algorithms in presence of the defined canonical scenes.

The choice of the set of despeckling filters has been
primarily driven by free availability of their software code.
Accordingly, for each selected filter, we report the website
containing the algorithm source codes used in this work.
Another important criterion was also the reputation of the filter
within the scientific community which led us to prefer most
highly-cited works. Additionally, we selected filters operating
either in the time domain only or also including a spatial

filtering step. This allowed us to shed light on the potentials
and limits of both approaches. In the end, we selected the
following algorithms:

1) Temporal multilook. Its implementation is straightfor-
ward and has been accomplished by the authors.

2) UTA [32] (http://www.grip.unina.it/).
3) NLTF [31] (http://www.grip.unina.it/).
4) MSAR-BM3D [31] (http://www.grip.unina.it/).
5) RABASAR [33] (https://www.charles-deledalle.fr/

pages/).
6) BM4D adapted to speckle noise through the homo-

morphic approach (log-BM4D) [45] (http://www.
cs.tut.fi/ foi/).

The set of filters comprises three time-domain (multilook,
UTA, and NLTF) and three spatiotemporal (MSAR-BM3D,
RABASAR, and BM4D) algorithms. The original BM4D filter
presented in [45] is designed to face additive white Gaussian
noise, and it is therefore adapted to multiplicative speckle
noise by providing in input the logarithm of the noisy data
set in intensity format. Such an operation causes a systematic
bias on the mean which is equal to the opposite of the
Euler–Mascheroni constant. It is compensated in the output
image before taking its exponential.

All selected filters have been already described briefly in
Section III-B. For each filter, we chose the default parameter
settings proposed in the corresponding original work or in the
software code.

Unless otherwise stated, all intensity test images are nor-
malized to the average value of the corresponding intensity
reference image, which, therefore, has unitary mean by defin-
ition. Additionally, by following the approach in [34], the clean
image is created by temporal multilook of 512 single-look
images. Additionally, for the multilook filter, the perfor-
mance indicators are evaluated by replicating the multilook
image M times. This is especially useful for measuring the
parameters relevant to the time-varying test cases, where
the reference image is not the same for all the bands.
Finally, unless otherwise stated, we consider time series of
M = 8 images. Recall that open-source codes and data are
available at http://wpage.unina.it/alessio.disimone/download/
download.htm.

A. Stationary Reflectivity

Here, we discuss the results obtained in presence of multi-
temporal SAR images of scenes with stationary reflectivity.

1) Single-Image Benchmarking Framework: This test case
is of key relevance as it allows for quantitatively evaluating the
despeckling capabilities of the filters under several respects,
including the suppression of speckle noise in homogeneous
areas, and the preservation of fine details, e.g., texture, edge,
and strong scatterers. Synthetic quality indicators for the five
canonical scenes are reported in Table I, while related images
and graphs are shown in Figs. 4–11.

The Homogeneous test case (see Fig. 4) provides useful
information on the capability of the filter to reduce speckle
variance. The bias indicators MoI, MoR, and VoR reveal that
a significant distortion of the average intensity is introduced
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Fig. 4. Results for the single-image benchmark Homogeneous test case (band 1). (a) Multilook. (b) UTA. (c) NLTF. (d) MSAR-BM3D. (e) RABASAR.
(f) Log-BM4D. (g) Reference. (h) Noisy.

TABLE I

MEASURES FOR THE STATIONARY TEST CASES

by only NLTF. The measured bias is in accordance with
that reported in the original work [31]. The temporal mul-
tilook filter exhibits an excessive speckle residual due to the
relatively low number of bands averaged as it is witnessed
by the VoR lower than one and by the low ENL and DG
values achieved. More, in general, filters operating in the
time domain only, namely multilook, UTA, and NLTF, provide
poorer speckle suppression compared to spatiotemporal filters,
MSAR-BM3D, RABASAR, and log-BM4D, which can exploit
spatial content redundancy to boost denoising accuracy. This is

well described by speckle suppression indicators, DG and
ENL. Best speckle reduction is provided by MSAR-BM3D,
followed by log-BM4D and RABASAR which offer similar
results. In this scenario, a simple visual inspection of the
output images will likely lead to a similar overall filter rank.

The DEM test case (see Fig. 5) is of key relevance due to the
rich spectrum of the surface reflectivity. As a matter of fact,
separation of the high-frequency spectrum from speckle noise
might be a challenging task. In this case, a visual inspection
might be much less informative as most filters seem to
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Fig. 5. Results for the single-image benchmark DEM test case (band 1). (a) Multilook. (b) UTA. (c) NLTF. (d) MSAR-BM3D. (e) RABASAR. (f) Log-BM4D.
(g) Reference. (h) Noisy.

Fig. 6. Results for the single-image benchmark Squares test case (band 1). (a) Multilook. (b) UTA. (c) NLTF. (d) MSAR-BM3D. (e) RABASAR.
(f) Log-BM4D. (g) Reference. (h) Noisy.

exhibit similar despeckled image quality. The only exception
is RABASAR, which leads to a visible oversmoothing of the
image. This behavior is well captured by the VoR, which

is much larger than one, and by DG. Apart from NLTF,
in this DEM test case, a severe mean bias is introduced by
RABASAR, whereas the best and worst texture preservation,
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Fig. 7. Normalized (i.e., mean-bias corrected) edge range profile (lower edge) for the Squares test case. Despeckling filter (red line) and reference (black
line). (a) Multilook. (b) UTA. (c) NLTF. (d) MSAR-BM3D. (e) RABASAR. (f) Log-BM4D.

Fig. 8. Results for the single-image benchmark Corner test case (band 1). (a) Multilook. (b) UTA. (c) NLTF. (d) MSAR-BM3D. (e) RABASAR. (f) Log-
BM4D. (g) Reference. (h) Noisy.

Fig. 9. Corner range profile in logarithmic scale for the Corner test case. Despeckling filter (red line) and reference (black line). (a) Multilook. (b) UTA.
(c) NLTF. (d) MSAR-BM3D. (e) RABASAR. (f) Log-BM4D.

captured by Cx , is offered by log-BM4D and NLTF, respec-
tively. The spatial variability of the scene reflectivity on small
scales reduces the image redundancy and, in turn, the effec-
tiveness of nonlocal filters in suppressing speckle noise. As a
result, for the DEM case, the multilook filter represents the
best solution for speckle reduction, as witnessed by the DG
indicator.

In the Squares test case (see Figs. 6 and 7), the benefits
of the nonlocal approach on edge preservation are evident in
the spatiotemporal filters. As can be seen in Fig. 6, all the
tested nonlocal filters offer satisfactory preservation of all the

edges in the image. This is also confirmed by the ES* values
reported in Table I and by the normalized edge profiles shown
in Fig. 7. Among spatiotemporal filters, RABASAR offers the
best edge preservation and provides ES* values comparable to
UTA and NLTF, which, conversely, operate in the time domain
only. However, the filtering in the spatial domain makes the
spatiotemporal filters less effective in retaining the sharp edge
with respect to the simple multilook filter which provides the
best edge preservation capability in this stationary case.

In the presence of corner reflectors (see Figs. 8 and 9),
such as trihedral structures, it is important to keep as unal-
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Fig. 10. Results for the single-image benchmark Building test case. Ratio image (band 1). (a) Multilook. (b) UTA. (c) NLTF. (d) MSAR-BM3D. (e) RABASAR.
(f) Log-BM4D. (g) Reference.

Fig. 11. Normalized (i.e., mean-bias corrected) building range profile in logarithmic scale for the Building test case. Despeckling filter (red line) and reference
(black line). (a) Multilook. (b) UTA. (c) NLTF. (d) MSAR-BM3D. (e) RABASAR. (f) Log-BM4D.

tered as possible, the strong scatterer response. Accordingly,
an effective despeckling procedure will leave unfiltered the
corner reflector image feature, which comprises the corner
peak and the surrounding sidelobes. As is evident from Figs. 8
and 9, all the analyzed filters offer a reliable preservation
of the sinc-squared shape of the corner reflector. This is
well captured by the corner contrast measures CNN and CBG

reported in Table I. Also in this case, best quality measures
are provided by the multilook filter, whereas the log-BM4D
offers worst performance due to a slight overestimation of the
corner reflector response. Major differences among the filters
are in the background region, where the same comments made
for the Homogeneous test case apply, and, therefore, are not
of interest in this test case.

For the Building test case (see Figs. 10 and 11), comments
similar to the Corner test case do apply. Indeed, the building
profile is preserved very well by all filters, see Fig. 11 and the
building measures in Table I. Again, the log-BM4D slightly
overestimates the building response as it is captured by the
CDR parameter and, even more, by BS. The negligible spatial
redundancy of the building image feature makes the pure
temporal filters, multilooking, UTA, and NLTF, perform better

Fig. 12. MSE for convergence properties evaluation.

than spatiotemporal nonlocal filters. Again, the multilook filter
ensures the best performance in terms of both building contrast
measure and profile preservation.

2) Convergence: Synthetic measures relevant to the con-
vergence properties analysis are reported in Table II, whereas
Fig. 12 shows the average MSE defined in (12) as a function of
the number of bands for the different filters analyzed here. The
MSE64 parameter is evaluated according to (12) by applying
the filter on a 64-band Homogeneous image.
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TABLE II

MEASURES FOR CONVERGENCE (αTH = 0.05)

Fig. 13. Results for the Homogeneous varying test case (band 1). (a) Multilook. (b) UTA. (c) NLTF. (d) MSAR-BM3D. (e) RABASAR. (f) Log-BM4D.
(g) Reference. (h) Noisy.

Among the selected filters, the only exception is MSAR-
BM3D that is currently implemented to work with a number
of bands which is a power of two. Accordingly, for this filter,
only the MSE64 parameter can be evaluated. Numerical results
in Table II are obtained by setting αTH = 0.05. The highest
convergence rates are measured by RABASAR and log-BM4D
which converge with three and six bands, respectively. Lower
convergence rates are achieved by filters averaging along the
time coordinate only, due to the less information exploited by
such filters. It is evident that MSAR-BM3D ensures the best
performance in terms of MSE for any number of bands, see the
MSE graph in Fig. 12. This is partially captured by the MSE64

performance measure which confirms the larger effectiveness
of MSAR-BM3D with respect to the competitors analyzed.
Worst MSE are provided by UTA and NLTF, due to their
lighter smoothing.

Finally, it is worth mentioning that the results presented
here are consistent with those presented in [49], where the
convergence properties are measured on the Squares test case.
The slightly higher convergence rate achieved by RABASAR
is related to the larger threshold (αTH = 0.1) adopted
there.

B. Time-Varying Reflectivity

In this section, we discuss the test cases relevant to scenes
with temporal changes in reflectivity.

1) Homogeneous Varying: This test case is relevant in
applications related to the monitoring of cultivated fields. The
EM energy backscattered by such areas varies over time due
to the growth of vegetation, whose EM response depends
on the plant growth stage. In each stage, the reflectivity
can be reasonably assumed homogeneous, i.e., constant in
space. Accordingly, in this scenario, it is important that the
filter reduces speckle noise without altering the reflectivity
temporal trend of the illuminated surface. It is also interesting
comparing the despeckling performance with those achieved
on a time series acquired over a surface with homogeneous
and stationary reflectivity.

Quantitative performance measures are listed in Table III,
whereas Fig. 13 shows the first (darkest) band of the single-
look, reference, and filtered images.

A pure temporal multilooking approach is obviously badly
suited to scenarios with significant temporal changes in reflec-
tivity. In this case, a severe distortion of the radiometric profile
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TABLE III

MEASURES FOR HOMOGENEOUS VARYING

TABLE IV

MEASURES FOR HOMOGENEOUS WITH CORNER

Fig. 14. Results for the Homogeneous with Corner test case (band 1). (a) Multilook. (b) UTA. (c) NLTF. (d) MSAR-BM3D. (e) RABASAR. (f) Log-BM4D.
(g) Reference. (h) Noisy.

is obtained with the multilook filter, see MoI*μ and MoI*σ .
Conversely, more advanced approaches, including UTA and
spatiotemporal filters, offer an accurate preservation of the
reflectivity temporal profile, see MoI*μ and MoI*σ . The
MoI*μ indicator reveals that NLTF introduces a nonnegligible
bias, which is similar to that introduced in the Homogeneous
test case. However, such a bias can be related to a multiplica-
tive factor as it can be inferred from the very low MoI*σ and
could be easily compensated.

Finally, time-domain filters exhibit a negligible degrada-
tion of performance in terms of ENL with respect to the
Homogeneous test case discussed in Section V-A1, see ENLR.
A significant ENL reduction is obtained with the multilook
filter, due to the reflectivity variation which increases the vari-
ance of the averaged samples. A nonnegligible ENL reduction

is also experienced by spatiotemporal filters where largest ENL
degradation is obtained by log-BM4D which here reaches ENL
equal to 40.00 significantly smaller than 99.86 achieved in the
homogeneous test case.

Similar performance degradation is measured on DG for
all filters but RABASAR and log-BM4D which offer a minor
sensitivity to temporal changes in terms of DG. This is much
more evident for log-BM4D, whose degradation in DG is
about 16%, much less of the reduction in ENL. It is also
worth noting that the multilook filter leads to a negative DG,
meaning that the average MSE is increased after filtering.

2) Homogeneous With Corner: In Figs. 14 and 15, we show
band 1 (unperturbed) and band 8 (perturbed), respectively,
for the noisy, reference, and the selected filters. Performance
indicators for the perturbed band, CNN and CBG, and for the
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Fig. 15. Results for the Homogeneous with Corner test case (band 8). (a) Multilook. (b) UTA. (c) NLTF. (d) MSAR-BM3D. (e) RABASAR. (f) Log-BM4D.
(g) Reference. (h) Noisy.

Fig. 16. Corner range profile in logarithmic scale for the Homogeneous with Corner test case (band 8). Despeckling filter (red line) and reference (black
line). (a) Multilook. (b) UTA. (c) NLTF. (d) MSAR-BM3D. (e) RABASAR. (f) Log-BM4D.

unperturbed bands, PS and ENLR, are listed in Table IV. It is
worth noting that the corner quality indicators CNN and CBG

are here measured on the single perturbed band without any
averaging through multiple bands as done in the single-image
benchmarking test case. This causes slight differences of
such parameters for the noisy data set with respect to the
values obtained in the stationary Corner test case, see Table I.
Conversely, the PS and ENLR parameters are averaged through
the seven unperturbed bands. Additionally, ENLR is measured
over an upper-left 100 × 100 region. By visual inspection
of the unperturbed band in Fig. 14, it is evident that the
majority of filters introduce visible artifacts that, in multilook
and RABASAR, closely recall the corner reflector feature. The
latter case might have detrimental effects in some applications,
e.g., change detection algorithms, where it would be highly
desirable to keep as unaltered as possible the temporal local-
ization of the reflectivity perturbation. Notwithstanding, any
significant distortion of the reflectivity map in the unperturbed
bands might impair a correct interpretation and processing
of the SAR image. Conversely, log-BM4D and UTA do not
exhibit visible artifacts in band 1. Quantitative values of PS
are consistent with a visual inspection: the largest values
are measured with multilook and RABASAR, whereas log-

BM4D and NLTF offer the lowest sensitivity to the corner
perturbation, with UTA and MSAR-BM3D in the middle.
However, PS is based on MSE and is therefore not well suited
to identify corner, such as artifacts.

In such scenario, it is also interesting to evaluate the
impact of the temporal change on the filtering capabilities
in regions surrounding the disturbance. This is addressed by
ENLR, which measures the ENL degradation with respect
to the Homogeneous test case. It is evident that for filters
operating only on the temporal coordinate, i.e., multilook,
UTA, and NLTF, the influence of the perturbation is limited
to the image portion where the perturbation response is non-
negligible. Therefore, for these filters, the ENLR is practically
one. Conversely, spatiotemporal filters are influenced also in
regions where the perturbation response is negligible, the size
of the region depending on the search window size. This brings
to ENLR values slightly inferior to one.

Moving to the perturbed band, it is interesting to note that
UTA and log-BM4D, which exhibits low PS values, introduce
a severe distortion of the corner reflector response and perform
worst in terms of CNN and CBG, see also the corner profiles
in Fig. 16. Similarly, the RABASAR filter, which has one of
the highest PS, is able to satisfactorily preserve the corner
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TABLE V

MEASURES FOR HOMOGENEOUS WITH BUILDING

Fig. 17. Results for the Homogeneous with Building test case (band 1). (a) Multilook. (b) UTA. (c) NLTF. (d) MSAR-BM3D. (e) RABASAR. (f) Log-BM4D.
(g) Reference. (h) Noisy.

profile. It is also noteworthy that the multilook filter reduces
the corner response by a factor that, in the regions where it is
much larger than the average background, can be approximated
with the number of bands (8 in our case). This rescaling factor
is the same for the corner peak and the surrounding sidelobes.
Accordingly, CNN is close to the reference value, whereas CBG

is reduced by about 8, which corresponds to approximately
9 dB. MSAR-BM3D and NLTF offer very good preservation
of the corner response, despite a visible attenuation of far
sidelobes not captured by CNN.

3) Homogeneous With Building: The results relevant to this
test case are shown in Fig. 17 (band 1, unperturbed), Fig. 18
(band 8, perturbed), and Fig. 19 (normalized building profiles).
Synthetic quality measures are listed in Table V. Similar to the
Homogeneous with Corner test case, the building parameters
CDR and BS are measured on the perturbed band only, leading
to slight differences in the noisy image with respect to the
Building test case. The PS is measured on a 21 × 36 region
centered on the building, whereas the ENLR is measured on
the same area used in the Homogeneous with Corner test
case. Both parameters are then averaged through the seven
unperturbed bands.

Also, in this case, the reflectivity perturbation causes the
presence of visible artifacts in the unperturbed bands, see
Fig. 17, especially in the output image of the multilook filter.
MSAR-BM3D inherits the time averaging strategy adopted
in NLTF, which exhibits a nonnegligible PS. The subse-
quent nonlocal spatial averaging strengthens the artifacts intro-
duced in the time averaging process and leads to a large
PS. RABASAR achieves intermediate performance in terms
of PS, whereas best results are offered by log-BM4D and
UTA. All filters are negligibly affected far from the pertur-
bation as witnessed by ENLR which is practically unitary.
Remarkably, MSAR-BM3D and RABASAR exhibit an ENLR

slightly larger than one, likely due to residual measurement
noise.

Nonlocal spatiotemporal filters ensure reliable preservation
of the building SAR response, see Fig. 18 and the building
measures in Table V. Hence, all such filters preserve the double
reflection line quite accurately, with a slight overestimation
of CDR within 1 dB. Best performance is here provided by
RABASAR which offers the CDR value closest to the reference
one and also the lowest BS value. The high accuracy of
RABASAR with respect to competitors is also confirmed by
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Fig. 18. Results for the Homogeneous with Building test case (band 8). (a) Multilook. (b) UTA. (c) NLTF. (d) MSAR-BM3D. (e) RABASAR. (f) Log-BM4D.
(g) Reference. (h) Noisy.

Fig. 19. Normalized (i.e., mean-bias corrected) building range profile in logarithmic scale for the Homogeneous with Building test case (band 8). Despeckling
filter (red line) and reference (black line). (a) Multilook. (b) UTA. (c) NLTF. (d) MSAR-BM3D. (e) RABASAR. (f) Log-BM4D.

TABLE VI

MEASURES FOR SQUARES PERTURBED (BOTTOM EDGE)

a visual inspection of Figs. 18 and 19, where the capability
of the filter in retaining the fine spatial details of the building
response can be appreciated. MSAR-BM3D and log-BM4D
apply a stronger smoothing, which leads to larger BS values,
the former inheriting the poor preservation of fine spatial
details provided by NLTF. Worst performance is achieved
by UTA and multilook, the former applying an excessive
smoothing, the latter losing about 9 dB in CDR as in the
Homogeneous with Corner test case.

4) Squares Perturbed: Figs. 20 and 21 show an unperturbed
and the perturbed bands, for the noisy, clean and the selected
filters, respectively. For the sake of clarity, we also show
the normalized range profiles of the bottom vertical edge

in Figs. 22 and 23 in the unperturbed and perturbed bands,
respectively. Performance metrics are listed in Table VI.

While being an effective and efficient solution for despeck-
ling of stationary time series, in the presence of significant
temporal changes, the multilook filter reveals its limits and
justifies the adoption of more sophisticated temporal filtering
approaches, such as the nonlocal paradigm. Indeed, a pure
temporal averaging of all the band filters out the perturbed
square as it is clearly visible in Figs. 20–23. This behavior is
well captured by ES* whose largest value is obtained by the
multilook filter.

But for the multilook filter, a visual inspection of Fig. 20
does not reveal appreciable differences with respect to the
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Fig. 20. Results for the Squares perturbed test case (band 1). (a) Multilook. (b) UTA. (c) NLTF. (d) MSAR-BM3D. (e) RABASAR. (f) Log-BM4D.
(g) Reference. (h) Noisy.

Fig. 21. Results for the Squares perturbed test case (band 8). (a) Multilook. (b) UTA. (c) NLTF. (d) MSAR-BM3D. (e) RABASAR. (f) Log-BM4D.
(g) Reference. (h) Noisy.

Squares test case shown in Fig. 6. However, deeper insights
into the despeckling capabilities of the filters can be gathered
by looking at the ES* and ESR parameters and by comparing
the edge profiles in Fig. 22 with those in Fig. 7. The weighted
temporal filtering makes UTA and NLTF more effective in

retaining the perturbed feature compared to multilook. How-
ever, a significant distortion of the lower edge is still visible
in the perturbed band (as is witnessed by ES* and visible
in Fig. 23). An additional filtering in the space domain aids
in the preservation of the perturbed edge thanks to the much
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Fig. 22. Normalized (i.e., mean-bias corrected) edge range profile for the Squares perturbed test case (band 1). Despeckling filter (red line) and reference
(black line). (a) Multilook. (b) UTA. (c) NLTF. (d) MSAR-BM3D. (e) RABASAR. (f) Log-BM4D.

Fig. 23. Normalized (i.e., mean-bias corrected) edge range profile for the Squares perturbed test case (band 8). Despeckling filter (red line) and reference
(black line). (a) Multilook. (b) UTA. (c) NLTF. (d) MSAR-BM3D. (e) RABASAR. (f) Log-BM4D.

larger number of samples used in the despeckling process.
This is clearly visible in comparing the perturbed profiles and
ES* of NLTF and MSAR-BM3D, with the former being the
temporal filtering step of the latter. Among spatiotemporal
filters, RABASAR offers the best performance in terms of
ES*, whereas log-BM4D and MSAR-BM3D suffer from an
excessive smoothing and edge shift, respectively.

Despeckling quality in the unperturbed bands is assessed
by evaluating ES* and ESR on the lower edge. Remarkably,
it emerges that, apart the log-BM4D filter, all the selected
filters exhibit a large PS in terms of ES, i.e., a large ESR

value. The ES lose is also evident by comparing Figs. 22(d)
and 7(d). However, it is worth noting that a low (high) ESR

does not imply a good (bad) preservation of the edge, i.e., a
low (high) ES*, but only that the filter is scarcely (largely)
influenced by temporal changes in reflectivity. Indeed, despite
the low ESR, log-BM4D suffers from an excessive smoothing
of the edge, as revealed by ES*. On the other hand, despite
a large ESR, the multilook filter still offers the best contour
preservation in the unperturbed bands.

C. Flexibility of the Benchmarking Tool

The results shown in Section V-A and V-B have been
obtained assuming time series of eight bands (with the excep-
tion of the Convergence test case), where the perturbation,
if present, is located in the last image. However, these assump-
tions are not mandatory for the correct usage of the proposed
methodology. To better investigate this point, here we discuss
how the proposed benchmarking framework can be adapted
(as far as possible) to specific applications or SAR user needs.
To this end, we considered three aspects potentially affecting
the despeckling capabilities of a filter: temporal location of the
perturbation within the time series; temporal duration of the
perturbation; observation time period. For each of these points,
we explain the flexibility offered by our tool and, additionally,
we briefly discuss the results obtained by applying the selected
despeckling filters to properly modified test cases.

1) Temporal Location of the Perturbation: Potential users
of the proposed benchmarking tool might be interested in
assessing filters’ performance on time series affected by tem-

poral changes of the scene reflectivity in specific dates. If this
is the case, the researcher will be free to modify the perturbed
band index according to his/her needs by moving the perturbed
band within the time series.

As an example, the impact of the temporal location of
the perturbation on the performance of the selected filters
has been analyzed on the Homogeneous with Corner test
case. In particular, we run this test case multiple times by
changing each time the position of the perturbed band within
the time series. The result of such an analysis is that the
considered filters are not appreciably influenced by the time
instant where the perturbation takes place, in the sense that
the quality of the despeckled multitemporal image is scarcely
influenced by the temporal location of the perturbation. Such
a behavior can be justified by the lack of time ordering in the
despeckling processing chain of the selected filters. However,
it cannot be ruled out that other filters could exhibit a larger
sensitivity to the actual temporal location of the perturbation.

2) Temporal Duration of the Perturbation: Changes in the
scene during the observation time period due for example
to new built-up areas or flooding might persist over time
leading to temporal changes in multiple subsequent bands,
with potentially severe effects on the quality of the despeckled
time series. The possibility of setting up new test cases by
selecting a number of perturbed bands suited to the scenario
of interest represents another strength of the proposed tool.

To better assess the effects of the temporal duration of
the perturbation on the despeckling capabilities of the filters,
we slightly modified the Homogeneous with Corner test case
presented in Section V-B by considering a data set of eight
images, the last four out of which were perturbed by the corner
target. In presence of a lasting perturbation, most filters exhibit
a larger PS due to the higher number of perturbed bands.
Conversely, RABASAR experiences a significant reduction of
PS, due to a more accurate estimation of the superimage for
the unperturbed bands. Additionally, the presence of more
perturbed patches results in a lowering of the ENLR for
MSAR-BM3D and log-BM4D. Finally, multilook, UTA, and
log-BM4D offer greater accuracy in preserving the corner
response with respect to the single perturbed band case.
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3) Observation Time Period: In specific applications, e.g.,
change detection, it might be required the denoising of a
data set as limited as two or three images. The methodology
described in Section IV can be applied to an arbitrary number
of bands M ≥ 2, the only exception being the Convergence
test case which requires a large number of bands M = 64.
The user can then freely define the length of the time series
according to the application of interest. Obviously, in the case
of temporal changes of the reflectivity, the bands where the
change takes place must be less than M .

The sensitivity of the selected filters to the number of bands
has been assessed on the time-varying test cases for M = 2
and M = 4. In both cases, the Homogeneous varying test
case has been built according to (13) and (14), while in the
remaining time-varying test cases the perturbation has been
put on the last band. As for the unperturbed bands, it emerges
that time-domain filters exhibit negligible effects on ENLR

due to the filtering along the time coordinate only. Addition-
ally, they offer a significant improvement of the perturbation
measures which are closer to corresponding reference values
meaning that a large number of unperturbed bands make the
filter underestimate the perturbation response. Conversely, for
spatiotemporal filters, the reduced number of bands leads to
a severe reduction of the speckle rejection capabilities as it is
measured by ENLR which lowers below 0.9 for M = 2. This
is due to the much lower amount of similar patches available
for averaging. Finally, for all filters but MSAR-BM3D an
increased sensitivity to the perturbation is obtained reducing
the number of available bands.

D. Effects of Speckle Temporal Correlation

In this section, we analyze the impact of temporal correla-
tion on the despeckling capabilities of multitemporal filters.
Indeed, the assumption of uncorrelated bands made in the
proposed benchmarking framework is rather extreme as the
coherence time of both natural surfaces and urban areas is
typically larger than the revisit time of most spaceborne SAR
missions. As a matter of fact, some SAR applications, e.g.,
SAR interferometry (InSAR), differential InSAR, strongly
rely on the temporal coherence of the illuminated scene and
their performance degrades with decreasing correlation among
the bands. Notwithstanding, for despeckling purposes, best
performance is reasonably expected with uncorrelated time
series, since the temporal filtering (however, it is intended)
will be more effective with weaker correlations.

In order to investigate the effects of the temporal correla-
tion on the performance of multitemporal filters, the adopted
SARAS simulator should be properly modified in order
to account for time-correlated speckle noise, which in our
physical-based simulator undergoes the same processing chain
as the clean signal does. However, the design of a SAR
simulator of correlated time series goes outside the scope of
this work and will be the subject of future works. Accordingly,
we here rely on the Homogeneous case, as it allows for a
much easier simulation of time-correlated bands, thanks to
the homogeneous reflectivity. Nevertheless, as it will be better
motivated in the following of this section, the main results of

Fig. 24. ENL for M = 8 as a function of the temporal correlation coefficient
for different multitemporal SAR despeckling algorithms.

this analysis are reasonably independent of the spatial features
of the scene reflectivity and, therefore, similar results are
expected in other test cases. We considered M = 8 bands with
size 256 × 256 and simulated multiple time series, each one
exhibiting a constant temporal correlation profile. An example
of single-look and reference image is shown in Fig. 1(a) and
(f), respectively. According to the homogeneous reflectivity,
despeckling performance is evaluated through the ENL (aver-
aged over all eight bands) and results are shown in Fig. 24 for
the selected multitemporal filters.

It is noticeable that two different behaviors can be high-
lighted: most algorithms analyzed here exhibit significant
sensitivity to the temporal correlation and offer poorer per-
formance with increasing correlation. In the limiting case
of perfectly correlated time series (ρ = 1), they do not
provide any speckle reduction (ENL equals one). This is easily
explained for time-domain filters: if ρ = 1, image sample
values at any location are the same among all the bands and,
therefore, no filtering takes place along the time coordinate.
For spatiotemporal filters, results reveal a strong impact of the
temporal characteristics of the scene on the spatial filtering
step. However, spatiotemporal filters offer stronger speckle
rejection compared to time-domain filters for ρ < 1. Such a
negative impact of the temporal correlation is likely due to the
less information which is available to the filters with respect
to the case of uncorrelated bands. Accordingly, it is reasonable
to expect such negative effects are present irrespective of
the spatial features of the image. The only exception is the
RABASAR filter which is negligibly affected by temporal
correlation among bands, thus offering a nearly constant ENL
regardless of the correlation coefficient. This peculiar behavior
demonstrates the benefits of the spatial filtering step for the
generation of the superimage. Similarly, some other filters
reported in the literature are able to take advantage of temporal
correlation among the bands, see e.g., [47].

VI. CONCLUSION

In this article, we presented a benchmarking framework
for the evaluation of the performance of multitemporal SAR
despeckling algorithms. The proposed approach is aimed at
supporting the despeckling and image processing commu-
nity by providing an objective and standard procedure for a
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quantitative assessment of the despeckling capabilities of mul-
titemporal SAR filters. To this end, we conceived a set of sim-
ulated test images relevant to scenes with both stationary and
time-varying reflectivity. The aim of the stationary-reflectivity
test cases is twofold: first, to evaluate basic features of
multitemporal filters, such as speckle suppression in homo-
geneous areas and the preservation of fine spatial details
(edges, textured areas, peculiar scattering mechanisms); sec-
ond, to analyze the convergence properties (steady-state error,
convergence rate) of the filters, i.e., its behavior for a number
of bands going to infinity. The sensitivity of the filter to reflec-
tivity temporal perturbations is assessed in the time-varying
reflectivity test cases, where different temporal changes are
simulated. Such temporal variations of the reflectivity have
been inspired by physical considerations about the scene
dynamics in time, such as agricultural activities, flooding,
vegetation growth, and appearance of strong scatterers. For
each scene, proper quality measures have been introduced in
order to assess despeckling capabilities in several respects,
namely, speckle reduction, texture, and fine details preserva-
tion (both in space and time), edge and scattering properties
preservation. All such metrics along with their target value are
listed in Table VII.

The proposed tool offers some degrees of flexibility as it can
be tuned by the SAR user to specific applications or scenarios.
For instance, despeckling filters could be tested on time series
of few images for change detection applications or on long
time series for long-term monitoring applications; analysis on
persistent variations of reflectivity, e.g., new buildings and
flooded areas, can be carried out by considering multiple
perturbed bands.

An experimental analysis has been carried out in order to
gain insight into the actual potential of this tool and test
its efficacy to catch the main despeckling weaknesses and
strengths of a filter. To this end, the test cases were run over
a representative set of state-of-the-art multitemporal filters,
including algorithms working on the time coordinate only or
somehow supporting temporal averaging with spatial filtering.
The numerical results demonstrate a good consistency between
synthetic quality indicators and visual inspection of filtered
images.

The applicability of the proposed methodology to despeck-
ling filters based on the deep learning paradigm deserves some
comments. Indeed, the performance of such filters is strictly
related to the training data set and training method, which are
rarely made available or even properly discussed in the related
works, thus impairing reproducible research. Unfortunately,
so far, there are no standardized procedures for the training
of deep neural networks, which might be desirable for fair
and meaningful comparisons, as suggested in [46]. However,
this aspect, despite its interest for the despeckling community,
goes outside the scope of this work, which is addressed to
ready-to-use filters. Notwithstanding, pre-trained deep learning
filters, whatever the training data set and method, can still take
advantage of this benchmarking tool for the assessment of their
performance.

Additionally, the proposed benchmarking framework has
been built over the fundamental hypothesis of temporally

TABLE VII

PERFORMANCE METRICS FOR THE PROPOSED MULTITEMPORAL
BENCHMARKING FRAMEWORK

uncorrelated bands. This assumption allowed us to analyze
filter performance under the most favorable despeckling condi-
tions. However, a preliminary analysis of the impact of tempo-
ral correlation among bands on the despeckling capabilities of
the selected filters has been carried out. It has pointed out that
most filters are negatively affected by temporal correlation and
that negligible speckle reduction is offered for highly corre-
lated time series. The only exception among the selected filters
is represented by RABASAR, whose despeckling capabilities
seem to be practically independent of temporal correlation.

Notwithstanding, the development of a benchmarking
framework explicitly taking into account realistic temporal
correlation profiles in the definition of the canonical scenes
represents an interesting research path to be explored in the
near future.

In summary, the proposed benchmarking framework might
be fruitfully exploited to:

1) Perform a fair and objective comparison of different
multitemporal filters.

2) Get meaningful and wide insights into the despeckling
capabilities of the filter.
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3) Build a proper application-dependent benchmark tool by
somehow combining the different measures introduced.

4) Pave the way for creating a benchmarking framework
using real-world SAR imagery.
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