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Abstract— We present an analytical formulation of the cor-
relation coefficient of the electromagnetic fields scattered at
near-specular direction by a rough or gently undulating surface
and measured at two spatially separated positions occupied
by a moving receiver at slightly different times. This allows
us obtaining an explicit expression of the correlation time of
the received signal in terms of radar and surface parameters.
This work provides a contribution to the discussion, currently
ongoing in the Global Navigation Satellite System Reflectometry
(GNSS-R) scientific community, about the behavior of received
signal fluctuations, especially when surface profile variations
are such that the scattering is neither coherent nor completely
incoherent. The scattering surface is here modeled as randomly
rough, and the Kirchhoff approximation (KA) or the first-order
small slope approximation (SSA1) is employed to compute the
scattered field. In fact, the expression of the correlation coefficient
is the same for both approximations. The obtained closed-form
expression shows that as the surface correlation length increases,
the degree of coherence smoothly increases from the value
obtained with the expression already available in the literature
for very rough surfaces to a value close to unity for gently
undulating surfaces. The obtained behavior of correlation time
as a function of surface parameters, system resolution, and
observation geometry is in agreement with numerical simulations
available in the literature. In general, obtained analytical results
are in agreement with the observed behavior of GNSS-R signals
over flat land surfaces.

Index Terms— Bistatic radar, coherence, Global Navigation
Satellite System Reflectometry (GNSS-R).

I. INTRODUCTION

B ISTATIC passive radars for remote sensing applications,
exploiting transmitters of opportunity, are recently attract-

ing much interest, due to the possibility to use light and
cheap instrumentation. In this framework, Global Navigation
Satellite System Reflectometry (GNSS-R), exploiting naviga-
tion satellite signals, is now a maturing technology, especially
for ocean observation [1]–[7]; recently, application to land
monitoring has also been proposed [8]–[13].

A parameter that plays a very important role in GNSS-R
systems is the correlation time. In fact, the field scattered by
a rough surface at near specular direction is the superposition
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of a coherent component, i.e., the mean value of the field,
and an incoherent component, whose mean square modulus,
i.e., whose intensity, is the field variance. As a GNSS-R
receiver moves, the presence of the incoherent component
causes fluctuations of the received signal around its mean
value. The time scale of such fluctuations is of the order of the
correlation time, and their amplitude depends on the relative
weight of coherent and incoherent components, which in turn
depends on the ratio of surface height standard deviation σ and
wavelength λ, and on the surface height correlation length L.

For ocean surfaces, at L-band, except for very calm sea, σ
is usually of the order of λ or greater, so that the scattering
is completely incoherent. In this case, the correlation time
can be predicted by using an available analytical expres-
sion [1], which is substantially an application of the van
Cittert-Zernike theorem [14] and is obtained by modeling
the scattering surface as composed of uncorrelated point-like
scatterers, similar to the approach employed to evaluate spatial
decorrelation in synthetic aperture radar interferometry [15],
[16]. This analytical expression of the correlation time only
depends on radar parameters and observation geometry and
is independent of surface roughness parameters. However,
it is in reasonable agreement with GNSS-R experimental data
over ocean scenes [1], [17] and with more advanced theoret-
ical evaluations [17]–[21], that, however, require numerical
integration. Only a very slight dependence on sea surface
roughness is obtained in [17] for low-altitude low-velocity
airborne receivers.

For land surfaces, the situation is more intricate, and it is
the subject of current discussion in the GNSS-R scientific
community. In particular, when flat surfaces are considered,
with no large-scale topography, it is often assumed that scat-
tering is dominated by the coherent component [9], and this
may seem consistent with the fact that the received signal
appears to be mainly dependent on the reflection coefficient
[9], [10], [22], [23]. However, other studies show that a
dominant incoherent component should be often expected in
this case [11]–[13], [24]–[27]: in fact, as suggested in [12]
and verified by using a LIDAR altimeter in [13], even very
flat land surfaces present gentle undulations, with a large (of
the order of ten to few hundred meters) horizontal scale and
a vertical scale that may vary from a few centimeters to tens
of centimeters. In this case, it is expected that the correlation
time significantly depends on surface roughness parameters,
in addition to radar ones, so that the available analytical

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-4200-2584
https://orcid.org/0000-0003-1374-1871
https://orcid.org/0000-0001-6173-3601


2005913 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

Fig. 1. Geometry of the problem: (a) 3-D view; (b) projection onto the xz plane; and (c) projection onto the xy plane.

expression is not useful. This is confirmed by very recent
simulations presented in [12] and [28]. However, an explicit
closed-form analytical formulation of the correlation time
in terms of system and surface parameters is not currently
available for this more general case, so that it is difficult to
draw conclusions of general validity.

This work is aimed at filling this gap. In fact, here,
by modeling the height deviations of the rough scattering
surface as a Gaussian random process and using the Kirchhoff
approximation (KA) [29], we find more general closed-form
analytical expressions of the correlation and of the correlation
time that also hold for slightly undulating land surfaces and
explicitly depend on both system and surface parameters. The
same expression is also obtained by using the first-order small
slope approximation (SSA1) [30].

II. THEORY

Let us consider a rough surface z(x, y), whose mean plane
is the xy plane, modeled as a statistically homogeneous zero-
mean Gaussian random process with standard deviation σ and

normalized (to σ 2) autocorrelation function C(�x,�y), with
�x = x ′ − x , �y = y ′ − y, (x, y), and (x ′, y ′) being two
generic surface points. Although it is not strictly necessary,
we will assume that the surface is statistically isotropic, so that
C(�x,�y) = C(�x2 +�y2). The normalized autocorrelation
function is equal to one for �x = �y = 0 and is negligible
for �x and/or �y larger than the surface correlation length
L. For wind-driven sea surfaces, L is of the order of about
ten times σ , whereas for gently undulating flat land surfaces,
it may be much larger than that. In any case, we assume that
L is much smaller than the system resolution.

The geometry of the problem is depicted in Fig. 1: at
time t , the transmitter is placed at T ≡ (xT , 0, zT ), with
xT = −rT sin ϑ0 and zT = rT cos ϑ0; and the receiver is placed
at R1 ≡ (xR1, 0, zR), with xR1 = rR1sinϑ0 and zR = rR1cosϑ0,
so that the origin O is the specular point at time t for the
mean plane and the xz plane is the vertical plane containing
transmitter and receiver at time t . Both transmitter and receiver
move, with velocities vT and v, respectively; but since for all
spaceborne and airborne GNSS-R systems vT /rT � v/rR1,
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we can neglect the movement of the transmitter. Accordingly,
at time t + �t , we can assume that the transmitter is still
in T , whereas the receiver has moved to the point R2 ≡
(xR2, yR2, zR), with xR2 = rR2sinϑR2cosϕR2 = xR1 + vx�t
and yR2 = rR2sinϑR2sinϕR2 = vy�t , where vx and vy are
the x- and y-components of the receiver velocity, so that
v =

√
v2

x + v2
y .

We assume that vx�t � rR1 and vy�t � rR1, so that

ϑR2 − ϑ0 =�ϑ ∼= −vx�t cos ϑ0

rR1
, ϕR2 =�ϕ ∼= vy�t

rR1 sin ϑ0
.

(1)

In addition, we suppose that the time interval �t is short
enough to ignore surface temporal changes, both for land and
sea surfaces. This assumption is of course always accurate for
land, but it is also acceptable for sea surface, except for very
high wind speed and low receiver velocity [31].

We consider the resolution cell that includes the specular
point so that the observed area is centered in the origin and
its size is related to the sensor spatial resolution. Evaluation of
spatial resolution for GNSS-R systems is recalled in Appen-
dix A, where some typical values are also provided.

By using the KA, the generic component of the scattered
field at R1 and R2 can be written as

E(R1) =
∫ ∞

−∞

∫ ∞

−∞
F(x, y)w(x, y)

× exp
{− jk

[
R̃T (x, y) + R̃R1(x, y)

]}
R̃R1(x, y)

dxdy

E(R2) =
∫ ∞

−∞

∫ ∞

−∞
F(x, y)w(x, y)

× exp
{− jk

[
R̃T (x, y) + R̃R2(x, y)

]}
R̃R2(x, y)

dxdy (2)

where

1) k = 2π /λ is the wavenumber;
2)

w(x, y) = exp

(
− x2

2A2
x

− y2

2A2
y

)
(3)

is the sensor illumination function, so that Ax and Ay

are the semiaxes of the elliptical resolution cell that can
be evaluated as shown in Appendix A;

3)

R̃X (x, y) =
√

(zX − z)2 + (xX − x)2 + (yX − y)2

= RX (x, y)

√
1 + z2 − 2zX z

R2
X (x, y)

∼= RX (x, y) − zX

RX (x, y)
z(x, y) (4)

with

RX (x, y) =
√

z2
X + (xX − x)2 + (yX − y)2 (5)

and with the subscript X that must be replaced by T ,
R1, or R2 as needed, so that, while rX are the distances
of sensors from the origin, RX are their distances from

the generic point (x, y,0) of the mean plane, and R̃X are
their distances from the generic point [x, y, z(x, y)] of
the rough surface;

4) F(x, y) is a slowly varying function whose expres-
sion, as shown in the following, is only of interest at
x = y = 0:

F(0, 0) = − jk E0�(ϑ0)exp( jkrT )cosϑ0

2π
(6)

with E0 being the incident electric field at the origin
and �(ϑ0) is the reflection coefficient for the considered
field component (for the RL circular polarization used
in GNSS-R, �(ϑ0) is the arithmetic average of Fresnel
reflection coefficients at horizontal and vertical polariza-
tions).

We explicitly note that the same formulation (2) also holds
under the SSA1 [30], with a different expression of F(x, y),
in which the role of Fresnel reflection coefficients is played
by the Bragg scattering ones [30]. However, Bragg scatter-
ing coefficients reduce to Fresnel reflection ones at specular
scattering direction, i.e., at x = y = 0, where, therefore,
the SSA1 expression of F coincides with the KA one.
This ensures that our results are valid under both the KA
and the SSA1.

It is also important to note that the functions F(x, y) and
RX (x, y) are slowly spatially varying, i.e., they appreciably
change only for variations of x and y not much smaller
than rR1. Accordingly, the variations of such functions over
distances much smaller than rR1 can be ignored, except that
in the argument of the complex exponential functions in (2),
where variations of RX (x, y) can be only ignored if they are
much smaller than wavelength.

Finally, we note that F(x, y) and w(x, y) slightly change
when the receiver moves from R1 to R2. However, if we
assume that vx�t and vy�t are sufficiently smaller than
resolution, we can ignore this change.

We want now to compute the correlation coefficient

ρ(�t) = |cov[E(R1)E(R2)]|√
var[E(R1)]var[E(R2)]

(7)

where

cov[E(R1)E(R2)]

= 〈
[E(R1) − 〈E(R1)〉][E(R2) − 〈E(R2)〉]∗

〉
(8)

= 〈
E(R1)E(R2)

∗〉− 〈E(R1)〉〈E(R2)〉∗
var
[
E
(

R1,2
)] =

〈∣∣E(R1,2
)− 〈E

(
R1,2
)〉∣∣2〉

=
〈∣∣E(R1,2

)∣∣2〉− ∣∣〈E
(

R1,2
)〉∣∣2 (9)

and the symbol 〈·〉 indicates the statistical mean (i.e., the
ensemble average). The correlation coefficient is obviously
unitary for �t = 0, and the correlation time τ is conventionally
the value of �t such that ρ has decreased to the value 1/e.

By using (2) in (9), we get (10), as shown at the bottom of
the next page, where

uz1,2(x, y) = zT

RT (x, y)
+ zR

RR1,2(x, y)
. (11)
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Let us now focus on the following function that appears in
(10):

f
(
x, y, x ′, y ′) = 〈

exp
{

jk
[
uz1(x, y)z(x, y)

− uz2
(
x ′, y ′)z(x ′, y ′)]}〉

− 〈exp
{

jk
[
uz1(x, y)z(x, y)

]}〉
× 〈exp

{− jk
[
uz2
(
x ′, y ′)z(x ′, y ′)]}〉.

The statistical means that appear in this expression are the
characteristic functions [32] of Gaussian random variables so
that they can be readily computed, see Appendix D

f
(
x, y, x ′, y ′)
= exp

{
−k2σ 2

2

[
u2

z1(x, y) + u2
z2

(
x ′y ′)

− 2uz1(x, y)uz2
(
x ′y ′)C(�x,�y)

]}

− exp

{
−k2σ 2

2

[
u2

z1(x, y) + u2
z2

(
x ′y ′)]}

= exp

{
−k2σ 2

2

[
uz1(x, y) − uz2

(
x ′y ′)]2}

× [exp
{−k2σ 2uz1(x, y)uz2

(
x ′, y ′)[1 − C(�x,�y)]

}
− exp

{−k2σ 2uz1(x, y)uz2
(
x ′y ′)}]. (12)

If k2σ 2 � 1 (i.e., if σ is greater than about λ/2, which for
a frequency of 1.5 GHz corresponds to σ > 10 cm), then f
is appreciably different from zero only for �x and �y much
smaller than L, where C(�x,�y) ∼= 1. For smaller values
of kσ , f is appreciably different from zero only for �x and
�y not larger than L, where C(�x,�y) is not negligible.
Therefore, the integrand of (10) is appreciably different from
zero only for |x − x ′| and |y − y ′| smaller or much smaller
than L, and in the first exponential of (10), we can let

RT (x, y) + RR1(x, y) − RT

(
x ′y ′)− RR2

(
x ′y ′)

= RT (x, y) + RR1(x, y) − RT
(
x ′y ′)− RR1

(
x ′y ′)

+ RR1
(
x ′y ′)− RR2

(
x ′y ′)

∼= −ux(x, y)�x − uy(x, y)�y + RR1(x, y) − RR2(x, y)

(13)

where [also recalling that xT < 0, see Fig. 1(a)]

ux(x, y) = ∂(RT + RR1)

∂x
= x + |xT |

RT (x, y)
+ x − xR1

RR1(x, y)

uy(x, y) = ∂(RT + RR1)

∂y
= y

(
1

RT (x, y)
+ 1

RR1(x, y)

)
.

(14)

Considering that L is much smaller than resolution, which
in turns is usually much smaller than the receiver distance
rR1 (see Appendix A), elsewhere in (10) and (12), apart from
C(�x,�y), we can assume x = x ′, y = y ′. Therefore, (12)
can be rewritten as

f
(
x, y, x ′, y ′) = exp

{
−k2σ 2

2

[
uz1(x, y) − uz2(x, y)

]2
}

× [exp
{−k2σ 2u2

z (x, y)[1 − C(�x,�y)]
}

− exp
{−k2σ 2u2

z (x, y)
}]

(15)

where we have set uz(x, y) = (uz1(x, y)uz2(x, y))1/2.
Note that in (13) we have set RR1(x ′, y ′) − RR2(x ′, y ′) ∼=

RR1(x, y) − RR2(x, y). It can be shown that the correspond-
ing error is of the order of (v�t/rR1) times the distance
from (x, y) to (x ′, y ′). Therefore, our approximation holds
if (v�t/rR1)L does not exceed λ. For example, for a typical
spaceborne GNSS-R system, L cannot exceed few hundred
meters.

In Appendix B, we show that if the surface autocorrelation
function is Gaussian, i.e., if

C(�x,�y) = exp

(
−�x2 + �y2

L2

)
(16)

then for any value of σ , the function f can be approximated
as

f
(
x, y, x ′, y ′)
∼= exp

{
−k2σ 2

2

[
uz1(x, y) − uz2(x, y)

]2}

× a2(x, y)exp

{
−k2σ 2u2

z (x, y)

L2a2(x, y)

[
�x2 + �y2

]}
(17)

where

a(x, y) =
√

1 − exp
{−k2σ 2u2

z (x, y)
}
. (18)

If k2σ 2 � 1, then a(x, y) ∼= 1 and

f
(
x, y, x ′, y ′) ∼= exp

{
−k2σ 2

2

[
uz1(x, y) − uz2(x, y)

]2}

× exp

{
−k2σ 2u2

z (x, y)

L2

[
�x2 + �y2

]}
.

(19)

As also shown in Appendix B, for k2σ 2 � 1, (19) holds
for any regular autocorrelation function, provided that, for non-
Gaussian correlation function, L2 is replaced by 2/|C ′′(0)|.

By using (13) and (17) in (10), we have (20), as shown at
the bottom of the next page.

cov[E(R1)E(R2)]

∼=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

exp
{− jk

[
RT (x, y) + RR1(x, y) − RT

(
x ′, y ′)− RR2

(
x ′, y ′]]

RR1(x, y)RR2(x ′, y ′

· F(x, y)w(x, y)F∗(x ′, y ′)w(x ′, y ′)
× [〈exp

{
jk
[
uz1(x, y)z(x, y) − uz2

(
x ′, y ′)z(x ′, y ′)]}〉

− 〈exp
{

jk
[
uz1(x, y)z(x, y)

]}〉〈
exp
{− jk

[
uz2
(
x ′, y ′)z(x ′, y ′)]}〉]

× dxdydx ′dy ′ (10)
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The integrals over �x and �y in (20) are the Fourier
transform (FT) of Gaussian functions, see Appendix D, so that
they can be readily computed (21), as shown at the bottom of
the page.

The sensor illumination function w in (21) is peaked around
the origin and is appreciably different from zero only in the
resolution cell of area π Ax Ay. In addition, since ux (0,0) =
(|xT |/rT ) − (xR1/rR1) = 0 and uy(0,0) = 0, also the last
exponential in (21) is peaked around the origin, and the area
in which it is appreciably different from zero (the so-called
“glistening area,” i.e., the ground area appreciably contributing
to the field scattered toward the receiver) can be evaluated
by expanding the exponent around the origin: as shown in
Appendix C

exp

⎧⎨
⎩−1

2

u2
x(x, y) + u2

y(x, y)

2 σ 2u2
z (x,y)

L2a2(x,y)

⎫⎬
⎭ ∼= exp

(
− x2

G2
x

− y2

G2
y

)
(22)

where

Gx = 4σ

a0 L cos ϑ0

rT rR1

rT + rR1

∼= 4σrR1

a0 L cos ϑ0

G y = 4σ cos ϑ0

a0 L

rT rR1

rT + rR1

∼= 4σ cos ϑ0rR1

a0 L
(23)

are the x and y sizes of the glistening area, with

a0 = a(0, 0) =
√

1 − exp
{−4k2σ 2 cos2 ϑ0

}
uz(0, 0) = √

2cosϑ0(cosϑ0 + cosϑR2) ∼= 2 cos ϑ0 (24)

and we have used the fact that for all GNSS-R systems
rT � r R1.

Since the resolution is usually much smaller than rR1, see
Appendix A, in the resolution cell, the argument of the first
exponential in (21) can also be approximated by expanding it
around the origin

RR1(x, y) − RR2(x, y) ∼= rR1 − rR2 + ηx x + ηy y (25)

where

ηx = ∂(RR1 − RR2)

∂x

∣∣∣∣ x = 0
y = 0

= − xR1

rR1
+ xR2

rR2

= −sinϑ0 + sinϑR2cosϕR2
∼= cosϑ0�ϑ ∼= −cos2 ϑ0vx�t

rR1

ηy = ∂(RR1 − RR2)

∂y

∣∣∣∣ x = 0
y = 0

= yR2

rR2
= sinϑR2sinϕR2

∼= sin ϑ0�ϕ ∼= vy�t

rR1
(26)

and all other functions in (21) can be assumed approximately
constant in the resolution cell and equal to their value in the
origin

F(x, y) ∼= F(0, 0)

uz1(x, y) − uz2(x, y) ∼= cos ϑ0 − cosϑR2
∼= sin ϑ0�ϑ

∼= sin ϑ0 cos ϑ0vx�t

rR1

a(x, y) ∼= a0, uz(x, y) ∼= uz(0, 0) ∼= 2cosϑ0

(27)

where F(0, 0) and a0 are given in (6) and (24), respectively.
By using (22)–(27) and (3) in (21), we get

cov[E(R1)E(R2)]

∼= a2
0|E0|2|�|2
8πrR1rR2

a2
0 L

2

2σ 2
exp[− jk(rR1 − rR2)]

× exp

{
−1

2

[
kσ sin ϑ0 cos ϑ0vx�t

rR1

]2
}

×
∫ ∞

−∞
exp

{
−
(

1

A2
x

+ 1

G2
x

)
x2

}
exp[− jkηx x]dx

cov[E(R1)E(R2)]

∼=
∫ ∞

−∞

∫ ∞

−∞
|F(x, y)|2w2

(x, y) exp{− jk[RR1(x, y) − RR2(x, y)]}
RR1(x, y)RR2(x, y)

× exp

{
−k2σ 2

2

[
uz1(x, y) − uz2(x, y)

]2
}

a2(x, y)

×
∫ ∞

−∞
exp[ jkux(x, y)�x] exp

[
−k2σ 2u2

z (x, y)�x2

L2a2(x, y)

]
d�x

×
∫ ∞

−∞
exp
[

jkuy(x, y)�y
]

exp

[
−k2σ 2u2

z (x, y)�y2

L2a2(x, y)

]
d�ydxdy. (20)

cov[E(R1)E(R2)]

∼=
∫ ∞

−∞

∫ ∞

−∞
|F(x, y)|2w2

(x, y) exp{− jk[RR1(x, y) − RR2(x, y)]}
RR1(x, y)RR2(x, y)

exp

{
−k2σ 2

2

[
uz1(x, y) − uz2(x, y)

]2
}

× 2π L2a4(x, y)

k22σ 2u2
z (x, y)

exp

⎧⎨
⎩−1

2

u2
x(x, y) + u2

y(x, y)

2 σ 2u2
z (x,y)

L2a2(x,y)

⎫⎬
⎭dxdy. (21)
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×
∫ ∞

−∞
exp

{
−
(

1

A2
y

+ 1

G2
y

)
y2

}
exp
[− jkηy y

]
dy.

(28)

The integrals over x and y in (28) are again the FT of
Gaussian functions, see Appendix D, so that they can be
readily computed (29), as shown at the bottom of the next
page, where

Wx,y = Ax,y Gx,y√
A2

x,y + G2
x,y

(30)

and we have used (26).
The field variances are easily deduced from (29) by setting

�t = 0, and rR2 → rR1 for E(R1) and rR1 → rR2 for E(R2)

var
[
E
(

R1,2
)] ∼= a2

0 |E0|2|�|2
8πr2

R1,2

a2
0 L

2

2σ 2
πWx Wy . (31)

By replacing (29) and (31) in (7) and noting that σ � Wx ,
we finally get

ρ(�t) ∼= exp

{
−k2�t2

[
W 2

x cos4 ϑ0v
2
x + W 2

y v2
y

]
4r2

R1

}
(32)

and

τ ∼= 2rR1

k
√

W 2
x cos4 ϑ0v2

x + W 2
y v2

y

= λrR1

π
√

W 2
x cos4 ϑ0v2

x + W 2
y v2

y

.

(33)

Equations (31)–(33), together with the well-known mean field
expression

∣∣〈E
(

R1,2
)〉∣∣ ∼= |E0||�|rT

rT + rR1,2
exp
{−2k2σ 2 cos2 ϑ0

}
(34)

that holds if the first Fresnel zone is included in the resolu-
tion cell (a more accurate expression, accounting for Earth’s
surface curvature, is available in [33]), allow to completely
characterize the field fluctuations at the receiver.

It is useful to summarize here the assumptions that we
made to obtain (29)–(33): we assumed that vx�t , vy�t , and
L are much smaller than resolution, and that resolution is
much smaller than the receiver distance rR1. In Appendix
A, we show that these conditions are usually satisfied for
spaceborne and airborne GNSS-R systems, the most critical
situation being incidence at low grazing angle and, above
all, a low-altitude airborne receiver, for which resolution
is not much smaller than the receiver distance. However,
in Section IV, we show that even in this last critical case,
our analytical formulation is in very good agreement with
numerical simulations available in the literature. It is finally
worth recalling that SSA1 holds for small values of σ /L
(not exceeding about 0.15 [29], [30]). This condition is often
satisfied by sea surfaces, for which SSA1 is widely used, and
it is always satisfied by gently undulating surfaces.

III. DISCUSSION

The obtained closed-form expressions of correlation coef-
ficient and correlation time depend on the parameters Wx,y ,
which are a combination of system resolutions Ax,y and
sizes of the glistening area Gx,y . In particular, see (30),
Wx,y is approximately equal to the smaller of Ax,y and Gx,y .
Therefore, if Ax,y < Gx,y , i.e., the surface area contributing
to the received signal is limited by the system resolution, then
Wx,y

∼= Ax,y ; conversely, if Gx,y < Ax,y , i.e., the surface area
contributing to the received signal is limited by the glistening
area size, then Wx,y

∼= Gx,y .
As illustrated in Appendix A, for wind-driven sea surfaces

and land surfaces with significant large-scale topography (σ/L
∼ 0.1, a0

∼= 1), we have usually (except for low-altitude low-
velocity airborne receivers) Ax,y < Gx,y so that Wx,y

∼= Ax,y .
Accordingly, (31)–(33) can be rewritten as

var
[
E
(

R1,2
)] ∼= a2

0 |E0|2|�|2
8πr2

R1,2

a2
0 L

2

2σ 2
π Ax Ay (35)

ρ(�t) ∼= exp

{
−k2�t2

[
A2

x cos4 ϑ0v
2
x + A2

yv
2
y

]
4r2

R1

}

(36)

and

τ ∼= 2rR1

k
√

A2
x cos4 ϑ0v2

x + A2
yv

2
y

= λrR1

π
√

A2
x cos4 ϑ0v2

x + A2
yv

2
y

.

(37)

In this case, our result for the correlation time is in agreement
with the classical one [1]. By using the expressions of the
pulse-limited system resolutions, see (45), we get

τ ∼= λ

π

√
rR1 B

c
(
cos2 ϑ0v2

x + v2
y

) . (38)

In conclusion, it turns out that if Ax,y < Gx,y , the cor-
relation time is only dependent on system parameters and
is independent of surface ones, whereas the field variance
significantly depends also on surface parameters. All this is
in full agreement with what is observed in real GNSS-R data
over the ocean [1], [2] and over land surfaces with significant
large-scale topography [8], [34].

Conversely, for gently undulating flat land surfaces, σ/(a0 L)
may be of the order of 0.01 or even 0.001 (for instance, for
σ = 0.1 m and L = 100 m), so that, as shown in Appendix A,
usually Gx,y < Ax,y , and Wx,y

∼= Gx,y . Accordingly, (31)–(33)
can be rewritten as

var
[
E
(

R1,2
)] ∼= a2

0|E0|2|�|2
8πr2

R1,2

a2
0 L

2

2σ 2
πGx G y

∼= a2
0 |E0|2|�|2r2

T(
rT + rR1,2

)2

(39)

ρ(�t) ∼= exp

{
−k2�t2

[
G2

x cos4 ϑ0v
2
x + G2

yv
2
y

]
4r2

R1

}

∼= exp

{
−4k2�t2σ 2 cos2 ϑ0v

2

a2
0 L

2

}
(40)
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TABLE I

RECEIVERS’ PARAMETERS

and

τ ∼= λrR1

π
√

G2
x cos4 ϑ0v2

x + G2
yv

2
y

∼= λa0 L

4πσvcosϑ0
. (41)

Therefore, in this case, the correlation time is also dependent
on surface parameters, and in particular, it linearly increases
with L: even when σ is of the order of λ or larger, so that
the incoherent component dominates the scattered field, the
received signal may remain correlated for a rather long time,
provided that L is sufficiently large (i.e., undulations are
sufficiently gentle).

We note that for large σ (at least of the order of λ), we
have a0

∼= 1 and the correlation time dependence on surface
parameters is only in terms of the ratio σ/L, i.e., of the root
mean square (rms) surface slope. The other limiting case is
for σ small compared to λ. In this case, a0

∼= 2kσcosϑ0 and
(41) becomes

τ ∼= L

v
(42)

i.e., in this limiting case, the correlation time is equal to the
time needed by the receiver to travel a distance equal to the
surface correlation length.

Finally, it is interesting to note that using (34) and (39),
we get the following expression of the received field mean
intensity:〈∣∣E(R1,2

)∣∣2〉 = var
[
E
(

R1,2
)]+ ∣∣〈E

(
R1,2
)〉∣∣2

∼= |E0|2|�|2r2
T(

rT + rR1,2
)2 (43)

i.e., it coincides with the intensity of the field reflected by a
smooth surface, regardless of the surface undulations. This
may explain why over flat gently undulating land surfaces

Fig. 2. Correlation time τ versus correlation length L , computed via (32)
(lines) and via numerical simulations of [12] (dots), for σ = 0.5 cm (blue
solid line and blue dots) and σ = 6 cm (red dashed line and red dots). System
parameters are those of the very-low-altitude airborne receiver, first column
of Table I.

although the field may be dominated by the incoherent com-
ponent, after incoherent integration, the signal turns out to
be mainly sensitive to soil moisture (through the reflection
coefficient) and only very slightly depending on the surface
roughness, as experimentally reported [9], [10], [22], [23].

In conclusion, it turns out that if Gx,y < Ax,y , the corre-
lation time depends on both system and surface parameters,
whereas the overall average field intensity is only dependent
on system parameters and soil permittivity and is independent
of surface roughness.

IV. NUMERICAL RESULTS

In this section, we first of all compare the results of our
closed-form formulation with those recently obtained via a
numerical method in [12], and then, we show meaningful
results obtained by using system parameters of actual GNSS-R
receivers.

Let us then first consider the system parameters of the very-
low-altitude airborne GNSS-R receiver reported in the first
column of Table I. These are the same parameters considered
in [12]: in that work, the integrals in (2) were computed numer-
ically, and correlation coefficient and intensities of coherent
and incoherent components were evaluated via Monte Carlo
simulation, by generating several realizations of a random
surface profile with Gaussian probability density function and
Gaussian autocorrelation function (or simulating a single very
long acquisition, see [12] for details). This allows avoiding
the approximations we made to obtain our closed-form for-
mulation, but it has a high computational cost. In addition,
results obtained with the numerical method of [12] cannot be
easily generalized to other realistic airborne and spaceborne

cov[E(R1)E(R2)]

∼= a2
0 |E0|2|�|2
8πrR1rR2

a2
0 L

2

2σ 2
exp[− jk(rR1 − rR2)]πWx Wy

× exp

{
−k2�t2

[(
W 2

x cos2 ϑ0 + σ 2 sin2 ϑ0
)

cos2 ϑ0v
2
x + W 2

y v2
y

]
4r2

R1

}
(29)
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Fig. 3. Intensities of the coherent (solid lines) and incoherent (dashed lines)
components: (a) as a function of L for σ = 0.5 cm (blue lines) and σ = 6 cm
(red line, negligible coherent component) and (b) as a function of σ , for L =
0.06 m (blue lines), L = 6 m (red lines), and L = 20 m (green lines). All
intensities are normalized to the intensity of the field reflected by a smooth
plane. System parameters are those of the very-low-altitude airborne receiver,
first column of Table I.

Fig. 4. Correlation coefficient ρ versus correlation length L , with σ = 10 cm:
(a) for a high-altitude airborne receiver with �t = 16 ms (blue solid line),
�t = 8 ms (red dashed line), and �t = 3.2 ms (green dotted-dashed line)
and (b) for a spaceborne receiver with �t = 1.43 ms (blue solid line), �t =
0.93 ms (red dashed line), and �t = 0.36 ms (green dotted-dashed line).
System parameters are reported in the second and third columns of Table I.

receivers, and they do not allow for a straightforward investi-
gation of the role of system and scene parameters.

In Fig. 2, we show the correlation time τ as a function of the
correlation length L for two values of σ , computed by using
(33) (lines) and compared to those obtained in [12] (dots, see

Fig. 5. Correlation time τ versus correlation length L: (a) for a high-altitude
airborne receiver and (b) for a spaceborne receiver, with σ = 1 cm (blue
solid line), σ = 3 cm (red dashed line), σ = 5 cm (green dotted-dashed line),
σ = 10 cm (magenta dotted line), and σ = 20 cm (black dotted line). System
parameters are reported in the second and third columns of Table I.

Fig. 6. Intensities of the coherent (solid lines) and incoherent (dashed lines)
components: (a) for a high-altitude airborne receiver and (b) for a spaceborne
receiver, with σ = 1 cm (blue lines), σ = 5 cm (green lines), and σ = 20 cm
(black line, negligible coherent component). System parameters are reported
in the second and third columns of Table I.

[12, Fig. 9]). Fig. 2 shows that our results are in excellent
agreement with numerical simulations of [12].

In Fig. 3, we plot the intensities of the incoherent compo-
nent, computed via our formulation (31), and of the coherent
component, computed as the square of (34). We note that for
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Fig. 7. Plots of the functions g (blue solid lines) and g̃ (red dashed lines) versus �/L for different values of U .

TABLE II

RESOLUTIONS AND GLISTENING AREA SIZES. FOR ALL SYSTEMS, WAVELENGTH IS 19 cm AND SIGNAL BANDWIDTH IS 1 MHz

this very-low-altitude receiver, the glistening area becomes
smaller than resolution already for L equal to about 0.5 m,
and for higher values of L (31) is well-approximated by (39),
so that the intensity of the incoherent component becomes
independent of L. We also note that the intensity of coherent
component is always independent of L, according to the
classical formulation of (34). These results can be compared
with incoherent and coherent intensities obtained via numer-
ical simulations for observation times much longer than the
correlation time, so that our Fig. 3(a) and (b) can be compared
with Figs. 8(a) and 6(a) of [12], respectively. It can be noted
that the intensities of incoherent components evaluated via
our formulation (31) are again in excellent agreement with
numerical simulations of [12]. And the intensities of coherent
components evaluated via the classical formulation of (34)
are also in very good agreement with numerical simulations,
except for very low values of such intensities.

For the remaining numerical examples of results obtained
by our analytical formulation, we consider the system

parameters of the high-altitude airborne and spaceborne
receivers, reported in the second and third columns of Table I,
respectively. The former is GOLD-RTR that has been used
in more than 40 flights over oceans, lakes, and land [35];
the latter is SGR-ReSi that has been adopted in past and
current spaceborne GNSS-R missions, e.g., TechDemoSat-1
and CYGNSS [36].

In Fig. 4, we plot the correlation coefficient, computed by
using (32), as a function of L for σ = 10 cm and for different
time lags. Fig. 4 shows that as the surface correlation length
increases, the correlation coefficient smoothly increases from
the value obtained with the expression already available in [1]
for uncorrelated scatterers to a value close to unity for gently
undulating surfaces. This transition occurs at smaller values
of L for the airborne system.

Fig. 5 shows the correlation time, computed by using
(33), as a function of L for several values of σ . Again,
as the surface correlation length increases, the correlation time
initially coincides with the value obtained via (37), i.e., the
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already available expression (namely, 6.7 and 0.62 ms for
the airborne and spaceborne systems, respectively), and then,
it starts increasing. This increase is faster for lower σ , and it
starts at lower values of L for lower σ . In fact, the transition
between the two identified regimes depends on Gx,y and,
hence, on the ratio of σ and L, see (23). The values of the
correlation time are higher for the airborne receiver.

Finally, in Fig. 6, we plot the intensities of the incoherent
component, computed via our formulation (31), and of the
coherent component, computed as the square of (34). The
general behavior is similar to the one observed in Fig. 3;
however, for these higher receiver altitudes, the values of the
surface correlation length for which (31) starts to be well-
approximated by (39) are higher.

V. CONCLUSION

We have presented an analytical formulation of the temporal
correlation of GNSS-R signals reflected off the Earth’ surface.
The proposed expressions have been derived under either
the KA (without subsequent approximations, e.g., geometrical
optics) or the SSA1 theoretical frameworks, which, indeed,
both lead to the same formulation of the correlation coefficient.
The scattering surface height has been modeled as a random
rough Gaussian process and no limitations on both height
standard deviation and correlation length have been imposed,
apart from those required by the adopted scattering models,
and provided that they are much smaller than resolution.
Accordingly, most roughness regimes typically sensed by
GNSS-R and ranging from very rough surfaces, such as wind-
driven sea surfaces, to very smooth surfaces, such as gently
undulating land surfaces, can be analyzed with the proposed
theoretical approach. The final closed-form general expres-
sions of the correlation coefficient and of the correlation time
hold for any surface autocorrelation function when kσ is large,
and for Gaussian surface autocorrelation when kσ is not large.
Extensions of the approach to non-Gaussian autocorrelation
functions even for small kσ , as well as to fractal-based surface
models [37], are the subject of ongoing research.

From the general formulation, specific simplified expres-
sions of the correlation time have been obtained in the two
extreme roughness regimes, namely, very rough and gently
undulating surfaces. In the former case, the formulation leads
to an already available expression, where the correlation time
only depends on system parameters and is independent of
the surface ones, even though the field variance significantly
depends also on surface parameters. In the latter case, the
correlation time increases linearly with the surface correlation
length and might reach quite large values, even in the case of
dominating incoherent scattering.

Numerical results show that the proposed closed-form
expressions of the correlation time are in excellent agreement
with numerical simulations available in the literature for gently
undulating surfaces, for which values as high as 300 ms have
been obtained for a 100-m-altitude airborne GNSS-R. For
high-altitude airborne GNSS-R, the received reflected signal
remains correlated for time intervals as large as tens of ms,
whereas for spaceborne receivers, correlation time is limited to
few to several ms, according to the roughness regime. In addi-

tion, dependence of correlation time on roughness is stronger
for airborne than for spaceborne systems. Finally, correlation
time increases as the correlation length increases, and the rate
decreases with increasing height standard deviation.

It must be noted that similar conclusions on the behavior
of correlation time have been very recently obtained in [28].
However, at variance with our approach, the formulation
of [28] does not lead to a closed-form expression of the
correlation time, and it only holds if the receiver moves along
the x-direction.

APPENDIX A

The illumination function w(x, y) and, hence, the system
semiresolutions Ax and Ay are determined by the Woodward
ambiguity function (WAF) [2] and, usually in a much lesser
extent, by the receiver’s antenna pattern. The shape of the
illumination function may be irregular, depending on the
observation geometry, but since only the region around its
maximum is of interest, the assumption of a Gaussian shape
is usually acceptable, especially if we are mainly interested in
the correlation time, rather than in the exact behavior of the
correlation coefficient. With reference to the resolution cell
containing the specular point (i.e., the origin of our reference
system), the semiresolutions along x and y, appearing in (3),
can be determined as follows:

Ax = min
{

Axa, Axp, AxD
}

Ay = min
{

Aya, Ayp, AyD
}

(44)

where:
Axa and Aya are the x and y half-sizes of the antenna ground

footprint, i.e., the beam-limited semiresolutions;

Ayp
∼= √

rR1c
/

B and Axp
∼= Ayp

/
cos ϑ0 (45)

are the pulse-limited semiresolutions along y and x , with
c being the speed of light and B is the bandwidth of the
transmitted signal;

AxD and AyD are the Doppler-limited semiresolutions along
x and y, which also depend in a rather involved way on
incidence angle and receiver velocity direction, but are of the
order of

Ax,yD ∼ λrR1/(vtci ) (46)

with tci being the coherent integration time [2].
In some applications, the Doppler processing is not per-

formed, in which case, we can ignore AxD and AyD in (44)
(i.e., we can let AxD → ∞ and AyD → ∞).

Some values of resolutions for the same GNSS-R systems
of Table I and for different values of the incidence angle
are reported in Table II. In Table II, also the glistening area
sizes are reported, for surface roughness parameters typical of
both sea surface, σ/(a0 L) = 0.1, and gently undulating soil,
σ/(a0 L) = 0.005.

Numerical values of resolution in Table II show that v�t is
much smaller than resolution up to time lags �t of the order of
the hundreds of milliseconds. In addition, resolution is always
much smaller than sensor distance, except for the low-altitude
airborne receiver (and for incidence at low grazing angle).
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With regard to the glistening area size, Table II shows that
for sea surfaces, it is always greater than resolution, except for
the low-altitude, low-velocity airborne sensor. Conversely, for
gently undulating soils, it is always smaller than resolution,
except for the spaceborne sensor, for which it is comparable
with resolution. However, if we consider the lower value
σ/(a0 L) = 0.001, which is also reasonable (see Section III),
and then, the glistening area size is smaller than resolution also
for the spaceborne system. In general, the ratio of glistening
area size and pulse-limited resolution is of the order of,
see (23) and (45)

Gx,y

Ax,yp
∼ 4σ

a0 L

√
rR1

c/B
(47)

and the ratio of glistening area size and Doppler-limited
resolution is of the order of, see (23) and (46)

Gx,y

Ax,yD
∼ 4σ

a0 L

vtci

λ
. (48)

These equations show that it is easier that Gx,y < Ax,y

(and hence, that correlation time depends on surface
roughness) for low-altitude (47) and low-velocity (48)
sensors, in agreement with some previous experimental and
theoretical evidence [17].

APPENDIX B

Let us consider the function

g(U,�) = exp
{−U 2[1 − C(�)]

}− exp
{−U 2

}
(49)

which appears in (15), with U = kσuz and � =√
�x2 + �y2, as well as in the expression of the scattered

field variance for the KA and the SSA1 [29], [30]. We also
assume that

C(0) = 1, C ′(0) = dC

d�

∣∣∣∣
�=0

= 0, C ′′(0) = d2C

d�2

∣∣∣∣
�=0

< 0.

C(�) ∼= 0 for � � L, and C(�) = 0. (50)

It is easy to verify that the function g(U,�) has the following
properties:

for U � 1 g(U,�) ∼= exp

{
−U 2

∣∣C ′′(0)
∣∣

2
�2

}
(51)

for U � 1 g(U,�) ∼= U 2C(�) (52)

for � � L g(U,�) � max{g} = 1 − exp
{−U 2

}
(53)

for � � L g(U,�) ∼= 1 − exp
{−U 2

}− U 2
∣∣C ′′(0)

∣∣
2

�2.

(54)

Let us now consider the function

g̃(U,�)=(1 − exp
{−U 2

})
exp

{
− U 2

∣∣C ′′(0)
∣∣

2
(
1−exp

{−U 2
})�2

}
.

(55)

It is straightforward to verify that also this function satisfies
properties (51), (53), and (54). Conversely, the property (52)
is replaced by the following one:

for U � 1 g̃(U,�) ∼= U 2 exp

{
−
∣∣C ′′(0)

∣∣
2

�2

}
. (56)

If we consider the Gaussian autocorrelation function of (16),
i.e.,

C(�) = exp
(−�2/L2

)
(57)

then C ′′(0) = −2/L2 and (56) coincides with (52). Therefore,
it is reasonable to try to verify if, for Gaussian autocorrelation
function, g̃(U,�) is a good approximation of g(U,�) for any
value of U and �. Actually, this is the case, as illustrated in
Fig. 7. In fact, Fig. 7 shows that the approximation is excellent
for any � if U ≥ 3 or U ≤ 0.5; for intermediate values of U ,
it is excellent for small � and reasonably good for large �.

In conclusion, for Gaussian autocorrelation function,
g(U,�) can be approximated by g̃(U,�) for any value
of U , and therefore, (15) can be approximated by (17).
In addition, for large values of U (i.e., of kσ), g(U,�) can
be approximated by g̃(U,�) for any autocorrelation function
since both are approximately given by (51); accordingly, (15)
can be approximated by (19), provided that for non-Gaussian
correlation function, L2 is replaced by 2/|C ′′(0)|.

APPENDIX C

Here, we expand the argument of the last exponential
function in (21) around the origin

ξ(x, y) = 1

2

u2
x(x, y) + u2

y(x, y)

2 σ 2u2
z (x,y)

L2a2(x,y)

= L2

4σ 2

{[
a(x, y)ux(x, y)

uz(x, y)

]2

+
[

a(x, y)uy(x, y)

uz(x, y)

]2
}

∼= ∂ξ

∂x

∣∣∣∣ x = 0
y = 0

x + ∂ξ

∂y

∣∣∣∣ x = 0
y = 0

y+ 1

2

∂2ξ

∂x2

∣∣∣∣ x = 0
y = 0

x2

+ ∂2ξ

∂x∂y

∣∣∣∣ x = 0
y = 0

xy + 1

2

∂2ξ

∂y2

∣∣∣∣ x = 0
y = 0

y2. (58)

First of all, by keeping in mind that ux(0,0) = uy(0,0) = 0,
we get

∂

∂p

(
auq

uz

)2
∣∣∣∣∣ x = 0

y = 0

= 2

(
auq

uz

)
∂

∂p

(
auq

uz

)∣∣∣∣ x = 0
y = 0

= 0

(59)

where p and q may both stand for x or y. Therefore, the first
derivatives in (58) are equal to zero. In addition

∂2

∂p∂q

(
aus

uz

)2
∣∣∣∣∣ x = 0

y = 0

= ∂

∂p

[
2

(
aus
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)
∂

∂q

(
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∂

∂p

(
aus
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)
∂

∂q
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(
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)
∂2

∂p∂q

(
aus
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)]∣∣∣∣ x = 0
y = 0

= 2

[
∂

∂p

(
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)
∂

∂q

(
aus

uz

)]∣∣∣∣ x = 0
y = 0

(60)
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where p, q , and s may all stand for x or y. Finally,

∂

∂p

(
auq

uz

)∣∣∣∣ x = 0
y = 0

=
[

uq
∂

∂p

(
a

uz

)
+ a

uz

∂uq

∂p

]∣∣∣∣ x = 0
y = 0

= a

uz

∂uq

∂p

∣∣∣∣ x = 0
y = 0

. (61)

Therefore, in order to compute the second derivatives in (60),
we only need to evaluate the following derivatives:

∂ux

∂x

∣∣∣∣ x = 0
y = 0

= ∂2(RT + RR1)

∂x2

∣∣∣∣ x = 0
y = 0

= 1

rT

(
1 − |xT |2

r2
T

)
+ 1

rR1

(
1 − x2

R1

r2
R1

)

= rT + rR1

rT rR1
cos2 ϑ0 (62)

∂uy

∂y

∣∣∣∣ x = 0
y = 0

= ∂2(RT + RR1)

∂y2

∣∣∣∣ x = 0
y = 0

= 1

rT
+ 1

rR1
= rT + rR1

rT rR1
(63)

∂ux

∂y

∣∣∣∣ x = 0
y = 0

= ∂uy

∂x

∣∣∣∣ x =0
y =0

= ∂2(RT + RR1)

∂x∂y

∣∣∣∣∣∣∣ x =0
y =0

=0

(64)

where use has been made of (14).
Replacing (59)–(64) in (58), we get

1

2

u2
x(x, y) + u2

y(x, y)

2 σ 2u2
z (x,y)

L2a2(x,y)

∼= 1

4

L2a2
0

4σ 2

(
rT + rR1

rT rR1

)2

cos2 ϑ0x2

+ 1

4

L2a2
0

4σ 2 cos2 ϑ0

(
rT + rR1

rT rR1

)2

y2 (65)

which leads to (22)–(23).

APPENDIX D

In this appendix, we recall some useful mathematical rela-
tions that have been used in Section II. First of all, the FT of
a Gaussian function is∫ +∞

−∞
1√

2π�
exp

(
− ξ2

2�2

)
exp( jωξ)dξ

= exp

(
−ω2�2

2

)
. (66)

If ξ is a zero-mean Gaussian random variable with standard
deviation �, then (66) can also be read as the statistical mean
of exp( jωξ), i.e., characteristic function of ξ [32]

〈exp( jωξ)〉 = exp

(
−ω2�2

2

)
. (67)

Equation (12) is obtained by using (67) with ω = k and

ξ = uz1(x, y)z(x, y) − uz2
(
x ′, y ′)z(x ′, y ′), so that

�2 =
〈(

uz1(x, y)z(x, y) − uz2
(
x ′, y ′)z(x ′, y ′))2

〉
= σ 2

[
u2

z1(x, y) + u2
z2

(
x ′, y ′)

− 2uz1(x, y)uz2
(
x ′, y ′)C(�x,�y)

];
ξ = uz1(x, y)z(x, y), so that

�2 = 〈
(uz1(x, y)z(x, y))2

〉 = σ 2u2
z1(x, y);

and ξ = uz2
(
x ′, y ′)z(x ′, y ′), so that

�2 =
〈(

uz2
(
x ′, y ′)z(x ′, y ′))2

〉
= σ 2u2

z2

(
x ′, y ′).
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