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Abstract— In the framework of passive multistatic radars,
formation-flying synthetic aperture radar (FF-SAR) represents
an intriguing remote sensing solution due to the enhanced
imaging capabilities with respect to the conventional SAR.
In this article, we focus on FF-SAR systems operating in a far-
from-transmitter geometry, developing a signal model suited to
this specific configuration. Additionally, we present an efficient
processing scheme that, by properly combining the received raw
echoes in a coherent fashion, enables two peculiar imaging modes
of FF-SAR, namely, signal-to-noise ratio (SNR) improvement and
high-resolution wide swath (HRWS). Simulation results show that
achieved radiometric and geometric imaging performances are
in line with those offered by an equivalent monostatic SAR.
In HRWS imaging mode, azimuth ambiguity suppression and
SNR improve as the number of satellites increases and are
maximized by specific receivers along-track baselines, whose
expression is provided. Finally, we present a statistical analysis
of the processing performance parameters for random receivers’
positions, both assuming a fixed pulse repetition frequency (PRF)
and allowing for an adaptive PRF tuning. This last analysis is
also directly applicable to clusters of SAR receivers not far from
the transmitter.

Index Terms— Bistatic synthetic aperture radar (SAR), dis-
tributed SAR, formation-flying SAR (FF-SAR), high-resolution
wide swath (HRWS), signal-to-noise ratio (SNR).

NOMENCLATURE
Symbol Description
x, r, and ϑ Azimuth, range, and look angle coordi-

nates.
r0 and ϑ0 Range and look angle at the range swath

center.
d Along-track distance between transmitter

and receiver formation center.
1xn Azimuth position of the nth receiver with

respect to the formation center.
XT Azimuth footprint of the transmitted

beam.
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SWT Slant range swath of the transmitted
beam.

bR Radius of the cylinder enclosing the for-
mation.

lR Overall along-track length of the receiver
formation.

v Velocity of the transmitter and the
receiver formation.

PRF Pulse repetition frequency.
ψ(r) Receiver formation center squint angle.
cos ψ, sin ψ See (5).
1x̄n(r) nth receiver equivalent phase center

shift, see (7).
β(r) See (7).
α(r) See (8).
1rcn(x,r) Cross-track baseline term, see (9).
1ran(x,r) Along-track baseline term, see (10).
r′ See (12).
x′ vt (transmitter position at time t).
1ṙ an Range derivative of 1ran at r = r′, see

(16).
1ṙ cn Range derivative of 1rcn at r = r′, see

(19).
η0n nth receiver spectral range shift, see (25).
a(r) See (31).
ξs 2πPRF/v.
ξDC Spectral azimuth shift (Doppler cen-

troid), see (34).
1x̄0n , α0, a0, ψ0 Values of 1x̄n , α, a, and ψ evaluated at

r = r0.

I. INTRODUCTION

SPACEBORNE synthetic aperture radar (SAR) is a
mature remote sensing technology exploited for both

Earth observation and planetary explorations since the early
1990s [1], [2], [3]. In the last two decades, two complemen-
tary paradigms dictated the development of spaceborne SAR
missions: on the one hand, very-high-resolution SAR systems,
such as COSMO-SkyMed, TerraSAR-X, and RADARSAT-2,
were deployed to support Earth observation with unprece-
dented spatial resolution and moderate range swath; on the
other hand, mid-resolution spaceborne missions, such as
Sentinel-1, provide coverage at much larger scales with limited
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Fig. 1. Pictorial view of an FF-SAR system.

spatial resolution. Such trends reflect one of the intrinsic
limitations of monostatic SAR, namely, the tradeoff between
azimuth spatial resolution and range swath size, due to the
Nyquist sampling limit: a wider coverage can be achieved at
the cost of a worse spatial resolution.

Formation-flying SAR (FF-SAR) refers to a distributed
multistatic SAR where a cluster of receiving satellites orbiting
in coordinated motion acquires the frequency-modulated signal
emitted from an SAR transmitter which is either part of the
cluster itself or opportunistically exploited [4] (see Fig. 1).
The receiving platforms are designed to cooperatively form
a single multistatic SAR image, which is obtained by coher-
ently integrating the signals received by each satellite. The
receiving cluster can exhibit an along-track and/or a cross-
track baseline, which is exploited to improve the imaging
performance of monostatic SAR or to implement innovative
acquisition modes. As a matter of fact, FF-SAR represents
a generalization of conventional monostatic SAR, where the
multistatic geometry enables new and more complex imaging
modes with respect to traditional SAR. A partial list of
possible imaging modalities offered by FF-SAR is given as
follows [5].

1) Signal-to-Noise Ratio (SNR) Improvement [6], [7]: The
coherent combination of the signals received by the
whole formation can be exploited to reduce the thermal
noise power.

2) High-Resolution Wide Swath (HRWS) [8], [9]: Range
swath is increased by reducing the transmitter PRF
below the Nyquist limit and, therefore, avoiding azimuth
resolution degradation. Resulting azimuth ambiguities
can be suppressed via proper spectrum reconstruction
approaches. Such an imaging mode cannot be imple-
mented with the conventional monostatic SAR and
requires an along-track separation between the receiving
antennas.

3) Coherent Resolution Enhancement (CRE) [10], [11]: A
cross-track baseline between receivers can be exploited
to improve range resolution via a coherent weighted
combination of the spectrum of the received signals.

4) SAR Interferometry and Tomography [12], [13]: An
FF-SAR system can implement single-pass interferom-
etry and 3-D reconstruction by properly positioning
the receiving formation. This can avoid the detrimental
effects of temporal decorrelation of repeat-pass interfer-
ometry on 3-D products.

5) Ground Moving Target Indication (GMTI) [11], [14]:
A cluster of receiving platforms with an along-track
separation might be fruitfully exploited to support an
accurate clutter suppression in GMTI applications.

As it is clear, the development of data synthesis algorithms
is of paramount importance for an appropriate coherent com-
bination of the signals received by the FF-SAR cluster and,
hence, for addressing in a quantitative way the potentialities
of FF-SAR as a remote sensing technology.

In this work, we address data synthesis for FF-SAR and
its imaging capabilities. To this end, we focus on the SNR
improvement and HRWS imaging modes, which are of partic-
ular interest in envisioned FF-SAR missions [15].

We relax the usually made assumption of a sufficiently small
transmitter-to-receiver baseline (see [16], [17], [18], [19]), thus
focusing on far-from-transmitter (FfT) acquisition geometries,
where the receiver formation center squint angle is no longer
negligible. We derive an analytical formulation of the echoes
received by the N -sat formation and of the FF-SAR transfer
function. Additionally, we develop a three-step processing
scheme, stemming from the proposed signal model, and based
on the coherent combination of the received signals to support
noise suppression and azimuth ambiguity removal when sen-
sor PRF is below the Nyquist limit. Finally, we assess the
performance of the algorithm by both an original theoreti-
cal/statistical analysis of proper performance parameters and
by numerical simulations.

We explicitly note that the practical implementation of
FF-SAR systems also requires facing time and phase synchro-
nization issues [20], [21], [22]. They are beyond the scope of
this article, but we underline that in the FfT case, they can be
analyzed and taken under control, in the same way as in the
non-FfT case of [20], [21], and [22].

The remainder of this article is organized as follows.
Section II describes the received signal model for FfT FF-
SAR. Section III discusses the data synthesis approach suited
to the derived signal model and to both SNR improvement
and HRWS acquisition modes. Section IV is devoted to perfor-
mance assessment under theoretical, statistical, and simulation
respects. Concluding remarks and future research lines are
highlighted in Section V.

II. SIGNAL MODEL

The considered FfT-FF-SAR geometry is schematically
depicted in Fig. 2: one transmitter and N receivers move
approximately on the same track with constant velocity v.
The transmitter operates in stripmap mode, and the azimuth
footprint of the transmitted beam is XT, while the slant range
swath is SWT. We assume that the receivers’ antennas are
pointed toward the illuminated scene and their beams are wider
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Fig. 2. FfT-FF-SAR schematic view.

than the one of the transmitting antenna, so that their footprints
include the illuminated area. We also assume that the relative
positions and attitudes of all satellites can be considered
constant during the acquisition time. These assumptions are
reasonable from an astronautical viewpoint (see [23]).

We use a cylindrical coordinate system x , r , ϑ , whose axis,
labeled as x , is the transmitter line of flight (i.e., the azimuth
direction) and whose polar angle ϑ is defined with respect to
the vertical direction (i.e., it is the look angle) (see Fig. 3);
the r coordinate is the distance from the line of flight (i.e.,
the slant range). The transmitter position at time t is Tx ≡

(x′, 0, 0), with x′
= vt; the receivers formation follows the

transmitter at an along-track distance d , so that the formation
center is Rx ≡ (xR

′, 0, 0), with xR
′
= x′

− d; and the nth
receiver position is Rxn ≡ (xRn

′, bn , ϑn), with xRn
′

= x′
−

d + 1xn and n = 1, . . . , N . Accordingly, 1xn and bn are
the along-track and cross-track baselines of the nth receiver
with respect to the formation center, respectively (see Fig. 3).
The overall along-track length of the receiver formation is
lR = xRN

′
− xR1

′
= 1xN − 1x1 = 21xN = 2|1x1|, so that

|1xn| ≤ lR/2, and the receivers are enclosed in a tube of axis
x and radius bR, so that bn ≤ bR.

The generic ground point is P ≡ (x , r , ϑ(x, r)), where
ϑ(x, r) describes the terrain height profile. The range swath
center is at r = r0 and ϑ = ϑ0.

We assume that lR, bR, and XT are much smaller than r ,
whereas d may be as large as about r /4. In addition, we assume
that bR is much smaller than lR and XT.

The transmitter emits chirp pulses p(t − ti ) at times
ti = i /PRF, where PRF is the pulse repetition frequency.
The carrier frequency and bandwidth of the pulses are fc
and 1 f , respectively. Transmitter positions at times of pulse
transmission are xi

′
= vti .

A. Space Domain

By applying the usual stop-and-start approximation [1], the
signal at the nth receiver, after demodulation and chirp pulse

compression, can be written as

sn
(
x ′

i , t − ti
)

=

∫ ∫
γ (x, r)gn

(
x ′

i − x, t − ti ; r
)
dxdr (1)

where γ (x, r) is the ground point bistatic reflectivity

gn
(
x ′

i − x, t − ti ; r
)

= exp
[
− j

2π
λ
(rT + rn)

]
sinc

[
π1 f

(
t − ti −

rT + rn

c

)]
w

(
x ′

i − x
XT

)
. (2)

c is the speed of light, λ = c/ fc is the wavelength, w(·) is the
product of the transmitting and receiving antenna azimuth pat-
terns, which is assumed approximately unitary if the modulus
of its argument is smaller than 0.5 and negligible otherwise,
and rT and rn are the distances of the ground point from the
transmitter and from the nth receiver, respectively (see Fig. 3).
These distances can be computed as (3) and (4), shown at the
bottom of the next page, where

cosψ =
r

√
r2 + d2

and sinψ =
d

√
r2 + d2

. (5)

ψ being the receiver formation center squint angle (see Fig. 3).
In (5), and in the following of this section, we provisionally
treat xi

′ as a continuous variable of x ′. Sampling issues will be
dealt with in Section II-B. After some algebraic manipulation
(see Appendix A), we get

rT + rn ∼= α(r)r +1rcn(x, r)+1ran(r)

+ 1Rn
(
r, x ′

− x +1x̄n(r)
)

(6)

where

1x̄n(r) =
cos3 ψ(r)
β(r)

1xn, with β(r) = 1 + cos3 ψ(r) (7)

is the equivalent phase center shift

α(r) =
1 + cosψ(r)

cosψ(r)
(8)
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Fig. 3. FfT-FF-SAR geometry. (a) Frontal view and (b) lateral view.

so that αr is the bistatic range term identical for all receivers

1rcn(x, r) = − cosψ(r)bn cos(ϑn − ϑ(x, r)) (9)

is the cross-track baseline term

1ran(r) = −
sinψ(r)
β(r)

1xn +
cos3 ψ(r)
β(r)

1x2
n

2r
(10)

is the along-track baseline term, and finally

1Rn
(
r, x ′

− x +1x̄n(r)
)

= − sinψ(r)
(
x ′

− x +1x̄n(r)
)

+
β(r)
2r

(
x ′

− x +1x̄n(r)
)2

(11)

is the term responsible for azimuth frequency modulation and
range migration in the nth receiver raw signal.

By letting

r ′
=

c
α0
(t − ti ) (12)

with α0 = α(r0), and substituting (6) and (12) into (1) and
(2), we obtain

sn
(
x ′, r ′

)
=

∫ ∫
γ (x, r)gn

(
x ′

− x, r ′
− r; r

)
dxdr (13)

with

gn
(
x ′

− x, r ′
− r; r

)
∼= exp

[
− j

2π
λ
(1rcn +1ran +1Rn)

]
·

· sinc
[
πα01 f

c

(
r ′

− r −
1rcn +1ran +1Rn

α0

)]
w

(
x ′

− x
XT

)
(14)

where the phase term exp(− j2παr /λ), which only depends
on r and is the same for all receivers, has been included in
γ (x, r).

Some considerations are now in order. First of all, if
d = 0, then sin ψ = 0, cos ψ = 1, α = β = 2, and
1x̄n = 1xn/2, so that we recover the expressions already
available in [16], [17], [18], and [19]. Conversely, if d is
smaller, but not much smaller, than r , the effect of the squint
angle ψ cannot be neglected since variations of distance terms
of the order of wavelength (i.e., centimetric) significantly
affect the argument of the exponential in (14). In addition,
in this case ψ , and hence 1ran , are slightly dependent on r .
Considering that the difference between r and r ′ is limited by
the presence of the sinc function in (14), we can perform the
first-order expansion of 1ran around r ′

1ran(r) ∼= 1ran
(
r ′
)

+1ṙ an ·
(
r − r ′

)
(15)

where (see Appendix B)

1ṙ an =
d1ran

dr

∣∣∣∣
r=r ′

∼= sinψ cos2 ψ
1xn

βr ′

∼=
d

r2
0 + d2

1xn

2
.

(16)

rT =

√
r2 + (x ′ − x)2 ∼= r +

(
x ′

− x
)2

2r
(3)

rn =

√
r2 − 2rbn cos(ϑn − ϑ)+ b2

n + (x ′ − d +1xn − x)2 =

=

√
r2 + d2 − 2rbn cos(ϑn − ϑ)+ b2

n − 2d(x ′ − x +1xn)+ (x ′ − x +1xn)
2

∼=
r

cosψ
− sinψ

(
x ′

− x +1xn
)

+ cos3 ψ

(
x ′

− x +1xn
)2

2r
− cosψbn cos(ϑn − ϑ) (4)
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Similarly, we can perform the first-order expansion of the
cross-track baseline term 1rcn , around (r′, x′), so obtaining
(see Appendix B)

1rcn(x, r) ∼= 1rcn
(
x ′, r ′

)
+

− cosψ(r0)
bn sin(ϑn − ϑ0)

r0 tanϑ0

[(
r − r ′

)
+

z
(
x, r ′

)
− z(x ′, r ′)

cosϑ0

]
(17)

where z(x, r) is the ground-point height over the sea level.
The second term in the square brackets of (17), including
terrain height variations, is negligible (i.e., much smaller than
λ) if bR1z/(λr0) is much smaller than one, where 1z is the
maximum terrain height variation within one azimuth footprint
XT. For 1z of the order of 100 m and a typical X-band FF-
SAR system (λ ∼= 3 × 10−2 m and r0 ∼= 6 × 105 m), this
corresponds to bR not larger than about 20 m. In this case,
we can rewrite (17) as

1rcn(x, r) ∼= 1rcn
(
x ′, r ′

)
+1ṙ cn ·

(
r − r ′

)
(18)

where

1ṙ cn ∼= − cosψ(r0)
bn sin(ϑn − ϑ0)

r0 tanϑ0
. (19)

We also assume that the r -dependence of ψ and ϑ in the
argument of the sinc function can be completely neglected
because it leads to variations of the distance terms small
with respect to the range resolution c/(α1 f ) ∼= c/(21 f ). This
assumption is valid if [see (16) and (19)]

1
8

dlR SW T

r2
0

≪
c

21 f
and

bR SW T

2r0
≪

c
21 f

. (20)

Finally, we assume that the r -dependence of 1x̄n can be
ignored, too, because it leads to variations of 1x̄n small with
respect to the azimuth resolution. By using the expression of
the range derivative of 1x̄n computed in (73), we conclude
that the condition above is satisfied if

3
16

d2lR

r3
0

SW T ≪
L
2
. (21)

Based on the considerations above, (13) and (14) can be
rewritten as

sn
(
x ′, r ′

)
= exp

{
− j

2π
λ

[
1rcn

(
x ′, r ′

)
+1ran

(
r ′
)]}

s ′

n

(
x ′, r ′

)
(22)

where

s ′

n

(
x ′, r ′

)
=

∫ ∫
γ (x, r)g′

n

(
x ′

− x, r ′
− r; r

)
dxdr (23)

with

g′

n

(
x ′

− x, r ′
− r; r

)
= exp

[
jη0n ·

(
r ′

− r
)]

exp
(

− j
2π
λ
1Rn

)
· sinc

[
πα01 f

c

(
r ′

− r −
1rcn +1ran +1Rn

α0

)]
w

(
x ′

− x
XT

)
(24)

and

η0n =
2π
λ

(
1ṙ cn +1ṙ an

)
. (25)

Finally, we recall that a thermal noise nn(x ′, r ′) is added to
the signal of (22) so that the actually measured signal at the
nth receiver is

ŝn
(
x ′, r ′

)
= sn

(
x ′, r ′

)
+ nn

(
x ′, r ′

)
. (26)

We assume that noises at different receivers are independent
and all have the same statistics.

B. Fourier Domain

By performing the 2-D Fourier transform (FT) of (23),
and after a stationary-phase evaluation of the Fourier integral,
we get

S′

n(ξ, η) = D(ξ, η)Hn(ξ, η) (27)

where the angular spatial frequencies ξ and η are the Fourier
mates of x′ and r ′, respectively,

D(ξ, η) =

∫∫
γ (x, r)G(ξ, η; r) exp(− jξ x − jηr)dxdr

(28)

is the FT of the raw signal of an equivalent monostatic SAR,
with

G(ξ, η; r)

∼= exp

 j

 ξ 2

4a
(

1 +
ηλ

2πα0

) −
ξπ

λa
sinψ +

ηπ

2α0λa
sin2 ψ


(29)

being the equivalent monostatic SAR transfer function (i.e., the
receiver independent part of the FF-SAR transfer function)

Hn(ξ, η) ∼= exp
(

jξ1x̄0n
)

exp
[
− jη

1r0n

α0

]
·

· w

[
ξ −

2π
λ

sinψ0 + 2a01x̄0n

2aXT

]
rect

[
η − η0n

2πα01 f
/

c

]
(30)

is the bistatic, receiver dependent part of the FF-SAR transfer
function, which also accounts for the effects of relative range
offset [24] via the second exponential (while the differential
range curvature [24] is ignored due to the approximation in
(4): this is certainly acceptable with our assumptions on system
parameters, see also [24])

a =
πβ

λr
(31)

1r0n = 1rcn(r0, ϑ0)+1ran(r0) (32)

and 1x̄0n , α0, a0, and ψ0 are the values of 1x̄n , α, a, and ψ
evaluated at r = r0.

Equation (30) shows that the azimuth bandwidth of the
signals at all receivers is BWaz = 2 aXT = 2πβXT/(λr) =

2πβ/L , where L is the equivalent azimuth length of the
real antenna so that the azimuth resolution is L/β ∼= L/2,
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i.e., approximately equal to (but slightly worse than, since
β < 2) the monostatic SAR one. Similarly, the range band-
width of the signals at all receivers is 2πα01 f /c, so that the
slant range resolution is c/(α01 f ) ∼= c/(21 f ), i.e., approxi-
mately equal to (but slightly better than, since α0 > 2) the
monostatic SAR one. However, (30) also shows that central
frequencies of the signals at different receivers are mutually
shifted both in azimuth, by 2a01x̄0n , and in range, by η0n .
In Section III, we will see that maximum SNR increase and
ambiguity reduction can only be achieved if the azimuth
shifts are negligible, i.e., if they are very small compared
to the azimuth bandwidth so that the common bandwidth
2a0(XT −1x̄ N ) ∼= 2a0(XT −1xN/2) = 2a0(XT − lR/4) is
maximum. This implies that we must have lR/4 ≪ XT. With
this condition, and if bR satisfies the condition mentioned in
Section II-A, it is easy to verify, by using (16), (19), and (25),
that η0n is much smaller than the range bandwidth, so that the
range central frequency shift can be neglected, too. Note that
if mutual central frequency shifts can be neglected, the factors
w and rect in (30) do not depend on n so that they can be
moved from Hn(ξ, η) to G(ξ, η;r).

Finally, we note that if the desired range swath SWT is too
large to satisfy (20) and/or (21), then it must be subdivided
into two or more smaller parts, each one satisfying (20) and
(21), that must be separately processed.

Up to now, we have considered x ′ as a continuous variable,
but actually, the signal in (22) and (23) is sampled with respect
to x ′ at angular spatial frequency ξs = 2πPRF/v. Therefore,
the actual FT S̃′

n of (23) is the superposition of replicas of
(27), spaced by ξs. If ξs ≥ 2 aXT/M , i.e., the PRF is greater
than 1/M the Doppler bandwidth βv/L , then only M replicas
are nonnegligible, so that

S̃
′

n(ξ, η) =

M∑
m=1

S′

n

(
ξ − m ′ξs, η

)
=

M∑
m=1

Hnm(ξ, η)Dm(ξ, η)

(33)

where −ξs
/

2 ≤ ξ − ξDC ≤ ξs
/

2, m ′
= m −

M+1
2 for M odd,

or 0 ≤ ξ − ξDC ≤ ξs,m ′
= m −

M
2 for M even,

ξDC =
2π
λ

sinψ0 (34)

Hnm(ξ, η) = Hn
(
ξ − m ′ξs, η

)
Dm(ξ, η) = D

(
ξ − m ′ξs, η

)
. (35)

Equation (33) can be expressed in matrix form as

S̃
′
(ξ, η) = H(ξ, η)D(ξ, η) (36)

where S̃′
(ξ, η) is an N -element column vector, D(ξ, η) is an

M-element column vector, and H(ξ, η) is an N -row-by-M-
column matrix. Note that the matrix equation (36) is formally
identical to the expression available in [16], [17], [18],
and [19], but the analytical expressions of the involved matrix
and vector elements are new.

III. PROCESSING ALGORITHM

The signal model described in Section II leads to a
three-step processing procedure: in the first step, an estimate

ŝ ′
n of s ′

n is obtained from the noisy range-compressed raw
signals ŝn by inverting (22); in the second step, an estimate
D̂ of the FT D of the equivalent monostatic raw signal is
obtained from the FT ŝ ′

n of ŝ ′
n by inverting (36); and finally,

in the third step, the final SAR image γ̂ is obtained from
D̂ by using one of the available monostatic SAR processing
techniques. The overall processing procedure is described in
the block scheme of Fig. 4.

A. First Step: Baseline Phase Terms Compensation

The first processing step performs an accurate space-domain
compensation of the cross-track and along-track baseline phase
terms. Starting from the noisy range-compressed raw signals
ŝn and by inverting (22), we get

ŝ ′
n
(
x ′, r ′

)
= exp

{
j
2π
λ

[
1rcn

(
x ′, r ′

)
+1ran

(
r ′
)]}

ŝn
(
x ′, r ′

)
.

(37)

This complex multiplication must be performed for the
Na × Nr pixels of the N raw signals. This processing step
requires knowledge of the relative positions of the receivers
with a centimetric precision, which is feasible. In addition,
it requires knowledge of the scene height profile; however,
if conditions on bR mentioned in Section II-A are satisfied,
a scene height accuracy of the order of several tens of meters is
sufficient. Accordingly, this step is of paramount importance,
but it does not present critical limitations.

B. Second Step: Combination of Receivers’ Signals

The second processing step performs a proper combination
of signals at different receivers, to remove azimuth ambiguity
and to increase SNR. It is similar to the combination strategies
available in [16], [17], [18], and [19], but, as already noted, the
analytical expressions of involved matrix and vector elements
are new.

First of all, 2-D FTs of ŝ ′
n are performed by using fast

Fourier transform (FFT) algorithms, so obtaining ˆ̃S′
n . From

the latter, assuming N ≥ M , estimates D̂m of Dm are obtained
by solving the matrix equation (36) in the least-squares sense

D̂(ξ, η) = H †(ξ, η) ˆ̃S
′
(ξ, η) (38)

where H †
=
(

H∗ H
)−1 H∗ is the pseudo inverse of H ,

and H∗ is its transpose conjugate. The unfolded unambigu-
ous spectrum D̂(ξ, η) is then reconstructed by disposing
the elements of the vector D̂(ξ, η) over the ξ -axis, with
−Mξs/2 ≤ ξ − ξDC ≤ Mξs/2, as illustrated in Fig. 5.

The performance of the reconstruction algorithm of (38)
is measured by the (real nonnegative) eigenvalues λm

of the M × M Hermitian square matrix A = H∗ H ,
whose elements are

Amp(ξ, η)

=

N∑
n=1

exp
[

j(p − m)ξs1x̄0n
]

w∗

[
ξ − ξDC − m ′ξs + 2a01x̄0n

2aXT

]
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Fig. 4. Block scheme of the proposed FfT-FF-SAR processing chain. COMB stands for combination and MIFT stands for modified inverse FT, see (47).

Fig. 5. Azimuth spectra reconstruction for: (a) M odd and (b) M even.

· w

[
ξ − ξDC − p′ξs + 2a01x̄0n

2aXT

]
, with m, p = 1, . . . ,M.

(39)

In fact, a measure of matrix conditioning, and thus of the
ambiguity reduction, is provided by the condition number
χ , which is the ratio of maximum to minimum eigenvalues.
In addition, it can be shown [19] that the SNR after the
signal combination is improved with respect to the SNR at
the individual receivers by a factor G (SNR gain) given by

G =
M

Tr
{

A−1} =
M∑M

m=1
1
λm

≤

∑M
m=1 λm

M
=

Tr
{

A
}

M
(40)

where Tr{A} stands for the trace of matrix A, and the
Schwartz inequality has been applied to the vectors of com-
ponents (1/λm)

1/2 and (λm)
1/2.

The ideal condition, which corresponds to maximum ambi-
guity suppression and SNR gain, is obtained when all the
M eigenvalues coincide, i.e., when the matrix A = H∗ H is
proportional to the identity matrix. In fact, in this case, χ =

1 and G attains the maximum value allowed by (40). This is
achieved if the summation in (39) vanishes for m ̸= p and
it is independent of m for m = p, i.e., if the following two
conditions apply:

1) The formation length satisfies lR/4 ≪ XT, so that,
as noted in Section II-B, the mutual azimuth spectral
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shift 2a01x̄0n is negligible, w does not depend on n,
and it can be moved from Hn(ξ, η) to G(ξ, η;r).

2) The receivers’ positions are such that

ξs
(
1x̄0n −1x̄01

)
= 2π

(
n − 1

N
+ kn

)
, i.e.,

1xn −1x1 =
1 + cos3 ψ0

cos3 ψ0

v

P RF

(
n − 1

N
+ kn

)
(41)

with integer kn , so that for m ̸= p, we get Amp = 0.
Condition 1) can be easily obtained since, for a typical

X-band FF-SAR system, it corresponds to maximum formation
lengths of the order of 500–1000 m. This condition is also very
convenient from a computational viewpoint because it leads to
a matrix A independent of spatial frequencies ξ and η, so that
matrix inversion must be performed only once

Amp =

N∑
n=1

exp
[

j(p − m)ξs1x̄0n
]
, with m, p = 1, . . . ,M.

(42)

Therefore, from now on, we will assume that it is satisfied.
In this case, Tr{A} = MN, so that, in view of (40), the
maximum attainable value of G is N .

Conversely, condition 2) cannot be easily obtained since it
requires that the receiver platform orbits are controlled with a
precision of the order of a small fraction of the SAR resolution,
i.e., of the order of a few tens of centimeters. Actually, as noted
in [16], [25], and [26], uncertainty on the relative sensor orbit
control is much larger than that, being of the order of several
meters. Accordingly, there is a nonnegligible probability that
an ill-conditioned A matrix, and hence significant ambiguity
and reduced SNR, are obtained. Therefore, in Section IV,
a complete statistical analysis of the performance of the
reconstruction algorithm will be performed, by modeling 1xn

as a random variable and A = H∗ H as a stochastic matrix.

C. Third Step: Monostatic SAR Processing

The final unambiguous SAR image γ̂ (x, r) is obtained from
D̂(ξ, η) by resorting to usual monostatic SAR processing,
which performs range migration correction and azimuth com-
pression. Any algorithm able to process squinted stripmap
SAR data can be used. For instance, a 2-D Fourier domain
approach can be used: by proceeding as in [1], and also
considering that SWT is limited by (20) and (21), we can
express (28) as

D(ξ, η) ∼= 0[ξ, η − µ(ξ, η)]G0(ξ, η) (43)

where G0(ξ, η) = G(ξ, η;r0) and

µ(ξ, η) =
∂

∂r
8(ξ, η; r)

∣∣∣∣
r=r0

∼=
ξ 2

4a0r0
= µ(ξ) (44)

with

8(ξ, η; r) =
ξ 2

4a
(
1 +

ηλ

2πα

) −
ξπ

λa
sinψ +

ηπ

2αλa
sin2 ψ. (45)

Therefore, from D̂(ξ, η), we can obtain the (shifted) FT of
the final SAR image as

0̂[ξ, η − µ(ξ)] = D̂(ξ, η)G−1
0 (ξ, η) (46)

and the final SAR image as

γ̂
(
x, r̄
)

= FT −1
x

{
exp
[
− jµ(ξ)r̄

]
FT −1

r

{
0̂[ξ, η − µ(ξ)]

}}
(47)

where FT −1
x and FT −1

r are the azimuth and range inverse
FTs, respectively, and r̄ = r − r0.

Finally, we note that in the case M = 1, the whole
above-described procedure reduces to simply rephasing and
coherently summing up the N individual complex SAR
images, thus leading to an SNR gain ideally equal to N .

IV. PERFORMANCE ANALYSIS

As noted in Section III-B, the performance of the recon-
struction algorithm of (38) is governed by the eigenvalues λm

of the matrix A. By assuming that this matrix can be expressed
by (42), its eigenvalues, and thus condition number and SNR
gain, depend on the products φn = ξs1x̄0n , i.e., for a fixed
d , on the PRF and on the receivers’ relative positions 1xn .
If φn is varied by spanning an interval wider than 2π (which
is obtained by varying the receivers’ positions by distances of
the order of SAR resolution, i.e., of the order of the physical
size of the transmitting antenna), then the entire range of
possible values of condition number and SNR gain is obtained.
Since the uncertainty on the relative sensor positions control is
usually of the order of several meters, there is a nonnegligible
probability that an ill-conditioned

A matrix, and thus significant ambiguity and reduced SNR,
is obtained.

In this section, we first of all highlight the relation between
SNR gain and condition number. Then, by modeling the
receivers’ positions as random variables, we perform a sta-
tistical analysis of SNR gain and condition number, both
assuming a fixed PRF and allowing for an adaptive PRF
tuning. Finally, we numerically verify the overall proposed
processing algorithm by applying it to simulated raw signals.

A. Relation Between SNR Gain and Condition Number

Let us order the eigenvalues λm in the ascending order,
so that

0 ≤ λm ≤ λm+1 ≤ λM for m = 1, . . . ,M− 1. Accordingly,
the condition number is

χ =
λM

λ1
. (48)

We also have
M∑

m=1

λm = λ1

M∑
m=1

am = Tr
{

A
}

= M N ⇒ λ1 =
M N∑M
m=1 am

(49)

where am = λm /λ1, so that a1 = 1, aM = χ , and if M > 2,
1 ≤ am ≤ am+1 ≤ χ for m = 2, . . . ,M− 1.
By using (49) in (40), we obtain the following expression

of the SNR gain:

G =
M∑M

m=1
1
λm

=
Mλ1∑M
m=1

1
am

=
M2 N∑M

m=1
1

am

∑M
m=1 am
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= N
M2(

1 +
∑M−1

m=2
1

am
+

1
χ

)(
1 +

∑M−1
m=2 am + χ

)
= N

M2χ(
1 + χ

∑M−1
m=2

1
am

+ χ
)(

1 +
∑M−1

m=2 am + χ
) . (50)

For M = 2, we get

G = N
4χ

(1 + χ)2
(51)

which shows that in this case, a one-to-one correspondence
exists between SNR gain and condition number [see Fig. 6(a)].
This is not the case for M > 2 because G also depends on
the values of am . However, G and χ are still strictly related,
especially for small values of M since, for each value of χ ,
G is limited to a range of values that becomes narrower as M
is decreased. This can be seen by considering G, for a fixed
χ , as a function of the variables a2, . . . , aM−1. As we show
in Appendix C, the maximum value of this function is

Gmax = N
M2χ[

1 + (M − 2)
√
χ + χ

]2 (52)

and its minimum value is
Gmin = N

4χ
(1 + χ)2

for M even

Gmin = N
4χ

(1 + χ)2 −
1

M2 (χ − 1)2
for M odd.

(53)

Note that (52) and (53) reduce to (51) for M = 2, and that
for large M , the second of (53) is approximately equal to the
first.

Plots of the relation between SNR gain and condition
number for M values from 2 to 5 are shown in Fig. 6.

Finally, we explicitly note that the original results of this
section apply to both the conventional and the FfT configura-
tions of FF-SAR.

B. Statistical Analysis of SNR Gain and Condition Number

Let us first suppose that the transmitter PRF cannot be
varied. This is the case, for instance, if an SAR transmitter of
opportunity is employed. Since the uncertainty on the control
of receiver positions is of the order of several meters, the
phases φn = ξs1x̄0n can be modeled as independent random
variables uniformly distributed in [−π, π]. Accordingly, the
matrix A in (42) is a random matrix, to which theoretical
results of [27] can be applied. As noted in [16], these results
imply that a condition number smaller than 10 (and thus
a sufficiently well-conditioned matrix) is obtained for N
equal to at least 3M . It is interesting to note that by letting
χ = 10 and N = 3M in (53), we get that the SNR gain is equal
to at least M , i.e., at least the value obtained for N = M in the
ideal conditions of (41). However, it must be noted that theo-
retical results of [27] hold for large matrices (more exactly, for
M → ∞). Conversely, in the present application, M is usually
small. Therefore, we here want to explore the statistics of
condition number χ and SNR gain G for small values of
M . To this aim, by using Monte Carlo simulations, we have
computed the cumulative distribution function (cdf) of χ and

TABLE I
PROBABILITY THAT χ < 10 (OR G > M) WHEN THE PRF IS TUNED IN AN

INTERVAL OF ±3% AROUND ITS NOMINAL VALUE

G for M = 2, 3, 4 and for different values of N . These
cdfs are plotted in Fig. 7. From these graphs, for each M ,
we can evaluate the minimum number of receivers N such that
χ < 10 with a probability greater than 0.95 and, similarly, the
minimum number of receivers N such that G > M with proba-
bility greater than 0.95. For M = 2, both aims are achieved for
N = 5, and for M = 3, both aims are achieved for N = 9
= 3M . For M = 4, the minimum number of receivers such
that G > M with a probability greater than 0.95 is N = 12
= 3M , whereas a larger number of receivers would be needed
if we require that χ < 10 with a probability greater than 0.95.
However, for N = 12, the probability that χ < 10 is about
0.9, which may be still acceptable.

In conclusion, we can state that for M = 2, a proper choice
is N = 5, whereas for M > 2, we should choose N = 3M .

Let us now move to the case in which PRF tuning can be
performed, as proposed in the literature [16], [25]: for given
receiver positions 1xn , the PRF can be adaptively modified
within a prescribed interval in order to minimize the condition
number χ . In particular, we assume that the PRF can be varied
in an interval of ±3% around its nominal value PRF0, i.e.,
between PRF0 − 0.03PRF0 and PRF0+ 0.03PRF0. In addition,
we assume that 1x̄0n −1x̄01 are Gaussian random variables
with a mean equal to (n − 1)50 m and a standard deviation
equal to 2.5 m. This means that 1xn − 1x1 are Gaussian
random variables with a mean equal to about (n − 1)100 m and
standard deviation equal to about 5 m, the exact values depend-
ing on ψ0. In addition, we assume that the nominal value of
ξs is 2π /(3M) m−1, which corresponds to a SAR system with
azimuth resolution L/2 not larger than 3 m. By performing
Monte Carlo simulations, we have evaluated the probability
that χ < 10 and that G > M for M = 2, 3, 4 and for different
values of N . Results are reported in Table I. It turns out that for
M = 2, the condition number is always smaller than 10 for any
N , including N = 2. From Table I, we note that the minimum
number of receivers N such that χ < 10 with a probability
greater than 0.95 is N = 4 for M = 3 and N = 7 for M = 4; for
M = 3, N must be increased by one if we require that
G > M with probability greater than 0.95. We have ver-
ified that practically the same results are obtained if the
PRF is adaptively modified to maximize G instead that to
minimize χ .

Again, we explicitly note that these results are new not only
for the FfT configuration, but also for the conventional FF-
SAR, which is recovered by simply letting 1x̄0n = 1xn/2.
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Fig. 6. Normalized gain G/N versus condition number χ for: (a) M = 2; (b) M = 3; (c) M = 4; and (d) M = 5. For M > 2, the yellow area between
blue and red curves represents the allowed G–χ pairs.

TABLE II
FF-SAR SYSTEM PARAMETERS

C. Processing Algorithm Verification

In this section, we report numerical results illustrating the
output of the processing chain described in Section III applied
to a point target located at the scene center, unless otherwise
stated, in the case M = 1 (Section IV-C1) and M > 1
(Section IV-C2).

Simulation parameters are listed in Table II. In the whole
simulation study, we assumed an FF-SAR working at 9.6 GHz
(X-band) and comprising a formation of five satellites unless

otherwise stated. The achieved range swath can be evaluated
as

Sr =
c(PRI − 2τ)

2 sinϑ
(54)

where PRI is the pulse repetition interval, τ is the chirp pulse
duration, and ϑ is the radar look-angle. For the FF-SAR
defined in Table II, we obtain a range swath of about 43 km.

Output results are shown with an oversampling factor of
25 for visualization purposes.

Raw signals have been simulated assuming the parameter
values reported in Table II and assuming the ideal geometry
described in Section II, including straight flight paths, constant
Tx and Rxs velocities, and constant d and 1x over time.

The aim of the simulation analysis is to provide quantitative
and qualitative indications about the expected performance of
the proposed processing algorithm.

The following imaging performance parameters have been
considered:

• range and azimuth resolutions, evaluated as the 3-dB
impulse response width (IRW) in intensity format;

• peak-to-sidelobe ratio (PSLR), defined as

PSLRdB = 10 log10
SLL
MLL

(55)

where SLL and MLL stand for the sidelobe and mainlobe
levels, respectively;
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Fig. 7. cdfs of condition number and gain for: (a) and (b) M = 2; (c) and (d) M = 3; and (e) and (f) M = 4. Thin vertical and horizontal lines represent
χ = 10 and cdf = 0.95 in (a), (c), and (e), and G = M and cdf = 0.05 in (b), (d), and (f).

• integrated sidelobe ratio (ISLR), defined as

ISLRdB = 10 log10
SLen

MLen
(56)

where

MLen =

∫∫
ML

∣∣γ̂ (x ′, r ′
)∣∣2dx ′dr ′ (57)

and

SLen =

∫∫
(10dx,10dr)

∣∣γ̂ (x ′, r ′)
∣∣2dx ′dr ′

− MLen (58)

are the mainlobe and sidelobes energy levels, respectively; the
integration domain of (57) covers the full area of the impulse
response mainlobe; dx and dr stand for the azimuth and
range IRWs, respectively. The integral domain approximately
contains 98% of the overall sinc function energy;

• SNR gain, defined as

G =
SNRN

SNR1
(59)
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Fig. 8. (a) 2-D SAR image, and normalized: (b) range and (c) azimuth amplitude profiles for M = 1, d = 50 km, and 1x = 100 m. Remaining FF-SAR
parameters are listed in Table II. An oversampling factor of 25 has been applied. The red lines indicate the sinc function SLL.

Fig. 9. 2-D impulse response for M = 1, d = 50 km, 1x = 50 m, and target ground range of: (a) −20 km; (b) −5 km; (c) −1 km; (d) 1 km; (e) 5 km;
and (f) 20 km. In each configuration, the origin of the range axis has been set in correspondence of the target for visualization purposes.

where SNR1 and SNRN stand for the SNR at the receiver of
the single satellite and of the whole N -sat formation.

Along with the abovementioned quality indicators, in the
case M > 1, the azimuth ambiguity suppression capability
is evaluated via the peak azimuth ambiguity-to-signal ratio
(PAASR), which is defined as follows:

PAASRdB = 10 log10
Paa

Ps
(60)

where Paa and Ps stand for the largest azimuth ambiguity level
and the target mainlobe peak, in intensity format.

Geometric and radiometric parameters, namely, PSLR,
ISLR, and spatial resolutions have been evaluated in noise-free
conditions to provide more accurate analyses. For fair SNR
gain evaluation, a signal bandwidth of ξs is processed
for the single satellite case; additionally, reported results
have been obtained by averaging ten independent runs.
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Fig. 10. 2-D impulse response of target for M = 3 (PRF = 2000 Hz), d = 50 km, and: (a) 1x ideal, N = 3; (b) N = 1; (c) 1x = 50 m, N = 3; and
(d) 1x = 50 m, N = 9.

In Figs. 8–12, the range axis has to be intended as a slant
range.

1) Case M = 1: In this system configuration, the operating
PRF is larger than the received signal bandwidth BWaz;
hence, no azimuth ambiguity raises in the final bistatic
image. This acquisition mode is aimed at improving the
SNR of the FF-SAR with respect to an equivalent monostatic
SAR, i.e., a hypothetical backscattering SAR sensor mounted
onboard the FF-SAR transmitter of opportunity. FF-SAR sys-
tem parameters are listed in Table II. Imaging performance
metrics relevant to a single point target located at the scene
center are reported in Table III for different Tx–Rxs distance
d and along-track baselines 1x. For the sake of conciseness,
we only show the impulse response relevant to the case
d = 50 km and 1x = 100 m in Fig. 8. Obtained radiometric
and geometric performance indicators are in line with the ideal
sinc impulse response, thus demonstrating the effectiveness
of the data synthesis algorithm in aliasing-free conditions.
In particular, the achieved spatial resolution is similar to
the nominal values in Table II. The coherent combination

of the received signals spectra leads to a significant increase
of the final SNR with respect to the single receiver. Actually,
the achieved SNR gain is very close to the maximum nominal
value N for small Tx–Rxs distance and along-track baseline,
while a slight degradation is measured as both distances
increase, thus leading to a reduced noise rejection capability
of the FF-SAR formation. Such a performance degradation
might be partially motivated by the degraded compression and
focusing capabilities of the data synthesis algorithm for large
target-scene center offset.

Imaging capabilities are expected to be dependent upon
the target ground-range position, due to the approximations
made, namely, r = r0 when moving to the Fourier domain.
Accordingly, for a more comprehensive performance analysis,
here, we evaluate imaging metrics for a single point target
at different ground-range coordinates. The FF-SAR system
parameters are listed in Table II. Additionally, we consider
d = 50 km, 1x = 50 m, and N = 5. Synthetic results are
reported in Table IV, while, for the sake of conciseness, only
few cases are shown in Fig. 9. The ground range axis has the
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Fig. 11. Strongest ghost range profile for M = 3 (PRF = 2000 Hz), d = 50 km, and: (a) 1x ideal, N = 3; (b) N = 1; (c) 1x = 50 m, N = 3; and
(d) 1x = 50 m, N = 9. Note that the vertical scales are different in different plots. Amplitudes are normalized to the target one.

Fig. 12. Strongest ghost azimuth profile for M = 3 (PRF = 2000 Hz), d = 50 km, and: (a) 1x ideal, N = 3; (b) N = 1; (c) 1x = 50 m, N = 3; and
(d) 1x = 50 m, N = 9. Note that the vertical scales are different in different plots. Amplitudes are normalized to the target one.

origin at the scene center and points from the Tx outward.
Performance indicators are quite stable for absolute values of
target ground ranges up to 10 km and significantly degrade for

larger distances, where the impulse response severely deviates
from the ideal pattern due to the approximations made, as it
is also clear from Fig. 9. The SNR gain is largest at scene
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TABLE III
IMAGING PERFORMANCE PARAMETERS FOR M = 1, N = 5, AND DIFFER-

ENT FF-SAR CONFIGURATIONS

TABLE IV
IMAGING PERFORMANCE PARAMETERS FOR M = 1, N = 5, AND DIFFER-

ENT TARGET GROUND-RANGE POSITIONS

TABLE V
IMAGING PERFORMANCE PARAMETERS FOR M = 3

center and gradually degrades as the target moves away. For
targets located at 20 km from the scene center, or farther, the
receivers’ formation is no longer effective in rejecting thermal
noise with respect to the single receiver.

2) Case M > 1: In this acquisition mode, the transmitter
sends chirp pulses at a PRF below the Nyquist limit in order
to enlarge significantly the range swath. By recombining the
received signals as described in Section III, the unambiguous
azimuth spectrum can be reconstructed and the resulting
ambiguities in the azimuth direction due to the reduced PRF
are attenuated to some extent depending on the number of
receivers and M .

In this simulation setup, we assumed PRF = 2000 Hz,
which for an azimuth bandwidth of about 4500 Hz leads to
M = 3. Additionally, the distance d between the Tx and
the Rxs formation center is set to 50 km for all the cases
analyzed. The remaining system parameters are those listed in
Table II. To provide a more accurate performance evaluation,
thermal noise has been injected in raw data only for the

evaluation of the SNR gain. Imaging quality indicators are
shown in Table V for different along-track baselines 1x and
the number of receiving platforms N . The 2-D images of
the target are shown in Fig. 10, while range and azimuth
normalized profiles of the strongest ghost due to azimuth
ambiguity are shown in Figs. 11 and 12, respectively. An ideal
case where Rxs positions have been set according to (41)
has also been considered. Such a configuration provides the
best azimuth ambiguities suppression for a fixed M . For the
FF-SAR analyzed here, (41) results in an along-track baseline
of about 18.12 m. In the nonideal case of 1x = 50 m,
the azimuth ambiguity suppression capability improves with
increasing N , but it remains well below the ideal formation
case, even for a number of satellites significantly larger than
M . As for thermal noise suppression, it is worth noting that the
ideal configuration with M satellites ensures the best possible
noise reduction, i.e., an SNR gain approximately equal to
N . Conversely, a nonideal formation provides less predictable
performance due to the different receivers’ distances from
the ideal ones. Notwithstanding, the case with N = 9 leads
to a much larger SNR gain than the one with N = 3,
which actually justifies the adoption of a larger formation
despite the fact that azimuth ambiguity suppression capability
no longer significantly improves. Finally, it is worth noting
that configurations with N < M do not represent meaningful
FF-SAR operating conditions as M is the minimum number
of receivers required to recover the whole azimuth spectrum.

V. CONCLUSION

We have presented an analytical model for the signal
received by an FF-SAR, i.e., a multistatic distributed SAR
based on a cluster of satellite receivers orbiting in coordinated
motion and receiving the signal emitted from an SAR transmit-
ter which is part of the cluster or opportunistically exploited.
As opposed to conventional approaches, which assume that the
transmitter-to-receiver baseline is much smaller than satellite
altitude, in this article, we focus on FfT geometry, where
this assumption does no longer hold. In this configuration,
the FF-SAR transfer function is demonstrated to be composed
of a receiver dependent part—accounting for received signal
spectrum shift in both azimuth and range directions due to
receivers’ separation, along-track and cross-track baselines—
and a receiver independent part, i.e., the equivalent monostatic
SAR transfer function—accounting for range migration and
azimuth defocusing of each received echo.

Additionally, we presented an efficient three-step processing
scheme in the transform domain, stemming from the developed
signal model, and based on a proper coherent combination and
spectrum reconstruction of the received echoes. The proposed
data synthesis approach is suited to two FF-SAR imaging
modes, namely, SNR improvement—where the coherent pro-
cessing is aimed at reducing noise power—and HRWS—where
spectrum reconstruction attenuates azimuth ambiguities. Ideal
FF-SAR configurations maximizing SNR gain and ambiguity
suppression were also investigated and discussed. An original
formulation of the relation between SNR gain and condition
number has also been provided. In addition, by modeling the
receivers’ positions as random variables, a statistical analysis
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of SNR gain and condition number has been carried out,
both assuming a fixed PRF and allowing for an adaptive PRF
tuning.

Simulation results show that radiometric and geometric
imaging capabilities achieved by the proposed processing
scheme are aligned with those offered by the equivalent
monostatic SAR. For SNR improvement, noise suppression
capability is strongest at the scene center and remains at
acceptable levels for target-scene center offset up to several
kilometers. Finally, in HRWS imaging mode, azimuth ambigu-
ity suppression improves as the number of satellites increases
but remains below that offered by ideal FF-SAR. Assess-
ment of imaging performance in the presence of extended
targets as well as a comprehensive analysis of the role of
the receiver formation parameters on imaging capabilities
might require proper attention and will be investigated in the
near future.

APPENDIX A

In this appendix, we show how (6)–(11) are obtained.
From (3) and (4), we have

rT + rn = r +

(
x ′

− x
)2

2r
+

r
cosψ

− sinψ
(
x ′

− x +1xn
)

+ cos3ψ

(
x ′

− x +1xn
)2

2r
− cosψbncos(θn − θ).

(61)

Let us consider the following terms that appear in (61):

cos3 ψ

(
x ′

− x +1xn
)2

2r
+

(
x ′

− x
)2

2r
. (62)

By adding and subtracting A1xn , with A being an arbitrary
constant, in the parentheses of (62), we get (63), as shown at
the bottom of the next page, which can be rewritten as

(
cos3 ψ + 1

)(x ′
− x + A1xn

)2

2r
+
[
cos3 ψ(1 − A)− A

]
·

2
(
x ′

− x + A1xn
)
1xn

2r
+
[
(1 − A)2 cos3 ψ + A2]1x2

n

2r
.

(64)

We can now determine the constant A by imposing

cos3 ψ(1 − A)− A = 0 (65)

from which

A =
cos3 ψ

1 + cos3 ψ
and (1 − A) =

1
1 + cos3 ψ

(66)

so that A1xn = 1x̄n .
By replacing (66) in (64), we get

(
cos3 ψ + 1

)(x ′
− x +1x̄n

)2

2r

+
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1

1 + cos3 ψ

)2
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1x2
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2r
. (67)

In conclusion, we have

cos3 ψ

(
x ′

− x +1xn
)2

2r
+

(
x ′

− x
)2

2r

=
(
cos3 ψ + 1

)(x ′
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)2

2r
+

cos3 ψ

1 + cos3 ψ
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2r
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Now, we can also write

sinψ
(
x ′

− x +1xn
)

= sinψ
(
x ′

− x + A1xn + (1 − A)1xn
)

= sinψ
(
x ′

− x +1x̄n
)

+
sinψ

1 + cos3 ψ
1xn. (69)

Replacing (68) and (69) in (61) leads to (6)–(11).

APPENDIX B

In this appendix, we show how (16) and (17) are obtained,
and we compute the range derivative of 1x̄n .

First of all, by differentiating (5), we get

d cosψ
dr

=
d2(

r2 + d2
) 3

2

=
sin2 ψ cosψ

r

d sinψ
dr

= −
dr(

r2 + d2
) 3

2

= −
sinψ cos2 ψ

r
(70)

so that

d
dr

sinψ
β

= −
sinψ cos2 ψ
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(
1 + 3
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β
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dr

cos3 ψ

β
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r

= 3
sin2 ψ cos3 ψ
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. (71)

By using (71) in differentiating (10), we get

d1ran

dr
=
1xn

βr
sinψ cos2 ψ
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1 + 3

sin2 ψ cosψ
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1x2

n

2βr2 cos3 ψ
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1xn

βr
sinψ cos2 ψ

(72)

i.e., (16). In addition, by using the second of (71), we obtain

d1x̄n

dr
= 3 sin2 ψ cos3 ψ

1xn

β2r
∼= 3

d21xn

4r3 . (73)

With regard to (17), we have

1rcn(x, r)
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∼= 1rcn
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where
∂1rcn
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and
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∂z
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Examination of Fig. 3(b), in which H is the sensor height,
leads to

r =
H − z
cosϑ

, i.e., z = H − r cosϑ (77)

from which
∂r
∂ϑ

=
H − z
cos2 ϑ

sinϑ = r tanϑ

∂z
∂ϑ

= r sinϑ. (78)

By using (78) in (75), we get
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and by using it in (76), we obtain
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Use of (79) and (80) in (74) leads to
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Finally, (81) coincides with (17) when we let

∂z
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APPENDIX C

In this appendix, we derive (52) and (53).
First of all, we note that maxima and minima of G corre-

spond to minima and maxima of the function

L(a2, . . . , aM−1)=

(
1 + χ

M−1∑
m=2

1
am

+ χ

)(
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M−1∑
m=2
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.

(83)

Its partial derivatives with respect to am are
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(84)

Local maxima or minima of L are obtained by letting

∂L
∂am

= 0 m = 2, . . . ,M − 1 (85)

from which
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m = 2, . . . ,M − 1. (86)

This can be achieved for

am =
√
χ m = 2, . . . ,M − 1 (87)

as it can be verified by replacing (87) in (86). It can also
be verified that the Hessian matrix of L in am = (χ)1/2 with
m = 2, . . . ,M − 1 is positive definite so that this is the point
of minimum for L and thus the point of maximum for G.
By replacing (87) in (50), we get (52).
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There are no other solutions of the system of equations (86)
belonging to the allowed domain of variation of am . The point
of minimum for G will be then one of the vertices of the
boundary of the allowed domain of variation of am , i.e.,{

am = 1 m = 2, . . . , k
am = χ m = k + 1, . . . ,M − 1

(88)

with k integer and 1 ≤ k ≤ M − 1. By replacing (88) in (50),
we get

G = N
M2χ

[M − k + kχ ][k + (M − k)χ ]
. (89)

By letting q = k − M /2, (89) becomes

G = N
M2χ[M

2 − q +
(M

2 + q
)
χ
][(M

2 + q
)

+
(M

2 − q
)
χ
]

= N
M2χ[M

2 (1 + χ)+ q(χ − 1)
][M

2 (1 + χ)− q(χ − 1)
]

= N
4χ[

(1 + χ)2 −
4q2

M2 (χ − 1)2
] . (90)

This quantity assumes its minimum value when q2 attains its
minimum allowed value, which is zero for M even, and 1/4
for M odd, so obtaining the expressions in (53).
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